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Rubin’s conjecture on local units in the
anticyclotomic tower at inert primes

By Ashay A. Burungale, Shinichi Kobayashi, and Kazuto Ota

Abstract

We prove a fundamental conjecture of Rubin on the structure of lo-

cal units in the anticyclotomic Zp-extension of the unramified quadratic

extension of Qp for p ≥ 5 a prime.

Rubin’s conjecture underlies Iwasawa theory of the anticyclotomic de-

formation of a CM elliptic curve over the CM field at primes p of good su-

persingular reduction, notably the Iwasawa main conjecture in terms of the

p-adic L-function. As a consequence, we prove an inequality in the p-adic

Birch and Swinnerton-Dyer conjecture for Rubin’s p-adic L-function. Ru-

bin’s conjecture is also an essential tool in our exploration of the arithmetic

of Rubin’s p-adic L-function, which includes a Bertolini–Darmon–Prasanna

type formula.

1. Introduction

Iwasawa theory for CM elliptic curves has a long history and continues to

have significant arithmetic applications, needless to say, since the first general

results towards the Birch and Swinnerton-Dyer conjecture by Coates–Wiles.

Iwasawa theory is a p-adic theory and the behavior heavily depends on the

nature of the prime p. Nowadays, for an ordinary prime p (or a Panchishkin

prime in general; cf. [12, §3]), we have a guiding principle of Iwasawa theory for

general motives and p-adic deformations (cyclotomic, Hida theoretic, several

variables; cf. [12]). For the cyclotomic deformation, B. Perrin-Riou developed

a general formalism of Iwasawa theory including non-ordinary primes (cf. [28]),

and the (ϕ,Γ)-theory gives strong applications for this. Sometimes the signed

Iwasawa theory initiated by R. Pollack and the second-named author also works

well. However, apart from the cyclotomic deformation, the situation is still not
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so satisfactory for non-ordinary (non-Panchishkin) deformations even for very

basic cases such as Iwasawa theory for CM elliptic curves of the anticyclotomic

deformation at inert (supersingular) primes. We point out that this is not

merely a matter of formalism; in fact new interesting phenomena happen and

an Iwasawa theory should reflect them.

Let E be an elliptic curve defined over Q with complex multiplication by

an imaginary quadratic field K. We also assume that E has good reduction

at p. Let wE/Q be the root number of E/Q. Let Kac
∞ be the anticyclotomic

Zp-extension of K with the n-th layer Kac
n . The behavior of the Mordell–

Weil rank of E(Kac
n ) is very interesting. If p splits in K (hence, E has good

ordinary reduction above p), then rankZE(Kac
n ) is bounded independently

of n if wE/Q = +1, whereas rankZE(Kac
n ) = 2pn + c for all n sufficiently

large if wE/Q = −1 for c a constant. (In the latter exceptional case (cf. [24])

the Heegner hypothesis is not satisfied and the rational points on E are only

indirectly related to Heegner points. Note that the rank should be even because

of the CM action and the sign of the functional equation of the Hasse–Weil

L-function of E/K being +1.) On the other hand, if p is inert in K (hence,

E has good supersingular reduction above p), R. Greenberg noticed that root

numbers vary in the anticyclotomic tower and observed

rankZE(Kac
n )− rankZE(Kac

n−1) = εnp
n−1(p− 1)

for all n sufficiently large, where εn is zero or two depending on the parity

of n. In particular, new points of infinite order appear in every other layer of

the anticyclotomic Zp-extension (cf. [11], [13]). More precisely, if wE/Q = +1,

then εn for sufficiently large n is zero for odd n and two for even n. The

reverse holds when wE/Q = −1. (The phenomenon was first observed in the

early 80s (cf. [11, p. 247]). A proof appears in [1], [5].) In contrast, the

Mordell–Weil rank is always bounded in the cyclotomic Zp-extension even for

a supersingular prime p. (However, the behavior of the conjectural asymptotic

order of the Tate–Shafarevich groups in the cyclotomic Zp-extension depends

on the reduction type of E at p and is similar to the anticyclotomic case as

above; cf. [22], [23], [26], [29].)

Rubin’s conjecture. In [33], K. Rubin envisioned an Iwasawa theory reflect-

ing such phenomena. In the split (ordinary) case, it is classical to study the

module of local units modulo elliptic units attached to E in the Z2
p-extension

of K, and it is shown that its characteristic ideal is generated by the two-

variable Katz p-adic L-function attached to E. However, in the inert case, the

rank of the module of local units is twice that of the module of elliptic units

and the quotient is non-torsion.

Rubin considered a module V obtained as the (twisted) projection of local

units in the Z2
p-extension of K to the anticyclotomic direction, and he defined
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two free Λ-submodules V ± of rank 1 of V . Here Λ is the Iwasawa algebra for

the anticyclotomic Zp-extension of an unramified quadratic extension of Qp

and the local modules V � depend only on p. In 1987 Rubin conjectured that

(R) V = V + ⊕ V −

(cf. [33, Conj. 2.2]). The conjecture is purely local, inherent to the prime p. Yet

it is intertwined with a supersingular counterpart of the anticyclotomic Katz

p-adic L-function. Indeed, the projection of elliptic units lives in V ε where ε

is the sign of the functional equation of L(E/Q, s). In [33] it was shown that

the quotient of V ε by the image of elliptic units is Λ-torsion and generated

by a certain p-adic L-function LE , whose interpolation factors are non-zero

under (R).

The aim of the present paper is to prove Rubin’s conjecture (R) (cf. The-

orem 2.1).

Intriguingly, Rubin’s theory is a kind of signed Iwasawa theory preceding

[22] and [30]. In fact, A. Agboola and B. Howard [1] reconsidered Rubin’s the-

ory in the context of the signed Iwasawa theory, and under Rubin’s conjecture,

they formulated and proved an Iwasawa main conjecture that involves Rubin’s

p-adic L-function LE and also explained the rank formula of Greenberg. (The

proof relies on the main conjecture for K [34].) We recall their Iwasawa main

conjecture in Section 6, which is now unconditional (cf. Theorem 6.1). As a

consequence, we prove an inequality in the rank part of the underlying p-adic

Birch and Swinnerton-Dyer conjecture (cf. Theorem 2.4).

The strategy. In [33] Rubin envisaged a criterion under which the conjec-

ture is true. The criterion is still elusive, yet its principle lies at the heart of

our approach.

Rubin’s criterion involves the existence of certain global objects:

(a) a CM elliptic curve with good supersingular reduction at p whose central

L-value is p-indivisible;

(b) a Heegner point over imaginary quadratic fields with p inert that is locally

p-indivisible.

The existence (a) and (b) implies (R).

After Rubin’s work, there was an important development [10] towards (a).

The p-indivisibility relies on (a variant of) the Manin–Mumford conjecture.

The results of [10] exclude the set-up of the criterion, yet we slightly generalize

the set-up so as to include more general L-values. This is the content of

Section 3. (While the p-indivisibility [10] is not so recent, its relevance to

Rubin’s conjecture seems to be curiously overlooked.)

The essential difficulty is (b). Indeed, it was the fundamental obstruc-

tion, which resisted attempts at even partial progress towards the conjecture.
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Despite an important recent advance [43], the local p-indivisibility of Heegner

points seems to be still mysterious. Instead, we consider a variant of (b) and

approach it by a new idea, which is surprisingly simple but decisive and the

main content of our proof (cf. Sections 4 and 5). A primary insight is to replace

the inherently global (b) with a variant that is more amenable to local tools.

