A PROOF OF PERRIN-RIOU’S HEEGNER POINT MAIN CONJECTURE

ASHAY BURUNGALE, FRANCESC CASTELLA, AND CHAN-HO KIM

ABSTRACT. Let E/Q be an elliptic curve of conductor N, let p > 3 be a prime where E has good
ordinary reduction, and let K be an imaginary quadratic field satisfying the Heegner hypothesis.
In 1987, Perrin-Riou formulated an Iwasawa main conjecture for the Tate—Shafarevich group of F
over the anticyclotomic Zy-extension of K in terms of Heegner points.

In this paper, we give a proof of Perrin-Riou’s conjecture under mild hypotheses. Our proof builds
on Howard’s theory of bipartite Euler systems and Wei Zhang’s work on Kolyvagin’s conjecture. In
the case when p splits in K, we also obtain a proof of the Iwasawa—Greenberg main conjecture for
the p-adic L-functions of Bertolini-Darmon—Prasanna.
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1. INTRODUCTION

1.1. The Heegner point main conjecture. Let F/Q be an elliptic curve of conductor N, and
let p > 3 be a prime where E has good ordinary reduction. Let K be an imaginary quadratic field
of discriminant D < 0 prime to Np. Throughout the paper, we assume that

(disc) Dk is odd, and D # —3.

Write N as the product

N=N'N"
with Nt (resp. N7) divisible only by primes that split (resp. remain inert) in K, and assume the
following generalized Heegner hypothesis:

(Heeg) N7 is the squarefree product of an even number of primes.

Under this hypothesis, exploiting the modularity of E, [BCDTO1], for every positive integer n
prime to N the theory of complex multiplication yields a construction of Heegner points y,, € E(H,,)
defined over the ring class field H, of K of conductor n. More precisely, letting X+ y- be the
Shimura curve attached to an indefinite quaternion algebra B/Q of discriminant N~ together with
a [o(N*)-level structure, the points y, are obtained as the image of special points on X+ y-
under a fixed parametrization m: X+ y- — E.
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Let Ko be the anticyclotomic Zp-extension of K, and for any number field L let Sel,~(E/L)
and S,(E/L) be the Selmer groups of E/L fitting into the descent exact sequences

0 — E(L) ® Qp/Z — Sely~(E/L) — II(E/L)[p>] — 0,

0~ E(L)® Zy — Sp(E/L) — lim LI(E/L)[p'] - 0.

The study of anticyclotomic Iwasawa theory for elliptic curves was initiated by Mazur [Maz84],
who conjectured in particular that the Pontryagin dual

X := Homg, (lim Sely= (E/K,,), Qp/Zy)

has rank one over the Iwasawa algebra A = Z,[Gal(K/K)]. Under the p-ordinarity hypothesis,
the Kummer images of Heegner points give rise to a compatible system of classes

Koo € Soo 1= @SP(E/KTL%

and it was also conjectured by Mazur that So, has A-rank one and the class ko, is not A-torsion.
In this context, Perrin-Riou [PR87] (in the case N~ = 1, and later extended by Howard [How04b]
to allow N~ # 1) formulated the following variant of the Iwasawa main conjecture.

Conjecture 1.1 (Heegner point main conjecture). Suppose K satisfies hypotheses (disc) and
(Heeg). Then So and Xoo have both A-rank one, and there is a finitely generated torsion A-module
My for which:

(i) There is a A-module pseudo-isomorphism Xoo ~ A ® Moo & M.
(ii) The characteristic ideal of M~ satisfies Chary(Ms) = Charp(Mso)* and

Chary (M) = Chary (SOO/AK:OO),
where 1 : A — A is the involution given by v+ v~ for v € Gal(K/K).

Remark 1.2. As formulated in [PR87, Conj. B], the second equality of characteristic ideals in (ii)
includes the factor ¢ - (#0)/2, where ¢, € Z~¢ is the Manin constant associated to m. However,
Ojc = {1} by our hypothesis (disc), and ¢ is a p-adic unit by [Maz78, Cor. 3.1] and our hypothesis
that pt V.

Mazur’s conjecture on the non-triviality of ke was first proved by Cornut—Vatsal [CV07]. Build-
ing on this, and adapting to the anticyclotomic setting the Kolyvagin system machinery of Mazur—
Rubin [MR04], Howard [How04a, How04b] (extending earlier results by Bertolini [Ber95]) reduced
the proof of Conjecture 1.1 to the proof of the divisibility

(1) Chary (My) & Chary (Seo/Akoc)-

More recently, the first case of this divisibility, and therefore of Conjecture 1.1, were obtained
in [Wan14, Thm. 1.2] and [Cas17, Thm. 3.4]. The new ingredient in these works was Xin Wan’s di-
visibility in the Iwasawa—Greenberg main conjecture for certain Rankin—Selberg p-adic L-functions
[Wan20], which in combination with the reciprocity law for Heegner points [CH18a] yields a proof
of the divisibility (1). Unfortunately, the method in these works does not seem well suited to treat
the case N~ =1 (i.e., the “classical” Heegner hypothesis), and for technical reasons they require
the assumptions that N is squarefree and that p splits in K.

In this paper, we give a proof of Conjecture 1.1 dispensing with the use of the deep results
of [Wan20] and allowing for the cases N~ = 1, N having square factors, and p being inert in K.
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1.2. Statement of the main results. Let

p:Gq = Gal(Q/Q) — Autr, (E[p])

be the Galois representation afforded by the p-torsion of E. Similarly as in [Zhal4], we consider
the following set of hypotheses on the triple (E,p, K):

Hypothesis &. Let Ram(p) denote the set of primes (|| N such that the Gq-module E[p| is ramified
at . Then:
(i) Ram(p) contains all primes £||[NT,
(ii) Ram(p) contains all primes ¢|N~ with £ = £1 (mod p),
(iii) If N is not squarefree, then either Ram(p) contains a prime £|N~ or there are at least two
primes (||NT.

Following the terminology introduced in [Maz72], we say that the prime p is non-anomalous if
p1|E(Fy)| for all primes w|p of K, where F,, is the residue field of w.
Our main result towards Conjecture 1.1 is the following.

Theorem A. Let p > 3 be a prime where E has good ordinary reduction, and let K be an imaginary
quadratic field satisfying (Heeg) and (disc). Assume that:

e Hypothesis & holds for (E,p,K),
® 0 is surjective,
e p is non-anomalous.

Then the Heegner point main conjecture holds.

As a consequence of this result, we also obtain new cases of the Iwasawa—Greenberg main conjec-
ture for certain Rankin—-Selberg p-adic L-functions. Let f € So(T'o(IN)) be the newform associated
with F. Assuming that

(spl) pOk = pp splits in K
and that N~ = 1, Bertolini-Darmon-Prasanna [BDP13] constructed a p-adic L-function
BDP ro._ i r
Ly € A = Az, Z,)

with the property that (XPBDP )2 interpolates certain central critical L-values for the Rankin-Selberg
convolution of f with theta series attached to K of weight £ > 3, where Z;" is the completion of
the ring of integers of the maximal unramified extension of Q,. The construction of .i”pBDP was
extended by Brooks [HB15] to the case N~ # 1, and its corresponding interpolation property was
deduced from calculations in [Pra06] in the case where N is squarefree.

