Annals of Mathematics 194 (2021), 943-966
https://doi.org/10.4007 /annals.2021.194.3.8

Rubin’s conjecture on local units in the
anticyclotomic tower at inert primes

By AsHAYy A. BURUNGALE, SHINICHI KOBAYASHI, and KAZuTO OTA

Abstract

We prove a fundamental conjecture of Rubin on the structure of lo-
cal units in the anticyclotomic Z,-extension of the unramified quadratic
extension of Q, for p > 5 a prime.

Rubin’s conjecture underlies Iwasawa theory of the anticyclotomic de-
formation of a CM elliptic curve over the CM field at primes p of good su-
persingular reduction, notably the Iwasawa main conjecture in terms of the
p-adic L-function. As a consequence, we prove an inequality in the p-adic
Birch and Swinnerton-Dyer conjecture for Rubin’s p-adic L-function. Ru-
bin’s conjecture is also an essential tool in our exploration of the arithmetic
of Rubin’s p-adic L-function, which includes a Bertolini-Darmon—Prasanna
type formula.

1. Introduction

Iwasawa theory for CM elliptic curves has a long history and continues to
have significant arithmetic applications, needless to say, since the first general
results towards the Birch and Swinnerton-Dyer conjecture by Coates—Wiles.
Iwasawa theory is a p-adic theory and the behavior heavily depends on the
nature of the prime p. Nowadays, for an ordinary prime p (or a Panchishkin
prime in general; cf. [12, §3]), we have a guiding principle of Iwasawa theory for
general motives and p-adic deformations (cyclotomic, Hida theoretic, several
variables; cf. [12]). For the cyclotomic deformation, B. Perrin-Riou developed
a general formalism of Iwasawa theory including non-ordinary primes (cf. [28]),
and the (¢, I')-theory gives strong applications for this. Sometimes the signed
Iwasawa theory initiated by R. Pollack and the second-named author also works
well. However, apart from the cyclotomic deformation, the situation is still not

Keywords: CM elliptic curves, Iwasawa theory, local units, p-adic L-functions

AMS Classification: Primary: 11G07, 11G15, 11R23.

This work was partially supported by the NSF grant DMS 2001409, and the JSPS KAK-
ENHI grants JP16K13742, JP17TH02836, JP17K14173 and JP18J01237.

(© 2021 Department of Mathematics, Princeton University.

943


http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2021.194.3.8

944 ASHAY A. BURUNGALE, SHINICHI KOBAYASHI, and KAZUTO OTA

so satisfactory for non-ordinary (non-Panchishkin) deformations even for very
basic cases such as Iwasawa theory for CM elliptic curves of the anticyclotomic
deformation at inert (supersingular) primes. We point out that this is not
merely a matter of formalism; in fact new interesting phenomena happen and
an Iwasawa theory should reflect them.

Let E be an elliptic curve defined over Q with complex multiplication by
an imaginary quadratic field K. We also assume that F has good reduction
at p. Let wg/g be the root number of F/Q. Let K3 be the anticyclotomic
Zy-extension of K with the n-th layer K7°. The behavior of the Mordell-
Weil rank of E(KZ2°) is very interesting. If p splits in K (hence, E has good
ordinary reduction above p), then ranky E(K?2°) is bounded independently
of n if wg/g = +1, whereas ranky E(K;,°) = 2p" + c for all n sufficiently
large if wg /g = —1 for ¢ a constant. (In the latter exceptional case (cf. [24])
the Heegner hypothesis is not satisfied and the rational points on E are only
indirectly related to Heegner points. Note that the rank should be even because
of the CM action and the sign of the functional equation of the Hasse—Weil
L-function of E/K being +1.) On the other hand, if p is inert in K (hence,
E has good supersingular reduction above p), R. Greenberg noticed that root
numbers vary in the anticyclotomic tower and observed

ranky E(K2) — rankg E(K2 ) = e,p" Y(p — 1)

n—1

for all n sufficiently large, where ¢, is zero or two depending on the parity
of n. In particular, new points of infinite order appear in every other layer of
the anticyclotomic Zy-extension (cf. [11], [13]). More precisely, if wg/ g = +1,
then e, for sufficiently large n is zero for odd n and two for even n. The
reverse holds when wg g = —1. (The phenomenon was first observed in the
early 80s (cf. [11, p. 247]). A proof appears in [1], [5].) In contrast, the
Mordell-Weil rank is always bounded in the cyclotomic Zj-extension even for
a supersingular prime p. (However, the behavior of the conjectural asymptotic
order of the Tate-Shafarevich groups in the cyclotomic Z,-extension depends
on the reduction type of E at p and is similar to the anticyclotomic case as
above; cf. [22], [23], [26], [29].)

Rubin’s conjecture. In [33], K. Rubin envisioned an Iwasawa theory reflect-
ing such phenomena. In the split (ordinary) case, it is classical to study the
module of local units modulo elliptic units attached to E in the Zg—extension
of K, and it is shown that its characteristic ideal is generated by the two-
variable Katz p-adic L-function attached to E. However, in the inert case, the
rank of the module of local units is twice that of the module of elliptic units
and the quotient is non-torsion.

Rubin considered a module V' obtained as the (twisted) projection of local
units in the Z%-extension of K to the anticyclotomic direction, and he defined
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two free A-submodules V* of rank 1 of V. Here A is the Iwasawa algebra for
the anticyclotomic Zp-extension of an unramified quadratic extension of Q,
and the local modules VF depend only on p. In 1987 Rubin conjectured that

(R) V=VteV"

(cf. [33, Conj. 2.2]). The conjecture is purely local, inherent to the prime p. Yet
it is intertwined with a supersingular counterpart of the anticyclotomic Katz
p-adic L-function. Indeed, the projection of elliptic units lives in V¢ where ¢
is the sign of the functional equation of L(E/Q,s). In [33] it was shown that
the quotient of V¢ by the image of elliptic units is A-torsion and generated
by a certain p-adic L-function £, whose interpolation factors are non-zero
under (R).

The aim of the present paper is to prove Rubin’s conjecture (R) (cf. The-
orem 2.1).