In Rubin’s criterion, (b) assures the existence of an optimal system of local

points of the Lubin–Tate formal group with parameter −p in the anticyclo-

tomic Zp-extension. It is actually the optimal system, rather than the Heegner

point, that is crucial for the proof of Rubin’s conjecture. For the cyclotomic

Zp-extension, the construction of such a system of local points is the key of

the signed Iwasawa theory in [22] and it is also the core of the theory of the

Perrin-Riou exponential map [27]. The development of the Perrin-Riou the-

ory, especially by using (ϕ,Γ)-theory, has been greatly influential; a striking

instance is the p-adic Langlands program. It is highly desirable to develop such

a general theory also for non-cyclotomic extensions and, in fact, there are some

developments on (ϕ,Γ)-theory for Lubin–Tate extensions. Our prior attempts

to construct the optimal system of local points related to (b) were actually via

the (ϕ,Γ)-theory. However, the theory seems to be still incipient.

Departing the (ϕ,Γ)-environment, our new idea to construct the optimal

system is geometric. Instead of Heegner points, we resort to formal CM points

and the modular parametrization of elliptic curves. Formal CM points are

local points of modular curves whose associated elliptic curves have formal

complex multiplication: the endomorphism ring of its formal group is bigger

than Zp. We employ the theory of quasi-canonical lifts by Gross [14] and the

modular parametrization to construct the optimal system of local points in the

Lubin–Tate formal group of height 2 (cf. Theorem 5.5).

Remark 1.1. The moduli of Lubin–Tate formal groups is also an essential

tool in Tsuji’s explicit reciprocity law [40] over imaginary quadratic fields with

p inert. Katz pioneered the relevance of local moduli to CM Iwasawa theory (cf.

[19], [20]); our method presents a new facet. We hope it to be merely a shadow

of enriching interactions among local moduli and supersingular Iwasawa theory.

Horizon. Rubin’s conjecture reveals unexplored vistas and inspires an ad-

vance in non-Panchishkin Iwasawa theory. Indeed, the proof of (R) has un-

expectedly led us to new developments in supersingular Iwasawa theory. In

retrospect, Rubin’s conjecture perhaps constitutes the core of the emerging

Perrin-Riou theory, thereby being central to the global arithmetic.

In our next paper [5] we prove a Bertolini–Darmon–Prasanna (BDP) style

formula for Rubin’s p-adic L-function: a relationship between certain values of

LE (outside its defining range of interpolation) and rational points on E (cf.

[3], [35]). The formula is based on our optimal system of local points. The
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BDP formula in turn leads to a special case of the Birch and Swinnerton-Dyer

conjecture: a p-converse to the Gross–Zagier and Kolyvagin theorem for E

(cf. [7], [39], [43]). The general formalism of p-adic L-functions still excludes

the case of Rubin’s p-adic L-function. In [4] we determine the valuation of

its “p-adic periods,” which gives an asymptotic behavior of the anticyclotomic

p-adic variation of the central L-values, where (R) is again a key. In [6] Kato’s

local ε-conjecture (for the anticyclotomic CM deformation) is shown to be yet

another consequence of (R).

Our approach to local points has a potential for generalization on Shimura

varieties. (In light of Shimura curve parametrizations over totally real fields,

a natural generalization will appear in a subsequent work.) It may also offer

an insight to the development of (ϕ,Γ)-theory for Lubin–Tate extensions. In

the near future we plan to investigate a counterpart of Rubin’s conjecture —

in the enigmatic case — when the prime p ramifies in the CM field.

Acknowledgement. The authors thank Adebisi Agboola, Ye Tian, Chris

Skinner and Wei Zhang for instructive comments. They also thank1 Naomi

Jochnowitz and Jeremy Rouse for helpful exchanges. They are grateful to the

referee for valuable suggestions.

The authors would like to express their sincere gratitude to Karl Rubin

for his inspiring oeuvre, the influence of which is transparent.

2. The main theorem

First, following [33], we explain Rubin’s conjecture precisely.

Let p ≥ 5 be a prime, and let Φ be the unique unramified quadratic

extension of Qp with integer ring O. We fix a Lubin–Tate formal group F
over O for the uniformizing parameter π := −p. For n ≥ −1, write Φn =

Φ(F [πn+1]), the extension of Φ in Cp generated by the πn+1-torsion points of

F , and put Φ∞ = ∪nΦn. The Galois action on the π-adic Tate module TπF
defines a natural isomorphism

κ : Gal(Φ∞/Φ)→ Aut(TπF ) ∼= O×.

We put ∆ := Gal(Φ0/Φ)∼= (O/πO)× and note Gal(Φ∞/Φ)∼= ∆×Gal(Φ∞/Φ0)

canonically. Let ω denote the Teichmüller character; i.e., the restriction of κ

to ∆ via the preceding isomorphism. By the action of Gal(Φ/Qp), we have

a canonical decomposition Gal(Φ∞/Φ0) ∼= G+ ⊕ G−, G± ∼= Zp, where G+

(resp. G−) is the maximal subgroup of Gal(Φ∞/Φ0) on which Gal(Φ/Qp) acts

via the trivial (resp. non-trivial) character. The group G+ is naturally isomor-

phic to the Galois group of the cyclotomic Zp-extension of Φ, and the group

1It is the first author’s pleasure to thank Peter Handke.
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G− is the Galois group of the anticyclotomic Zp-extension Ψ∞ of Φ. The

anticyclotomic Zp-extension Ψ∞ is also characterized as the maximal dihedral

pro-p-extension of Qp in Φ∞. We call a finite character of Gal(Φ∞/Φ) that fac-

tors through G− an anticyclotomic character. By our convention, a non-trivial

anticyclotomic character χ has conductor pn+1 if χ factors through Gal(Φn/Φ)

but not through Gal(Φn−1/Φ) and the trivial one has conductor 1.

For a natural number n, let Un be the group of principal units in Φn —

that is, the group of units in the integer ring of Φn that are congruent to 1

modulo the maximal ideal. We define

Ũ∞ = lim←−
n

(Un ⊗Zp O), U∞ = Ũω∞,

where the inverse limit is taken with respect to the norm maps, and the su-

perscript ω means the part where ∆ acts by ω. Define the Iwasawa algebras

Λ2 = O[[Gal(Φ∞/Φ0)]] and Λ = O[[G−]].

It is known that U∞ is a free Λ2-module of rank 2. Our primary object is the

quotient module

V∞ = U∞/(σ − κ(σ))U∞,

where σ is a generator of G+. (The ideal (σ− κ(σ)) in Λ2 does not depend on

the choice of σ.) Then V∞ is a Λ-module free of rank 2. For a Λ2-module M ,

we define M∗ :=M ⊗O TπF⊗−1 = HomO(TπF ,M), and let the Galois group

act diagonally. (We let M∗ denote the conventional M∗ for notational simplic-

ity.) Hence, M∗ is isomorphic to M but the Galois action is twisted by κ−1.

Then U∗∞ is the fixed part of Ũ∗∞ by ∆ and V ∗∞ is the anticyclotomic quotient

U∗∞/(σ − 1).

Now we recall the Coates–Wiles logarithmic derivatives

δ : U∗∞ → O, δn : U∗∞ → Φn.