The Iwasawa—Greenberg main conjecture [Gre94] in this case predict that the square of ,,%BDP
generates the characteristic ideal of the Pontryagin dual of a Selmer group

Sely o (K, W) C lim H' (K, E[p™])
differing from hﬂn Selp (E/K,,) in its defining local conditions at the primes above p.

Conjecture 1.3 (Iwasawa—Greenberg main conjecture for ,,%BDP). Suppose K satisfies
(disc), (Heeg), and (spl). Then the Pontryagin dual X, of Sely ((K, W) is A-torsion, and

Char (X ) = (%BDP)2

as ideals in AY.



In §4 we extend the explicit reciprocity law of [CH18a| (for weight 2 forms) to the case N~ # 1,
and use it to establish the equivalence between Conjectures 1.1 and 1.3. (Such extension of [CH18a,
Thm. 5.7] was used in the aforementioned works [Cas17], [Wanl4], but the details were missing in
the literature.) Together with Theorem A we thus obtain the following.

Theorem B. Letp > 3 be a prime where E has good ordinary reduction, and let K be an imaginary
quadratic field satisfying (Heeg), (disc), and (spl). Assume that:

e Hypothesis & holds for (E,p,K),

® 0 is surjective,

® p is non-anomalous.

Then the Iwasawa—Greenberg main conjecture for %BDP holds.

We conclude this subsection by noting another consequence of Theorem A, which underlies the
structure of its proof. As first observed in [Wanl14], Perrin-Riou’s Heegner point main conjecture
implies a corresponding p-converse to the theorem of Gross—Zagier and Kolyvagin in the spirit of
Skinner’s work [Ski20]: if Sel, (E/K) has Z,-corank one, then ord,—; L(E/K,s) = 1. Indeed, the
implication follows easily from Mazur’s control theorem. In [Zhal4], this p-converse is deduced from
the proof of Kolyvagin’s conjecture in op.cit. together with Kolyvagin’s theorem [Kol91, Thm. 4] on
the structure of Sel,(E/K) (see [Zhal4, Thm. 1.3]). As a consequence of Theorem A, the above
p-converse can be deduced from W. Zhang’s proof of Kolyvagin’s conjecture without the need to
appeal to [Kol91].

1.3. Outline of the proofs. As mentioned above, Howard’s results towards Conjecture 1.1 were
based on an adaptation to the anticyclotomic setting of the Kolyvagin system machinery of Mazur—
Rubin [MRO04], which provides upper bounds on the size of Selmer groups. As already observed by
Kolyvagin [Kol91], the upper bound provided by this machinery can be shown to be sharp under a
certain non-vanishing hypothesis; in the framework of [MRO04], this corresponds to the Kolyvagin
system being primitive, see Definitions 4.5.5 and 5.3.9 in [MRO04].

Motivated by the ingenious Euler system argument introduced by Bertolini-Darmon in [BD05],
Howard developed a theory of bipartite Euler systems [How06], which provides an alternative way to
obtain upper bounds on Selmer groups without the need to apply Kolyvagin derivatives. Moreover,
Howard also proved a criterion for his theory to yield a proof of the equality (rather than just one
of the divisibilities) in a corresponding Iwasawa main conjecture.

In a sense that will be made precise in §3, Howard’s criterion for equality can be interpreted as
the condition that the given bipartite Euler system is “A-primitive”. On the other hand, digging
into the proof of some of the main results in [Zhal4], we show that the constructions of Bertolini—
Darmon [BDO05] (as refined by Pollack—Weston [PW11] and Chida—Hsieh [CH15]) yield a bipartite
Euler system that is “primitive”. Thus, by showing the implication

primitivity =  A-primitivity
for bipartite Euler systems, we arrive at the proof of Theorem A. The proof of Theorem B then
follows from the equivalence between Conjectures 1.1 and 1.3 established in §5.
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the National Science Foundation through grants DMS-1801385 and DMS-1946136; C.K. was par-
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lenges at Korea Institute for Advanced Study and by the Basic Science Research Program through
the National Research Foundation of Korea (NRF-2018R1C1B6007009). It is a pleasure to thank
Rob Pollack and Wei Zhang for their encouragement, Chris Skinner and Murilo Zanarella for sev-
eral fruitful discussions, and the anonymous referee for a number of inquiries that led to significant
improvements in the exposition of our results.
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2. SELMER GROUPS

Fix a prime p > 3 and an embedding 1, : Q— Qp, where we let Q be the algebraic closure of Q
in C. Let f =", anq" € So(T'o(N)) be a newform with p{ N. Let F = Q({a,: n > 1}) be the
number field generated by the Fourier coefficients of f, and let & be the ring of integers of F. We
assume throughout that f is ordinary at the prime p of & above p induced by 1, i.e., v,(ap) = 0.

Let Ay be the GLo-type abelian variety over Q (unique up to isogeny) attached to f. Let 0, be
the completion of & at g, and let

T:= %El A f[p] ]
J
be the p-adic Tate module of Ay, which is free of rank two over &,. Denote by F|, the fraction
field of O, and set
V:IT@@@ F@, W .= V/TﬁAf[poo].

Let K be an imaginary quadratic field of discriminant Dg < 0 with (Dg, N) = 1, and such that
hypotheses (disc) and (Heeg) in the introduction hold. Let K be the anticylotomic Z,-extension
of K, and let

A = ,[Gal(Koo /K]
be the anticylotomic Iwasawa algebra.

Fix a finite set 3 of places of K containing oo and the primes dividing Np, and let Ky be the
maximal extension of K in Q unramified outside .. Following [MR04], given a Selmer structure
F on a Gal(Ky/K)-module M, i.e., a collection of submodules HL-(K,,, M) C H'(K,,, M) indexed
by w € X, we define the associated Selmer group by

1
Selr(K, M) := ker{Hl(Kg/K, M) = ] M}
weZ w s

2.1. p-adic Selmer groups. Recall that if M is a G g-module and L/K is a finite Galois extension,
the induced representation

Indy/gM :={f:Gx — M : f(ox) = f(x)? for all x € Gk,0 € G}
is equipped with commuting actions of Gx and Gal(L/K). Consider the modules
(2) T := @1 (IndKH/KT), W .= hﬂ (IndKn/KW) ~ Hom(T, pupee),

where the limits are with respect to the corestriction and restriction maps, respectively, and the
isomorphism is given by the perfect G g-equivariant pairing T X W — p,ec induced by the Weil
pairing T x W — e (see [How04a, Prop. 2.2.4]). Note that

TET@)@FA,

where G acts diagonally on the right-hand side, with the Gg-action on A given by the inverse of
the tautological character Gg — Gal(K~/K) < A*. We now describe certain Selmer groups for
the modules (2), whose G g-action factors through Gal(Ky/K).