Intriguingly, Rubin’s theory is a kind of signed Iwasawa theory preceding
[22] and [30]. In fact, A. Agboola and B. Howard [1] reconsidered Rubin’s the-
ory in the context of the signed Iwasawa theory, and under Rubin’s conjecture,
they formulated and proved an Iwasawa main conjecture that involves Rubin’s
p-adic L-function £ and also explained the rank formula of Greenberg. (The
proof relies on the main conjecture for K [34].) We recall their Iwasawa main
conjecture in Section 6, which is now unconditional (cf. Theorem 6.1). As a
consequence, we prove an inequality in the rank part of the underlying p-adic
Birch and Swinnerton-Dyer conjecture (cf. Theorem 2.4).

The strategy. In [33] Rubin envisaged a criterion under which the conjec-
ture is true. The criterion is still elusive, yet its principle lies at the heart of
our approach.

Rubin’s criterion involves the existence of certain global objects:

(a) a CM elliptic curve with good supersingular reduction at p whose central

L-value is p-indivisible;

(b) a Heegner point over imaginary quadratic fields with p inert that is locally
p-indivisible.
The existence (a) and (b) implies (R).

After Rubin’s work, there was an important development [10] towards (a).
The p-indivisibility relies on (a variant of) the Manin—-Mumford conjecture.
The results of [10] exclude the set-up of the criterion, yet we slightly generalize
the set-up so as to include more general L-values. This is the content of
Section 3. (While the p-indivisibility [10] is not so recent, its relevance to
Rubin’s conjecture seems to be curiously overlooked.)

The essential difficulty is (b). Indeed, it was the fundamental obstruc-
tion, which resisted attempts at even partial progress towards the conjecture.
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Despite an important recent advance [43], the local p-indivisibility of Heegner
points seems to be still mysterious. Instead, we consider a variant of (b) and
approach it by a new idea, which is surprisingly simple but decisive and the
main content of our proof (cf. Sections 4 and 5). A primary insight is to replace
the inherently global (b) with a variant that is more amenable to local tools.
In Rubin’s criterion, (b) assures the existence of an optimal system of local
points of the Lubin—Tate formal group with parameter —p in the anticyclo-
tomic Z,-extension. It is actually the optimal system, rather than the Heegner
point, that is crucial for the proof of Rubin’s conjecture. For the cyclotomic
Zy-extension, the construction of such a system of local points is the key of
the signed Iwasawa theory in [22] and it is also the core of the theory of the
Perrin-Riou exponential map [27]. The development of the Perrin-Riou the-
ory, especially by using (¢, I')-theory, has been greatly influential; a striking
instance is the p-adic Langlands program. It is highly desirable to develop such
a general theory also for non-cyclotomic extensions and, in fact, there are some
developments on (¢, I')-theory for Lubin-Tate extensions. Our prior attempts
to construct the optimal system of local points related to (b) were actually via
the (¢, I')-theory. However, the theory seems to be still incipient.

Departing the (¢, I')-environment, our new idea to construct the optimal
system is geometric. Instead of Heegner points, we resort to formal CM points
and the modular parametrization of elliptic curves. Formal CM points are
local points of modular curves whose associated elliptic curves have formal
complex multiplication: the endomorphism ring of its formal group is bigger
than Z,. We employ the theory of quasi-canonical lifts by Gross [14] and the
modular parametrization to construct the optimal system of local points in the
Lubin-Tate formal group of height 2 (cf. Theorem 5.5).

Remark 1.1. The moduli of Lubin—Tate formal groups is also an essential
tool in Tsuji’s explicit reciprocity law [40] over imaginary quadratic fields with
p inert. Katz pioneered the relevance of local moduli to CM Iwasawa theory (cf.
[19], [20]); our method presents a new facet. We hope it to be merely a shadow
of enriching interactions among local moduli and supersingular Iwasawa theory.

Horizon. Rubin’s conjecture reveals unexplored vistas and inspires an ad-
vance in non-Panchishkin Iwasawa theory. Indeed, the proof of (R) has un-
expectedly led us to new developments in supersingular Iwasawa theory. In
retrospect, Rubin’s conjecture perhaps constitutes the core of the emerging
Perrin-Riou theory, thereby being central to the global arithmetic.

In our next paper [5] we prove a Bertolini-Darmon-Prasanna (BDP) style
formula for Rubin’s p-adic L-function: a relationship between certain values of
Zr (outside its defining range of interpolation) and rational points on E (cf.
[3], [35]). The formula is based on our optimal system of local points. The
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BDP formula in turn leads to a special case of the Birch and Swinnerton-Dyer
conjecture: a p-converse to the Gross—Zagier and Kolyvagin theorem for E
(cf. 7], [39], [43]). The general formalism of p-adic L-functions still excludes
the case of Rubin’s p-adic L-function. In [4] we determine the valuation of
its “p-adic periods,” which gives an asymptotic behavior of the anticyclotomic
p-adic variation of the central L-values, where (R) is again a key. In [6] Kato’s
local e-conjecture (for the anticyclotomic CM deformation) is shown to be yet
another consequence of (R).

Our approach to local points has a potential for generalization on Shimura
varieties. (In light of Shimura curve parametrizations over totally real fields,
a natural generalization will appear in a subsequent work.) It may also offer
an insight to the development of (¢, I')-theory for Lubin—Tate extensions. In
the near future we plan to investigate a counterpart of Rubin’s conjecture —
in the enigmatic case — when the prime p ramifies in the CM field.

Acknowledgement. The authors thank Adebisi Agboola, Ye Tian, Chris
Skinner and Wei Zhang for instructive comments. They also thank! Naomi
Jochnowitz and Jeremy Rouse for helpful exchanges. They are grateful to the
referee for valuable suggestions.

The authors would like to express their sincere gratitude to Karl Rubin
for his inspiring oeuvre, the influence of which is transparent.

2. The main theorem

First, following [33], we explain Rubin’s conjecture precisely.

