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Cycle representatives of persistent homology classes can be used to provide descriptions
of topological features in data. However, the non-uniqueness of these representatives
creates ambiguity and can lead to many different interpretations of the same set of classes.
One approach to solving this problem is to optimize the choice of representative against
some measure that is meaningful in the context of the data. In this work, we provide a study
of the effectiveness and computational cost of several €1 minimization optimization
procedures for constructing homological cycle bases for persistent homology with
rational coefficients in dimension one, including uniform-weighted and length-weighted
edge-loss algorithms as well as uniform-weighted and area-weighted triangle-loss
algorithms. We conduct these optimizations via standard linear programming methods,
applying general-purpose solvers to optimize over column bases of simplicial boundary
matrices. Our key findings are: 1) optimization is effective in reducing the size of cycle
representatives, though the extent of the reduction varies according to the dimension and
distribution of the underlying data, 2) the computational cost of optimizing a basis of cycle
representatives exceeds the cost of computing such a basis, in most data sets we
consider, 3) the choice of linear solvers matters a lot to the computation time of optimizing
cycles, 4) the computation time of solving an integer program is not significantly longer than
the computation time of solving a linear program for most of the cycle representatives,
using the Gurobi linear solver, 5) strikingly, whether requiring integer solutions or not, we
almost always obtain a solution with the same cost and almost all solutions found have
entries in {-1,0, 1} and therefore, are also solutions to a restricted €y optimization problem,
and 6) we obtain qualitatively different results for generators in Erdés-Rényi random clique
complexes than in real-world and synthetic point cloud data.

Keywords: topological data analysis, computational persistent homology, minimal cycle representatives,
generators, linear programming, /4 and /o minimization
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1 INTRODUCTION

Topological data analysis (TDA) uncovers mesoscale structure in
data by quantifying its shape using methods from algebraic
topology. Topological features have proven effective when
characterizing complex data, as they are qualitative,
independent of choice of coordinates, and robust to some
choices of metrics and moderate quantities of noise (Carlsson,
2009; Ghrist, 2014). As such, topological features extracted from
data have recently drawn attention from researchers in various
fields including, for example, neuroscience (Bendich et al., 2016;
Giusti et al.,, 2016; Sizemore et al, 2019), computer graphics
(Singh et al, 2007; Briiel-Gabrielsson et al., 2020), robotics
(Vasudevan et al, 2011; Bhattacharya et al., 2015), and
computational biology (Bhaskar et al, 2019; Ulmer et al,
2019; McGuirl et al, 2020) [including the study of protein
structure (Xia and Wei, 2014; Kovacev-Nikolic et al., 2016; Xia
et al., 2018)].

The primary tool in TDA is persistent homology (PH) (Ghrist,
2008), which describes how topological features of data,
colloquially referred to as “holes,” evolve as one varies a real-
valued parameter. Each hole comes with a geometric notion of
dimension which describes the shape that encloses the hole:
connected components in dimension zero, loops in dimension
one, shells in dimension two, and so on. From a parameterized
topological space X = (X;)sscr,, for each dimension n, PH
produces a collection Barcode, (X) of lifetime intervals £
which encode for each topological feature the parameter
values of its birth, when it first appears, and death, when it no
longer remains.

A basic problem in the practical application of PH is
interpretability: given an interval £ € Barcode,(X), how do
we understand it in terms of the underlying data? A
reasonable approach would be to find an element of the
homology class, also known as a cycle representative, that
witnesses structure in the data that has meaning to the
investigator. In the context of geometric data, this takes the
form of an “inverse problem,” constructing geometric structures
corresponding to each persistent interval in the original input data.
For example, a representative for an interval £ € Barcode; (X)
consists of a closed curve or linear combination of closed curves
which enclose a set of holes across the family of spaces (X)rcs
Cycle representatives are used in Emmett et al. (2015) to annotate
particular loops as chromatin interactions, and Wu et al. (2017)
uses cycle representatives to study and locate and reconstruct fine
muscle columns in cardiac trabeculae restoration.

An important challenge, however, is that cycle representatives
are not uniquely defined. For example, in the left-hand image in
Figure 1 adapted from Carlsson (2009), two curves enclose the
same topological feature and thus, represent the same persistent
homology class. We often want to find a cycle that captures not
only the existence but also information about the location and
shape of the hole that the homology class has detected. This often
means optimizing an application-dependent property using the
underlying data, e.g. finding a minimal length or bounding area/
volume using an appropriate metric. The algorithmic problem of
selecting such optimal representatives is currently an active area
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of research (Chen and Freedman, 2010a; Dey et al., 2011; Wu
et al., 2017; Obayashi, 2018; Dey et al., 2019).

There are diverse notions of optimality we may wish to
consider in a given context, and which may have significant
impact on the effectiveness or suitability of optimization,
including.

e weight assignment to chains (uniform vs. length or area
weighted),

e choice of loss function (&g vs. £;),

e formulation of the optimization problem (cycle size vs.
bounded area or volume), and

e restrictions on allowable coefficients (rational, integral,
or {0, 1,-1}).

Each has a unique set of advantages and disadvantages. For
example, optimization using the ¢, norm with {0,1,-1}
coefficients is thought to yield the most interpretable results,
but £, optimization is NP-hard, in general (Chen and Freedman,
2010b). The problem of finding ¢; optimal cycles with rational
coefficients, can be formulated as a more tractable linear
programming problem. While some literature exists to inform
this choice (Dey et al., 2011; Escolar and Hiraoka, 2016; Obayashi,
2018), questions of basic importance remain, including:

Q1 How do the computational costs of the various optimization
techniques compare? How much do these costs depend on the
choice of a particular linear solver?

Q2 What are the statistical properties of optimal cycle
representatives? For example, how often does the support
of a representative form a single loop in the underlying graph?
And, how much do optimized cycles coming out of an
optimization pipeline differ from the representative that
went in?

Q3 To what extent does choice of technique matter? For example,
how often does the length of a length-weighted optimal cycle
match the length of a uniform-weighted optimal cycle? And,
how often are £; optimal representatives €, optimal?

Given the conceptual and computational complexity of these
problems [see Chen and Freedman (2010b)], the authors expect
that formal answers are unlikely to be available in the near future.
However, even where theoretical results are available, strong
empirical trends may suggest different or even contrary
principles to the practitioner. For example, while the
persistence calculation is known to have matrix multiplication
time complexity (Milosavljevi¢ et al., 2011), in practice the
computation runs almost always in linear time. Therefore, the
authors believe that a careful empirical exploration of questions
one to three will be of substantial value.

In this paper, we undertake such an exploration in the context
of one-dimensional persistent homology over the field of
rationals, Q. We focus on linear programming (LP) and
mixed-integer programming (MIP) approaches due to their
ease of use, flexibility, and adaptability. In doing so, we
present a new treatment of parameter-dependence (vis-a-vis
selection of simplex-wise refinements) relevant to common
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shown are cycle representatives for different homology classes.

FIGURE 1 | Two disks (gray) — which we regard as 2-dimensional simplicial complexes, though the explicit decomposition into simplices is not shown—with
different numbers of holes (white) and cycle representatives (black solid or dotted) adapted from (Carlsson, 2009). The disk on the left has a single 2-dimensional “hole”
(B, = 1), and the two loops around it are cycle representatives for the same homology class. Similarly, the disk on the right has three “holes” (B, = 3) and the two loops

cases of rational cycle representative optimization (Escolar and
Hiraoka, 2016; Obayashi, 2018), such as finding optimal cycle
bases for the persistent homology of the Vietoris-Rips complex of
a point cloud. We restrict our attention to one-dimensional
homology to limit the number of reported statistics and data
visualizations presented, although the methods discussed could
be applied to any homological dimension.

The paper is organized as follows. Section 2 provides an
overview of some key concepts in TDA to inform a reader new
to algebraic topology and establish notation. Then, we
provide a survey of previous work on finding optimal
persistent cycle representatives in Section 3, and formulate
the methods used in this paper to find different notions of
minimal cycle representatives via LP and MIP in Section 4.
Section 5 describes our experiments, including overviews of
the data and the hardware and software we use for our
analysis. In Section 6, we discuss the results of our
experiments. We conclude and describe possible future
work in Section 7.

2 BACKGROUND: TOPOLOGICAL DATA
ANALYSIS AND PERSISTENT HOMOLOGY

In this section, we introduce key terms in algebraic and
computational topology to provide minimal background and
establish notation. For a more thorough introduction see, for
example, Hatcher et al. (2002), Ghrist (2008), Edelsbrunner and
Harer (2008), Carlsson (2009), Edelsbrunner and Harer (2010),
and Topaz et al. (2015).

Given a discrete set of sample data, we approximate the
topological space underlying the data by constructing a
simplicial complex. This construction expresses the structure as
a union of vertices, edges, triangles, tetrahedrons, and higher
dimensional analogues (Carlsson, 2009).

2.1 Simplicial Complexes
A simplicial complex is a collection K of non-empty subsets of a

finite set V. The elements of V are called vertices of K, and the
elements of K are called simplices. A simplicial complex has the
following properties: 1) {v} in Kforallv € V,and2) 7 ¢ o and
0 € K guarantees that 7 € K.

Additionally, we say that a simplex has dimension # or is an
n-simplex if it has cardinality n + 1. We use S, (K) to denote the
collection of n-simplices contained in K.

While there are a variety of approaches to create a simplicial
complex from data, our examples use a standard construction for
approximation of point clouds. Given a metric space X with
metric d and real number € > 0, the Vietoris-Rips complex for X,
denoted by VR, (X), is defined as

VR.(X) = {0 €S, (K)|d(x,y) < efor allx,y € a}.

That is, given a set of discrete points X and a metric d, we
build a VR complex at scale ¢ by forming an n-simplex if and
only if n+1 points in X are pairwise within ¢ distance of
each other.

2.2 Chains and Chain Complexes
Given a simplicial complex K and an abelian group G, the group
of n-chains in K with coefficients in G is defined as

C.(K;G) := G*®,

Formally, we regard G5 as a group of functions S,, (K) — G

under element-wise addition. Alternatively, we may view
C.(K;G) as a group of formal G-linear combinations of
n-simplices, ie., {} X,0lx, € Gando € S, (K)}.
Remark 2.1. We will focus on the cases where G is QQ (the field of
rationals), Z (the group of integers), or [, (the 2-element field).
Since we are most interested in the case G = Q, we adopt the
shorthand C, (K) = C,(K;Q).
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An element X = (x,)ges, (k) € G5 X is called an n-chain
of K. As in this example, see we will generally use a bold-face
symbol for the tuple x and corresponding light-face symbols for
entries x,. The support of an n-chain is the set of simplices on
which x, is nonzero:

supp(x) := {0 € S,(K)|x, # 0}.

The £, norm' and ¢#; norm? of x are defined as

Il = Y o ol

Remark 2.2 (Indexing conventions for chains and simplices).
As chains play a central role in our discussion, it will be
useful to establish some special conventions to describe
them. These conventions depend on the availability of
certain linear orders, either on the set of vertices or the
set of simplices.

Case 1: Vertex set V has a linear order <. Every vertex
set V discussed in this text will be assigned a (possibly
arbitrary) linear order. Without risk of ambiguity, we may
therefore write

Ixlly = |supp(x)|

(1)0,. . ->Un)

for the n-chain that places a coefficientof 1l ono = {vg < ... < v,}
and 0 on all other simplices.

Case 2: Simplex set S,(K) has a linear order <. We will
sometimes define a linear order on S, (K). This determines a
unique bijection o™ {1,.. .18, (K)|} =S, (K) such that
ol < aj(”) iff i < j. This bijection determines an isomorphism.

¢ : C,(K;G) = G — GIS®,

such that ¢ (x); = x,, for all i. Provided a linear order <, we will
use x to denote both x and ¢ (x) and rely on context to clarify the
intended meaning,

For each n > 1, the boundary map 0, : C,(K) — C,-;(K) is
the linear transformation defined on a basis vector
(vo> v1,..., v,) by

Op (Vgy Uty .. .5 0y) = ZLO (1) (Voy s Biy - - -5 V),

where 0; omits v; from the vector. This map extends linearly from
the basis of n-simplices to any n-chain in C, (K). By an abuse of
notation, we also denote the matrix representation of this
boundary map, known as the boundary matrix, as 0,. The
boundary matrix is parametrized by the n-simplices S,(K)
along the columns and 7 - 1 simplices S,-;(K) along the rows.

The collection (C,(K)),so along with the boundary maps
(0n)nso form a chain complex

C..(K) = C,(K) -C, (K) = 2C (K) %C,(K) %C, (K) = 0.