Let w be a prime of K above p, and let Gi, C Gk be a decomposition group at w. Since f is
assumed to be ordinarity at p, there is a one-dimensional G, -stable subspace Fil{ (V) C V such
that the G, -action on the quotient V/Fil;}V is unramified. Set

Fil ) (T) := T NFil}(V), Fil} (W) := Fil} (V)/Fil}(T),
and define the submodules Fil!;(T) C T and Fil} (W) C W by
Fil}(T) := lim (Ind g,/  Fily, (7)) , Fil, (W) := lim (Ind,, xFilb (W)) .

n
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Following [How04b, §3.2], we define the ordinary Selmer structure Foq on T by

1 [ im{H'(K,, Fil;}(T)) — H'(K,,, T)} ifw|p,
HE (B, T) = { HY (K, T) otherwise,
and let H}_-Ord (Kw, W) be the orthogonal complement of H-17:ord (K, T) under local Tate duality, so
that
il (K, W) = im{H! (K, Fil};(W)) — HY(K,,, W)} ifw|p,
Fora 007 o otherwise.

We denote by Sel(K, T) and Sel(K, W) the Selmer groups defined by the Selmer structure Foyq.
Shapiro’s lemma gives canonical isomorphisms

HY(K,T) ~ @Hl(Kn,T), HY (K, W) ~ hgﬁl(Kn, W),

and as is well-known there are A-module pseudo-isomorphisms

Sel(K, T) ~ 1lim S, (A;/Ky),  Sel(K, W) ~ lim Sel (A7 /Ky),

where S, (Af/L) and Sel,(Af/L) are the Selmer groups fitting into the exact sequences
0— Af(L)®@ ®,/0, — Selgo (Ay /L) — II(Ap/L)[p>] = 0,
0— Ay(L) ® Oy = Sp(Ay/L) — ImII(Ay/L)[p] = 0
J

(see e.g. [CGI6]).

2.2. Residual Selmer groups. Following [BD05], we say that a prime ¢ is admissible if it satisfies
the following properties:
® gt NDgp,
e ¢ is inert in K,
e ¢ £ +1 (mod p),
and the “admissibility index” M'(q) := v,((q 4+ 1)* — a7) is strictly positive.
We denote by L the set of admissible primes and by A the set of squarefree products of distinct
primes q € L. For m € N we define the admissibility index

M'(m) = {

min{M'(¢q): ¢| m} ifm>1,

00 ifm=1,

and say that m is j-admissible if M'(m) > j. Let N] be the set of j-admissible integers m € N,
and let A”** (resp. /\/'J’i) be the set of m € N (resp. m € Nj) with (=1)0™) = 41, where v(m)
is the number of prime factors of m.

Given j > 0 and m € N}’ (which in our applications will be taken to be in /\/';”L), we now define
“N~m-ordinary” Selmer groups for the modules

T, := 1&1IlﬂdlKn/K(T/@]'T)7 W; = ligllndxn/K(Af[pj])

(cf. [How06, §3.1], [CH15, §1.2]). Importantly, these Selmer groups will depend on N~m and the
reduction of f modulo g’, but not on f itself. '
Let w be a prime of K above p, and define Fil},(A[e’]) to be the kernel of the reduction map

Afle’] = Agle),
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where A ¢ is the reduction of Ay modulo w. Set
Fil}(W;) = lim Indg, /kFilf (As[p])

and define the ordinary condition Hord(Kw, W;) c HY(K,, W) by
(3) H (K, W;) == im{H" (), Fil, (W;)) — H' (K, W;)}.

Next let w be a prime of K above a prime ¢ | N™m. If £ | N~, then Ay acquires purely toric
reduction over K, = Qy2, and by the theory of ¢-adic uniformization of Tate and Morikawa there
is a unique rank one O,-submodule Fil}}(T') C T on which G, acts by the cyclotomic character.
Letting Fil}} (A¢[e’]) be the natural image of Fil;(T) in Af[p’], we define the ordinary condition
at w as in (3). On the other hand, if ¢ | m, then the Galois module A[’] is unramified at w and
the action of a Frobenius element at w is semi-simple, yielding a decomposition

(4) Arlp’l = (0/¢") (1) @ (O] ¢)
as G,,-modules. Letting Filf (Af[p’]) C A¢[e’] be the direct summand corresponding to the first
factor in the decomposition (4), we define the ordinary submodule H! (K,,, W;) C H!(K,, W;)
by the same recipe (3).
Following [BD05, Def. 2.8], we define the “N ~m-ordinary” Selmer group Sely-,, (K, W;) to be

the Selmer group defined by

e the ordinary local condition H! (K, W) at the primes w | pN~m,

e the unramified local condition

H (K, W) o= ker {H (K,,, W;) — HN (K2, W;)}
at all the other primes.
Since T/@'T ~ Ay[p’], the ordinary submodules H! (K, T;) C H'(K,,T;) for w | pN~m,
and the corresponding Selmer group Sely-,, (K, T;) can be defined in the same manner.
In the following, abusing notation, given ¢ € £ we shall denote by K, the completion of K at
the unique prime above q.

Lemma 2.1. For any q € Lj, the modules
Hord(KQaTj)v Hl (KQ’TJ)

unr

are free of rank one over A/l A.
Proof. Since the primes ¢ € £; are inert in K, they split completely in K /K, and so Shapiro’s
lemma gives an isomorphism

H'( (Kq, T5) L@H naw, A @]):Hl(Kq’Af[@jD@Aa

" wlg

where w runs over the primes of K,, above ¢. By [How06, Lem. 2.2.1], the result follows. ([l

The next result compares the p-adic Selmer groups for the ordinary Selmer structure F,.q defined
above and the corresponding N ~-ordinary Selmer groups.

Lemma 2.2. Assume that A¢[p] is irreducible as a Gq-module. Then
Sel(K, W) ~ lim Sely— (K, W),  Sel(K, T) ~ lim Sely- (K, T;).
J J

Proof. The second identification follows immediately from the first. For the latter, as shown in the
proof of [PW11, Prop. 3.6], ligj Sely— (K, W;) is contained in Sel(K, W) with finite index. Since
by [HL19, Prop. 3.12] the module Sel(K, W) has no proper finite index submodules (note that this

result does not require this module to be A-torsion), the first isomorphism follows. ]
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3. PROOF OF THEOREM A

We keep the setting and notations introduced in Section 2. Let F = &'/p be the residue field of
p, and let

P GQ — AutF(Af[gJ]) ~ GLQ(F)
be the Galois representation on the p-torsion of Ay. Let 0y C & be the order generated over Z
by the Fourier coefficients of f, and set g := p N & and Fy := Oy /po. Note that p arises as the

extension of scalars of a representation p, defined over Fy.
As in [Zhal4], we consider the following conditions on the triple (f, g, K).

Hypothesis ©. Let Ram(p) denote the set of primes (|N such that the Gq-module Af[p] is
ramified at €. Then:

(i) Ram(p) contains all primes £||N*.
(ii) Ram(p) contains all primes ¢|N~ with £ = £1 (mod p).
(iii) If N is not squarefree, then either Ram(p) contains a prime {|N~ or there are at least two
primes (||NT.
(iv) For all primes ¢ such that (>|NT we have H'(Qq, Af[p]) = HO(Qe, Af[p]) = {0}.

Remark 3.1. When & = Z, i.e., for f corresponding to an elliptic curve F/Q, Hypothesis © for
(E,p, K) reduces to Hypothesis # in the introduction. See [Zhal4, Lem. 5.1(2)].

Following Mazur’s terminology in [Maz72], we say that p is non-anomalous if
ap # 1 (mod ) if p splits in K,
a2 #1 (mod p) if pis inert in K.