Let p > 5 be a prime, and let ® be the unique unramified quadratic
extension of Q, with integer ring @. We fix a Lubin-Tate formal group .#
over O for the uniformizing parameter 7w := —p. For n > —1, write ,, =
®(F[r"1]), the extension of ® in C, generated by the 7" -torsion points of
Z, and put ®o, = U, ®,. The Galois action on the m-adic Tate module 157
defines a natural isomorphism

K Gal(Poo/P) = Aut(TrF) =2 OF.

We put A:=Gal(®y/P®) = (O/70)* and note Gal(Ps/P) = A x Gal(Poo/Po)
canonically. Let w denote the Teichmiiller character; i.e., the restriction of k
to A via the preceding isomorphism. By the action of Gal(®/Q,), we have
a canonical decomposition Gal(®/®¢) = Gt & G=, G* = Z,, where Gt
(resp. G7) is the maximal subgroup of Gal(®s/®P) on which Gal(®/Q,) acts
via the trivial (resp. non-trivial) character. The group G is naturally isomor-
phic to the Galois group of the cyclotomic Z,-extension of ®, and the group

Tt is the first author’s pleasure to thank Peter Handke.
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G~ is the Galois group of the anticyclotomic Z,-extension ¥, of ®. The
anticyclotomic Z,-extension ¥, is also characterized as the maximal dihedral
pro-p-extension of Q, in . We call a finite character of Gal(®,/®P) that fac-
tors through G~ an anticyclotomic character. By our convention, a non-trivial
anticyclotomic character y has conductor p"*! if y factors through Gal(®,,/®)
but not through Gal(®,,_1/®) and the trivial one has conductor 1.

For a natural number n, let U, be the group of principal units in ®,, —
that is, the group of units in the integer ring of ®, that are congruent to 1
modulo the maximal ideal. We define

ﬁoo:m(Un ®Zp 0)7 Uoo:ﬁg}oa

where the inverse limit is taken with respect to the norm maps, and the su-
perscript w means the part where A acts by w. Define the Iwasawa algebras

Ay = O]Gal(Poo/Pp)] and A =O[G].

It is known that Uy, is a free As-module of rank 2. Our primary object is the
quotient module
Voo = Usx /(0 — £(0))Us,

where o is a generator of GT. (The ideal (0 — k(o)) in Ag does not depend on
the choice of 0.) Then V,, is a A-module free of rank 2. For a Ay-module M,
we define M*:= M ®¢ Tp. ¥ =Homep (T;.#, M), and let the Galois group
act diagonally. (We let M* denote the conventional M, for notational simplic-
ity.) Hence, M* is isomorphic to M but the Galois action is twisted by .
Then UZ is the fixed part of U% by A and V. is the anticyclotomic quotient
UL/ (o~ 1).

Now we recall the Coates—Wiles logarithmic derivatives
0:U — O, O 1 Uy — O

For an element = € U%,, we write 7 = u®a®v®~! where u = (uy,)n € m U,
a € O and a generator v = (v,), € Tr.# as an O-module. (In [33] the p-adic
Tate module is used instead of the m-adic Tate module.? Hence the generator
vy, in [33, §2] differs by (—1)" from ours.) Then consider the Coleman power
series f € O[X]* such that f(v,) = u, and define

'(0) a_ f'(vn)
é(z)=a , Op(x) = )
D=5 = N )
where A is the formal logarithm of .%. It is straightforward to check that these
maps are well defined and Galois equivariant. That is, d,(yz) = d,(z)? for

2The change is essential, as otherwise, the Coleman theory does not hold. There are sign
errors in [33] because of this. In the following we modify some definitions of [33] appropriately
without remarks.
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v € Gal(®Po/P). For a finite character x : Gal(Ps/P) — @;, let n be so that
x factors through Gal(®,,/®) and put

@)= Y X))
vyeGal(P,, /D)
(The definition does not depend on the choice of n.) For 8 € Gal(®o,/P), we
have §,(27) = x(B8) 710y (z). In particular, if 3 = 0 € GT and y is anticyclo-
tomic, then 6, ((c — 1)U%) = 0. Hence for an anticyclotomic x, the map d,
defines a map on VX . Let =1 (resp. =7) be the set of anticyclotomic characters

whose conductors are even (resp. odd) power of p.
Define

Vit ={veVi
ViT i ={ve V]

| 6x(v) =0 for every x € =™},
| 6, (v) =0 for every y € =7}.
(Note that V&< is a twist of VS in [33, p. 406].) Rubin showed Viz™ = A and

ST NVET = {0} (cf. [33, Prop. 8.1], a sketch of the argument is given in
Section 4), and conjectured

Ve =Vt evyT
(cf. [33, Conj. 2.2]).
The main result of this paper is the following:
THEOREM 2.1. Rubin’s conjecture is true, that is, VI = e vET.
As in [33, Lem. 10.1], we have the following.
COROLLARY 2.2. Let € € {+,—} and v € V3 be a generator. Then for
all x € E¢, we have 0, (v) # 0.

Remark 2.3. Rubin proved his conjecture for primes p : 5 < p < 1001 and
p #1 mod 12 (cf. [33, p. 418]), which is the prior result towards the conjecture.

As another corollary of Rubin’s conjecture, we present the following result
towards a p-adic Birch and Swinnerton-Dyer conjecture in Section 6. For
simplicity, let the notation and assumptions be as in the introduction. Let ¢
be the Hecke character associated to the CM elliptic curve E. Let £ € A
be the Rubin p-adic L-function, as defined in Section 6.0.1, which interpolates
the algebraic part of special values L(px,1) for x € Z€.

THEOREM 2.4. We have

ordy Zg (x € 29,
ordyZp +1 (x €279

rank F(K )X < {

for p™ the conductor of x.
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In [5] we show that the equality holds in the above if ords—1 L(py, s) < 1.

Remark 2.5. The theorem is an anticyclotomic variant of Kato’s result to-
wards the cyclotomic p-adic Birch and Swinnerton-Dyer conjecture
(cf. [18, §18]).

Notation. Let Q be an algebraic closure, and fix an embedding ¢, : Q< C.
Throughout, let p > 5 be a prime, @p an algebraic closure, and fix an embed-

ding ¢, : Q= @p.
3. Hecke L-values
The main result of this section is Theorem 3.4.
3.0.1. An auziliary imaginary quadratic field.