"The ¢y “norm” is not a real norm as it does not satisfy the homogeneous
requirement of a norm. For example, scaling a vector x by a constant factor
does not change its £y “norm.”

*See Remark 2.1 These choices of groups have a natural notion of absolute value.

Minimal Persistent Homology Cycle Representatives

Remark 2.3 (Indexing conventions for boundary matrices). In
general, boundary matrix 0, is regarded as an element of
GS1(K)xS.(K) | that is, as an array with columns labeled by
n-simplices and rows labeled by #n-1 simplices. However,
given linear orders on S,-;(K) and S, (K), we may naturally
regard 0, as an element of GIS~1(KIxIS: (I see Remark 2.2.

2.3 Cycles, Boundaries

The boundary of an n-chain x is 0, (x). An n-cycle is an n-chain with
zero boundary. The set of all n-cycles forms a subspace Z, (K) :=
ker (0,,) of C, (K). An n-boundary is an n-chain that is the boundary
of (n + 1) chains. The set of all n-boundaries forms a subspace
B, (K) := im (0,41) of C, (K). We refer to Z,, and B,, as the space
of cycles and space of boundaries, respectively.

It can be shown that 0,,°0,,;(x) = 0 for all x € C,;; (K);
colloquially, “a boundary has no boundary.” Equivalently,
0y © Oyy1 is the zero map. Since the boundary map takes a
boundary to 0, an n-boundary must also be an n-cycle.
Therefore, B, (K) < Z, (K).

2.4 Homology, Cycle Representatives
The nth homology group of K is defined as the quotient.

H, (K) =12, (K)/Bn (K)

Concretely, elements of H,(K) are cosets of the form

[z] = {z € Z,(K)|z -z € B,(K)}.> An element h € H, (K) is
called an n-dimensional homology class. We say that a cycle
z € Z,(K) represents h, or that z is a cycle representative of h if
h = [z]. We say that z and z' are homologous if [z] = [z'].
Example: Consider the example in Figure 2A, which illustrates
two homologous 1-cycles and the example in Figure 2B, which
illustrates two non-homologous cycles.
Remark 2.4. The term homological generator has been used
differently by various authors: to refer to an arbitrary nontrivial
homology class, an element in a (finite) representation of H,, (K), as
a set of cycles which generate the homology group, or (particularly
in literature surrounding optimal cycle representatives) interchangeably
with cycle representative. We favor the term cycle representative,
to avoid ambiguity.

2.5 Betti Numbers, Cycle Bases
A (dimension-n) homological cycle basis for H, (K) is a set of
cycles B = {z!,...,2"} such that [z'] # [#] when i # j, and
{[z'],..., [2"]} is a basis for H, (K). Modulo boundaries, every
n-cycle can be expressed as a unique linear combination in B.
Homological cycle bases have several useful interpretations. It
is common, for example, to think of a 1-cycle as a type of “loop,”
generalizing the intuitive notion of a loop as a simple closed curve
to include more intricate structures, and to regard the operation
of adding boundaries as a generalized form of “loop-
deformation.” Framed in this light, a homological cycle
basis B for H; (K) can be regarded as a basis for the space of

*More generally, we denote the groups of cycles and boundaries with coefficients in
Gas Z, (K; G) and B, (K; G). The (dimension-n) homology of K with coefficients in
Gis H,(K;G) = Z,(K; G)/B, (K; G).
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A 2 1 2 1 2 1
0 - 0o = 0
3 4 3 4 3 4
B 3 1 3 1 3 1
2
q o_4 o— 4 < 0
5 6 5 6 5 6
FIGURE 2 | We show an example of homologous cycles in (A), adapted from (Topaz et al., 2015). The 1-cycle (0,1) + (1,2) + (2,3) + (3,4) - (0,4) and the 1-
cycle (1,2) + (2,3) + (3,4) — (4, 1) are homologous because their difference is the boundary of (0, 1, 4). Subfigure (B) shows an example of non-homologous cycles.
The 1-cycle (Zf‘zo hi+1))-(5,2)+ (2,6) - (0,6) and the 1-cycle (2,3) + (3,4) + (4,5) — (2,5) are not homologous because their difference is a cycle (0, 1) +
(1,2) + (2,6) - (0,6) which is not a linear combination of boundaries of 2-simplices.

loops-up-to-deformation in K. Higher dimensional analogs of
loops involve closed “shells” made up of n-simplices.

Another interpretation construes each nontrivial homology
class [z] # 0 asaholein K. Such holes are “witnessed” by loops
or shells that are not homologous to the zero cycle. Viewed in
this light, H, (K) can naturally be regarded as the space of
(n + 1) dimensional holes in K. The rank of the nth homology

group
B, (K) := dim(H,(K)) = dim(Z, (K)) - diim (B, (K)),

therefore quantifies the “number of gray independent holes” in K.
We call 8, the nth Betti number of K.

Example: Consider the gray disks in Figure 1 [similar to Carlsson
(2009)] with different numbers of holes and cycle representatives.

2.6 Filtrations of Simplicial Complexes
A filtration on a simplicial complex K is a nested sequence of

-----

K,SK,c - <K, =K,

& —

where ¢ <---< er are real numbers. A filtered simplicial
complex is a simplicial complex equipped with a filtration K.
Example Let X be a metric space with metric d, and let
& <--< ey be an increasing sequence of non-negative real
VR, (X) is a filtration on K.
The data of a filtered complex is naturally captured by the birth
function on simplices, defined

Birth : K > R, 0 = min{e; : 0 € K }.

We regard the pair (K, Birth) as a simpilicial complex whose
simplices are weighted by the birth function. For convenience, we
will implicitly identify the sequence K., with this weighted
complex. Thus, for example, when we say that ¢ € K has
birth parameter ¢, we mean that ¢ € K and Birth (o) = .

Definition 2.5. A filtration K, is simplex-wise if one can
arrange the simplices of K into a sequence (0y,...,0))
such that K, = {01,...,0;} for all i. A simplex-wise refinement
of K, is a simplex-wise filtration K, such that each space in K. can
be expressed in form {0}, ..., 0;} for some j.

As an immediate corollary, given a simplex-wise refinement of
K., we may naturally interpret each boundary matrix 9, as an
it (KIS (K)I - see Remark 2.3 Under this
interpretation, columns (respectively, rows) with larger indices

element of GIS

correspond to simplices with later birth times; that is, birth time
increases as one moves left-to-right and top-to-bottom.

2.7 Filtrations of Chain Complexes

If we regard C,(K.;G) as a family of formal linear
combinations in S,(K,), then it is natural to consider
C,(K;;G) as a subgroup of C, (ng;G) for all i<j. In
particular, we have an inclusion map

1:C,(K; G) — Cn(Ksj; G),
Zoesn (Kel)x"a — Zues,, (Kti)xgg + ngsn (KEX.)O ‘T

Given a simplex-wise refinement K., one can naturally regard
¢ as an element (¢, ¢y,...) of GI$ (K| From this perspective,
has a particularly simple interpretation, namely “padding” by
Zeros:

l(C) = (CbCz,-..,O,...,O).

4

Similar observations hold when one replaces C,, with either Z,,,
the space of cycles, or B, the space of boundaries.

2.8 Persistent Homology, Birth, Death

The notion of birth for simplices has a natural extension to
chains, as well as a variant called death. Formally, the birth and
death parameters of ¢ € C, (K) are
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FIGURE 3 | Examples of optimizing a cycle representative (using the notion of minimizing edges) within the same homology class (A-D) and using a basis of cycle
representatives (E), modified examples adapted from (Escolar and Hiraoka, 2016; Obayashi, 2018). The dotted lines represent a cycle representative for the enclosed
“hole.” Intuitively, we consider x” in (D) as the optimal cycle representative since it consists of the smallest number of edges. Subfigure (E) shows a case where we
optimize a cycle representative using a basis of cycle representatives. In (E), {x*, x%,x°} is the original basis of cycle representatives. We can substitute x® with x5,
which we can obtain by adding x° to x, and thus obtain {x4,x5,f(6} as the new basis of cycle representatives.

Birth(c) = min{e; : ¢ € C,(K,)}
{min{si :c € B(K,)} ¢ e B(K)
co

Death(c) = )
else.

In the special case where ¢ is a cycle, Birth(c) is the
first parameter value where [c] represents a homology
class, and Death(c) is the first parameter value where [c]
represents the zero homology class. Thus, the half-open
lifespan interval

L (c) = [Birth(c), Death(c)),

is the range of parameters over which c represents a well-defined,
nonzero homology class.

A (dimension-n) persistent homology cycle basis is a subset
B € Z, (K) with the following two properties:

1. Each z € B has a nonempty lifespan interval.
2. For each i € {1,..., T}, the set

By, ={z € B:¢& € L(2)},

is a homological cycle basis for H, (K¢,).

persistent homological cycle basis B (Zomorodian and Carlsson,
2005). Moreover, it can be shown that the multiset of lifespan
intervals (one for each basis vector), called the dimension-n
barcode of K.,

Barcode, = {L£(z) : z € B},

is invariant over all possible choices of persistent homological
cycle bases B (Zomorodian and Carlsson, 2005).

Example: Consider the sequence of simplicial complexes
(K1, K3, K3) shown in Figure 3E. The set B = {x* x°,x%} is a

(dimension-1) persistent homological cycle basis of the
filtration. The associated dimension-1 barcode is Barcode; =
{[1,2), [2,00), [3,00)} where [2,00) and [3,00) are the
lifespans of x° and x°, respectively.

Barcodes are among the foremost tools in topological data
analysis (Ghrist, 2008; Edelsbrunner and Harer, 2008), and they
contain a great deal of information about a filtration. For
example, it follows immediately from the definition of
persistent homological cycle bases that 8, (K;) = |Bg| for all n
and i. Consequently,

B, (K.) = {J € Barcode, : & € J}|.

2.9 Computing PH Cycle Representatives
Barcodes and persistent homology bases may be computed via the
so-called R = DV decomposition (Cohen-Steiner et al., 2006)
of the boundary matrices 0,. Details are discussed in the
Supplementary Material.

3 RELATED WORK ON MINIMIZING CYCLE
REPRESENTATIVES

One important problem in TDA is interpreting homological
features. In general, a lifetime interval £ corresponding to a
feature may be represented by many different cycle
representatives. As discussed in Chen et al. (2008), localizing
homology classes can be characterized as finding a representative
cycle with the most concise geometric measure. As an illustrative
example from Escolar and Hiraoka (2016), Figure 3A shows a
simplicial complex K with H;(K) isomorphic to Q or
equivalently, B, = 1; it contains one hole. Figures 3B-D
display three cycle representatives, x°, x', andx", each of
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which represents the same homology class (heuristically, they
encircle the same hole). We intuitively prefer x" as a
representative, since it involves the fewest edges and “hugs”
the hole most tightly. Given a simplicial complex K and a
nontrivial cycle x°8 on it, we are interested in finding a cycle
representative that is optimal with respect to some geometric
criterion. In this section, we discuss previous studies on optimal
cycle representatives.

Minimal cycle representatives have proven useful in many
applications. Hiraoka et al. (2016) use TDA to geometrically
analyze amorphous solids. Their analysis using minimal cycle
representatives explicitly captures hierarchical structures of the
shapes of cavities and rings. Wu et al. (2017) discuss an
application of optimal cycles in Cardiac Trabeculae
Restoration, which aims to reconstruct trabeculae, very
complex muscle structures that are hard to detect by
traditional image segmentation methods. They propose to use
topological priors and cycle representatives to help segment the
trabeculae. However, the original cycle representative can be
complicated and noisy, causing the reconstructed surface to be
messy. Optimizing the cycle representatives makes the cycle more
smooth and thus, leads to more accurate segmentation results.
Emmett et al. (2015) use PH to analyze chromatin interaction
data to study chromatin conformation. They use loops to
represent different types of chromatin interactions. To
annotate particular loops as interactions, they need to first
localize a cycle. Thus, they propose an algorithm to locate a
minimal cycle representative for a given PH class using a breadth-
first search, which finds the shortest path that contains the edge
that enters the filtration at the birth time of the cycle and is
homologically independent from the minimal cycles of all PH
classes born before the current cycle.