In this section we prove the following result, which in the case where f has rational Fourier coeffi-
cients recovers Theorem A in the introduction. Let

S =Sel(K,T), X =Sel(K,W)",
where MY = Homg, (M, Q,/Z,) denotes the Pontryagin dual of a module M.

Theorem 3.2. Suppose p{ 6N and @ is a prime of O above p such that the following hold:

f is ordinary at g,

Hypothesis O holds for (f, p, K),
Po s surjective,

p is non-anomalous.

Then both S and X have A-rank one, and
Chary (Xiors) = Chary (S/AK,OO)Q,

where Xiors denotes the A-torsion submodule of X .

The proof of Theorem 3.2 will occupy the rest of this section. Our argument is based on Howard’s
theory of bipartite Euler systems, with some ideas and results from Wei Zhang’s proof of Kolyvagin’s
conjecture [Zhal4]. In the terminology of loc.cit., we crucially exploit the “m-aspect” of the system
of Heegner classes given by level-raising at admissible primes, rather than the “n-aspect” given by
tame derivatives at Kolyvagin primes.

As in [PW11], we say that the pair (p, N ™) satisfies Condition CR if the following hold:

(i) p is ramified at every prime ¢|N~ with { = £1 (mod p),
(ii) po is surjective.
8



The basic construction for our argument is provided by the following result coming from the work
Bertolini-Darmon [BD05], and its refinements by Pollack—Weston [PW11] and Chida—Hsieh [CH15].
(Note that the condition that p is non-anomalous made in the aforementioned references—see also
[KPW17, Rem. 1.4]—is no longer necessary thanks to recent advances on Thara’s lemma, [MS20].)

Theorem 3.3. Suppose (p, N™) satisfies Condition CR. Then for every j > 0 there is a pair of
systems

Kk = {r;(m) € Sely—,,,(K,Tj): m € j\/;’Jr},

A={\(m) e A/’ A:m e N7},
related by a system of “explicit reciprocity laws”:

o Ifmqigs € ./\/’j{’Jr with q1,qo € E;- distinct primes, then

(1st) locg, (K5(ma1g2)) = Aj(mar)
under a fized isomorphism H. (K4, T;) ~ A/’ A (see Lemma 2.1);
e If mq € ./\/;’_ with g € L) prime, then
(2nd) locg(rj(m)) = Aj(mq)
under a fized isomorphisms HL, (K, Tj) ~ A/ A.

unr

Proof. We recall the construction of the systems k and A, following the treatment in [CH15] with
some modifications. Denote by a, the p-adic unit root of 2% — a,x + p, and let f, € So(Lo(Np)) be
the p-stabilization of f with Up-eigenvalue a,. Fix m € N”>*, let By, be the indefinite quaternion
algebra over Q of discriminant N ~m, and consider the compact Shimura curve

Xm = XpN+ N-m

attached to an Eichler order R,,, C B, of level pNT as defined in [JSW17, §4.2]. In particular,
Xm = Xo(Np) when N™m = 1). The curve X,,, has a canonical model over Q, and its complex
uniformization is given by

(5) Xm(C) = BY\(9% x By /Ry) U{cusps}, $*:=C\R,

where Em = B, ®7 7 and Em = R,, ®7 Z are the profinite completions of B,, and R,,. Fix an
(optimal) embedding tx : K < By, such that

ik (K)N R =1x(0k),

where Ok is the ring of integers of K. In terms of the complex uniformization (5), the collection
of Heegner points on X,, is defined as

(6) CM(X,) = {[h,b] € X;n(C): b€ By} ~ K*\B) /R,
where h is the unique fixed point of 1x(K*) on $*. We shall define Heegner points by specifying
a representative element in B, under the identification (8). '

Let J(X,,) = PicO(Xm)/Q be the Picard variety of X,,, and let g,, be a mod g’ level-raising
of fo of level pNm. The existence of g, follows from [CH15, Thm. 4.3] (¢f. [BD05, Thm. 5.15]),

which also implies its uniqueness up to a p-adic unit. Moreover, letting T,,, be the algebra of Hecke
correspondences on X,,, by [CH15, Cor. 4.4] there is an isomorphism

(7) (Tap(J (X)) ©z, Op)/Ty,, = T/¢'T,
where Z;, is the kernel of the algebra homomorphism A, : Ty, — 0/’ defined by gp,.
For each positive integer n, let H,» be the ring class field of K of conductor p", and let

(8) T (p") € CM(Xin) N Xo (Hpr)
9



be the Heegner point defined by the element <™ € B* in [CH15, (4.6)]. Choose an auxiliary prime
?p such that agy — lop — 1 & p (note that the existence of such /y is guaranteed by the irreducibility
of p), and consider the map

) tm + Xon(Hpn) = J(Xin ) (Hpn ) @z O
z = (T, — Lo — 1)[x] ® (ag, — lo — 1)1,
where T}, is the {yp-th Hecke correspondence of X,,. Let
Kum : J (X)) (Hpn) @z Op — H (Hpr, Tay(J (X)) @z, O)

be the Kummer map, and set K, := Hpn N K. A standard calculation (see [CH15, Lem. 4.6] and
the reference [LV11, Prop. 4.8] therein) shows that the classes defined by

o Y Kum(t(en(p)?) (mod Z,,,)
o€Gal(Hyn /Ky)

are compatible under corestriction, and hence under the isomorphism (7) they define a class

kj(m) € im (K, T/¢'T) ~ H'(K, T;),

which by [CH15, Prop. 4.7] lands in Sely-,,(K,T;) C H'(K, T;).

Now let g,,q be a mod @ level-raising of f, to level pNmg, viewed as an automorphic form on
the Shimura set L

qu = B;zq\B;qu/R:;q

attached to the definite quaternion algebra B,,, over Q of discriminant N~mgq with the Eichler
order R,,; C By of level pN . Let Opn = Z 4 p" Ok be the order of K of conductor p", so that
Pic(Opn) ~ Gal(Hp» /K) under the reciprocity map recy : KX\I?X — G%. For a fixed embedding
K — By,4, define the map

Tp(p") : Pic(Opn) = KX\E* /O = Xng

sending K Xa@pn > [ag(”)]. Using that the mod ¢’ eigenform 9gmp is a Up-eigenvector with eigen-
value ay,, one checks immediately that the natural image in (0/p’)[Gal(K,,/K)] of the element

" Y gup(@mg(@)(a))lo] € (6/97)[Gal(Hy /K],

o€Gal(Hyn | K)
where o = reck (a), are compatible under the projections
(0/¢)|Gal(K,/K)] = (0/¢)[Gal(Kn-1/K)],
hence defining an element

Aj(m) € im(6/7)[Gal(Kn/K)] = A/ A.

This defines the systems k and A, and with these, equalities (1st) and (2nd) in the statement of
the Theorem are a reformulation of the first and second explicit reciprocity laws in [CH15, Thm. 5.1]
and [CH15, Thm. 5.5], respectively. O

In the terminology of [How06], the pair (k,A) defines a bipartite Euler system (of odd type)
for the triple (Af[p], F, L%), where F is the Selmer structure defining the N~-ordinary Selmer
groups Sely- (K, W) and Sely- (K, T;). Letting 2" be the graph with vertices v = v(m) indexed
by m € N and edges connecting v(m) to v(mgq) whenever ¢ € L} and mq € N, we shall use the
interpretation of such systems as global sections of the sheaf ES(.2") on 2 introduced in [How06,
§2.4].