For an element x ∈ U∗∞, we write x = u⊗a⊗v⊗−1 where u = (un)n ∈ lim←−n Un,

a ∈ O and a generator v = (vn)n ∈ TπF as an O-module. (In [33] the p-adic

Tate module is used instead of the π-adic Tate module.2 Hence the generator

vn in [33, §2] differs by (−1)n from ours.) Then consider the Coleman power

series f ∈ O[[X]]× such that f(vn) = un and define

δ(x) = a
f ′(0)

f(0)
, δn(x) =

a

λ′(vn)

f ′(vn)

f(vn)
,

where λ is the formal logarithm of F . It is straightforward to check that these

maps are well defined and Galois equivariant. That is, δn(γx) = δn(x)γ for

2The change is essential, as otherwise, the Coleman theory does not hold. There are sign

errors in [33] because of this. In the following we modify some definitions of [33] appropriately

without remarks.
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γ ∈ Gal(Φ∞/Φ). For a finite character χ : Gal(Φ∞/Φ)→ Q×p , let n be so that

χ factors through Gal(Φn/Φ) and put

δχ(x) =
1

πn+1

∑
γ∈Gal(Φn/Φ)

χ(γ)δn(x)γ .

(The definition does not depend on the choice of n.) For β ∈ Gal(Φ∞/Φ), we

have δχ(xβ) = χ(β)−1δχ(x). In particular, if β = σ ∈ G+ and χ is anticyclo-

tomic, then δχ((σ − 1)U∗∞) = 0. Hence for an anticyclotomic χ, the map δχ
defines a map on V ∗∞. Let Ξ+ (resp. Ξ−) be the set of anticyclotomic characters

whose conductors are even (resp. odd) power of p.

Define

V ∗,+∞ := {v ∈ V ∗∞ | δχ(v) = 0 for every χ ∈ Ξ−},
V ∗,−∞ := {v ∈ V ∗∞ | δχ(v) = 0 for every χ ∈ Ξ+}.

(Note that V ∗,ε∞ is a twist of V ε
∞ in [33, p. 406].) Rubin showed V ∗,±∞ ∼= Λ and

V ∗,+∞ ∩ V ∗,−∞ = {0} (cf. [33, Prop. 8.1], a sketch of the argument is given in

Section 4), and conjectured

V ∗∞ = V ∗,+∞ ⊕ V ∗,−∞

(cf. [33, Conj. 2.2]).

The main result of this paper is the following:

Theorem 2.1. Rubin’s conjecture is true, that is, V ∗∞ = V ∗,+∞ ⊕ V ∗,−∞ .

As in [33, Lem. 10.1], we have the following.

Corollary 2.2. Let ε ∈ {+,−} and v ∈ V ∗,ε∞ be a generator. Then for

all χ ∈ Ξε, we have δχ(v) 6= 0.

Remark 2.3. Rubin proved his conjecture for primes p : 5 ≤ p ≤ 1001 and

p ≡/ 1 mod 12 (cf. [33, p. 418]), which is the prior result towards the conjecture.

As another corollary of Rubin’s conjecture, we present the following result

towards a p-adic Birch and Swinnerton-Dyer conjecture in Section 6. For

simplicity, let the notation and assumptions be as in the introduction. Let ϕ

be the Hecke character associated to the CM elliptic curve E. Let LE ∈ Λ

be the Rubin p-adic L-function, as defined in Section 6.0.1, which interpolates

the algebraic part of special values L(ϕχ, 1) for χ ∈ Ξε.

Theorem 2.4. We have

rankE(Kac
n )χ ≤

{
ordχLE (χ ∈ Ξε),

ordχLE + 1 (χ ∈ Ξ−ε)

for pn the conductor of χ.
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In [5] we show that the equality holds in the above if ords=1L(ϕχ, s) ≤ 1.

Remark 2.5. The theorem is an anticyclotomic variant of Kato’s result to-

wards the cyclotomic p-adic Birch and Swinnerton-Dyer conjecture

(cf. [18, §18]).

Notation. Let Q be an algebraic closure, and fix an embedding ι∞ : Q ↪→C.

Throughout, let p ≥ 5 be a prime, Qp an algebraic closure, and fix an embed-

ding ιp : Q ↪→ Qp.

3. Hecke L-values

The main result of this section is Theorem 3.4.

3.0.1. An auxiliary imaginary quadratic field.

Lemma 3.1. There exists an imaginary quadratic field K such that

(a)
Ä

2
DK

ä
= +1, where −DK < 0 is the discriminant of K ;

(b) p is inert in K ;

(c) p - hK .

Proof. Pick an integer 1 ≤ m ≤ p−1 with (−m/p) = −1, and let 0 ≤ k ≤ 7

be the integer: m+ kp ≡ 7 mod 8. Write −(m+ kp) = dn2 for d square-free.

Notice d ≡ 1 mod 8, and (d/p) = −1; i.e., (a) and (b) hold for K = Q(
√
d).

In view of the convexity bound for L(1, χd) (for example, [25, Lem. 8.16])

and the Dirichlet class number formula, we have

h(d) ≤
√
|d|
π

(2 + log |d|) <
√

8p

π
(2 + log 8p).

(Note that here π = 3.14 · · · , which is a contrast with the preceding notation.)

Thus, h(d) < p unless p ≤ 47, and (c) holds. For p ≤ 47, the assertion is

readily seen. �

Remark 3.2. We are grateful to Jeremy Rouse for the above argument.

The existence of such infinitely many imaginary quadratic fields is due to

Jochnowitz [16].

In the rest of this section K denotes an imaginary quadratic field satisfying

assertions (b) and (c) of Lemma 3.1. (DK is allowed to be even, and we do not

assume the validity of the assertion (a) of Lemma 3.1 until Theorem 3.4.) For

a non-zero integral ideal g of K, we denote by K(g) the ray class field of K of

conductor g. Let H denote the Hilbert class field K(1) and NH/K denote the

norm. Note that the completion of H in Cp is Φ since the prime p in K splits

completely in H.

Let ϕ be a Hecke character over K with infinity type (1, 0) of conductor

f = fϕ such that the Hecke character ϕ ◦ NH/K over H is associated to an
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elliptic curve E over H with complex multiplication by OK . We assume that

E is a Q-curve in the sense of Gross and has good reduction at every prime of

H above p. We note that if ϕ is a canonical Hecke character (as in the proof of

Theorem 3.4 below), such an E always exists. Then, E satisfies the Shimura

condition (cf. [32, (1.1)]), and

◦ for α ∈ K× ∩ OK such that α ≡ 1 mod f : ϕ(αOK) = α,(3.1)

◦ for an ideal a prime to f : ϕ(a) = ϕ(a),(3.2)

where z denotes the complex conjugate of z.

3.0.2. Elliptic units : a variant. Let l ≥ 5 be a prime split in K such that

l is relatively prime to hKf and

(3.3) p - (l − 1).

Let Xl be the set of Hecke characters ν overK of finite order that factor through

the Galois group of the anticyclotomic Zl-extension of K. In particular, the

conductor and order of ν are powers of l. We note that for ν ∈ Xl, the root

number W (ϕν) of ϕν coincides with the root number W (ϕ) of ϕ (cf. [11,

p. 247]).

In the following we employ elliptic units to construct a certain local

element related to the special values of the Hecke L-function L(ϕν, s) and

its twists by finite characters of Gal(Φ∞/Φ0) (cf. Proposition 3.3). The case

where ν is trivial corresponds to the elliptic unit ξE in [33, Th. 3.2], that

appears in Rubin’s strategy [33, §8] to investigate V ∗,+∞ and V ∗∞/V
∗,−
∞ under

the assumption of the p-indivisibility of the algebraic part of the special value

Lalg(ϕ, 1). In Theorem 3.4 we utilize our local elements for a ν such that

Lalg(ϕν, 1) is p-indivisible.