There are several approaches used to define an optimal cycle
representative. Dey et al. (2011) propose an algorithm to find an
optimal homologous 1-cycle for a given homology class via linear
programming. That is, they consider a single homology class [x]
and search for a homologous cycle representative that minimizes
some geometric measure within that class, for instance, the
number of 1-simplices within the representative. Escolar and
Hiraoka (2016) extend this approach to find an optimal cycle by
using cycles outside of a single homology class to “factor out”
redundant information. In this approach, an optimal cycle
representative is no longer guaranteed to be homologous to
the original representative, but the collection of cycle
representatives have each been independently optimized and
the collection still forms a homology basis. Further, Escolar
and Hiraoka (2016) extends this approach to achieve a filtered
cycle basis, although we note that it is not guaranteed to be a
persistent homology basis. The two approaches in Dey et al.
(2011) and Escolar and Hiraoka (2016) aim to minimize the
number of 1-simplices in a cycle representative. Obayashi (2018)
proposes an alternative algorithm for finding volume-optimal
cycles in persistent homology, which minimize the number of
2-simplices which the cycle representative bounds, also using
linear programming. These methods serve as the foundation for
our present paper and are discussed in more detail in the rest of
this section.

Minimal Persistent Homology Cycle Representatives

In addition to linear programming, many researchers have
contributed to the problem of computing optimal cycles: Wu et al.
(2017) propose an algorithm for finding shortest persistent 1-
cycles. They first construct a graph based on the given simplicial
complex and then compute annotation for the given complex.
The annotation assigns all edges different vectors and can be used
to verify if a cycle belongs to the desired group of cycles. They
then find the shortest path between two vertices of the edge born
at the birth time of the original cycle representative using a new
A" heuristic search strategy. Their algorithm is a polynomial time
algorithm but in the worst case, the time complexity is
exponential to the number of topological features. Dey et al.
(2010) propose a polynomial-time algorithm that computes a set
of loops from a VR complex of the given data whose lengths
approximate those of a shortest basis of the one dimensional
homology group H;. In Dey et al. (2019), show that finding
optimal (minimal) persistent 1-cycles is NP-hard and then
propose a polynomial time algorithm to find an alternative set
of meaningful cycle representatives. This alternative set of
representatives is not always optimal but still meaningful
because each persistent 1-cycle is a sum of shortest cycles
born at different indices. They find shortest cycles using
Dijkstra’s algorithm by considering the 1-skeleton as a graph.
This list is by no means exhaustive, and does not touch on the
wide variety of related approaches, e.g. Chen and Freedman
(2010b), which attempts to fit cycle representatives within a
ball of minimum radius.

In the next subsection, we briefly introduce some basic notions
of linear programming, and then in the subsequent three
subsections, we survey the optimization problems on which
the present work is based.

3.1 Background: Linear Programming
Linear programming seeks to find a set of decision variables x =
(%15 .. ,xq)T which optimize a linear cost (or objective) function
c’x subject to a set of linear (in)equality constraints
alx = b),.. .,aZx = b,. Any linear optimization problem can
be written as a Linear Program (LP) in standard form

minimize ¢’x
subjectto Ax = b (1)
x>0,

where A is the 4 x # matrix with coefficients of the constraints as
rowsandb = (by,..., bﬂ)T. Linear programming is well-studied
and discussed in many texts (Bertsimas and Tsitsiklis, 1997;
Vanderbei, 2014; Boyd and Vandenberghe, 2004).

The optimal solution x* satisfies the constraints while
optimizing the objective function, yielding the optimal cost
cIx*. The feasible set of solutions in a linear optimization
problem is a polyhedron defined by the linear constraints. In
general, the optimal solution of a (non-degenerate) LP will occur
at a vertex of the polyhedron and can be solved with the standard
simplex algorithm, which traverses through the edges of the
polytope to vertices in a cost reducing manner, or interior
point methods, which traverse along the inside of the polytope
to reach an optimal vertex. In the worst-case, the complexity of
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the simplex method is exponential, yet it often runs remarkably
fast, while interior point methods are polynomial time
algorithms.

Standard LPs search for real-valued optimal solutions, but in
some instances, a restriction of the decision variables, such as
requiring integral solutions, may be necessitated. The mixed
integer programming (MIP) problem is written

minimize ¢"x+d"y

subjectto Ax+By=Db 2)
X,y=0
X integer,

for matrices A,B and vectors b,c,d. A standard LP has fewer
constraints, and thus, will have optimal cost less than or equal to
that of the analogous MIP. MIPs are much more challenging to solve
than LPs, as they are discrete as opposed to convex optimization
problems, and no efficient general algorithm is known (Bertsimas and
Tsitsiklis, 1997). However, LP relaxations, (exponential-time) exact,
(polynomial-time) approximation, and heuristic algorithms can be
used to obtain solutions to MIPs.

In this paper, we determine optimal cycle representatives with
both LP and MIP formulations.

3.2 Minimal Cycle Representatives of a

Homology Class

Given a homology class h = [x°%8] e H, (K;G) and a function
loss: Z,(K;G) — R, how does one find a cycle representative of
h on which loss attains minimum? This problem is equivalent to
solving the following program defined in Dey et al. (2011):

loss (x)
x=x%%+0,,w (3)
w € G, (K; G).

minimize
subject to

This formulation considers all cycle representatives homologous
to xO18, ie. that differ by a boundary, and selects the optimal
representative x which minimizes loss. The program in Eq. 3 is
correct because the coset & can be expressed in the form

h =x%% + B,(K;G) = {x”% + 0,,,wlw € C,,; (K;G)}.

In practice, a cycle representative x°7 is almost always
provided together with the initial problem data (which
consists of K, G, loss, and h), so the central challenge lies with
solving the program in Eq. 3.

Several variants of the program in Eq. 3 have been studied,
especially where loss (x) = x|, or loss(x) = [x|,. For a survey
of results when G = [F,, see Chen and Freedman (2010b). For a
discussion of results when G = Z, see Dey et al. (2011). Broadly
speaking, minimizing against ¢, tends to be hard, even when K
has attractive properties such as embeddability in a low-
dimensional Euclidean space (Borradaile et al, 2020).
Minimizing against ¢; is hard when G = F, (since, in this
case, ¢; = &), but tractable via linear programming when
G ¢ {Q,R}.

An interesting variant of the minimal cycle representative
problem is the minimal persistent cycle representative problem.

Minimal Persistent Homology Cycle Representatives

This problem was described in Chen et al. (2008) and may be
formulated as follows: given an interval [a, b) € Barcode, (K.), solve

minimize loss(x)

subjectto  Birth(x) =a (4)
Death(x) = b
x € Z, (K5 G),

for x. An advanced treatment of this problem can be found in
(Chen et al., 2008) for special case where 1) G = [, 2) lossisa
weighted sum of incident edges, and 3) the birth function
assigns distinct values to any two simplices of the same
dimension, and 4) n = 1.

3.3 Minimal Homological Cycle Bases

The program in Eq. 3 has a natural extension when G is a field.
This extension focuses not on the smallest representative of a
single homology class, but the smallest homological cycle basis. It
may be formally expressed as follows:

Y cesloss (x)
B € HCB, (K; G),

minimize
subject to

®)

where HCB,, (K, G) is the family of dimension-n homological cycle
bases of H, (K;G). Thus, the program is finding a complete
generating set 3 for all of the homological cycles of dimension n
where each element has been minimized in some sense.

It is natural to wonder whether a solution to the program in
Eq. 5 could be obtained by first calculating an arbitrary (possibly
non-minimal) homological cycle basis B = {x!,...,x™} and then
selecting an optimal cycle representative z' from each homology
class [x']. Unfortunately, the resulting basis need not be optimal.
To see why, consider the simplicial complex K3 shown in
Figure 3E, taking G to be Q and loss to be the £, norm.
Complex K, has several different homological cycle bases in
degree 1, including B, :={x°x%}, B;:={x’x%, and
B, := {x*,%° + x*}. However, only B, is £, minimal. Moreover,
each of the cycle representatives x°,x° %° is already minimal
within its homology class, so element-wise minimization will not
transform B; or 3, into optimal bases, as might have been hoped.

As with the minimal cycle representative problem, the
minimal homological cycle basis problem has been well-studied
in the special case where loss is the £, norm and G = F,. In this
case, the program in Eq. 5 is NP-hard to approximate for n > 1,
but O(n*) when n=1 (Dey et al, 2018). Several interesting
variants and special cases have been developed in the n =1
case, as well Erickson and Whittlesey (2009), Dey et al. (2010),
and Chen and Freedman (2010). We are not currently aware of a
systematic treatment for the case G € {Q,R}.

A natural variant of the minimal homological cycle basis
program in Eq. 5 is the minimal persistent homological cycle
basis problem

minimize
subject to

Y ceploss(x) ©)
B € PrsHCB, (K.; G),

where PrsHCB,, (K.; G) is the set of persistent homological cycle
bases. This is a stricter condition than the program in Eq. 5 in that
not only does it require that the elements of 3 form a generating
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set of all cycles of dimension #, but the barcode associated to B
must match Barcode, (K,). That is, the multisets of birth/death
pairs must be identical.

The program in Eq. 6 is much more recent than the program
in Eq. 5, and consequently appears less in the literature. In the
special case where every bar in the multiset Barcode, (K,) has
multiplicity 1 (i.e. there are no duplicate bars), the program in Eq.
6 can be solved by making one call to the minimal persistent cycle
representative program in Eq. 4 for each bar. In particular, the
method of Chen et al. (2008) may be applied to obtain a minimal
persistent basis when the correct hypotheses are satisfied: G = I,
loss is a weighted sum of incident simplices, there are distinct birth
times for all simplices of the same dimension, and n = 1. In general,
however, bars of multiplicity two are possible, and in this case
repeated application of the program in Eq. 4 will be insufficient.

3.4 Minimal Filtered Cycle Space Bases
A close cousin of the minimal homological cycle basis the
program in Eq. 5 is the minimal filtered cycle basis problem,
which may be formulated as follows

minimize

Y cecloss (x)
subject to @

C € FCB(K.; G),

where FCB (K,) is the family of all bases C of Z,, (K,,) such that C
contains a basis for each subspace Z, (K,,), for i € {1,..., T}.

Escolar and Hiraoka (2016) provide a polynomial time
solution via linear programming when.

1. loss is the £; norm,

2. G=Q, and
3. K. is a simplex-wise filtration [without loss of
generality, Ko = (K, ..., Kr)].

Their key observation is that C is an optimal solution to the program
in Eq. 6 if and only if C can be expressed as a collection
{z : je]J} where

L. theset] = {j : Z,(Kj-1) € Z, (K)} that indexes the cycles is the
list of filtrations at which a novel n-cycle appears, and.

2. for each jeJ, the cycle # first appears in K; and is a
minimizer for the loss function among all such cycles, i.e.
7 e argminzezn(K])\Zn(Kj_l)loss (2).

The authors formulate this problem as

minimize ||x||,

subjectto x=x%%+ Y w, g + Y v f°
reR seS (8)
w e QR
v e QS

where X978 ¢ Zy (K)\Zy (Kj-1) is a novel cycle representative at
filtration j; {g":reR} is a basis for B, (Kj_1)4; and
{g" :r e RRU{f’ : s € §} is an extension of the given basis for

“Because of the assumption that K, is a simplex-wise filtration, if there is a new
n-cycle in K; then there cannot also be a new (7 + 1) simplex, so this is also a basis
for B, (K;).

Minimal Persistent Homology Cycle Representatives

B, (Kj-1) to a basis for Z, (Kj-1). That is, x97% is a cycle that has
just appeared in the filtration. To optimize it, we are allowed to
consider linear combinations of both boundaries, {g"}, and cycles,
{f*}, born before x°"¢. The cycle x obtained in this way cannot
have a birth time before that of x°, but may have a different
death time if [Y, qusf°] dies later than [x°7%].

The algorithm developed in Escolar and Hiraoka (2016) is
cleverly constructed to extract x°'%, {g" : r € R}, and {f* : s € S}
from matrices which are generated in the normal course of a
barcode calculation.

Remark 3.1.1t is important to distinguish between PrsHCB and
FCB, hence between the optimization the programs in Eqs 6, 7. As
Escolar and Hiraoka (2016) point out, given B € PrsHCB and
C € FCB, one can always find an injective function ¢ : B—C
such that Birth(z) = Birth (¢ (z)) for all z. However, this does
not imply that ¢ (B) € PrsHCB, as the deaths of each cycle may
not coincide. Indeed, the question of whether a persistent
homological cycle basis can be extracted from C by any means is
an open question, so far as we are aware. We provide an example in
Figure 4 where the cycle basis obtained by optimizing each cycle
using the program in Eq. 7 is not a persistent homology cycle basis 3

Though Remark 3.1 is a bit disappointing for those
interested in persistent homology, the machinery developed to
study the program in Eq. 7 is nevertheless interesting, and we will
discuss an adaptation.