10



For varying j the elements x;(m) and \;(m) are compatible under the natural maps
Al = Al AOTTIA = AJPA.
Taking m = 1 we thus obtain a distinguished element
(10) Koo := lim (1) € lim Sely— (K, T;)
j j

using by the isomorphism in Lemma 2.2 we shall view in & = Sel(K,T).
We will prove Theorem 3.2 by an application of the following result of Howard.

Theorem 3.4 (Howard). Assume that the pair (p, N~ ) satisfies Condition CR. Then both S and
X have A-rank one, and the following divisibility holds in A:

(11) Chary (Xiors) D Chary (S/Ako) .

Moreover, the divisibility in (11) is an equality if the following condition is satisfied: For any height
one prime P C A, there exists k = k(P) such that for all j > k the set

{Aj(m) € AJGA : me N}
contains an element with non-trivial image in A/ (B, p¥).

Proof. The element ko is nonzero by the work of Cornut—Vatsal [CV07], so the result follows from
Lemma 2.2 and [How06, Thm. 3.2.3]. O

In the following lemma, let (R, mp) be a principal Artinian local ring, let T' be a free R-module
of rank 2 equipped with a continuous action of Gk as in [How06, §2.6], let F be a Selmer structure
on T, and let £ be a set of (admissible) primes of K such that (7, F, L') satisfies Hypotheses 2.2.4
and 2.3.1 of [How06]. We refer the reader to [How06, Def. 2.2.8] for the definition of the stub module

Stub(v) = Stub,, C R

associated with the vertex v of £  indexed by m, and (as in [loc.cit., Def. 2.4.2]) say that v is a
core vertex if Stub(v) = R.

Lemma 3.5. Let s be the global section of ES(Z") corresponding to a bipartite Fuler system over R.
Then there exists a constant § = §(s) with 0 < § < length(R) such that s(v) generates m% - Stub(v)
for every core vertex v of Z . Moreover, s is uniquely determined by its value at any core vertex.

Proof. This is shown in the proof of [How06, Cor. 2.4.12]. O
Now we return to our setting.

Lemma 3.6. Suppose (p, N™) satisfies Condition CR. If the system X has nonzero image in A/pA,
then the criterion for equality in Theorem 3.4 holds.

Proof. Unless indicated otherwise, all the references in this proof are to [How06]. Denote by A the
image of X in A/pA. Denoting by & the reduction of £ modulo g, the pair (X, &) defines a bipartite
Euler system over F; or equivalently, a global section s of the corresponding Euler system sheaf
ES(Z°). Since XA # 0 and by Corollary 2.4.9 there are core vertices corresponding to m € /\/’;’7 for
any j, by Lemma 3.5 above (noting that Hypothesis 2.2.4 holds by our running hypotheses, and
Hypothesis 2.3.1 holds by [BD05, Thm. 3.2]) it follows that s(v) # 0 for any core vertex of 2.
Since F has length one, this shows that § = 0 in Lemma 3.5 above. Thus we conclude that for any
7 > 0 the system
{\j(m) e /A meN;"}
has nonzero image in A/pA, and so for any height one prime 8 C A the criterion in Theorem 3.4
is satisfied by taking k = k(*B) = 1. O
11



Proposition 3.7. Suppose the following hold:

o (f,p, K) satisfies Hypothesis Q,
® D, is surjective,
e p is non-anomalous.

Then the system X has nonzero image in A/pA.

Proof. All the references in this proof are to [Zhal4]. Let Sel,(Ar/K) C H'(K, Af[p]) be the usual
p-Selmer group, and set
r = dimgSel,(Af/K).

We need to show that for some g obtained by level-raising f at m € N~ the p-adic L-function
attached to g over K (as constructed in [CH18b] using the period denoted by Q¢ - ng n+ n—p, in
the notations of [Zhal4, §6.2], i.e., Gross’s period) is invertible. We will show this by induction on
r.

Since K satisfies hypothesis (Heeg), as in Theorem 9.1 we may assume that r odd. If r = 1, the
existence of g is shown in Theorem 7.2 (where it is denoted by ¢'). Indeed, g is obtained by mod
p level-raising f at some ¢ € £', and the proof of Theorem 7.2 shows that

L¥®(g/K) #0 (mod p)

(see bottom of p. 233). On the other hand, by the interpolation formula in [CH18b, Thm. A], the
image of A1(¢)? under the augmentation map A/p/A — O, /¢’ O,, (corresponding to the evaluation
at the trivial character 1 of Gal(K/K)) is given by

ep(g,1) - L% (g/K) (mod p)

up to a p-adic unit, where e,(g, 1) is a certain p-adic multiplier. Since e,(g,1) # 0 (mod ) by the
non-anomalous hypothesis on p, the result in the case r = 1 follows.

If » > 3, by the argument in the proof of Theorem 9.1 we can find a form gy of level Nqiqo,
obtained by level-raising f at two distinct admissible primes ¢; and g2, with associated Selmer rank
equal to r—2. By induction hypothesis, go has a mod g level-raised form ¢ as desired, and therefore
so does f. O

Now we have all the ingredients to prove Theorem 3.2.

Proof of Theorem 3.2. By Theorem 3.4 and Lemma 3.6, it suffices to show that A has nonzero
image in A/pA, which under the hypotheses of Theorem 3.2 has been shown in Proposition 3.7,
hence the result. O

4. THE p-ADIC L-FUNCTION .£PP

In [CH18a], the p-adic L-function introduced by Bertolini-Darmon—Prasanna [BDP13] for N~ =
1 is shown to be nonzero, and its relation with a A-adic Heegner class via a Perrin-Riou regulator
map—an explicit reciprocity law—is established. The aim of this section is to expound these results
for a general N~ satisfying (Heeg). Here we restrict to the weight 2 case, as this will suffice for our
purposes.

4.1. Construction of the p-adic L-function. The construction in this section refines work of
Brooks [HB15]. We keep the setting and notation introduced in §2, and assume in addition:
pOg = pp splits in K.

As the case N~ =1 is covered in [CH18a, §3], we also assume that N~ # 1 is a squarefree product

of an even number of primes.
12



Let B be a quaternion algebra over Q of discriminant N~, and let O C B be a maximal order
as in [HB15, §2.1]. As before, B = B ®yz Z denotes the profinite completion of B, and we put

BN ={peB : xg=1forallg| N }.

Define Q?V7) similarly, and fix an isomorphism MQ(Q(N_)) ~ BW7),
Let Ign+ n- be the Igusa scheme over Z, classifying abelian surfaces with Op-multiplication

and T'1 (N *p>)-level structure. For any valuation ring W finite flat over Z", denote by V;)B (W)
the space of p-adic modular forms over W: the space of formal functions on Igy+ n- over W.