LEMMA 3.1. There exists an imaginary quadratic field K such that
(a) (%) = +1, where —Dg < 0 is the discriminant of K,
(b) p is inert in K;
(c) pthk.

Proof. Pick an integer 1 < m < p—1 with (—m/p) = —1,andlet 0 < k <7
be the integer: m + kp = 7 mod 8. Write —(m + kp) = dn? for d square-free.

Notice d = 1 mod 8, and (d/p) = —1; i.e., (a) and (b) hold for K = Q(v/d).

In view of the convexity bound for L(1,x,) (for example, [25, Lem. 8.16])
and the Dirichlet class number formula, we have

Vd V8
h(d) < 7l|(2 +log|d|) < Tp(2 + log 8p).
(Note that here m = 3.14 - - - |, which is a contrast with the preceding notation.)
Thus, h(d) < p unless p < 47, and (c) holds. For p < 47, the assertion is

readily seen. O

Remark 3.2. We are grateful to Jeremy Rouse for the above argument.
The existence of such infinitely many imaginary quadratic fields is due to
Jochnowitz [16].

In the rest of this section K denotes an imaginary quadratic field satisfying
assertions (b) and (c) of Lemma 3.1. (Dg is allowed to be even, and we do not
assume the validity of the assertion (a) of Lemma 3.1 until Theorem 3.4.) For
a non-zero integral ideal g of K, we denote by K(g) the ray class field of K of
conductor g. Let H denote the Hilbert class field K (1) and Ny, g denote the
norm. Note that the completion of H in C, is ® since the prime p in K splits
completely in H.

Let ¢ be a Hecke character over K with infinity type (1,0) of conductor
f = f, such that the Hecke character ¢ o Ny, over H is associated to an
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elliptic curve E over H with complex multiplication by O. We assume that
E is a Q-curve in the sense of Gross and has good reduction at every prime of
H above p. We note that if ¢ is a canonical Hecke character (as in the proof of
Theorem 3.4 below), such an E always exists. Then, E satisfies the Shimura
condition (cf. [32, (1.1)]), and

(3.1) o for @« € K* N Ok such that a = 1 mod §: p(aOk) = a,
(3.2) o for an ideal a prime to f: p(@) = ¢(a),
where Z denotes the complex conjugate of z.

3.0.2. Elliptic units: a variant. Let [ > 5 be a prime split in K such that
[ is relatively prime to hxf and

(3.3) pl(—1).

Let X; be the set of Hecke characters v over K of finite order that factor through
the Galois group of the anticyclotomic Z;-extension of K. In particular, the
conductor and order of v are powers of [. We note that for v € X;, the root
number W (pr) of Pr coincides with the root number W(y) of ¢ (cf. [11,
p. 247)).

In the following we employ elliptic units to construct a certain local
element related to the special values of the Hecke L-function L(®v,s) and
its twists by finite characters of Gal(®s/®Pg) (cf. Proposition 3.3). The case
where v is trivial corresponds to the elliptic unit g in [33, Th. 3.2], that
appears in Rubin’s strategy [33, §8] to investigate Vi and VX /Vas~ under
the assumption of the p-indivisibility of the algebraic part of the special value
L¥8(p,1). In Theorem 3.4 we utilize our local elements for a v such that
L¥8(v, 1) is p-indivisible.

We fix a smooth Weierstrass model of the elliptic curve E over ON H and
by considering a Galois conjugate of E over H if necessary, we may assume
that the period lattice L attached to the Néron differential w is given by QO
for some 2 € C*. We fix such an Q. Let R be the integer ring of a finite
extension of ® containing the image of ¢. (In the following we may further
enlarge R.) Let T be the p-adic Galois representation associated to ¢ : a free
R-module of rank one, the G g-action via ¢, and the restriction to Gy being
T,FE ® R. (In the case hx = 1, note that T is isomorphic to T,F ® R as a
Gr-module.) We put V =T ® Q, and V1 = Homg1,(V, R[%]), the latter
being identified with VR[%}(ap) in [18, §15.8]. ’

For a non-zero integral ideal g of K contained in f, by [18, Prop. 15.9]
(with v = per,(w)/Q), there exists

2g = (2png)n € lim H' (K (gp"), T97(1))
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such that for n > 0 and a character y of Gal(K(gp")/K),
" o Lpg(#x, 1)
(3.4) Z X(0) exple gpmy (10cp(27ng)) = pgTw.
o€Gal(K (ap")/K)

Here loc, : HY(K(gp"),—) — H'(K(gp") ®k K,,—) denotes the localization
map (K, : =K ®Q, = &),

XD (gpry + H' (K (gp") @ K, T97H(1)) = Dgp (VO™ (Dle,) @k K(gp")
=R ®o,, coLie(E) @k K(gp™)

is the dual exponential, and Lyg(®x,s) = > ®x(¢)Ng/g(c)~ the Hecke
L-function; ¢ ranges over all integral ideals of K relatively prime to pg.
Note that there exists a canonical isomorphism

(85)  lmH (K (ap"), Z,(1) ® T° = lim H' (K (gp"), T\ (1))

of R[Gal(K (gp>°)/K)]-modules. For n > —1, let M,,,, C K(fi™p"*!) denote
the composite of H(E[p"*1]) and the m-th layer L,, of the anticyclotomic
Zi-extension of K.

Let v € X; be a Hecke character of order {"*. We define &, as the image
of zgm under the composite

y_Hl (Fmpm ), T2 71(1))
—>£1_H1 (™), Zp(1) @ T
—>L (M, Zp(1)) @ T
—>¥_H My @k Kp, Zp(1)) @ T
=lim H' (H(Ep""]) @k Kp, Zy(1)) @ T @ R[Gal(Lyn/K)]
QTLHHl (H(Ep"™) @K Kp, Zp(1)) @ T
—thHl (@, Zy(1)) @ T @ R[Gal(H/K)]

—>LH (B, Zp(1)) @ T

A
— (@Hl (@, Zp(1)) ®T®1)
=UL @R,

with R being enlarged to contain the image of v. Here the first arrow is via
(3.5), the second one is the corestriction map, and the third localization. The
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first equality is a consequence of pOx being completely split in the ring class
fields and My, ., = H(E[p"]) ®k Ly, (as 1 { hi). The fourth arrow with v
is the evaluation at v : Gal(L,,/K) — R*, the fifth one is induced by the
natural projection R[Gal(H/K)] — R, and the sixth one the projection to
the A-invariants. The last isomorphism arises from the Kummer map. Note
that the above composite is Gal(®/Pp)-equivariant, where Gal(®o/Po) is
identified with Gal(K (jp>)/K (ip)).