We fix a smooth Weierstrass model of the elliptic curve E over O∩H and

by considering a Galois conjugate of E over H if necessary, we may assume

that the period lattice L attached to the Néron differential ω is given by ΩOK
for some Ω ∈ C×. We fix such an Ω. Let R be the integer ring of a finite

extension of Φ containing the image of ϕ. (In the following we may further

enlarge R.) Let T be the p-adic Galois representation associated to ϕ : a free

R-module of rank one, the GK-action via ϕ, and the restriction to GH being

TπE ⊗ R. (In the case hK = 1, note that T is isomorphic to TπE ⊗ R as a

GK-module.) We put V = T ⊗ Qp and V ⊗−1 = HomR[ 1
p

](V,R[1
p ]), the latter

being identified with VR[ 1
p

](ϕ) in [18, §15.8].

For a non-zero integral ideal g of K contained in f, by [18, Prop. 15.9]

(with γ = perϕ(ω)/Ω), there exists

zg = (zpng)n ∈ lim←−
n

H1(K(gpn), T⊗−1(1))
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such that for n ≥ 0 and a character χ of Gal(K(gpn)/K),

(3.4)
∑

σ∈Gal(K(gpn)/K)

χ(σ) exp∗K(gpn)(locp(z
σ
png)) =

Lpg(ϕχ, 1)

Ω
ω.

Here locp : H1(K(gpn),−) → H1(K(gpn) ⊗K Kp,−) denotes the localization

map (Kp := K ⊗Qp
∼= Φ),

exp∗K(gpn) : H1(K(gpn)⊗Kp, T
⊗−1(1))→ D0

dR(V ⊗−1(1)|GKp
)⊗K K(gpn)

= R⊗OH
coLie(E)⊗K K(gpn)

is the dual exponential, and Lpg(ϕχ, s) :=
∑

c ϕχ(c)NK/Q(c)−s the Hecke

L-function; c ranges over all integral ideals of K relatively prime to pg.

Note that there exists a canonical isomorphism

(3.5) lim←−
n

H1(K(gpn),Zp(1))⊗ T⊗−1 ∼= lim←−
n

H1(K(gpn), T⊗−1(1))

of R[[Gal(K(gp∞)/K)]]-modules. For n ≥ −1, let Mn,m ⊆ K(flmpn+1) denote

the composite of H(E[pn+1]) and the m-th layer Lm of the anticyclotomic

Zl-extension of K.

Let ν ∈ Xl be a Hecke character of order lm. We define ξν as the image

of zflm under the composite

lim←−
n

H1(K(flmpn+1), T⊗−1(1))

→ lim←−
n

H1(K(flmpn+1),Zp(1))⊗ T⊗−1

→ lim←−
n

H1(Mn,m,Zp(1))⊗ T⊗−1

→ lim←−
n

H1(Mn,m ⊗K Kp,Zp(1))⊗ T⊗−1

= lim←−
n

H1
(
H(E[pn+1])⊗K Kp,Zp(1)

)
⊗ T⊗−1 ⊗R[Gal(Lm/K)]

ν−→ lim←−
n

H1
(
H(E[pn+1])⊗K Kp,Zp(1)

)
⊗ T⊗−1

= lim←−
n

H1 (Φn,Zp(1))⊗ T⊗−1 ⊗R[Gal(H/K)]

→ lim←−
n

H1 (Φn,Zp(1))⊗ T⊗−1

→
Ç

lim←−
n

H1 (Φn,Zp(1))⊗ T⊗−1

å∆

∼=U∗∞ ⊗R,

with R being enlarged to contain the image of ν. Here the first arrow is via

(3.5), the second one is the corestriction map, and the third localization. The
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first equality is a consequence of pOK being completely split in the ring class

fields and Mn,m = H(E[pn+1]) ⊗K Lm (as l - hK). The fourth arrow with ν

is the evaluation at ν : Gal(Lm/K) → R×, the fifth one is induced by the

natural projection R[Gal(H/K)] → R, and the sixth one the projection to

the ∆-invariants. The last isomorphism arises from the Kummer map. Note

that the above composite is Gal(Φ∞/Φ0)-equivariant, where Gal(Φ∞/Φ0) is

identified with Gal(K(fp∞)/K(fp)).

So, in light of (3.4) and the explicit reciprocity law of Wiles (cf. [17,

Th. 2.1.7, Ch. II]), for a finite character χ of Gal(Φ∞/Φ0),

(3.6) δχ(ξν) =
Llmpf(ϕνχ, 1)

Ω
.

Here Gal(Φ∞/Φ0) is identified with the Galois group of the Z2
p-extension of

K (as p - hK), and we identify F with the formal group Ê of E so that the

invariant differential of F corresponds to ω. In particular,

(3.7) δ(ξν) =
Llmf(ϕν, 1)

Ω
.

We now have the following:

Proposition 3.3. Let ν ∈ Xl be a character of order lm. Then, the

element ξν ∈ U∗∞ ⊗R satisfies the following assertions :

(1) We have δ(ξν) = Ω−1Llmf(ϕν, 1).

(2) For a finite character χ of Gal(Φ∞/Φ0), we have δχ(ξν)=Ω−1Llmpf(ϕνχ,1).

(3) If we denote by ε the sign of the root number W (ϕ) ∈ {±1} of ϕ, then the

anticyclotomic projection of ξν lies in V ∗,ε∞ ⊗R

Proof. It only remains to consider (3). In view of (2), the assertion

amounts to the following: for a character χ of G− of conductor pn+1 > 1

with (−1)n+1 = −W (ϕ), we have W (ϕνχ) = −1.

Since ν is anticyclotomic, we have ϕν(pOK) = −p (cf. [33, Lem. 3.1]).

From (3.2), the conductor flm of ϕν is fixed by the complex conjugation, and

then χ(flm) = 1 as χ is of odd order. Thus, by the same argument as in the

proof of [33, Cor. 3.3] or as in [11, p. 247], we haveW (ϕνχ) = (−1)n+1W (ϕν) =

(−1)n+1W (ϕ) = −1. �
3.0.3. An optimal unit.

Theorem 3.4. There exists an element ξ∗ ∈ V ∗,+∞ such that δ(ξ∗) ∈ O×.

Proof. Let K be as in Lemma 3.1. Let ϕ as above be a canonical Hecke

character over K (cf. [31]). In particular,

(3.8)

the conductor fϕ of ϕ is divisible only by primes of K ramified in K/Q.

From Lemma 3.1(a), W (ϕ) = +1 (cf. [31] or [41, (5.0)]).
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Let l ≥ 5 be a split prime as in (3.3). By [10, Th. 1.1, (2)], for all but

finitely many ν ∈ Xl,

(3.9) Ω−1Lf(ϕν, 1) ∈ W×,

whereW is the integer ring of a finite extension of Φ containing the image of ν.

Here we utilize (3.8) and note that for an inert prime q 6= p, the invariants

µp(ϕqνq) and bp(ϕpνp, w(p)) of op. cit. vanish in our case (cf. the paragraph

above [op. cit., Th. 1.1]). From now, fix a ν as in (3.9) and let lm be the

conductor.

By Proposition 3.3 and (3.9), there exists an element ξν ∈ V ∗,+∞ ⊗W such

that we have

(3.10) δ(ξν) ∈ W×.