Fix a decomposition NtTOx = NN+ and let ¢ be a positive integer prime to Np. Assume for
simplicity that ¢ splits in K, and fix a decomposition cOx = €€. Similarly as in (5) and (8), by
the complex uniformization

,S;_’):t x B* — IgNJr’N—(C),
the element
(12) e =™y, € GLy(QW )y ~ BWW)x <y BX

constructed in [CH18a, p. 577] defines a CM point z. € Igy+ y-(C) rational over H.(p*°), the
compositum of H. with the ray class field of K of conductor p*°. By Shimura’s reciprocity law, for
every O.-ideal a prime to 91 p, letting a € K ()% be such that a = a®, N K and

Oq = reCK(a_1)|Hc(P°°) € Gal(H(p™)/K),

the point x4 := 29 is defined by the element a~1&.. For z € Q, set

n(z) = <é 'j) € GLa(Q,) C GLy(QW )¥) — BX,

and write x4 * n(z) for the CM point in Igy+ y- defined by a~'&en(z).
Let fp be an automorphic form on B associated to f under the Jacquet—Langlands correspon-
dence, with the p-optimal normalization in [Burl7, §5.1]. Consider the “p-depletion”

k= fel(VU - UV),

where U and V' are the Hecke operators defined in e.g. [HB15, §3.6]. Here we view fp and f% as

defined over 0,, and let ]?B and f% be their p-adic avatars in V;)B (ﬁ;r), where 077 is the compositum
of O, and Z,".

Put x, := Ta®gur Fp and let ¢ : §xa — @m be the Serre-Tate coordinate on the local deformation
space §xa — Ig(N) Jour Then T :=t — 1 gives a canonical uniformizer for the coordinate ring of

§Xu‘ The Serre-Tate expansion
fo(t) == falg, € O3t —1]

defines a p-adic measure de on Z, characterized by
(13) | #dfate) = Fatt)
ZP

The p-depletion f% defines a measure dﬂg on Z, in the same manner, and it is easily seen that dﬂ;
is supported on Z;. Put

Fhalt) = Fp(tX® V=P,
which again defines a measure on Z,; characterized as in (13). The following result extends [CH18a,
Prop. 3.3].

13



Proposition 4.1. Let ¢ : Z; — O;p be a non-trivial finite order character of conductor p™. Then

| S@Edfp@) =pa0) . 67w falzasn(up™)

u€(Z/p™Z)*
where §(@) = 3 ue(z/prz)x @(W)Cpn is the Gauss sum.

Proof. Tt suffices to prove an analogue of [CH18a, Lem. 3.2] in our setting, for which we shall argue
as in [HB15, Lem. 4.14] to reduce to the elliptic curve case. Indeed, letting 4, denote an abelian
surface with Op-multiplication corresponding to x4 under the moduli interpretation of Igyn+ n-,
by the discussion in [Pra06, p. 919] there is a degree prime-to-p isogeny

)\Z.Aa—>51><52,

defined over a number field in which p is unramified, between A, and the product of certain CM
elliptic curves. Thus from [HB15, Prop. 4.1] and [CH18a, Lem. 3.2] we obtain that if u € Z, then

- -1
t(])a % n(upfn)) — CI;IUN(Q) 1/=Dg )

The result now follows from [CH18a, Lem. 3.1]. O
Set

AY = 0N [Gal(Hpe /K)], A" = OF[Gal(Koo/K)].
Following [CH18a, Def. 3.7], we introduce the following.

Definition 4.2. Let 1) be an auxiliary anticyclotomic Hecke character of K of infinity type (1,—1)
and conductor c.

(1) Let £, € A™ be the p-adic measure on Gal(Hp~/K) defined by

Suw© =Y Y@N@ " [ dy@)lrecy@)oy) dfp ()

[a]€Pic(O.) Zy

for all € : Gal(Hp~ /K) — (’)ép, where v, is the component of ¢ at p and rec, : K, —
Gal(Hp~ /K) is the local reciprocity map.

(2) Let twg : A" — A™ be the map defined by v — ¢(v)y for v € Gal(Hp~/K). The p-adic

L-function
ngDP c Aur

is the image of tw,-1(%, ) under the natural projection AW 5 AU

Remark 4.3. In light of the Waldspurger formula, the square of .,%BDP is expected to interpolate
the central critical L-values L(f/K,¢&, 1) for the Rankin—Selberg convolution of f with theta series of
weight ¢ > 3 attached to certain anticyclotomic Hecke characters £&. For N~ = 1, this interpolation
property is shown in [CH18a, Prop. 3.8] as a consequence of results in [Hsil4, Thm. A]; for N~ # 1,
based on Prasanna’s explicit Waldspurger formula [Pra06, Thm. 3.2], the interpolation is deduced
in [HB15, §8] for squarefree N and £ crystalline at the primes above p.

4.2. Explicit reciprocity law. The next result relates the p-adic L-function .,%BDP to the element
Koo in (10). Recall that p: Gq — GL2(F) denotes the Galois representation afforded by A¢[p]. In
the following, we use the superscript “ur” to denote extension of scalars to Z".

Theorem 4.4. Suppose pla, is absolutely irreducible. There exists an injective A" -linear map

Log, : H' (K, Fil} (T))" < A™
14



with finite cokernel such that
(14) Logy,(locy(keo)) = —.,%BDP “O_1p,
where 0_1 € Gal(Ko/K) has order two.

Proof. The construction of the map Log, is given in [CH18a, Thm. 5.1 (note that the injectivity
of this map is not explicitly stated in loc.cit., but it follows from [LZ14, Prop. 4.11]). For N~ =1,
(14) is just the weight 2 case of the “explicit reciprocity law” in [CH18a, Thm. 5.7]. We explain
how to extend that result to the case at hand.

Let x : Gal(K/K) — ppo be the p-adic avatar of ring class character of conductor p"Og, with
n > 1. Following the calculations in [CH18a, pp. 598-9] (with Proposition 3.3 in loc.cit. replaced
by the above Proposition 4.1) we find:

L= Y XM (07 @ xg ) (xa)
[a]ePic(O.)

=p"g06 @) D x(0) 07 Fadn).
o€Gal(Hepn /K)

(15)

Here _
071 fh = lim 9P D fp

1—>00
where 6 is the Katz p-adic differential operator acting as t% on the t-expansions. Since by [HB15,
Prop. 7.4] and [LZZ18, Prop. A.0.1], the term 9*1]/”\?3(36?]0”) computes the image of

u(z1(ep”™)) € J(Xn+ n-)(Hepr) ®z O
(cf. (8), (9)) under the formal group logarithm
1ngf : J(XN+,N—)(HCp”,w) Xz ﬁp — Heprow

associated to the differential wy, where H.yn o, denotes the completion of H.,» at the prime above p
induced by our fixed embedding ¢,, substituting this into (15) the argument in [CH18a, Thm. 5.7]
applies verbatim to yield the proof of (14). O

Corollary 4.5. Suppose p|q,. is absolutely irreducible. Then locy(kso) is not A-torsion. In partic-
ular, the p-adic L-function .,%BDP 18 nonzero.

Proof. Recall that the class k is nonzero by [CV07]. Therefore for all but finitely many characters
X : Gal(Ko/K) — (’)ép factoring through Gal(K,,/K) for some n > 0, the image kKX of koo under
the specialization map

H'(K,T) —» HY(K,T ® x) ~ H'(K,,T)X
is nonzero. Here H'(K,,,T)X) denote the x-isotypic component of H!(K,,,T) under the action of
Gal(K,,/K). Since by construction kX arises as the image of the twisted Heegner point

wo=op" Y X o) @ul@m")” € BE)X,
c€Gal(Hpn /K)

by [Nek07, Thm. 3.2] it follows that if kKX # 0 then both III(E/K,)X) and the quotient of E(K,)X)
by the submodule generated by v, are finite. Since F(K,) injects into E(Ky ), it follows that for
any prime v of K, above p, we have the implication

KX #0 = loc,(kX) # 0.