So, in light of (3.4) and the explicit reciprocity law of Wiles (cf. [17,
Th. 2.1.7, Ch. II]), for a finite character x of Gal(®/Py),

L m O 1
(3.5 bi(g) = HratErel)

Here Gal(®oo/®o) is identified with the Galois group of the Z2-extension of

K (as p 1 hr), and we identify .# with the formal group E of E so that the
invariant differential of .# corresponds to w. In particular,

(5.7 s(e) = i)

We now have the following;:

PROPOSITION 3.3. Let v € X; be a character of order I'"™. Then, the
element &, € U, @ R satisfies the following assertions:
(1) We have §(&,) = Q' Lim;(v, 1).
(2) For a finite character x of Gal(®uo/®0), we have 0y (&) = Q™ Limpi (Pry,1).
(3) If we denote by € the sign of the root number W(p) € {x1} of p, then the
anticyclotomic projection of &, lies in Vagt @ R

Proof. It only remains to consider (3). In view of (2), the assertion
amounts to the following: for a character y of G~ of conductor p"t! > 1
with (—=1)""! = —W (), we have W (pry) = —1.

Since v is anticyclotomic, we have pv(pOx) = —p (cf. [33, Lem. 3.1]).
From (3.2), the conductor fi"™ of P is fixed by the complex conjugation, and
then x(fI"*) = 1 as x is of odd order. Thus, by the same argument as in the
proof of [33, Cor. 3.3] or asin [11, p. 247], we have W (pry) = (—1)" MW (pv) =
(—1)"MW(p) = —1. O

3.0.3. An optimal unit.

THEOREM 3.4. There exists an element £* € Vag© such that §(¢*) € O,

Proof. Let K be as in Lemma 3.1. Let ¢ as above be a canonical Hecke
character over K (cf. [31]). In particular,
(3.8)
the conductor f, of ¢ is divisible only by primes of K ramified in K/Q.

From Lemma 3.1(a), W(¢) = +1 (cf. [31] or [41, (5.0)]).
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Let I > 5 be a split prime as in (3.3). By [10, Th. 1.1, (2)], for all but
finitely many v € X,

(3.9) Q' Li(pr, 1) € WX,

where W is the integer ring of a finite extension of ® containing the image of v.
Here we utilize (3.8) and note that for an inert prime ¢ # p, the invariants
tp(Pgvq) and by(@,vp, w(p)) of op. cit. vanish in our case (cf. the paragraph
above [op. cit., Th. 1.1]). From now, fix a v as in (3.9) and let {"™ be the
conductor.

By Proposition 3.3 and (3.9), there exists an element &, € Vo™ @ W such
that we have

(3.10) 5(&,) € WX,

Since V™ = A, (3.10) implies that any generator £* of V' satisfies
i(&*) e OF. O

4. The Kummer duality

In this section we follow [33, §5], to which the reader may refer for details.
For n < oo, let ©,, = 2 and ¥,, = ¢ . As usual, the Kummer sequence

— 7I_n+1 —

0 —— 1 — F (D) F (D) 0

gives rise to an exact sequence

(4.1)
0 —— F(0n)/7" N —— HY Oy, Fyni1) —= H'(O, F(B))pni1 — 0.

Since @nﬁ(Gn) = {0} (cf. [15]), we have lim HY O, F(®))m = {0}
by the Tate duality. Hence (4.1) induces an isomorphism
F(Oc) ®0 ©/O = H (000, Fp<)
=~ Hom(Gal(B/Py ), Fpoo )™ = Homo (Une, Fpes ),

where the last isomorphism is given by local class field theory. In other words,
we have the Kummer pairing

(,): F(0x) R0 ®/O x UL — 0/0.
Since lim H YW, Z(®))m1 = {0}, this pairing induces a non-degenerate
pairing

(,): T (V) ®o ®/O x Vi — @/O
(cf. [33, Prop. 5.4]).
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Let A be the formal logarithm of .%. For any character x of G, define a
map Ay :.# (V) = o by
1 _
My == > XA,

P" cGal(v, /o)

where n is any integer so that y € .% (¥,,) and the conductor of x divides p"*!.
Then for a symbol € = +, define

A ={ye F(V) | \(y) =0 for all x € Z°}.
It is not difficult to see that
(4.2) F(Vy) R0 ®/O=AT R0 ®/O+ A~ @0 ®/O,  rankpA® =0

(cf. [33, Lem. 5.5]). The explicit reciprocity by Wiles computes the Kummer
pairing as
_ 1
(yor " z)= mﬁ¢m/¢(5m($))\(y)) € /0
for y € #(0,), v € UX and a sufficiently large m for n. Then it is shown that
the orthogonal complement of A* @ ® /O with respect to the Kummer pairing
is V&*. In other words, we have a non-degenerate Galois compatible pairing

(,): AT ®@p /O x VE/VEE — /0.
Then (4.2) implies that Vit NVE™ = {0} and ranka Vig® < 1.

5. Local points

The main results are Theorems 5.5 and 5.8, while the decisive notion is
Definition 5.4.

5.0.1. The set-up. Let p > 5 be a prime. As before, let . be the Lubin—
Tate formal group over O with the parameter —p. We take an elliptic curve
E defined over Q with good reduction at p with a,(E) = 0. Such an E exists,
for example, [9, Th. 14.18]. The formal group Eis isomorphic to .# over O.