Since V ∗,+∞ ∼= Λ, (3.10) implies that any generator ξ∗ of V ∗,+∞ satisfies

δ(ξ∗) ∈ O×. �

4. The Kummer duality

In this section we follow [33, §5], to which the reader may refer for details.

For n ≤ ∞, let Θn = Φ∆
n and Ψn = ΘG+

n . As usual, the Kummer sequence

0 // Fπn+1 // F (Φ)
πn+1

// F (Φ) // 0

gives rise to an exact sequence

(4.1)

0 // F (Θn)/πn+1 // H1(Θn,Fπn+1) // H1(Θn,F (Φ))πn+1 // 0.

Since lim←−n F (Θn) = {0} (cf. [15]), we have lim−→n
H1(Θn,F (Φ))πn+1 = {0}

by the Tate duality. Hence (4.1) induces an isomorphism

F (Θ∞)⊗O Φ/O ∼= H1(Θ∞,Fp∞)

∼= Hom(Gal(Φ/Φ∞),Fp∞)∆ ∼= HomO(U∞,Fp∞),

where the last isomorphism is given by local class field theory. In other words,

we have the Kummer pairing

〈 , 〉 : F (Θ∞)⊗O Φ/O × U∗∞ −→ Φ/O.

Since lim−→n
H1(Ψn,F (Φ))πn+1 = {0}, this pairing induces a non-degenerate

pairing

〈 , 〉 : F (Ψ∞)⊗O Φ/O × V ∗∞ −→ Φ/O

(cf. [33, Prop. 5.4]).
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Let λ be the formal logarithm of F . For any character χ of G−, define a

map λχ : F (Ψ∞)→ Φ∞ by

λχ(y) :=
1

pn

∑
γ∈Gal(Ψn/Φ)

χ−1(γ)λ(y)γ ,

where n is any integer so that y ∈ F (Ψn) and the conductor of χ divides pn+1.

Then for a symbol ε = ±, define

Aε := {y ∈ F (Ψ∞) | λχ(y) = 0 for all χ ∈ Ξε}.

It is not difficult to see that

(4.2) F (Ψ∞)⊗O Φ/O = A+ ⊗O Φ/O +A− ⊗O Φ/O, rankOA
± =∞

(cf. [33, Lem. 5.5]). The explicit reciprocity by Wiles computes the Kummer

pairing as

〈y ⊗ π−n, x〉 =
1

πm+1+n
TrΦm/Φ(δm(x)λ(y)) ∈ Φ/O

for y ∈ F (Θn), x ∈ U∗∞ and a sufficiently large m for n. Then it is shown that

the orthogonal complement of A±⊗Φ/O with respect to the Kummer pairing

is V ∗,±∞ . In other words, we have a non-degenerate Galois compatible pairing

〈 , 〉 : A± ⊗O Φ/O × V ∗∞/V
∗,±
∞ −→ Φ/O.

Then (4.2) implies that V ∗,+∞ ∩ V ∗,−∞ = {0} and rankΛV
∗,±
∞ ≤ 1.

5. Local points

The main results are Theorems 5.5 and 5.8, while the decisive notion is

Definition 5.4.

5.0.1. The set-up. Let p ≥ 5 be a prime. As before, let F be the Lubin–

Tate formal group over O with the parameter −p. We take an elliptic curve

E defined over Q with good reduction at p with ap(E) = 0. Such an E exists,

for example, [9, Th. 14.18]. The formal group Ê is isomorphic to F over O.

Consider a modular parametrization π : X0(N) → E over Q. (Just in

this section, the letter π does not denote the uniformizer −p.) Changing E

by isogeny if necessary, we may assume π is strong Weil and N is the conduc-

tor of E. The morphism π extends to a morphism between smooth models

over Zp by the Néron mapping property. We consider the reduction map

π : X0(N)Fp → E over Fp for E the reduction of E. This map is separable

since the Manin constant is p-indivisible for the strong Weil parametrization.

We will use the following lemmas to choose a certain unramified point

for π, which corresponds to a supersingular elliptic curve with Frobenius trace

ap2 = ±2p.
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Lemma 5.1. Let q = p2 and A be an elliptic curve over Fq with

aq(A) := 1 + q − ]A(Fq) = ±2p.

(i) Any finite subgroup of A(Fq) is defined over Fq .
(ii) Let A be an elliptic curve over O that is a lift of A. Then the Honda

type of the associated formal group Â is ±x2 + p. In particular, Â is

Lubin–Tate with parameter ∓p.

Proof.

(i) Let C be such a subgroup. Since A is supersingular, the order of C is

prime to p. We may assume that C has order ln for a prime l 6= p. Let

ϕq be the q-th Frobenius. Then by assumption,

(ϕq ∓ p)2 = ϕ2
q − aq(A)ϕq + q = 0

on Tl(A). Hence ϕq = ±p on Tl(A). In particular, C is fixed by ϕq, which

is nothing but the Galois action of the Frobenius of Fq.
(ii) By (i), we have ϕq = ±p as an endomorphism of A. In particular, the q-th

Frobenius action on the Dieudonné module of A is just multiplication by

±p. The assertion follows from this. �

In the rest of the section we often identify X(1) with P1 via the j-invariant.

Lemma 5.2. (i) The number of ramification points of π is bounded by

2gN − 2 ≤ µ

6
=

1

6
N
∏
l|N

(1 + l−1),

where gN is the genus of X0(N) and µ is the degree of the natural map

X0(N)→ X(1).

(ii) The number of supersingular points in X0(N)(Fp2) that correspond to

supersingular elliptic curves over Fp2 with the Frobenius trace ap2 = 2p

or −2p and the j-invariant different from 0 and 1728 is at least

µ

Å
bp− 1

12
c − 3

2
+

Å−3

p

ã
+

1

2

Å−1

p

ãã
.

In particular, there is a supersingular point with ap2 = 2p or −2p in

X0(N)(Fp2) over X(1)(Fp2) \ {0, 1728} that is unramified for π if p ≡
1 mod 12 or p ≥ 31.

(iii) If p ≡ 2 mod 3, there are at least µ/3 supersingular points with j = 0. If

p ≡ 3 mod 4, there are at least µ/2 supersingular points with j = 1728.

In particular, there is a supersingular point with ap2 = 2p or −2p in

X0(N)(Fp2) that is unramified for π.
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Remark 5.3. In view of Remark 2.3, to prove Rubin’s conjecture, one

may assume p ≡ 1 mod 12 or p ≥ 31. Accordingly, the reader may skip

Lemma 5.2(iii), which perhaps streamlines some of the following arguments.

Proof. (i): This just follows from the Riemann–Hurwitz formula and the

genus formula of X0(N) (cf. [38, Prop. 1.40, 1.43]).

(ii), (iii): Recall that the supersingular points in X(1)(Fp) are defined

over Fp2 . By the mass formula of Eichler and Deuring, the number of super-

singular points in X(1)(Fp) is m+ δ + ε, where m ∈ N ∪ {0} and ε, δ ∈ {0, 1}
are uniquely determined by p − 1 = 12m + 4δ + 6ε. Note that δ 6= 0 (resp.

ε 6= 0) if and only if j = 0 (resp. j = 1728) is supersingular. More precisely,

let N(t) be the number of isomorphism classes of supersingular elliptic curves

having exactly p2 + 1− t points defined over Fp2 . Then

N(t) =


1
12

Ä
p+ 6− 4

Ä
−3
p

ä
− 3
Ä
−1
p

ää
(t = ±2p),

1−
Ä
−3
p

ä
(t = ±p),

1−
Ä
−1
p

ä
(t = 0).