Letting x as above vary, this shows that locy (ko) is not A-torsion. The last claim in the corollary
then follows from Theorem 4.4. O
15



Remark 4.6. The nonvanishing of ,,%BDP can also be shown following Hida’s methods. For N~ =1,
this is done in [CH18a, Thm. 3.9] as an application of [Hsil4, Thm. C], and for N~ # 1 the result
can be similarly deduced from [Burl7].

5. PROOF OF THEOREM B

As in the preceding section, we keep the setting and notations introduced in §2, and assume in
addition that pOg = pp splits in K.

Consider the following variants of the Selmer groups Sel(K, T) and Sel(K, W) in §2 obtained by
changing the local condition at the primes above p. Let M denote either T or W. For w a prime
of K above p, set

Hj (K, M) = H' (K, M),

and for e, 0 € {(),ord, 0} define

Sela (K, M) ::ker{Hl(KE/K,M)%Hl(KPﬂM) H(K, M) 11 Hl(KwM)}

X
HI(K,, M) " HIEp M)~ AL HE (K, M)

In particular, Selord ord (K, M) is the same as the earlier Sel(K, M). For the ease of notation, we
also set

Seo = Seleo(K,T), KXo :=Selso(K, W)Y,

$0 Xord,ord is the same as the earlier X'
Denote by &g the compositum of & with Z)¥, and set

A" = 05 [Gal(Kw/ K)].
In this section we prove the following result, which implies Theorem B in the introduction.

Theorem 5.1. Suppose p{ 6N and  is a prime of € above p such that the following hold:
f is ordinary at g,

Hypothesis O holds for (f, p, K),

Po s surjective,

P is non-anomalous.

Then Xy is A-torsion, and
Chary (X ) = (Z"F)?

as ideals in AY.

After Theorem 3.2, the proof will be an immediate consequence of the next result, showing in
particular that Conjecture 1.3 is equivalent to Conjecture 1.1 when p splits in K.

Theorem 5.2. Assume that H*(Gk,py) = 0. Then the following are equivalent:
(i) Both S and X have A-rank one, and the following divisibility holds in A:

Charp (Xiors) D Chary (S/Aka ).
(ii) Both Syp and Xy are A-torsion, and the following divisibility holds in A™*:
CharA(X@,O) D (.,%BDP)Q.

Moreover, the same result holds for the opposite divisibilities.
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Proof. We begin by noting that, since Gal(K/K) is a pro-p group, our hypothesis implies that
HY(Gk..,po) =0, and so H' (Ky /K, T) is torsion-free by [PR00, §1.3.3]. As we shall explain in the
next paragraphs, the Theorem can be extracted from [Casl7, App. A]; all the references in the rest
of this proof will be to results in that appendix. (Note that the Selmer groups considered in [Cas17]
have the unramified local condition at all primes w 1 p, but the same arguments apply verbatim to
the Selmer groups we consider here. Note also, although this is not needed for our arguments, that
by [PW11, §5] both Selmer groups are the same if p is ramified at all primes ¢ | N™.)

We first show that X has A-rank one if and only if Xp, is A-torsion. If X has A-rank one,
then S has A-rank one by Lemma 2.3(1), and so Ap, is A-torsion by Lemma A.4. Conversely,
if Ay is A-torsion, then Xypq,0 is also A-torsion (see eq. (A.7)), and so Xq ¢ has A-rank one by
Lemma 2.3(2). Global duality yields the exact sequence

(16) 0 — coker(loc, : S — H(l)rd(Kp,T)) — Xpora —+ X — 0.
Since H! (Kp, T) has A-rank one, the left term in this sequence is A-torsion by Theorem A.1 and

the nonvanishing of .,%BDP, and since the right term is isomorphic to &5 ¢ by the action complex
conjugation, and hence is of A-rank one by the above analysis, we conclude from (16) that X" also
has A-rank one.

To relate the divisibilities, assume that X has A-rank one. By Lemma 2.3(1), this amounts to
the assumption that S has A-rank one, and so by Lemma A.3 for every height one prime B of A
we have

(17) lengthy (Xp o) = lengthg (Xiors) + 2 lengthgs(coker(locy)),
and by Lemma A.4 for every height one prime B’ of A"™ we have
(18) ordyy (.,%BDP) = lengthgy (coker(loc, ) A™) + lengthgy (8" /A" Ko ),

where S"" denotes the extension of scalars of § to A". Thus for any height one prime ¥ C A,
letting P’ denote its extension to A", we see from (17) and (18) that

1engthq3(2\f'tors) < 2 lengthy (S/Af;oo) — lengthm(/’(@’o) < 2 ordyy (ngDP%
and similarly for the opposite inequalities. The result follows. ]

Proof of Theorem 5.1. Since Theorem 3.2 holds under the given hypotheses, the result follows from
the equivalence in Theorem 5.2. O

APPENDIX A. AN ALTERNATIVE APPROACH IN RANK ONE

In this appendix we give an alternative proof® of the following special case of Theorem 3.2 and
Theorem 5.1, but which does not require the hypothesis that p is non-anomalous.

Theorem A.1. Let E/Q be an elliptic curve of condition N, let p > 3 be a prime where E has good
ordinary reduction, and let K an imaginary quadratic field of discriminant prime to Np satisfying
hypotheses (disc) and (Heeg). Suppose in addition that the following conditions hold:

e (E,K,p) satisfies Hypothesis #,

e p: Gq — Autp,(E[p]) is surjective,

e pOx = pp splits in K,

o ord,—1 L(E/K,s) = 1.
Then Conjecture 1.1 and Conjecture 1.3 hold.

LAppeared in an earlier version of this paper released in June 2018; see [BCK183].
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The proof of Theorem A.1 will occupy the remainder of this appendix. After possibly changing F
within its isogeny class, we shall assume that E is “(Z, pZ,)-optimal” in the sense of [Zhal4, §3.7].
Denote by Hg the Hilbert class field of K, and let

T € CM(XAH—,N—) N XN+,N— (HK)

be the Heegner point constructed in (8) (i.e., taking m = p" = 1). Letting 7 : J(Xy+ y-) — E be
the quotient map, we set

21 1= 7T(L1(.TU1)) (S E(HK) Xz Zp,
where ¢; is as in (9). By the Gross—Zagier formula [GZ86,YZZ13,CST14] we have

(19) L'(E/K,1)#0 <= zg:=Trg, /k(z1) in non-torsion.

Upon the choice of a topological generator v € Gal(K/K), it will be convenient to view the
p-adic L-function .,SprDP of 84 as an element in the power series ring Z)" [T] via the isomorphism
A" ~ Z'[T] sending v — 1 — T.

The starting point of the approach in this appendix is the p-adic Waldspurger formula due to
Bertolini-Darmon—Prasanna [BDP13], which corresponds to the specialization of (14) at the trivial
character of Gal(Ko/K).

Proposition A.2 (Bertolini-Darmon—Prasanna, Brooks). Assume that:
o pOx = pp splits in K,
o Elp| is irreducible as a G -module.