Consider a modular parametrization 7 : Xo(N) — E over Q. (Just in
this section, the letter m does not denote the uniformizer —p.) Changing F
by isogeny if necessary, we may assume 7 is strong Weil and N is the conduc-
tor of F. The morphism 7 extends to a morphism between smooth models
over Z, by the Néron mapping property. We consider the reduction map
7 : Xo(N)r, — E over F,, for E the reduction of E. This map is separable
since the Manin constant is p-indivisible for the strong Weil parametrization.

We will use the following lemmas to choose a certain unramified point
for 7, which corresponds to a supersingular elliptic curve with Frobenius trace
ay2 = £2p.
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LEMMA 5.1. Let ¢ = p?> and A be an elliptic curve over F, with
aq(A) =1+ q—A(F,) = £2p.

(i) Any finite subgroup of A(F,) is defined over F,. B

(ii) Let A be an elliptic curve over O that is a lift of A. Then the Honda
type of the associated formal group A is £x? 4+ p. In particular, A is
Lubin—Tate with parameter Fp.

Proof.

(i) Let C be such a subgroup. Since A is supersingular, the order of C' is
prime to p. We may assume that C has order [" for a prime | # p. Let
@4 be the g-th Frobenius. Then by assumption,

(g Fp)* =0 — ag(A)pg +q=0

on Tj(A). Hence ¢, = +p on Tj(A). In particular, C is fixed by ¢,, which
is nothing but the Galois action of the Frobenius of F,.

(ii) By (i), we have ¢, = £p as an endomorphism of A. In particular, the g-th
Frobenius action on the Dieudonné module of A is just multiplication by
+p. The assertion follows from this. ([

In the rest of the section we often identify X (1) with P! via the j-invariant.

LEMMA 5.2. (i) The number of ramification points of T is bounded by

w1 _
29N —2< G = 6NH(HZ b,
I|N

where gy is the genus of Xo(N) and p is the degree of the natural map
Xo(N) — X (1).
(i) The number of supersingular points in Xo(N)(F,2) that correspond to

supersingular elliptic curves over 2 with the Frobenius trace a,> = 2p

P
or —2p and the j-invariant different from 0 and 1728 is at least

p-1,_3 <3> 1 <1>)

“<L12J 2P\ ) T2\ ) )
In particular, there is a supersingular point with ay = 2p or —2p in
Xo(N)(F,2) over X(1)(F,2) \ {0,1728} that is unramified for 7 if p =
1 mod 12 or p > 31.

(iii) If p =2 mod 3, there are at least /3 supersingular points with j = 0. If
p = 3 mod 4, there are at least u/2 supersingular points with j = 1728.
In particular, there is a supersingular point with ay = 2p or —2p in
Xo(N)(F,2) that is unramified for 7.
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Remark 5.3. In view of Remark 2.3, to prove Rubin’s conjecture, one
may assume p = 1 mod 12 or p > 31. Accordingly, the reader may skip
Lemma 5.2(iii), which perhaps streamlines some of the following arguments.

Proof. (i): This just follows from the Riemann-Hurwitz formula and the
genus formula of Xo(N) (cf. [38, Prop. 1.40, 1.43]).

(i), (iii): Recall that the supersingular points in X (1)(F,) are defined
over [F,2. By the mass formula of Eichler and Deuring, the number of super-
singular points in X (1)(F,) is m + d + ¢, where m € NU {0} and ¢,6 € {0,1}
are uniquely determined by p — 1 = 12m + 4 + 6e. Note that § # 0 (resp.
e # 0) if and only if j = 0 (resp. j = 1728) is supersingular. More precisely,
let N(t) be the number of isomorphism classes of supersingular elliptic curves
having exactly p? + 1 — ¢ points defined over F,2. Then

i (p+6-4(3) -3(3)) =)
Nt =31-(32) (t==+p),
—1 _
1- (=) =0)
(See, for example, [37, Th. 4.6]. Over Fp,
twists.)
Recall that the morphism Yo(N)g, — Y (1)r, is étale if j # 0,1728. (In-

deed, one may simply apply [21, Cor. 8.4.5] for the I';(NN)-problem.) Since p
is relatively prime to 6, the ramification index of 7 at elliptic points is 2 or 3.

one must count the number of

So there are p points in the fiber of each supersingular point in X (1) except
Jj =0,1728, and at least 11/3 or u/2 points when j = 0 or 1728 respectively.
Let 2 be a supersingular point in X (1)(F,) represented by a supersingular
elliptic curve A defined over F 2 with a,2(A) = +2p. A point y € Xo(N)(F,) in
the fiber of x for the projection Xo(N) — X (1) corresponds to an isomorphism
class over FF,, of a pair (4, C) with a cyclic subgroup C of order N of A. By

Lemma 5.1(i), the subgroup C'is defined over F,2. Hence y € Xo(N)(F2).
If (773) = —1 (resp. (%) = —1), then j = 0 (resp. j = 1728) is super-
singular. The supersigular elliptic curve A with j = 0 or 1728 can be defined

over I, thus, ¢t = —2p since a,(A) = 0. If

)-6)-

any supersingular elliptic curve over I satisfies ¢ = 4-2p. The assertion follows
from these facts. 0

A formal CM point. Consider a supersingular point P of Xo(N)(F,2) un-
ramified for 7, represented by an elliptic curve A with a,2 = £2p and a I'o(N)-
level structure, which exists by Lemma 5.2(ii), (iii). By composing 7 with the
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multiplication by §£(F,2), we may assume that P is sent to the origin O of E.
Note that since E is supersingular, 1E(F,2) is prime to p and hence P is still
an unramified point.

Fix a torsion point of A(F,2) of order M where M is taken so that the
'y (M)-moduli is fine and $T'g(M)/T'1(M) is prime to p. This is possible since
§A(F,2) = (p+1)% Let Xo(N;M) be the modular curve with Io(N) and
I'1 (M)-level structures. Unlike X((V), it is a fine moduli space.

Let P’ be a point of Xo(N; M)(F,2) above P with the I'y (M )-level struc-
ture by the fixed torsion point of order M. We may assume that P’ is unram-
ified for Xo(N; M) — Xo(N). (If j(A) # 0,1728, this is evident. If j(A) = 0,
p must be 2 modulo 3. Then we pick N = 27 as there is no elliptic point
of order 3 in X((27). If j(A) = 1728, we pick N = 32.) Hence the formal
completion of the morphism 7’ : Xo(N; M) — E (on integral models) at the
closed points P’ and O is an isomorphism. Let m be the maximal ideal of O.
Take a point

(5.1) Q € E(m) \ pE(m).