3.5 Volume-Optimal Cycles: Minimizing

Over Bounding Chains
Schweinhart (2015) and Obayashi (2018) consider a different notion
of minimization: volume” optimality. This approach focuses on the
“size” of a bounding chain; it is specifically designed for cycle
representatives in a persistent homological cycle basis.

Obayashi (2018) formalizes the approach as follows. First, assume
a simplex-wise filtration K,; without loss of generality,
K. = (Kj,...,Kr), and we may enumerate the simplices of Kr
such that K; = {0y, . .., 0;} for all i. Since each simplex has a unique
birth time, each interval in Barcode, (K,) = {[b1,d1), ..., [bn, dn)}
has a unique left endpoint. Fix [b;,d;) € Barcode, (K,) such that
d; < 00 (in the case d; = 0o, volume is undefined). It can be shown
that 0y, is an n-simplex and 04, is an (#n + 1) simplex. We use 74 = 0y
below when the dimension of oy is equal to n + 1.

A persistent volume v for [b;,d;) is an (n+1) chain
v € Cpy1 (Ky,) such that®

V=14+ Z Tk 9)

)€ Fus1
(0nn1V)y =0 VYoeF, (10)
(1), #0, (11)

*This notion of volume differs from that of Chen and Freedman (2010b). The latter
refers to volume as the £y norm of a chain, while the former (which we discuss in
this section) refers to the £y norm of a bounding chain.

°If we regard 0,1V as a function S,, (K;,) — Q, then (0,4V), is the value taken by
0,41V on simplex o. Alternatively, if we regard 0,1V as a linear combination of
n-simplices, then (0,.V), is the coefficient placed by 9,,;vono.

Frontiers in Artificial Inteligence | www.frontiersin.org

October 2021 | Volume 4 | Article 681117


https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Lietal

Minimal Persistent Homology Cycle Representatives
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FIGURE 4 | An example where the optimal cycles obtained from Eq. 8 do not form a persistent homological cycle basis. The thickened colored cycles in Subfigure (A)
represent a cycle representative for the hole it encloses, and the bar with the corresponding color in Subfigure (B) records the lifespan of the cycle. In Subfigure (A), we see
L(x") = [0,00), £(x?) = [1,2) Then, {x", x?} forms a basis for the persistent homological cycles. The cycle representative %% isan optimal cycle representative obtained by solving
Eq. 7 for the fittered simplicial complex K». However, £ ()‘(2) = [1,00), and thus {x’ ,)‘(2} is no longer a persistent homological cycle basis.

where F, = {ox € S,(K) : bi<k<d;} denotes the n-simplices
alive in the window between the birth and death time of the
interval under consideration.

We interpret these equations as follows: Given a persistence
interval [b;, d;), condition Eq. 9 implies that v only contains n + 1
simplices born between b; and d; and must contain the n + 1
simplex born at d;. Condition (Eq. 10) ensures that the boundary
of v contains no n-simplex born after b;, and condition (Eq. 11)
ensures that the boundary of v contains the n-simplex born at b;.
This guarantees that 0,V exists at step b;, does not exist before
step b;, and dies at step d;.
Theorem  3.2.  (Obayashi,
[b;, d;) € Barcode, (K.) and d; < co.

2018).  Suppose  that

1. Interval [b;,d;) has a persistent volume.

2. If v is a persistent volume for [b;, d;) then £ (0,,41v) = [b;, d;).

3. Suppose that B is an n-dimensional persistent homological
cycle basis for K., that x°% € B is the basis vector
corresponding to [b;, d;), and that v is a persistent
volume for [b;,d;). Then, (B\{x?®#})U{0,,v} is also a
persistent homological cycle basis.

By Theorem 3.2, for any barcode composed of finite intervals, one
can construct a persistent homological cycle basis from nothing but
(boundaries of) persistent volumes! Were we to build such a basis, it
would be natural to ask for volumes that are optimal with respect to
some loss function; that is, we might like to solve

loss (v)

(9), (10), (11)
Ve Cn+1 (Kd,v)>

for each barcode interval [b;, d;). A solution v to the program
in Eq. 12 is called an optimal volume; its boundary, x = 0,1 v
is called a volume-optimal cycle.

minimize

subject to (12)

It 1is interesting to contrast €, minimal cycle
representatives for an interval” [b;,d;) with €, volume-
optimal cycle for the same interval. Consider, for example,
Figure 5. For the persistence interval [b;,d;), the cycle with
minimal number of edges is (a,b) + (b,c) + (¢,d) + (d,a).
However, the volume-optimal cycle would be found as
follows: considering K;, we must find the fewest 2-
simplices whose boundary captures the persistence
interval. In this case, we would have an optimal volume
(a,b,e) + (b,c,e) + (a,d, e) and volume-optimal cycle (a,b) +
(b,c) + (c,e) + (e,d) + (d, a).

3.6 ¢p vs. ¢1 Optimization

As mentioned above, it is common to choose loss(x) = x|, or
loss(x) = [|x||;.> A linear program (LP) with €, objective
function is polynomial time solvable. However, an objective
function with the £, norm restricted to {0, 1, -1} coefficients is
often preferred as the output of such a problem is highly
interpretable: a cycle representative with minimal number of
edges or enclosing the minimal number of triangles. Yet, £,

"Technically, this notion is not well-defined; to be formal, we should fix a persistent
homology cycle basis B, fix a cycle representative z € B with lifespan interval [b;, d;),
and ask for an ¢, cycle representative in the same homology class, [z] € H, (K},), as
per the program in Eq. (3). However, in simple cases the intended meaning is clear.
®Other choices of loss function, e.g., the €, norm, are common throughout
mathematical optimization. While we focus on ¢, and ¢; due to their tendency
to produce sparse solutions, other choices may be better or worse suited, depending
on the intended application. For example, since ¢, loss imposes lighter penalties on
small errors and heavier penalties on large ones (as compared to €;), it is especially
sensitive to outliers; this makes it useful for tasks such as function estimation. On
the other hand, by imposing relatively heavy penalties on small errors, £; loss
encourages sparsity (Tahbaz-Salehi and Jadbabaie, 2008; Tahbaz-Salehi and
Jadbabaie, 2010).
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FIGURE 5 | A situation in which a volume-optimal cycle is different from the uniform minimal cycle. Consider the filtered simplicial complex pictured. For the
persistence interval [b;, d}), the cycle with minimal 0-norm (fewest number of edges) is (a,b) + (b,c) + (c,d) + (d,a). However, the volume-optimal cycle would be found
as follows: considering Ky, we must find the fewest 2-simplices whose boundary captures the persistence interval. In this case, we would have an optimal volume
(a,b,e) + (b,c,e) + (a,d,e) and volume-optimal cycle (a,b) + (b,c) + (c,e) + (e,d) + (d,a).

Ky,

optimization is known to be NP-hard (Tahbaz-Salehi and
Jadbabaie, 2010).

The ¢; norm promotes sparsity and often gives a good
approximation of ¢, optimization (Tahbaz-Salehi and
Jadbabaie, 2008; Tahbaz-Salehi and Jadbabaie, 2010), but
the solution may not be exact. Yet, if all of the coefficients
of the solution x are restricted to 0 or +1 in the optimization
problem, then the ¢, and ¢; norms are identical. A looser
restriction, as proposed in Escolar and Hiraoka (2016), would
be to solve an optimization with ¢; objective function with
integer constraints on the solution.

Requiring the solution to be integral also allows us to
understand the optimal solution more intuitively than having
fractional coefficients. Such an optimization problem is
called a mixed integer program (MIP), which is known to
be slower than linear programming and is NP-hard
(Obayashi, 2018). Many variants of integer programming
special to optimal homologous cycles, in particular, have
been shown to be hard as well (Borradaile et al., 2020). In
Section 4, we discuss the optimization problems we
implement, where each is solved both as an LP with an ¢;
norm in the objective function and an MIP by adding the
constraint that x is integral.

Dey et al. (2011) gives the totally unimodularity sufficient
condition which guarantees that an LP and MIP give the same
optimal solution. A matrix is totally unimodular if the determinant
of each square submatrix is -1,0, or 1. Dey et al. (2011) give
conditions for when the 0,,,; matrix is totally unimodular. If the
totally unimodularity condition is not satisfied, then an LP may not
give the desired result. As totally unimodularity is not guaranteed
for all boundary matrices (Henselman and Dlotko, 2014), we
cannot rely on this condition.

3.7 Software Implementations

Edge-minimal cycles: Software implementing the edge-loss
method introduced in Escolar and Hiraoka (2016) can be
found at Escolar and Hiraoka (2021). This is a C++ library
specialized for 3-dimensional point clouds.

Triangle-loss optimal cycles: The volume optimization
technique introduced in Obayashi (2018) is available through the
software platform HomCloud, available at Obayashi et al. (2021).
The code can be accessed by unarchiving the HomCloud package
(for example, https://homcloud.dev/download/homcloud-3.1.0.tar.
gz) and picking the file homcloud-x.y.z/homcloud/optvol.py.

4 PROGRAMS AND SOLUTION METHODS

The present work focuses on linear programming (LP) and mixed
integer programming (MIP) optimization of 1-dimensional persistent
homology cycle representatives with Q — coefficients. While the
methods discussed below can be applied to any homological
dimension, we limit the scope of the present work to dimension
one. As described in Section 3, we follow two general approaches:
those that measure loss as a function of n-simplices, and those that
measure loss as a function of # + 1 simplices. Motivated by the n = 1
case, we refer to the former as edge-loss methods and the latter as
triangle-loss methods. For our empirical analysis, four variations
(corresponding to two binary parameters) are chosen from each
approach, yielding a total of eight distinct optimization problems.

Concerning implementation, we find that triangle-loss
methods [namely, Obayashi (2018)] can be applied essentially
as discussed in that paper. The greatest challenge to
implementing this approach is the assumption of an
underlying simplex-wise filtration. This necessitates parameter
choices and preprocessing steps not included in the optimization
itself; we discuss how to execute these steps below.

Implementation of edge-loss methods is slightly more complex.
For binary coefficients (G = IF,) a variety of combinatorial techniques
have been implemented in dimension 1 (Chen et al,, 2008; Zhang and
Wu, 2019). Escolar and Hiraoka (2016) provide an approach for
Q - coefficients, but in general this may not yield a persistent
homology cycle basis, see Remark 3.1. In addition to the triangle-
loss method mentioned in Section 3.5, Obayashi (2018) introduces a
modified form of this edge-loss method which does guarantee a
persistent homology basis, but assumes a simplex-wise filtration.
We show that this approach can be modified to remove the
simplex-wise filtered constraint.

Neither of the approaches presented here is guaranteed to
solve the minimal persistent homology cycle basis problem, the
program in Eq. 6. In the case of triangle-loss methods, this is due
to the (arbitrary) choice of a total order on simplices. In the case
of edge-loss methods, it is due to the choice of an initial persistent
homology cycle basis.

In the remainder of this section, we present the eight programs
studied, including any modifications from existing work.

4.1 Structural Parameters
Each program addressed in our empirical study may be expressed
in the following form
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minimize |Wx|, = Y W([o,0] (x} +x)

subjectto  x =x"-x (13)
xH,x >0
X € X,

where X’ is a space of feasible solutions and W is a diagonal matrix
with nonnegative entries. These programs vary along 3 parameters:

1. Chain dimension of x. If X is a family of 1-chains, then we
say that the program in Eq. 13 is an edge-loss program. If
X is a family of 2-chains, we say that the program in Eq.
13 is a triangle-loss program.

2. Integrality. The program is integral if each x € X has
integer coefficients; otherwise we call the problem non-
integral.

3. Weighting. For each loss type (edge vs. triangle) we
consider two possible values for W: identity and non-
identity. In the identity case, all edges (or triangles) are
weighted equally; we call this a uniform-weighted
problem. In the non-identity case we weigh each
entry according to some measurement of “size” of
the underlying simplex (length, in the case of edges,
and area, in the case of triangles).” There is precedent
for such weighting schemes in existing literature (Chen
et al., 2008; Dey et al., 2011).

Edge-loss and triangle-loss programs will be denoted Edge and
Tri, respectively. Integrality will be indicated by a superscript I
(integer) or NI (non-integer). Uniform weighting will be denoted
by a subscript Unif (uniform); non-uniform weighting will be
indicated by subscript Len (for edge-loss programs) or Area (for
triangle-loss programs). Thus, for example, Edge],, denotes a
length-weighted edge-loss program with integer constraints.