Then

1—a,+p
D%BDP(O) — <pp> . (IngEZK)’

where the equality is up to a p-adic unit.

Proof. This is a special case of [BDP13, Thm. 5.13] (N~ = 1) and [HB15, Thm. 1.1] (N~ # 1), as
explained in Propositions 5.1.6 and 5.1.7 of [JSW17]. O

The following result is a consequence of the “anticyclotomic control theorem” of [JSW17, §3].

Proposition A.3. Assume that:

o pOg = pp splits in K,
o Ep] is irreducible as a G g-module,
o rankz F(K) =1 and #11(E/K)[p*>] < oo,

and let P € E(K) be a point of infinite order. Then Xj is A-torsion, and letting
f(Z),O(T) S Zp[[T]]

be a generator of the characteristic ideal of Xy, the following equivalence holds:

L—ay+p ? 2 2 o0 2
fuo0) vy (S g, (PP [BUR) s 2P g (/K0 ]
N+

where ¢ is the Tamagawa number of E/Qq, and ~, denotes equality up to a p-adic unit.

Proof. As shown in [JSW17, pp. 395-6], our assumptions imply hypotheses (corank 1), (sur), and
(irredg) of [JSW17, §3.1], and so by [op.cit., Thm. 3.3.1] (with S = S}, the set of primes dividing
N and ¥ = () the module &}, is A-torsion, and

(20) #Zy/ fp0(0) = #H5, (K, B[p™]) - C(E[p™)),
18



where H} (K, E[p>]) is the anticyclotomic Selmer group introduced in [JSW17, §2.2.3] and
C(E[p™)) := #H°(K,, E[p™]) - #H°(K; )- [ #Hy (K, Ep™)).
w|N+

Under our hypotheses, by [op.cit., (3.5.d)] the Selmer group H} (K, E[p>]) is finite, with order
given by

#(Zp) (=212 Nog, P 2
(21) #Hp, (K, E[p™]) = #11(E/K)[p™] - <[E(K§ :pz/.(p]pp. #ILO(EP,E[;OO]Q ’

where [E(K) : Z.P], denotes the p-part of the index [E(K) : Z.P]. Combining (20) and (21) we
thus arrive at

ZP Lt lo WE
#Zp/f@,o(U)Z#LU(E/K)[pm]‘<#( {éuf) ;pg ) [T #HL (K. B)).

w|N*

Since #H} (K, E[p™]) is the p-part of the Tamagawa number of E/K,, (see e.g. [SZ14, Lem. 9.1])
and the primes ¢ | N™ split in K, the result follows. O

By construction, the point zx in (19) is a p-adic unit multiple of a point yx € E(K), so by (19)
yk has infinite order if and only if L'(E/K,1) # 0.

Theorem A.4 (Kolyvagin, W. Zhang). Assume that:

p1 6N is a prime where E has ordinary reduction,
(E,p, K) satisfies Hypothesis #,

P 18 surjective,

yk € E(K) has infinite order.

Then for all primes { | Nt the Tamagawa numbers c; are p-adic units and
(22) #UL(E/K)[p™] ~p [B(K) : Zyx]*.

Proof. For the first claim, note that if /][Nt then ¢, is a p-adic unit by part (i) of Hypothesis # in
the introduction, while if 2 | N then by [Zhal4, Lem. 5.1(2)] the group H!(Qy, E[p]) vanishes, so
from [Zhal4, Lem. 6.3] we see that ¢y is also a p-adic unit.

On the other hand, as shown in [Zhal4, Thm. 10.2], equality (22) follows from Kolyvagin’s
structure theorem for III(E/K)[p*] and the proof of Kolyvagin’s conjecture, [Zhal4, Thm. 9.3]. O

The last ingredient we need is the following useful commutative algebra result from [SU14].

Lemma A.5. Let A be a local ring, and assume that a C A is a proper ideal such that A/ci s an
integral domain. Let L € A, let I C A be an ideal contained in (L), and denote by L and I their
reductions modulo a. If L # 0 and L € I, then I = (L).

Proof. This is a special case of [SU14, Lem. 3.2]. O

For our application, we shall take A = A, a C A the augmentation ideal, L a characteristic power
series for &y o, and I the ideal generated by the square of .,%BDP.

Proof of Theorem A.1. By the first part of Theorem 3.3, both § and X have A-rank one, and the
A-torsion submodule X, of X is such that

(23) Charp (Xiors) D Chary (S/ Ak ).
By Theorem 5.2, this implies that X is A-torsion, with
(24) Chara (X 0) D (Z°°F)?
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as ideals in A"™. Let fpo(T) € A be a characteristic power series for X} ), viewed as an element
in Z,[T]. Since L'(E/K,1) # 0 by hypothesis, yx € E(K) has infinite order by the Gross—Zagier
formula, and from Theorem A.4 and Proposition A.3 we deduce that

l—ap+p

2
fo0(0) ~p< ; )-1ogwE<yK>27

which in particular shows that fj(0) # 0. Since the points yx and zx differ by a p-adic unit, by
Proposition A.2 it follows that

(25) fo0(0) ~p ZPPP(0)%, with fy0(0) # 0.
In light of Lemma A.5, from (25) we deduce that the divisibility (24) is an equality, yielding the

proof of Conjecture 1.3. By Theorem 5.2, the equality in (23), and hence Conjecture 1.1 follows
from this, concluding the proof of Theorem A.1. O

Remark A.6. In the terminology of [MR04]|, W. Zhang’s theorem [Zhal4, Thm. 9.3] on Kolyvagin’s
conjecture may be interpreted as establishing primitivity of the “Heegner point Kolyvagin systems”
{kn}n constructed by Howard [How04a, §1.7], [How04b, §2.3]. Mazur—Rubin also introduced the
notion of A-primitivity, and letting {Kk,}, be Howard’s A-adic Heegner point Kolyvagin system
[How04a, §2.3], [How04b, §3.4], our approach to Theorem A.1 may be seen as a realization® of the
implications

{Kkn}n is primitive = {K}, is A-primitive = Conjecture 1.1 holds,
which then also implies Conjecture 1.3 by the equivalence in Theorem 5.2.

Remark A.7. The assumption that L'(E/K,1) # 0 should not be essential to the method of
proof of Theorem A.l. Indeed, by Cornut—Vatsal [CV07], regardless of the order of vanishing of
L(E/K,s) at s = 1, the Heegner points z, := w(t1(z1(p"))) € E(Hpr) ®z Z, are non-torsion for
n > 0. For such n, letting

Znx € E(Hpn )X C E(Hpr) @z(Gal(#H,n /)] Zp[X]

be the image of y,, in the x-isotypical component for a primitive character x : Gal(Hpn /K) — Z[x]*,
the Gross—Zagier formula [YZZ13] combined with W. Zhang’s work [Zhal4]| and a generalization
of Kolyvagin’s structure theorem for Tate-Shafarevich groups should yield an analogue of (22) in
terms of the index of z,, in E(Kp,)X.

With these results in hand, to remove the analytic rank one hypothesis from Theorem A.1l it
would suffice to generalize our reduction of Conjecture 1.1 to the corresponding analogue of (22).
This would provide an alternate proof of our main results in this paper (namely, Theorem 3.2 and
Theorem 5.1) without the need to assume that p is non-anomalous.
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