Then there is a point P’ € Xo(N; M)(O) over P’ sent to Q by 7. As Xo(N; M)
is a fine moduli space, there exists an elliptic curve A defined over O that
represents P’ by the moduli interpretation. The formal group A is Lubin-Tate
by Lemma 5.1(ii). In particular, A is a formal CM elliptic curve. (It is called
fake CM in [8, §3].) Let P be the image of P’ in Xy(NV).

5.0.2. An optimal system of local points. Now we resort to Gross’ theory
of quasi-canonical lifts [14], [42] (the latter for non-algebraically closed residue
field).

Since A is Lubin-Tate, the Tate module T" := T),A is a free O-module of
rank 1. Put V = T ®p @, and consider Z,-modules ' C T" C V such that
T'/T is finite. We regard

C =TT cV/T = A]p™] = A[p™].

Let ¥ be the fixed field of the Gal(®/®)-action on C. Consider A" = A/C
as an abelian scheme defined over ¢/, the integer ring of ¥’. Then End(A’) is
isomorphic to O or an order Z, +p*O for a natural number s (cf. [14, p. 325]).

If we take a basis ¢ of the O-module 7" and put Ty = p~*Z,t + T as 1",
then End(A’) = Zp + p*O. Following Gross, we call this A" a quasi-canonical
lift of conductor p* of A with respect to A (cf. [14, p. 325], [42, §4]). Denote
A" by As and ¥’ by W/ for this choice. It is known that

Gal(V,/®) = (O/p°0)" /(Z/p'Z)"

(cf. [14, Prop. 5.3], [42, Th. 1]). In particular, it is the local ring class field
of degree [®, : ®] = p*'(p +1). Let . be U,¥.. Then Gal(V. /®) =
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ZpxZ/(p+1)Z. Let A’ be the torsion subgroup of Gal(V._/®). The field U/
contains the anticyclotomic Zj-extension Wo,. The s-th layer ¥, of U lies
in W/ ;. Let Troi1/s 0 Wst1 — Vs denote the trace map. Then elliptic curve
As/Oyg and the canonical level structure induced from that of A define a point
zs € Xo(N)(Oy). Let x5 be the image of z; by the modular parametrization 7.

Definition 5.4. Let
ys= Y oxsr1 € E(my,) and y = (p+1)Q € E(m)
oeA!

be a system of local points.
The salient features are the following:

THEOREM 5.5.
(i) y € Bm)\ pB(m).
(ii) The elements ys € E(my,) satisfy
Trs+1/sys+1 = —Ys-1
for s> 1 and
Tryomn = —y and yo = 0.
Proof. (i) just follows from our choice (5.1).

(ii) We consider the action of the Hecke operator T}, on ;.
Let T” be a lattice containing T = Z%Zpt + T with index p. First suppose
that s > 1. There are two types of T":

1+ ap®
ps+1

1 1
Zpt+T for a € {0,1,...,p—1} or EZJ%—;T.

The first type is permuted by the action of Gal(¥)_,/¥’). So each lattice of
this type is of the form oz, with o € Gal(¥},,/¥}). Note that each lattice of
the second type is homothetic to the lattice ﬁZpt + T'. Hence for s > 1, we
have

Tyxs = g OXsy1 + Ts—1.-
g

Since T}, acts as a,(E) = 0 on E, we have the desired relation. When s = 0,
there exist p+ 1 lattices containing 1" with index p, which are permuted by A.
Hence T,z = ", ca 0x1. The assertion follows. (]

COROLLARY 5.6. We have
(A~ ®0 ®/0)¢ = .Z(D) 20 /0.

In particular, Voo /Vad™ and Vg~ are free A-modules of rank 1.



960 ASHAY A. BURUNGALE, SHINICHI KOBAYASHI, and KAZUTO OTA

Proof. The first assertion follows from Theorem 5.5 and [33, Prop. 7.4].
Strictly speaking, y in [33, Prop. 7.4] is a Heegner point but can be replaced
by our y since this proposition is proved by using [33, Prop. 6.1], which corre-
sponds to our Theorem 5.5.

Then by the Kummer duality and Nakayama’s lemma, V /Vog ™ is gener-
ated as a A-module by a single element. Hence it is a free module of rank 1 or a
torsion module. However, since ranks (V /Vs™) > 1, the latter case does not
happen. Since ranka V3 = 2 and A is a UFD, it is straightforward to show that
the freeness of VX /Vas™ implies the freeness of Vog™ (cf. [33, Lem. 4.1]). O

Remark 5.7. Since we employ a modular parametrization, the above con-
struction is not purely local. In light of (potential) links with a generalization
of the theory of (¢, I')-modules, a very interesting problem is to construct the
optimal system of local points by a purely local method.

5.0.3. Rubin’s conjecture.
THEOREM 5.8. We have Vi =VET @ VE ™.

Proof. We just recall Rubin’s argument (cf. [33, Th. 8.4]).

Consider the Coates—Wiles derivative § : V% /Vas™ — O. By Theorem 3.4,
there exists an element ¢ € Vit such that 6(¢) € ©*. By Corollary 5.6, we
may identify VX /Vao~ and A. Then the image of the maximal ideal of A by

¢ is in pO. Therefore, £ does not belong to the maximal ideal, and hence, it
generates V2 /V& ™. Thus, Vi =VET @ VE™. O

6. Arithmetic consequences

In this section we first present consequences of Rubin’s conjecture as in
[1] and [33].> Then Section 6.0.3 concerns the underlying p-adic Birch and
Swinnerton-Dyer conjecture.

Let K be an imaginary quadratic field where p remains to be a prime, and
let H be the Hilbert class field of K. We assume that

(6.1) pthk.