4.2 Edge-Loss Methods

Our approach to edge-loss minimization, based on work by Escolar
and Hiraoka (2016), is summarized in Algorithm 1. As in Escolar
and Hiraoka (2016), we obtain x by taking a linear combination of
x978 with not only boundaries but cycles as well; consequently x
need not be homologous to x°7%.

Our pipeline differs from Escolar and Hiraoka (2016) in
three respects. First, we perform all optimizations after the
persistence calculation has run. On the one hand, this
means that our persistence calculations fail to benefit from
the memory advantages offered by optimized cycles; on the
other hand, separating the calculations allows one to “mix and
match” one’s favorite persistence solver with one’s favorite
linear solver, and we anticipate that this will be increasingly
important as new, more efficient solvers of each kind are
developed. Second, we introduce additional constraints
which guarantee that B € PrsHCB [and, moreover, £ (x) =
L (x92) for each x°"% € B]. Third, we remove the hypothesis

*These notions make sense due to our use of coefficient field Q. The distance used
to form a simplicial complex can be used to define length. We restrict our attention
of area to points in Euclidean space.
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Algorithm 1 | Edge-loss persistent cycle minimization

—

: Compute a persistent homology basis B for homology in dimension 1, with
coefficients in @, using the standard matrix decomposition procedure
described in the Supplementary Material. Arrange the elements of B into
an ordered sequence Z2° = (2°7,...,20™m).

2:forj=0,...,m-1do

Solve the program in Eq. 14 to optimize thej + 1th element of Z/. Let x denote the

solution to this problem, and define Z/*" by replacing the j + 1th element of Z/ with

x. Concretely, 141 = x, and z/*"K = z/K for k #j.

4: end for

5: Return B := {z™1, ..

@

.,2™M} the set of elements in Z™.

of a simplex-wise filtration; this requires some technical
modifications, whose motivation is explained in the
Supplementary Material. The crux of this modification lies
with the for loop, which replaces cycles that have been
optimized in the cycle basis for later cycle optimization.

The program in Eq. 14 optimizes the jth element of an ordered
sequence of cycle representatives Z = (z',...,2z™). In particular,
it seeks to minimize x°% := 7. To define this program, we first
construct a matrix A such that A[;,i] =2z fori=1,...,m. We
then define three index sets, P, Q, R such that

P = {1+ Birth(¢) <Binth (x”"), Death () < Death (x”™), 14}
Q = {7 €S,,, (K) : Birth(z) < Birth (x°%*)}
R = {0 €S, (K) : Birth (¢) < Birth (x°)},

That is, P indexes the set of cycles z' such that z’ is born
(respectively, dies) by the time that Z is born (respectively,
dies), excluding the original cycle 7/ itself. Set Q is the family of
triangles born by Birth (x°"), and set R is the family of edges born
by Birth (x°7%).

With these definitions in place, we now formalize the general
edge-loss problem as the program in Eq. 14, where 0,41 [R, Q]
denotes the submatrix of 0,,; indexed by triangles born by
Birth (x°2) (along columns) and edges indexed by edges born
by Birth (x°%). Likewise A[R ,P] is the column submatrix of A
corresponding to cycles that are born before the birth time of
x77% (and which die before the death time of x°'), excluding
xO78 jtself.

minimize |[Wx|, = Y Wlo,0](x} +x])
g€R
subject to (x*-x7) = X8 [R] + 0, [R, Qlq + A[R, Plp
peQ”
qeQ?
x e G?
x,x >0.

(14)

Recall from Section 4.1 that this program varies along two
parameters (integrality and weighting). In integral programs
G = Z, whereas in nonintegral programs G = Q. The weight
matrix W is always diagonal, but in uniform-weighted
programs Wlo,0] =1 for all ¢ = R, whereas in length-
weighted programs W{o,0] is the length of edge o. The
program in Eq. 14 thus results in four variants:

Edge%if: Nonintegral edge-loss with uniform weights.
EdgeIUm-f: Integral edge-loss with uniform weights.
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Edge! :

Len*

Nonintegral edge-loss with edges weighted by length.
Edge] , : Integral edge-loss with edges weighted by length.

The program in Eq. 14 may have many more variables than
needed, because 0, is often highly singular. Indeed, in
applications, 0,41 can have hundreds or thousands of times as
many columns as rows!

A simple means to reduce the size of the program in Eq. 14,
therefore, is to replace Q with a subset QEQ such that
0p11 [ R, @] is a column basis for 0,4 [R, Q). Replacing Q
with Q will not change the space of feasible values for x in
the program in Eq. 14, but it can cut the number of decision
variables significantly. In particular, one may take Q := {0 :
R[:, 0] #0} in the R = 0,41 V decomposition of 0,; described in
the Supplementary Material. We also show correctness of this
choice of Q there.

4.3 Triangle-Loss Methods

Our approach to triangle-loss optimization is essentially that of
Obayashi (2018), plus a preprocessing step that converts more
general problem data into the simplex-wise filtration format
assumed in Obayashi (2018). There are several noteworthy
methods for time and memory performance enhancement
developed in Obayashi (2018), which we do not implement
(e.g., using restricted neighborhoods F ;’) to reduce problem
size), but which may substantially improve runtime and
memory performance.

The original method makes the critical assumption that
K, is a simplex-wise filtration, more precisely, that there
exists a linear order 0, <--- <ok such that K; = {0y,...,0}.
This hypothesis allows one to map each finite-length interval
[i,j) € Barcode, (K.) to a unique pair of simplices (o, 0;), called a
birth/death pair, where 0;€8,(K) and oj €S, (K). This
mapping makes it possible to formulate the program in Eq. 12.
Unlike the general edge-loss the program in Eq. 13, one can
formulate the program in Eq. 12 without ever needing to
choose an initial (non-optimal) cycle. Thus, for simplex-wise
filtrations, the method of Obayashi (2018) has the substantial
advantage of being “parameter free.”

However, in many applied settings the filtration K, is not
simplex-wise. Indeed, even accessing information about the
filtration can be difficult in modern workflows. Such is the
case, for example, for the filtered Vietroris-Rips (VR)
construction. In many VR applications, the user presents raw
data in the form of a point cloud or distance matrix to a “black
box” solver; the solver returns the barcode without ever exposing
information about the filtered complex to the user. Thus, the
problem of mapping intervals back to pairs of simplices has
practical challenges in common applied settings.

To accommodate this more general form of problem data, we
employ Algorithm 2. This procedure works by (implicitly)
defining a simplex-wise refinement K'e of K., applying the
method of Obayashi (2018) to this refinement, then extracting
a persistent homology cycle basis for the subspace of finite
intervals from the resulting data. More details, including
recovery of a complete persistent homology cycle basis with
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Algorithm 2 | Triangle-loss persistent cycle minimization.

1: Place a filtration-preserving linear order < on S, (K) for each .

2: Compute an R = 9,1V decomposition as described in (Cohen-Steiner et al.,
2006) and the Supplementary Material. We then obtain a set T of birth/death
pairs (o, 7).

3: For each (o, 7) €T such that Birth (o) < Birth(z), put

Fn=1{0" €S,(K) : Birth(¢") <Birth (1), 0 < ¢’}
Fret = {1 €Sp1 (K) : Birth (o) <Birth ('), 7' < 1},

and F .1 := Fpy1 U{r}. Compute a solution to the corresponding program in

Eq. 15, and denote this solution by v»*
4: Put D := {0p,1 (V") : (0,7) € T and Birth (o) < Birth (7)} and let

D' :={z € M : Death(2) = oo}, where M is a persistent homology cycle basis
calculated by the standard R = DV method.
5: Retun D:=DuD".

infinite intervals,'® and a proof of correctness can be found in
the Supplementary Material.

A key component of Algorithm 2 is the program in Eq. 15,
which we refer to as the triangle-loss program.

minimize |Wv|, =Y W[y, y](v; + v;)
i=1
subjectto 0,41 [0, j\:,ﬁl]vqﬁ 0

an+1 [-Iij:nJrl]v =0 (15)

v, =1
vi,v 20

viv e GFm,

This terminology is motivated by the special case n =1, which
is our focus for empirical studies. As with the general edge-loss
program in Eq. 15 varies along two parameters (integrality
and weighting). In integral programs G =Z, whereas in
nonintegral programs G = Q. The weight matrix W is always
diagonal, but in uniform-weighted programs W[y, y] =1 for all
y, whereas in area-weighted programs W {y,y] is the area of
triangle p.1! The program in Eq. 15 thus results in four variants:

Trigy,:: Nonintegral triangle-loss with uniform weights.

TriIUnif: Integral triangle-loss with uniform weights.

NI,
TnArea .

Tri},,,: Integral triangle-loss with edges weighted by area.

Nonintegral triangle-loss with edges weighted by area.

Remark 4.1. Algorithm 2 offers an effective means to apply
the methods of Obayashi (2018) to some of the most
common data sets in TDA. However, this is done at the cost
of parameter-dependence; in particular, outputs depend on
the choice of linear orders <. A brief discussion on how the
choice of a total order < in Algorithm 2 may impact
the difficulty of the linear programs one must solve is

""Recall volume is undefined for infinite intervals.

""We compute the area of a 2-simplex using Heron’s Formula. We calculate area
only for VR complexes whose vertices are points in Euclidean space, though more
general metrics could also be considered.
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discussed in the Supplementary Material. In particular, we
explain why the total order implicitly chosen in Algorithm 2
is reasonable, from a computational/performance standpoint.

4.4 Acceleration Techniques
We consider acceleration techniques to reduce the computational
costs of the programs in Eqs 14, 15.

4.4.1 Edge-Loss Methods

The technique used for edge-loss problems aims to reduce the
number of decision variables in the program in Eq. 14. It does so
by replacing a (large) set of decision variables indexed by Q with a
much smaller set, @ See Section 4.2 for details.

4.4.2 Triangle-Loss Methods

When 9, is large, the memory and computation time needed to
construct the constraint matrix 0,1 [F,, F .+1] can be nontrivial.
In applications that require an optimal representative for every
interval in the barcode, these costs can be incurred for hundreds or
even thousands of programs. We consider two ways to generate the
constraint matrices 9.1 [Fn, F ++1] for each of the intervals in a
barcode: build 8,41 [Fp, F »+1] from scratch for each program, or
build the complete boundary matrix d,.; in advance; rather than
recompute block submatrices for each program, we pass a slice of
the complete matrix stored in memory.

The difference between these two techniques can be seen as a
speed/memory tradeoff. As we will see in Section 6.2, the first
approach is generally faster to optimize the entire basis of
homology cycle representatives, but when the data set is large,
the full boundary matrix 0,,,; may be too large to store in memory.

5 EXPERIMENTS

In order to address the questions raised in Section 1, we conduct an
empirical study of minimal homological cycle representatives in
dimension one—as defined by the optimization problems detailed
in Section 4 — on a collection of point clouds, which includes both
real world data sets and point samples drawn from four common
probability distributions of varying dimension.

5.1 Real-World Data Sets

We consider 11 real world data sets from Otter et al. (2017), a
widely used reference for benchmark statistics concerning
persistent homology computations. There are 13 data sets
considered by Otter et al. (2017), however, one of them (gray-
scale image) is not available, and one of them is a randomly
generated data set similar to our own synthetic data. We
summarize information about the dimension, number of points,
persistence computation time of each point cloud in Table 1. Below
we provide brief descriptions of each data set, but we refer the
interested reader to Otter et al. (2017) for further details.!?

?We use the distance matrices found on the associated github page (Otter et al.,
2017b), except in two cases. For the Vicsek data, we use a distance to account for
the intended periodic boundary conditions of the model, and for the genome data,
we use Euclidean distance as the distance matrix in Otter et al. (2017b) resulted in
an integer overflow error.

Minimal Persistent Homology Cycle Representatives

1. Vicsek biological aggregation model. The Vicsek model is a
dynamical system describing the motion of particles. It was
first introduced in Vicsek et al. (1995) and was analyzed using
PHin Topazetal. (2015). We consider a snapshot in time of a
single realization of the model with each point specified by its
(x,y) position and heading. To compute distances, the
positions and headings are scaled to be between 0 and 1,
and then distance is calculated on the unit cube with periodic
boundary conditions. The distance between a and b is
computed as min{d(a,q) : g-b € {0,1,-1}*}. We denote
this data by Vicsek.

2. Fractal networks. These networks are self-similar and are used to

explore the connection patterns of the cerebral cortex (Sporns,
2006). The distances between nodes in this data set are defined
uniformly at random by Otter et al. (2017). In another data set,
the authors of Otter et al. (2017) define distances between
nodes by wusing linear weight-degree correlations. We
consider both data sets and found the results to be similar.
Therefore, we opt to use the one with distances defined
uniformly at random. We denote this data set by Fract R.