(See, for example, [37, Th. 4.6]. Over Fp2 , one must count the number of

twists.)

Recall that the morphism Y0(N)Fp → Y (1)Fp is étale if j 6= 0, 1728. (In-

deed, one may simply apply [21, Cor. 8.4.5] for the Γ1(N)-problem.) Since p

is relatively prime to 6, the ramification index of π at elliptic points is 2 or 3.

So there are µ points in the fiber of each supersingular point in X(1) except

j = 0, 1728, and at least µ/3 or µ/2 points when j = 0 or 1728 respectively.

Let x be a supersingular point in X(1)(Fp) represented by a supersingular

elliptic curve A defined over Fp2 with ap2(A) = ±2p. A point y ∈ X0(N)(Fp) in

the fiber of x for the projection X0(N)→ X(1) corresponds to an isomorphism

class over Fp of a pair (A,C) with a cyclic subgroup C of order N of A. By

Lemma 5.1(i), the subgroup C is defined over Fp2 . Hence y ∈ X0(N)(Fp2).

If
Ä
−3
p

ä
= −1 (resp.

Ä
−1
p

ä
= −1), then j = 0 (resp. j = 1728) is super-

singular. The supersigular elliptic curve A with j = 0 or 1728 can be defined

over Fp, thus, t = −2p since ap(A) = 0. IfÅ−3

p

ã
=

Å−1

p

ã
= 1,

any supersingular elliptic curve over Fp2 satisfies t = ±2p. The assertion follows

from these facts. �

A formal CM point. Consider a supersingular point P of X0(N)(Fp2) un-

ramified for π, represented by an elliptic curve A with ap2 = ±2p and a Γ0(N)-

level structure, which exists by Lemma 5.2(ii), (iii). By composing π with the
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multiplication by ]E(Fp2), we may assume that P is sent to the origin O of E.

Note that since E is supersingular, ]E(Fp2) is prime to p and hence P is still

an unramified point.

Fix a torsion point of A(Fp2) of order M where M is taken so that the

Γ1(M)-moduli is fine and ]Γ0(M)/Γ1(M) is prime to p. This is possible since

]A(Fp2) = (p ± 1)2. Let X0(N ;M) be the modular curve with Γ0(N) and

Γ1(M)-level structures. Unlike X0(N), it is a fine moduli space.

Let P ′ be a point of X0(N ;M)(Fp2) above P with the Γ1(M)-level struc-

ture by the fixed torsion point of order M . We may assume that P ′ is unram-

ified for X0(N ;M) → X0(N). (If j(A) 6= 0, 1728, this is evident. If j(A) = 0,

p must be 2 modulo 3. Then we pick N = 27 as there is no elliptic point

of order 3 in X0(27). If j(A) = 1728, we pick N = 32.) Hence the formal

completion of the morphism π′ : X0(N ;M) → E (on integral models) at the

closed points P ′ and O is an isomorphism. Let m be the maximal ideal of O.

Take a point

(5.1) Q ∈ Ê(m) \ pÊ(m).

Then there is a point P ′ ∈ X0(N ;M)(O) over P
′
sent to Q by π. As X0(N ;M)

is a fine moduli space, there exists an elliptic curve A defined over O that

represents P ′ by the moduli interpretation. The formal group Â is Lubin–Tate

by Lemma 5.1(ii). In particular, A is a formal CM elliptic curve. (It is called

fake CM in [8, §3].) Let P be the image of P ′ in X0(N).

5.0.2. An optimal system of local points. Now we resort to Gross’ theory

of quasi-canonical lifts [14], [42] (the latter for non-algebraically closed residue

field).

Since Â is Lubin–Tate, the Tate module T := TpA is a free O-module of

rank 1. Put V = T ⊗O Φ, and consider Zp-modules T ⊂ T ′ ⊂ V such that

T ′/T is finite. We regard

C := T ′/T ⊂ V/T = Â[p∞] = A[p∞].

Let Ψ′ be the fixed field of the Gal(Φ/Φ)-action on C. Consider A′ = A/C

as an abelian scheme defined over O′, the integer ring of Ψ′. Then End(Â′) is

isomorphic to O or an order Zp + psO for a natural number s (cf. [14, p. 325]).

If we take a basis t of the O-module T and put Ts = p−sZpt + T as T ′,

then End(Â′) ∼= Zp + psO. Following Gross, we call this A′ a quasi-canonical

lift of conductor ps of A with respect to A (cf. [14, p. 325], [42, §4]). Denote

A′ by As and Ψ′ by Ψ′s for this choice. It is known that

Gal(Ψ′s/Φ) ∼= (O/psO)×/(Z/psZ)×

(cf. [14, Prop. 5.3], [42, Th. 1]). In particular, it is the local ring class field

of degree [Φ′s : Φ] = ps−1(p + 1). Let Ψ′∞ be ∪sΨ′s. Then Gal(Ψ′∞/Φ) ∼=
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Zp×Z/(p+ 1)Z. Let ∆′ be the torsion subgroup of Gal(Ψ′∞/Φ). The field Ψ′∞
contains the anticyclotomic Zp-extension Ψ∞. The s-th layer Ψs of Ψ∞ lies

in Ψ′s+1. Let Trs+1/s : Ψs+1 → Ψs denote the trace map. Then elliptic curve

As/OΨ′s and the canonical level structure induced from that of A define a point

zs ∈ X0(N)(OΨ′s). Let xs be the image of zs by the modular parametrization π.

Definition 5.4. Let

ys =
∑
σ∈∆′

σxs+1 ∈ Ê(mΨs) and y = (p+ 1)Q ∈ Ê(m)

be a system of local points.

The salient features are the following:

Theorem 5.5.

(i) y ∈ Ê(m) \ pÊ(m).

(ii) The elements ys ∈ Ê(mΨs) satisfy

Trs+1/sys+1 = −ys−1

for s ≥ 1 and

Tr1/0y1 = −y and y0 = 0.

Proof. (i) just follows from our choice (5.1).

(ii) We consider the action of the Hecke operator Tp on xs.

Let T ′ be a lattice containing Ts = 1
psZpt+T with index p. First suppose

that s ≥ 1. There are two types of T ′:

1 + aps

ps+1
Zpt+ T for a ∈ {0, 1, . . . , p− 1} or

1

ps
Zpt+

1

p
T .

The first type is permuted by the action of Gal(Ψ′s+1/Ψ
′
s). So each lattice of

this type is of the form σxs with σ ∈ Gal(Ψ′s+1/Ψ
′
s). Note that each lattice of

the second type is homothetic to the lattice 1
ps−1Zpt+ T . Hence for s ≥ 1, we

have

Tpxs =
∑
σ

σxs+1 + xs−1.

Since Tp acts as ap(E) = 0 on E, we have the desired relation. When s = 0,

there exist p+ 1 lattices containing T with index p, which are permuted by ∆.

Hence Tpx =
∑

σ∈∆ σx1. The assertion follows. �

Corollary 5.6. We have

(A− ⊗O Φ/O)G
−

= F (Φ)⊗O Φ/O.

In particular, V∞/V
∗,−
∞ and V ∗,−∞ are free Λ-modules of rank 1.
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Proof. The first assertion follows from Theorem 5.5 and [33, Prop. 7.4].