Let ¢ and E be as in Section 3: ¢ is a Hecke character over K with
infinity type (1,0), and E is a Q-curve in the sense of Gross such that the
Hecke character po Np/f is associated to £, and E has good reduction at each
prime of H above p. Then, F € & in the notation of [33, §3], and in particular,
FE satisfies the Shimura condition. Let p be the prime of H above p that is

3Unfortunately, the sign conventions in [1] and [33] are different. In [33] the parity is
based on the conductor of characters, but in [1] it is based on the order of characters (cf. [1,
Rem. 3.2]). Our conventions are consistent with [33].
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compatible with the fixed embedding ¢, : Q— @p. We fix a Weierstrass model
of F over H N O that is smooth at p, and by considering a Galois conjugate
of E over H if necessary, we may assume that there exists a complex period
Q € C* of E such that L = Ok, where L is the period lattice associated to
the model.

6.0.1. Rubin’s p-adic L-function. Asin [32] or Proposition 3.3, there exists
an elliptic unit & = {(F, Q) € UZ such that

L(®,1)
) =
©="2
and for a non-trivial character x of Gal(®~,/®g) of finite order,
L(®x,1)
() = 20D,

Here we identify Gal(®s,/®g) with the Galois group of the Z2-extension of
K (cf. (6.1)) and correct a minor sign error in [33, Th. 3.2] (cf. our modified
definition of (vy,)y, and J, in Section 2).

Let ¢ € {+,—} be the sign of the functional equation of the Hecke
L-function L(p,s). Then it is known that the projection of £(E,Q) on VI
belongs to Vao© (cf. [33, Cor. 3.3]) Let 45 be the free A-submodule of Vi*
generated by £(E, Q) € V. We take a generator v, of the A-module V¢ and
write

g(Ea Q) = gp(@u Qave) * Ve

for an element .2, (v, Q,ve) € A. We call it Rubin’s p-adic L-function associated
to ¢. We sometimes omit the indices of .Z,(p, 2, vc) and write its evaluation
at an anticyclotomic character x by .Z,(x) for simplicity.
The interpolation property of Rubin’s p-adic L-function is
1 L(px, 1)
Zp(x) = :

0y -1(ve) Q

for non-trivial x € E¢. Here we utilize [33, Lem. 2.1 (iii)] (note we consider UZ,
instead of U ) and 6, (ve) # 0, which is a consequence of Rubin’s conjecture (cf.
Corollary 2.2). In particular, for x € =€, .Z,(x) # 0 if and only if L(x, 1) # 0.

6.0.2. An Iwasawa main conjecture. Now we present the results of [1].

Let K be the anticyclotomic Z,-extension of K. We identify G— with
Gal(Kw/K) and put Gg = Gal(Q/K). Let R be the ring of integers in a
finite extension of ® containing the image of the p-adic avatar G — @; of .
Let T be the free R-module of rank one on which G acts by the p-adic avatar.
We put W =T ®p ®/0.

For simplicity, let p still denote the prime of the n-th layer K, above p.
We note that the completion K, , at p coincides with ¥, and that W =
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F 1] @0 R as an R[Gal(Q,/®)]-module (cf. (6.1)). We define
H (K p, W) C H (K p, W) 2 H' (U, Z[r%]) @ R
to be the Kummer image of #%(¥,,) ® R ® Q,/Z,, where
FE(Un) = {y € F(¥n) | M (y) =0
for all y € Z* factoring through Gal(¥,,/¥)}.

Note that H}(K,,, W) is independent of the choice of isomorphism W =
F ] @ R. The signed Selmer groups Sely (K, W) are defined by

HY K, ,, W)
Sely (K, W) = ker{Hl(Kn,W) R L L Hl(Kn,v,W)},
(K ) 1

where v varies over the primes of K, relatively prime to p. Note that for v { p,
since H' (K, T ® Q) = {0} (cf. [2, Prop. 2.10]), the usual local condition
H} (Kp,p, W) coincides with {0}.

Let 2 be the Pontryagin dual of the signed Selmer group

li Sel.s (K, ).

In [1, Th. 3.6] it is shown that 2 € is a finitely generated torsion A-module.
(Although in op. cit. F is defined over Q and hence the class number of K is
assumed to be equal to one, by a similar argument one can prove the same
assertion, where we assume only (6.1). Note again that our sign convention is
opposite to that in op. cit.)

Finally, an Iwasawa main conjecture:

THEOREM 6.1. The characteristic ideal of X is generated by Rubin’s
p-adic L-function Z,(p, 2, ve).

Proof. This is proved in [1] assuming Rubin’s conjecture (cf. the paragraph
after [op. cit., Th. 4.3]). Although in op. cit. E is defined over Q, by a similar
argument one can prove [op. cit., (4.2) and Th. 4.3] to deduce the theorem,
where we assume only (6.1). O

6.0.3. Towards a p-adic Birch and Swinnerton-Dyer conjecture.

THEOREM 6.2. Suppose that E is defined over K. Let x be an anticyclo-
tomic character of conductor p™. Then we have

ord, %), (x € E9),

rank E(K,)X < dim Sel(K,, V,E)X < _
ord, .2, +1 (x € 27°).

Proof. The characteristic ideal of Z ¢ is contained in that of the strict
Selmer group 232", (The latter appears in [1], the notation being X, and
the definition is as in [op. cit., pp. 613, 615].) Since the control theorem holds
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for the strict Selmer group (cf. [36, Prop. 7.3.4]), standard arguments show
that

ord,.%), > dim Selg, (Kp, VpE)X > dim Sel(K,, V,E)X — 1

(cf. Theorem 6.1).
Suppose x € Z¢. Then we may consider the control theorem for 2 ¢ at
x (cf. [1, Th. 5.2]). Hence by [1, Prop. 5.3],

ordy.Z), > dim Sel_ (K, V,E)X = dim Sel(K,,, V, E)X. O

Remark 6.3. In [5] we prove the rank part of the p-adic Birch and
Swinnerton-Dyer conjecture (i.e., the equality in the above) if ords—; L(pY, $)
< 1. Moreover, if ords—1 L(p, s) < 1, the full p-adic Birch and Swinnerton-Dyer
conjecture for ¢ is proven up to a p-adic unit.
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