3. C.elegans neuronal network. This is an undirected network

in which each node is a neuron, and edges represent synapses.
It was studied using PH in Petri et al. (2013). Each nonzero
edge weight is converted to a distance equal to its inverse by
Otter et al. (2017). We denote this data by C.elegans.

4. Genomic sequences of the HIV virus. This data set is

constructed by taking 1,088 different genomic sequences of
dimension 673. The aligned sequences were studied using PH in
Chan et al. (2013) with sequences retrieved from (Los Alamos
National Laboratory, 2021). Distances are defined using the
Hamming distance, which is equal to the number of entries that
are different between two genomic sequences. We denote this
data by HIV.

5. Genomic sequences of H3N2. This data set contains 1,173

genomic sequences of H3N2 influenza in dimension 2, 722.
Distances are defined using the Hamming distance. We
denote this data set as H3N2.

6. Human genome. This is a network representing a sample of

the human genome studied using PH in Petri et al. (2013),
which was created using data retrieved from Davis and Hu
(2011). Distances are measured using Euclidean distance. We
denote this data set by Genome.

7. U.S. Congress roll-call voting networks. In the two networks

below, each node represents a legislator, and the edge weight

is a number in [0, 1] representing the similarity of the two

legislators’ past voting decisions. Distance between two nodes

i,j are defined to be 1-w;;.

1. House. This is a weighted network of the House of
Representatives from the 104th United States Congress.

2. Senate. This is a weighted network of the Senate from the
104th United States Congress.

8. Network of network scientists. This data set represents the

largest connected component of a collaboration network of
network scientists (Newman, 2006). The edge weights
indicate the number of joint papers between two authors.
Distances are defined as the inverse of edge weight. We
denote this data set by Network.
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9. Klein. The Klein bottle is a non-orientable surface with one
side. This data set was created in Otter et al. (2017a) by
linearly sampling 400 points from the Klein bottle using its
“figure 8” immersion in R?. This data set originally contains
(Borradaile et al., 2020) duplicate points, which we remove.
Distances are measured using the Euclidean distance. We
denote this data set by Klein.

Stanford Dragon graphic. This data set contains 1,000 points
sampled uniformly at random by Otter et al. (2017) from 3-
dimensional scans of the dragon (Stanford University Computer
Graphics Laboratory, 1999). Distances are measured using the
Euclidean distance. We denote this data set Drag.

10.

5.2 Randomly Generated Point Clouds

We also generate a large corpus of synthetic point clouds, each
containing 100 points in R? with ¢ =2,...,10, drawn from
normal, exponential, gamma, and logistic distributions. We
produce 10 realizations for each distribution and dimension
combination, for a total of 360 randomly generated point
clouds. We use Euclidean distance to measure similarity
between points and the Vietoris- Rips filtered simplicial
complex to compute persistent homology.

5.3 Erdos-Rényi Random Complexes

To investigate which properties of homological cycle
representatives could arise as the result of the underlying
geometry of the point clouds, we also consider a common
non-geometric model for random complexes: Erdds-Rényi
random clique complexes. Here, we construct 100 symmetric
dissimilarity matrices of size 100 x 100 by drawing entries i. i.d.
from the uniform distribution on [0, 1] for each pair of distinct
points. As these dissimilarities are fully independent, they are in
particular not subject to geometric constraints like the triangle
inequality. A natural filtration is placed on these dissimilarity

,,,,,

where 0 = ¢ <-+- <er = 1 to compute persistent homology.

5.4 Computations

For each of the data sets, we perform Algorithms 1, 2 (using
Vietoris-Rips complexes with Q — coefficients) to find optimal
bases B', D € PrsHCB. For comparison to the edge-loss problem
in Algorithm 1, we also apply the program in Eq. 8 to each
representative in the persistent homology cycle basis to find a
basis C € FCB.

5.5 Hardware and Software
We test our programs on an iMac (Retina 5K, 27-inch, 2019) with a
3.6 GHz Intel Core i9 processor and 40 GB 2667 MHz DDR4 memory.
Software for our experiments is implemented in the
programming language Julia; source code is available at Li and
Thompson (2021). This code specifically implements Algorithms
1, 2 and the program in Eq. 8.
Since our interest lies not only with the outputs of these algorithms
but with the structure of the linear programs themselves Li and

“The program in Eq. 8 is implemented analogously.
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Thompson (2021), implements a standalone workflow that exposes
the objects built internally within each pipeline. This library is simple
by design, and does not implement the performance-enhancing
techniques developed in Escolar and Hiraoka (2016) and Obayashi
(2018). Users wishing to work with optimal cycle representatives for
applications may consider these approaches discussed in Section 3.7.

To implement Algorithms 1, 2 in homological dimension one, the
test library (Li and Thompson, 2021) provides three key functions: A
novel solver for persistence with Q — coefficients. To compute cycle
representatives for persistent homology with Q — coefficients, we
implement a new persistent homology solver adapted from Eirene
(Henselman-Petrusek, 2016). The adapted version uses native Eirene
code as a subroutine to reduce the number of columns in the top
dimensional boundary matrix in a way that is guaranteed not to alter the
outcome of the persistence computation (Henselman and Ghrist, 2016).

Formatting of Inputs to Linear Programs. Having computed
barcodes and persistent homology cycle representatives, library
(Li and Thompson, 2021) provides built-in functionality to
format the linear the program in Eqs 14, 15 for input to a
linear solver. This “connecting” step is executed in pure Julia.

Wrappers for Linear Solvers. We use the Gurobi linear solver
(Gurobi Optimization, 2020) and the GLPK solver (GNU Project,
2012). Both solvers can optimize both LPs and MIPs. Experiments
indicate that Gurobi executes much faster than GLPK on this class
of problems, and thus, we use it in the bulk of our computations.
Both solvers are free for academic users.

6 RESULTS AND DISCUSSION

In this section, we investigate each of the questions raised in
Section 1 with the following analyses.

6.1 Computation Time Comparisons

We summarize results for Programs Edgegf,,-ﬁ Edgefjniﬁ EdgeIL\gn,
Edgeien, Tri@fﬂ»ﬁ and TriIU,,,-f in Table 1 for data described in Section
5.1 and Table 2 for data described in Section 5.2 and Section
5.3. Further, we summarize results for Programs Tridl,, and
Trik,e, in Table 2 for data described in Section 5.2.'* We
use Tpersistence t0 denote the time taken to compute all original
cycle representatives and their lifespans £. We use T, to denote
the computation time for optimizing all generators found by the
persistence algorithm, where the subscript denotes the cost
function e.g. E-Unif or T-Unif, and the superscript denotes
the nonintegral ™ or integral constraint. The T
computations include the time required to construct the
inputs to the solver for the edge-loss methods, and exclude
the time required to construct the inputs to the triangle-loss
methods, whose computation time is separately recorded in

"“We compute the area of a 2-simplex using Heron’s Formula for data whose
distances are measured using the Euclidean distance. For data with non-Euclidean
distances, we find that there are triangles that do not obey the triangle inequality,
thus, we only compute area-weighted triangle-loss cycles for data described in
Section 5.2. As such, Tril{l,, Tri\r, do not appear in Table 1 and the Erés-Rényi
column of Table 2.
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TABLE 1 | Summary of the experimental results of the data sets from Otter et al. (2017) as described in Section 5.1. The rows include the ambient dimension, number of
points, the number of cycle representatives in Hy, and the time (measured in seconds) it took to compute persistent homology for each data set. We also include the

computation time taken to optimize the set of cycle representatives under six different optimization problems, and computation time of two different implementation choices
for the triangle-loss optimal cycles: building the full 9, boundary matrix once and extracting the part needed, or constructing part of the 9, boundary matrix for each cycle

representative. In this table, T stands for computation time measured in seconds with subscripts indicating the type of the optimal cycle and superscripts indicating
whether the program was solved using linear programming (NI) or integer programming (I). The time taken to construct the input to the optimization problem is included in
the optimization time for edge-loss minimal cycle representatives, but is excluded and separately listed in the last two rows for the triangle-loss minimal cycle
representatives. For triangle-loss cycles, we were able to compute 115 out of the 117 cycle representatives for the Genome data set and 52 out of 57 cycle
representatives for the H3N2 data set due to memory constraints. The numbers in the parenthesis represent the other optimization statistics corresponding to the
triangle-loss optimal cycles we were actually able to compute. The last two rows compare two ways of building the input 0 [:, F,] matrix to the triangle-loss optimal cycle
program. The penultimate row records the time of building the entire 9, matrix once and then extracting columns born in the interval [b;, d;] for each representative. The
last row records the total time to iteratively build the part of the boundary matrix 9, [:, F»] for each cycle representative.

Klein Vicsek C.elegans HIV Genome Fractal R Network House Senate Drag H3N2

Ambient dimension 3 3 202 673 688 259 300 261 60 3 1,173

# Points 400 300 297 1,088 1,397 512 379 445 103 1,000 2,722

# Representatives 257 149 107 174 117 (115) 438 7 126 12 311 28 (26)

Tpersistence 100.97 129.39 514 728.51 967.61 143.07 12.18 9.62 0.10 1,053.53 71,081.77
Edge-loss persistent homological cycle representatives (Eq. 14)

TE ien 16.01 8.20 19.64 466.85 656.05 150.46 0.17 63.93 0.31 45.14 4,732.59

[ 11.28 6.61 16.07 403.63 491.69 86.95 0.13 48.65 0.22 34.73 4,540.55

T/:'-Un/f 14.59 9.09 19.22 473.82 689.51 119.94 0.23 63.34 0.33 45.51 4,714.90

T i 11.38 5.55 15.63 404.95 492.66 83.40 0.12 48.88 0.22 33.88 4,5647.37
Edge-loss filtered homological cycle represnetatives (Eq. 8)

Thten 16.93 8.64 20.41 468.22 1,14417 155.08 0.17 62.20 0.30 67.77 2,999.24

Té‘/,’Len 10.29 5.51 16.15 403.74 973.15 88.66 0.13 48.24 0.22 50.25 2,829.12

T,’:-_Umf 15.14 8.32 19.76 476.84 1,191.44 142.4 0.24 61.82 0.31 68.63 2,937.16

T i 11.07 5.63 16.23 406.97 981.72 87.59 0.12 48.11 0.22 54.05 2,833.06
Triangle-loss persistent homological cycle representatives (Eq. 15)

Th it 316.33 24.52 657.53 25,402.56 16,379.86 20,440.33 2.91 234.05 0.29 384.91 39,140.67

TN it 154.36  19.18 540.06 23,260.12  14,535.42  18,279.82 2.47 206.63 0.18 277.93  36,401.50

T Build all 2.16 0.32 4.88 268.57 — 138.46 0.06 6.23 0.03 5.94 —

Total T build part 9.18 3.51 28.47 1688.10 415.79 017.42 0.28 45.02 0.05 106.64 1,236.80

order to compare two ways of constructing the input matrix, as
discussed in Section 4.4. In each table, rows 1-3 provide
information about the data by specifying ambient dimension,
number of points, and number of cycle representatives. Row 4,
labeled as Tpersistence> gives the total time to compute persistent
homology for the data, measured in seconds. Rows 5-12
(Table 1) and rows 5-14 (Table 2) give the total time to
optimize all cycle representatives that are feasible to compute
using each optimization technique. In the last two rows of each
table, we provide the time of constructing the input to the
triangle-loss methods using two different approaches described
in Section 4.4. The penultimate row records the time of building
the entire d, matrix once and then extracting 9, [F 1, F] for
each representative. The last row records the total time to
iteratively build the part of the boundary matrix 0,[F LF]
for each cycle representative. In Table 2, the computation times
displayed average all random samples from each dimension for
each distribution.

The two numbers in parenthesis in the third row of Table 1
indicate the actual number of representatives we were able to
optimize using the triangle-loss methods (all edge-loss
representatives were optimized). For the Genome and H3N2
data sets, we are not able to compute all triangle-loss cycle
representatives due to the large number of 2-simplices born
between the birth and death interval of some cycles. For
instance, for a particular cycle representative in the Genome data
set, there were 10,522,991 2-simplices born in this cycle’s lifespan.

Also, given the large number of 2-simplices in the simplicial
complex, we are not able to build the full d, matrix due to
memory constraints, denoted by - in the penultimate row of Table 1.

Below we describe some insights on computation time drawn
from the two tables.