Strictly speaking, y in [33, Prop. 7.4] is a Heegner point but can be replaced

by our y since this proposition is proved by using [33, Prop. 6.1], which corre-

sponds to our Theorem 5.5.

Then by the Kummer duality and Nakayama’s lemma, V ∗∞/V
∗,−
∞ is gener-

ated as a Λ-module by a single element. Hence it is a free module of rank 1 or a

torsion module. However, since rankΛ(V ∗∞/V
∗,−
∞ ) ≥ 1, the latter case does not

happen. Since rankΛV
∗
∞ = 2 and Λ is a UFD, it is straightforward to show that

the freeness of V ∗∞/V
∗,−
∞ implies the freeness of V ∗,−∞ (cf. [33, Lem. 4.1]). �

Remark 5.7. Since we employ a modular parametrization, the above con-

struction is not purely local. In light of (potential) links with a generalization

of the theory of (ϕ,Γ)-modules, a very interesting problem is to construct the

optimal system of local points by a purely local method.

5.0.3. Rubin’s conjecture.

Theorem 5.8. We have V ∗∞ = V ∗,+∞ ⊕ V ∗,−∞ .

Proof. We just recall Rubin’s argument (cf. [33, Th. 8.4]).

Consider the Coates–Wiles derivative δ : V ∗∞/V
∗,−
∞ → O. By Theorem 3.4,

there exists an element ξ ∈ V ∗,+∞ such that δ(ξ) ∈ O×. By Corollary 5.6, we

may identify V ∗∞/V
∗,−
∞ and Λ. Then the image of the maximal ideal of Λ by

δ is in pO. Therefore, ξ does not belong to the maximal ideal, and hence, it

generates V ∗∞/V
∗,−
∞ . Thus, V ∗∞ = V ∗,+∞ ⊕ V ∗,−∞ . �

6. Arithmetic consequences

In this section we first present consequences of Rubin’s conjecture as in

[1] and [33].3 Then Section 6.0.3 concerns the underlying p-adic Birch and

Swinnerton-Dyer conjecture.

Let K be an imaginary quadratic field where p remains to be a prime, and

let H be the Hilbert class field of K. We assume that

(6.1) p - hK .

Let ϕ and E be as in Section 3: ϕ is a Hecke character over K with

infinity type (1, 0), and E is a Q-curve in the sense of Gross such that the

Hecke character ϕ◦NH/K is associated to E, and E has good reduction at each

prime of H above p. Then, E ∈ E in the notation of [33, §3], and in particular,

E satisfies the Shimura condition. Let p be the prime of H above p that is

3Unfortunately, the sign conventions in [1] and [33] are different. In [33] the parity is

based on the conductor of characters, but in [1] it is based on the order of characters (cf. [1,

Rem. 3.2]). Our conventions are consistent with [33].
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compatible with the fixed embedding ιp : Q ↪→ Qp. We fix a Weierstrass model

of E over H ∩ O that is smooth at p, and by considering a Galois conjugate

of E over H if necessary, we may assume that there exists a complex period

Ω ∈ C× of E such that L = OKΩ, where L is the period lattice associated to

the model.

6.0.1. Rubin’s p-adic L-function. As in [32] or Proposition 3.3, there exists

an elliptic unit ξ = ξ(E,Ω) ∈ U∗∞ such that

δ(ξ) =
L(ϕ, 1)

Ω

and for a non-trivial character χ of Gal(Φ∞/Φ0) of finite order,

δχ(ξ) =
L(ϕχ, 1)

Ω
.

Here we identify Gal(Φ∞/Φ0) with the Galois group of the Z2
p-extension of

K (cf. (6.1)) and correct a minor sign error in [33, Th. 3.2] (cf. our modified

definition of (vn)n and δχ in Section 2).

Let ε ∈ {+,−} be the sign of the functional equation of the Hecke

L-function L(ϕ, s). Then it is known that the projection of ξ(E,Ω) on V ∗∞
belongs to V ∗,ε∞ (cf. [33, Cor. 3.3]) Let C∞ be the free Λ-submodule of V ∗,ε∞
generated by ξ(E,Ω) ∈ V ∗,ε∞ . We take a generator vε of the Λ-module V ∗,ε∞ and

write

ξ(E,Ω) = Lp(ϕ,Ω, vε) · vε
for an element Lp(ϕ,Ω, vε) ∈ Λ. We call it Rubin’s p-adic L-function associated

to ϕ. We sometimes omit the indices of Lp(ϕ,Ω, vε) and write its evaluation

at an anticyclotomic character χ by Lp(χ) for simplicity.

The interpolation property of Rubin’s p-adic L-function is

Lp(χ) =
1

δχ−1(vε)
· L(ϕχ, 1)

Ω

for non-trivial χ ∈ Ξε. Here we utilize [33, Lem. 2.1 (iii)] (note we consider U∗∞
instead of U∞) and δχ(vε) 6= 0, which is a consequence of Rubin’s conjecture (cf.

Corollary 2.2). In particular, for χ ∈ Ξε, Lp(χ) 6= 0 if and only if L(ϕχ, 1) 6= 0.

6.0.2. An Iwasawa main conjecture. Now we present the results of [1].

Let K∞ be the anticyclotomic Zp-extension of K. We identify G− with

Gal(K∞/K) and put GK := Gal(Q/K). Let R be the ring of integers in a

finite extension of Φ containing the image of the p-adic avatar GK → Q×p of ϕ.

Let T be the free R-module of rank one on which GK acts by the p-adic avatar.

We put W = T ⊗O Φ/O.

For simplicity, let p still denote the prime of the n-th layer Kn above p.

We note that the completion Kn,p at p coincides with Ψn and that W ∼=
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F [π∞]⊗O R as an R[Gal(Qp/Φ)]-module (cf. (6.1)). We define

H1
±(Kn,p,W ) ⊆ H1(Kn,p,W ) ∼= H1(Ψn,F [π∞])⊗R

to be the Kummer image of F±(Ψn)⊗R⊗Qp/Zp, where

F±(Ψn) := {y ∈ F (Ψn) | λχ(y) = 0

for all χ ∈ Ξ± factoring through Gal(Ψn/Ψ)}.

Note that H1
±(Kn,p,W ) is independent of the choice of isomorphism W ∼=

F [π∞]⊗R. The signed Selmer groups Sel±(Kn,W ) are defined by

Sel±(Kn,W ) = ker

ß
H1(Kn,W )→ H1(Kn,p,W )

H1
±(Kn,p,W )

×
∏
v-p

H1(Kn,v,W )

™
,

where v varies over the primes of Kn relatively prime to p. Note that for v - p,
since H1(Kn,v, T ⊗ Qp) = {0} (cf. [2, Prop. 2.10]), the usual local condition

H1
f (Kn,v,W ) coincides with {0}.

Let X ±
∞ be the Pontryagin dual of the signed Selmer group

lim−→
n

Sel±(Kn,W ).

In [1, Th. 3.6] it is shown that X −ε
∞ is a finitely generated torsion Λ-module.

(Although in op. cit. E is defined over Q and hence the class number of K is

assumed to be equal to one, by a similar argument one can prove the same

assertion, where we assume only (6.1). Note again that our sign convention is

opposite to that in op. cit.)

Finally, an Iwasawa main conjecture:

Theorem 6.1. The characteristic ideal of X −ε
∞ is generated by Rubin’s

p-adic L-function Lp(ϕ,Ω, vε).