6.1.1 Persistence and Optimization Tpersistence VS. T
We observe that T* ° > Tpersistence €8 for 5 out of the 11 real-
world data sets described in Section 5.1 when using the four edge-
loss methods. The same inequality holds in seven out of the 11
data sets when using the two uniform-weighted triangle-loss
methods. For all of the synthetic data described in Sections 5.2
and 5.3, we have T, > Tpersistense When using all eight optimization
programs. Therefore, the computational cost of optimizing a basis
of cycle representatives generally exceeds the cost of computing
such a basis.

This somewhat surprising result highlights the
computational complexity of the algorithms used both to
compute persistence and to optimize generators. A common
feature of both the persistence computation and linear
optimization is that empirical performance typically outstrips
asymptotic complexity by a wide margin; the persistence
computation, for example, has cubic complexity in the size of
the complex, but usually runs in linear time. Thus, worst-case

“Including the time of constructing the input to the optimization programs.
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TABLE 2| Summary of the experimental results for the synthetic, randomly generated data sets described in Section 5.2 and Section 5.3. For each distribution, we sample
10 data sets each containing 100 points in ambient dimensions from 2—10. The computation time in this table averages the 10 random samples for each dimension and
distribution combination. The number of cycle representatives is totaled over the 90 samples for each distribution. The rows of this table are analogous to those of Table 1,
excluding the penultimate row of that table, as the time comparison is only done for the large real-world data sets.

Normal Gamma
Ambient dimension 2-10 2-10
# Points 100 100
Total # representatives 4,815 3,706
Average Tpersistence (S€CONS) 2.80 212
Edge-loss persistent homological cycle representatives (Eq. 14)
Average total TL_,, 5.52 6.01
Average total T, ., 4.37 455
Average total TL_ ;. 5.31 5.97
Average total T, . 4.08 458
Edge-loss filtered homological cycle representatives (Eq. 8)
Average total TL_,,, 5.32 6.46
Average total TA!, ., 4.07 5.05
Average total TL_ ;. 5.23 6.46
Average total TH . 417 4.94

Triangle-loss persistent homological cycle representatives (Eq. 15)

Average total Th_ ;. 6.56 9.91
Average total T, . 5.24 7.99
Average total Th_ e 6.59 10.20
Average total T/ 5.19 7.89
Average total T build all 1.40 1.71
Average total T build part 3.51 1.54

complexity paints an incomplete picture. Moreover, naive “back
of the envelope” calculations are often hindered by lack of
information. For example, the persistence computation
(which essentially reduces to Gaussian elimination) typically
processes each of the m columns of a boundary matrix 9, in
sequence. The polytope of feasible solutions for an associated
linear program (edge-loss or triangle-loss) may have many
fewer or many more vertices than m, depending on the
program; moreover, even if the number of vertices is very
high, the number of visited vertices (e.g., by the simplex
algorithm) can be much lower. Without knowing these
numbers a priori, run times can be quite challenging to
estimate. Empirical studies, such as the present one, give a
picture of how these algorithms perform in practice.

6.1.2 Integral and Nonintegral Programs (T vs. TM)
In Tables 1 and 2, we observe that (T! > TM), ie., the total
computation time of optimizing a basis of cycle representatives
using an integer program exceeds the computation time using a
non-integer constrained program. Yet, T! and T™ are on the
same order of magnitude, for both edge-loss methods and
triangle-loss method.

vy
Bt
for optimizing a single cycle representative. We define rg_r., and
rr-Unif Similarly. We compute each for every cycle representative
for data described in Tables 1, 2. Let 7, denote the average of 7,
and o, denote the standard deviation of r,. We have
T-vnif = 1.49,0,,_, = 1.34, Tp-Len = 1.55,0,,_, = 1.38,
Fr-unif = 1.28, U,T_Un;’. =1.14. Figures 6A,C,E plots r, using
scatter plots and Figures 6B,D,F displays the same data using
box plots. The vertical axis represents the ratio between the MIP
time and LP time of optimizing a cycle representative. The

Let rg-unif = , where t represents the computation time

Logistic Exponential Erdés-Rényi
2-10 2-10 NA
100 100 100
4,456 3,788 34,214
2.01 2.63 2.20
5.65 5.91 5.99
4.32 4.47 4.99
5.45 5.90 6.16
4.23 4.51 4.87
6.27 6.88 7.44
4.78 5.11 4.69
6.25 6.66 6.25
4.61 5.29 4.64
7.06 9.68 4.64
5.79 7.75 4.49
7.30 9.99 —
5.80 7.57 —
1.56 1.07 1.24
1.61 1.56 0.85

horizontal axis in the scatter plots represents the computation
time to solve the LP. The red line in each subfigure represents the
horizontal line y = 1. As we can see from the box plots, the ratio
between the computation time of MIP and LP for most of the
cycle representatives (>50%) is around 1 and less than 2.
Although there are cases where the computation time of
solving an MIP is 108.70 times the computation time of
solving an LP, such cases happen only for cycle representatives
with a very short LP computation time.

6.1.3 Triangle-Loss Vs. Edge-Loss Programs T-. VS. T-.
We observe that the edge-loss optimal cycles are more efficient
to compute than the triangle-loss cycles for more than 60.11% of
the cycle representatives'®. This aligns with our intuition
because for representatives with a longer persistence, the
number of columns in the boundary matrix 0, [F LF 2] grows
faster than that of 0;[:; Q]. Consequently, the edge-loss
programs are feasible for all cycle representatives we
experiment with, whereas the triangle-loss technique fails for
six representatives due to the large problem size (with greater
than twenty million triangles born between the life span of those
cycle representatives).

6.1.4 Different Linear Solvers

The choice of linear solver can significantly impact the
computational cost of the optimization problems. We perform
experiments on length/uniform-minimal cycle representatives
using the GLPK (GNU Project, 2012; Gurobi Optimization,

Obayashi (2018) proposes a few techniques for accelerating the triangle-loss
methods which we did not implement.
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FIGURE 6 | Ratio between the computation time of solving an integer programming problem (Programs Tl Edge’Len, Edgeﬁ’n,-f) and the computation time of solving a
linear programming problem (Programs Trity, Edgel,, Edgel) for all of the cycle representatives from data sets described in Sections 5.1, 5.2 and 5.3. Subfigures (A) (C)
(E) plot the data using scatter plots and subfigures (B) (D) (F) show the same data using box plots. The vertical axis represents the ratio between the integer programming time
and linear programming time of optimizing a cycle representative and the horizontal axis represents the computation time to solve the linear program. The red line in each
subfigure represents the horizontal line y = 1, where the time for each optimization is equivalent. As we can see from the box plots, the ratio between the computation time of
integer programming and linear programming for most of the cycle representatives (>50%) center around 1.

2020) linear solvers on 90 data sets drawn from the normal
distribution with dimensions from 2 to 10 with a total of 4, 815
cycle representatives. The median of the computation time ratio
between using the GLPK solver and Gurobi solver is 2.22 for
Program Edgezf”f, 1.68 for Program Edge{]m.f, 2.28 for Program

Edge}” ,and 1.73 for Program Edge} , and the computation time
using the GLPK solver can be 30 times larger than the
computation time using the Gurobi solver for some cycles, see
figure in the Supplementary Material. Therefore, we use the
Gurobi solver in all other analyses in this paper.
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TABLE 3 | Computation time of three differently sized input boundary matrices to
edge-loss and triangle-loss methods. The superscripts denote whether the
program requires an integral solution or not, and the subscripts indicate the type of
optimal cycle. All time is measured in seconds. We perform experiments on a
small-sized data set (Senate) that consists of 103 points in dimension 60 and

a medium-sized data set (House) that contains 445 points in dimension 261.

For edge-loss methods, we consider three implementations to solve these
optimization problems: using the full boundary matrix d», using the basis
columns and all rows d; [:, @], and using the basis columns and deleting rows
corresponding to edges born after the birth time of the cycle 02 [R, Q]. For
triangle-loss methods, we consider three approaches to solve these
optimization problems: zeroing out the columns in the boundary matrix

outside of [b;,d;] denoted as 9s,,,,, deleting columns outside of this range

9, [:, F»], and deleting both columns outside of [b;,d;] and rows born after d;
denoted 9, [F1, F. 2]. The House data set was too large to implement the first
method.

Edge-loss Optimal Cycles

(Eq. 14)
T 92 92[:, 9] 9,[R, Q]

Small Data Set (Senate) T i 1.06 1.03 0.41

TE i 1.25 1.23 0.60

T o 1.05 1.05 0.41

Thfon 1.23 1.19 0.65
Medium Data Set (House) T it 184.70 122.72 47.10

TE o 188.88 147.27 64.64

T o 184.41 121.80 46.02

TEfon 193.01 146.46 63.87

Triangle-loss Optimal Cycles

(Eq. 15)
T 02 02, 2] 02[F1, Fal
Small Data Set (Senate) T it 21.37 0.64 0.18
Thoiot 24.51 0.86 0.29
Medium Data Set (House) T it - 297.34 203.63
Th oot - 321.31 234.05

6.2 Performance of Acceleration

Techniques

6.2.1 Edge-Loss Optimal Cycles

As discussed in Section 4.4, we accelerate edge-loss problems by
replacing 0, [:, Q] with the column basis submatrix of 9, [:, Q.
We further reduce the size of 9, [:, Q] by only including the rows
corresponding to 1-simplices born before the birth time of the
cycle, denoted as 9, [R, Q). We perform experiments on a small-
sized data set (Senate) that consists of 103 points in dimension 60
and a medium-sized data set (House) that contains 445 points in
dimension 261. In Table 3, we report the computation time of
solving the optimization problems in Programs Edgegf”.f,
EdgeIUnif, Edge}! , and Edge],, using these three techniques of
varying the size of the input boundary matrix. The results align
with intuition that the optimizations are faster with fewer input
variables, and thus, the third implementation is the most efficient
among the three.

6.2.2 Triangle-Loss Optimal Cycles

As discussed in Section 4.4, there are also multiple approaches to
creating the input to the triangle-loss problems. To recap, we
restrict the boundary matrix 0, to 0;[F LF »] for a particular
cycle representative x'. We can do so in various ways: 1)

Minimal Persistent Homology Cycle Representatives

zeroing out the columns of 9, not in F, but maintaining
the original size of the boundary matrix, 2a) building the entire
boundary matrix d, once and then deleting the columns not in
F, for each representative, 2b) building the columns in 7,
iteratively for each representative, and 3a/b) in conjunction
with 2a) or 2b) respectively, reducing the rows of the boundary
matrix of 9, to only include the rows born before the death
time of the cycle F;.

In Table 3, we summarize the computation time of solving
Programs Trif}’iif and Tri{Jm.f to find triangle-loss optimal
cycles with three different sized boundary matrices as input:
1) zeroing out, 2b) deleting partial columns, and 3b) deleting
partial rows and columns. Note that 2a) and 2b) both result
in the same boundary matrix 0, [:,ﬁ' 2]. We again use the
Senate and House data sets for analysis. We see that
deleting partial rows and columns is the most efficient
among the three implementations, which again matches
intuition that reducing the number of variables accelerates
the optimization problem.

We also ran experiments on the real-world data sets to compare
the timing of building 0, [F LF »] via methods 3a) and 3b) and
summarize the results in the last two rows of Table 1. We find that
approach 3a), where we build the entire matrix 0, and then delete
columns for each cycle representative, is in general faster than
approach 3b), where the boundary matrix 0, [F, F 2] is iteratively
built for each representative. However, this latter approach can be
more useful for large data sets, whose full boundary matrix 0,
might be too large to construct. For example, building the full
boundary matrix for the Genome data set caused Julia to crash due
to the large number of 2-simplices (453, 424, 290 triangles for the
Genome data set and 3, 357, 641, 440 triangles for the H3N2 data
set). Whereas, by implenting 3b) where we rebuild a part of the
boundary matrix for each representative, we were able to optimize
115 out of the 117 cycle representatives for the Genome data set
and 52 of 57 cycle representatives for the H3N2 data set.

6.3 Coefficients of Optimal Cycle
Representatives in Data Sets From
Section 5.1 and Section 5.2

As discussed in Section 3.6, the problem of solving an &,
optimization is desirable for its interpretability but doing so is
NP-hard (Tahbaz-Salehi and Jadbabaie, 2010). Often, &
optimization is approximated by an ¢; optimization problem,
which is solvable in polynomial time. If the coefficients of a
solution of the ¢; problem are in {-1,0, 1}, then it is in fact an £,
solution to the restricted optimization problem where we require
solutions to have entries in {-1,0, 1} (Escolar and Hiraoka, 2016;
Obayashi, 2018).