Proof. This is proved in [1] assuming Rubin’s conjecture (cf. the paragraph

after [op. cit., Th. 4.3]). Although in op. cit. E is defined over Q, by a similar

argument one can prove [op. cit., (4.2) and Th. 4.3] to deduce the theorem,

where we assume only (6.1). �

6.0.3. Towards a p-adic Birch and Swinnerton-Dyer conjecture.

Theorem 6.2. Suppose that E is defined over K . Let χ be an anticyclo-

tomic character of conductor pn. Then we have

rankE(Kn)χ ≤ dim Sel(Kn, VpE)χ ≤

{
ordχLp (χ ∈ Ξε),

ordχLp + 1 (χ ∈ Ξ−ε).

Proof. The characteristic ideal of X −ε
∞ is contained in that of the strict

Selmer group X str
∞ . (The latter appears in [1], the notation being Xstr, and

the definition is as in [op. cit., pp. 613, 615].) Since the control theorem holds
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for the strict Selmer group (cf. [36, Prop. 7.3.4]), standard arguments show

that

ordχLp ≥ dim Selstr(Kn, VpE)χ ≥ dim Sel(Kn, VpE)χ − 1

(cf. Theorem 6.1).

Suppose χ ∈ Ξε. Then we may consider the control theorem for X −ε
∞ at

χ (cf. [1, Th. 5.2]). Hence by [1, Prop. 5.3],

ordχLp ≥ dim Sel−ε(Kn, VpE)χ = dim Sel(Kn, VpE)χ. �

Remark 6.3. In [5] we prove the rank part of the p-adic Birch and

Swinnerton-Dyer conjecture (i.e., the equality in the above) if ords=1L(ϕχ, s)

≤ 1. Moreover, if ords=1L(ϕ, s) ≤ 1, the full p-adic Birch and Swinnerton-Dyer

conjecture for ϕ is proven up to a p-adic unit.

References

[1] A. Agboola and B. Howard, Anticyclotomic Iwasawa theory of CM elliptic

curves. II, Math. Res. Lett. 12 no. 5-6 (2005), 611–621. MR 2189225. Zbl 1130.

11058. https://doi.org/10.4310/MRL.2005.v12.n5.a1.

[2] T. Arnold, Anticyclotomic main conjectures for CM modular forms, J. Reine

Angew. Math. 606 (2007), 41–78. MR 2337641. Zbl 1138.11047. https://doi.

org/10.1515/CRELLE.2007.034.

[3] M. Bertolini, H. Darmon, and K. Prasanna, Generalized Heegner cycles

and p-adic Rankin L-series, Duke Math. J. 162 no. 6 (2013), 1033–1148, with an

appendix by Brian Conrad. MR 3053566. Zbl 1302.11043. https://doi.org/10.

1215/00127094-2142056.

[4] A. A. Burungale, S. Kobayashi, and K. Ota, A local invariant of Rubin and

p-divisibility of anticyclotomic Hecke L-values at inert primes, in preparation.

[5] A. A. Burungale, S. Kobayashi, and K. Ota, p-adic L-functions and rational

points on CM elliptic curves at inert primes, preprint.

[6] A. A. Burungale, S. Kobayashi, K. Ota, and S. Yasuda, Kato’s ε-conjecture

for anticyclotomic CM deformations at inert primes, in preparation.

[7] A. A. Burungale and Y. Tian, p-converse to a theorem of Gross-Zagier,

Kolyvagin and Rubin, Invent. Math. 220 no. 1 (2020), 211–253. MR 4071412.

Zbl 1452.11068. https://doi.org/10.1007/s00222-019-00929-7.

[8] R. Coleman and K. McMurdy, Fake CM and the stable model of X0(Np3),

Doc. Math. no. Extra Vol. (2006), 261–300. MR 2290590. Zbl 1155.11030.

[9] D. A. Cox, Primes of the Form x2 + ny2. Fermat, Class Field Theory and

Complex Multiplication, A Wiley-Interscience Publication, John Wiley & Sons,

Inc., New York, 1989. MR 1028322. Zbl 0701.11001.

[10] T. Finis, Divisibility of anticyclotomic L-functions and theta functions with com-

plex multiplication, Ann. of Math. (2) 163 no. 3 (2006), 767–807. MR 2215134.

Zbl 1111.11047. https://doi.org/10.4007/annals.2006.163.767.

http://www.ams.org/mathscinet-getitem?mr=2189225
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1130.11058
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1130.11058
https://doi.org/10.4310/MRL.2005.v12.n5.a1
http://www.ams.org/mathscinet-getitem?mr=2337641
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1138.11047
https://doi.org/10.1515/CRELLE.2007.034
https://doi.org/10.1515/CRELLE.2007.034
http://www.ams.org/mathscinet-getitem?mr=3053566
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1302.11043
https://doi.org/10.1215/00127094-2142056
https://doi.org/10.1215/00127094-2142056
http://www.ams.org/mathscinet-getitem?mr=4071412
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1452.11068
https://doi.org/10.1007/s00222-019-00929-7
http://www.ams.org/mathscinet-getitem?mr=2290590
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1155.11030
http://www.ams.org/mathscinet-getitem?mr=1028322
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0701.11001
http://www.ams.org/mathscinet-getitem?mr=2215134
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1111.11047
https://doi.org/10.4007/annals.2006.163.767


964 ASHAY A. BURUNGALE, SHINICHI KOBAYASHI, and KAZUTO OTA

[11] R. Greenberg, On the Birch and Swinnerton-Dyer conjecture, Invent. Math. 72

no. 2 (1983), 241–265. MR 0700770. Zbl 0546.14015. https://doi.org/10.1007/

BF01389322.

[12] R. Greenberg, Iwasawa theory and p-adic deformations of motives, in Motives

(Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Provi-

dence, RI, 1994, pp. 193–223. MR 1265554. Zbl 0819.11046. https://doi.org/10.

1090/pspum/055.2/1265554.

[13] R. Greenberg, Introduction to Iwasawa theory for elliptic curves, in Arithmetic

algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser. 9, Amer.

Math. Soc., Providence, RI, 2001, pp. 407–464. MR 1860044. Zbl 1002.11048.

https://doi.org/10.1090/pcms/009/06.

[14] B. H. Gross, On canonical and quasi-canonical liftings, Invent. Math. 84

no. 2 (1986), 321–326. MR 0833193. Zbl 0597.14044. https://doi.org/10.1007/

BF01388810.

[15] M. Hazewinkel, On norm maps for one dimensional formal groups. III, Duke

Math. J. 44 no. 2 (1977), 305–314. MR 0439851. Zbl 0371.14024. https://doi.

org/10.1215/S0012-7094-77-04412-X.

[16] N. Jochnowitz, Congruences between modular forms of half integral weights

and implications for class numbers and elliptic curves, preprint.

[17] K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions

via BdR. I, in Arithmetic Algebraic Geometry (Trento, 1991), Lecture Notes in

Math. 1553, Springer, Berlin, 1993, pp. 50–163. MR 1338860. Zbl 0815.11051.

https://doi.org/10.1007/BFb0084729.

[18] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms,

in Cohomologies p-adiques et Applications Arithmétiques. III, Astérisque 295,
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[27] B. Perrin-Riou, Théorie d’Iwasawa des représentations p-adiques sur un corps

local, Invent. Math. 115 no. 1 (1994), 81–161, with an appendix by Jean-Marc

Fontaine. MR 1248080. Zbl 0838.11071. https://doi.org/10.1007/BF01231755.

[28] B. Perrin-Riou, Fonctions L p-adiques des Représentations p-adiques,
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