We find that 99.50% of the original, unoptimized cycle
representatives obtained from data sets described in Section
5.1 and 99.91% of the unoptimized cycle representatives
obtained from data sets described in Section 5.2 have
coefficients in {-1,0,1}. All unoptimized cycle representatives
turned out to have integral entries.

We then systematically check each solution of the eight
programs Edgegf”.f, EdgeIUnif, EdgeILfn, Edgeéen, Trigfl#, Trilljnif,
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and Tri)’,,, Tri},, across all data sets and all optimal cycle
representatives from data discussed in Sections 5.1 and 5.2,"” found
by Algorithms 1, 2 and the program in Eq. 8 to see if the coefficients
are integral or in {-1,0, 1}. We analyze the 18,163 optimal cycle
representatives and find the following consistent results.

All optimal solutions to the program in Eq. 8 (edge-loss
minimization of filtered cycle bases) and all but one of the
solutions returned by Algorithm 1 (edge-loss minimization of
persistent cycle bases) had coefficients in {-1,0,1}; see the table
in the Supplementary Material for details. The exceptional
representative Xj!;, occurred in the Celegans data set, with
coefficients in {-0.5,0,0.5}. It corresponds to one of only a few
cases where two intervals with equal birth and death time occur within
the same data set; see Section 6.6. An interesting consequence of these
fractional coefficients is that here, unlike all other cycle representatives
from data discussed in Section 5.1 and Section 5.2, the £, norm and
¢, norm differ. This accounts for the sole point that lies below the
y =1 line in the first column of row (B) in Figure 8.

On the one hand, this exceptional behavior could bear
some connection to Algorithm 1. Recall that Algorithm 1
operates by removing a sequence of cycles from a cycle basis,
replacing each cycle with a new, optimized cycle on each
iteration (that is, we swap the j+ 1" element of Z/ with an
optimized cycle x in order to produce Z/*!). Replacing optimized
cycles in the basis is key, since without replacement it would be
possible in theory to get a set of optimized cycles that no longer form
a basis. We verified that if we modify Algorithm 1 to skip the
replacement step, we achieve {-1,0, 1} solutions for the exceptional
C.elegans cycle representative (for the other repeated intervals we
obtain the same optimal cycle with and without the replacement).
On the other hand, we find that even with replacement the GLPK
solver obtains a solution with coefficients in {-1, 0, 1}. Thus, every
one of the cases considered produced {-1,0, 1} coefficients for at
least one of the two solvers, and the appearance of fractional
coefficients may be naturally tied to the specific implementation
of the solver used.

When solving the integral triangle-loss problem by Algorithm
2, we obtain two solutions whose boundaries x = 0,v have coefficients
in {-1,0,1,2} for two different cycle representatives from the logistic
distribution data set. However, the corresponding solutions v of these
cycle representatives do have coefficients in {-1,0,1}.

The surprising predominance of solutions in {-1,0, 1}
suggests that in most cases, the modeler can reap both the
computational advantage of ¢; solutions and the theoretical
and interpretability advantages of £, solutions'® by solving an
¢, optimization problem. Further, we find that the optimum
cost is the same whether we require an integer solution or
not for more than 99.97% of solutions to Program Edge;.,,
100% of solutions to Edgey,,;r» and 100% of solutions to Triys.
Thus, the modeler can drop the integral constraint to save

We discuss the coefficients of the Erdds-Rényi complexes of Section 5.3 in
Section 6.7.

'®Recall that, in the current discussion, £, optimality refers to the restricted integer
problem where coefficients are constrained to lie in {-1,0, 1}. The unrestricted
problem (about which we have nothing to say) may have quite different properties.
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computation time while still being able to achieve an integral
solution in most cases.

6.4 Comparing Optimal Cycle
Representatives Against Different Loss

Functions

We compare the optimal cycle representatives against different
loss functions to study the extent to which the solutions produced
by each technique vary. We consider two loss functions on an H;
cycle representative x € Z; (K):

LE—Len (X) = Z Lel’lgth (O'),

o €supp (x)

where Length (o) is the distance—as designated by the metric d
used to define the VR complex—between the two vertices of a 1-
simplex o, and

Li-unr (%) = |Ixlly = [supp (x)],

the number of 1-simplices (edges) in a representative.
We also consider two loss functions on 2-chains v € C, (K),
namely area-weighted loss:

LT-Areu (V) =

where Area (1) is the area of a 2-simplex as computed by Heron’s
Formula, and uniform-weighted loss

Lr-uws (v) = IVlly = [supp (v)].

Remark 6.1. These weighted ¢, loss functions differ from the
objective functions used in the optimization problems presented
in Section 4, which measure weighted ¢; norm. However,
weighted £, norm and weighted ¢; norm agree on solutions
with {-1, 0, 1} coefficients, and (as reported in Section 6.3) nearly
all cycle representatives for Sections 5.1 and 5.2 data satisfy this
condition, both pre- and post-optimization.In the special case
where supp (x) determines a simple closed polygonal curve ¢ with
vertices (p',q'),..., (p",q") € R?, we also use the Surveyor’s
Area Formula (Braden, 1986) to quantify area of X as

>

1|& .. L
LSur—Area (C) = E Zptqt+l_pl+lql
i=1

where, by convention, p'*! = p! and ¢! = q'. We evaluate this
function only when (i) the ambient point cloud of the VR
complex is a subset of R%, b) supp (x) forms a graph-theoretic
cycle when regarded as a subset of edges in the combinatorial
graph formed by 1-skeleton of K, and 3) no pair of distinct closed
line segments intersect one another.

In the case when we compute the loss function of a
corresponding optimal solution, we use the notation for the
cost C, := L. (x;) to an edge-loss problem that finds optimal
solution x}, and C; := L, (v}) to a triangle-loss problem that finds
optimal solution v;. For instance, ;. = Lg-unir (Xp_ ). We
will also compute the loss functions of optimal solutions from
differing optimizations. For instance, Lg-ren (XIE\'fUnif), and in that
case, we do not use the C notation.
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Figure 7 shows an example of various optimal cycle representatives
obtained from Programs Edge(l\g,,-ﬁ EdgeLm, TnUmﬁ and Tril%, on an
example point cloud drawn from the normal distribution in R?. In this
example, solutions obtained from Algorithm 1 and the program in Eq.
8 are the same. Each subfigure is labeled by program in the upper left
corner. The values of different loss functions evaluated on each optimal
representative appear in the upper right corner. We do not compute
Lr-unf O Lr-ara of the optimal edge-loss minimal cycle
representatives, as no bounding 2-chain for this 1-cycle is specified
in the optimization.'” We observe that various notions of optimality
lead to differing cycle representatives, yet each solution to an
optimization problem minimizes the loss function it is intended to
optimize. This will not always be the case, as we will see momentarily.

Figure 8 reports ratios on the losses Lg-un> Lg-ren, and
Lgyr_area?® for the eight PrsHCB optimization problems detailed
in Section 4 as well as the four edge-loss FCB problems from the
program in Eq. 8, evaluated on the data from Sections 5.1 and 5.2.
These ratios suggest that the uniform-weighted and length-
weighted edge-loss cycles do minimize what they set out
to minimize, namely, the number of edges and the total length,
respectively. We also observe that intuitively the less-constrained
solutions to the FCB program in Eq. 8 can have a lower cost than
the more-constrained solutions to the PrsHCB program in Eq. 14.

We also see that the edge-loss-minimal cycles have similar loss in
terms of length and number of edges (Lg-ren and Lg-yyif) whereas the
triangle-loss-minimal cycles can have larger losses (Lg-ren (X7-unif)
and Lg-unir (X7-Unif)). We find that 63.28% of the Lg-yy; minimal
cycle representatives are also Lg-r,, minimal while 99.66% of the
Lg-10» minimal cycle representatives are also Lg-yy;r minimal across
all cycle representatives from all data sets for PrsHCB cycles.
Similarly, we find that 61.31% of the Lg-y,s minimal cycle
representatives are also Lg-1., minimal while 99.32% of the Lg-1.,
minimal cycle representatives are also Lg-y,; minimal across all cycle
representatives from all data sets for FCB cycles. This suggests that
modelers can often use the length-weighted minimal cycle to
substitute the uniform-weighted minimal cycle. However, the
triangle-loss cycles can potentially provide very different results.

Counterintuitively, the L- 4., optimal cycle representative might
not be the representative that encloses the smallest surveyor’s area.
As shown in Figure 8, we observe that 15.55% of x} Unip> 13.14% of
Xk Unif> 23-59% of xT, ., and 23.59% of xL_, . for the cycles from
PrsHCB using the program in Eq. 14 have an area smaller than that
of the triangle -loss area-weighted optimal cycle x4, Similarly,
15.55% of xj! Unip> 12.87% of xk_ Unif- 24.53% of x}; ., and 24.53%
ofxL_, . for the cycles from FCB using the program in Eq. 8 have an
area smaller than that of the triangle -loss area- weighted optimal
cycle o Lastly, 3.22% of xT Unif> 2.81% of xT Unif> and 2.95%
of X7 4 yeq for the cycles found using the program in Eq. 15 have an
area smaller than that of the triangle-loss area-weighted optimal
cycle XTarea

In Figure 9, we provide an example illustrating why the triangle-
loss area-weighted optimal cycle, solving Programs Trijyr,, or

'We formulated an Obayashi-style linear program similar to Program in Eq. 15 to compute
the volume of edge-loss optimal cycles but in many cases it had no feasible solution.
*Recall, we only compute Ly, on the 2-dimensional distribution data.
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Trik em might not be the cycle that encloses the smallest surveyor’s
area. Another reason why the area-weighted triangle-loss cycles could
have a larger enclosed area is that in the optimization problems, the
loss function is the sum of the triangles the cycle bounds, not the real
enclosed area. Therefore, the area-weighted triangle-loss cycle will
have the optimal area-weighted optimal cost, but not necessarily the
smallest enclosed area.

6.5 Comparative Performance and
Precision of LP Solvers

Our experiments demonstrate that the choice of linear solver may
impact speed, frequency of obtaining integer solutions, and frequency
of obtaining ¢, optimal solutions. While these particular results are
subject to change due to regular updates to each platform, they
illustrate the degree to which these factors can vary.

As discussed in Section 6.1, the GLPK solver performs much
slower than the Gurobi solver in an initial set of experiments. The
GLPK solver also finds non-integral solutions when solving a linear
programming problem in Programs Edgeﬁiif, and Edge]! more
often than the Gurobi solver. On the same set of experiments as in
Section 6.1, when finding the FCB using the program in Eq. 8,
9.74% of the edge-loss length-weighted minimal cycle
representatives have non-integral entries, and 8.32% of the
edge-loss uniform-weighted minimal cycle representatives have
non-integral entries when using the GLPK solver, whereas when
using the Gurobi solver, 0.12% of the length-weighted minimal
cycle representatives have non-integral entries, and 0.04% of the
uniform-weighted minimal cycle representatives have non-integral
entries. For the length-weighted minimal cycle representatives, the
non-integral solutions differ from an ¢, optimal solution by a
margin of machine error with both solvers. However, for the
uniform-weighted minimal cycle representatives, the GLPK
solver has 1.83% of its non-integral solutions differing from an
£y optimal solution by a margin not of machine epsilon, and the
Gurobi solver has 0.02% of its non-integral solutions differing from
an ¢, optimal solution by a margin greater than machine epsilon.
For the GLPK solver, when solving Program Edge@iif, instead of
finding an integral solution, it occasionally finds a solution with
fractional entries that sum to 1. For example, instead of assigning
an edge a coefficient of 1, it sometimes assigns two edges each with
a coefficient of 0.5. In that way, the solution is still £; optimal, but
no longer ¢, optimal. Thus, the choice of linear solver may affect
the optimization results.

6.6 Statistical Properties of Optimal Cycle
Representatives With Regard to Various

Other Quantities of Interest

6.6.1 Support of a Representative Forming a Single

Loop in the Underlying Graph

The support of the original cycle, supp (x°¢) =, (K), need not be

a cycle in the graph-theoretic sense. Concretely, this means that the

nullity, p, of column submatrix 9, [:, x°"8] may be strictly greater

than 1. We refer to p informally as the “number of loops” in x°"%.
We are interested in exploring how often the support of

an original cycle representative forms a single loop in
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FIGURE 7 | Examples of different optimal cycles and cost against different loss functions using a point cloud of 100 points with ambient dimension two randomly drawn
from a normal distribution. The upper left corner of each subfigure labels the optimization algorithm used to optimize the original cycle representative. The upper right corner of
each subfigure records the different measures of the size of the optimal representative. Blue text represents the measure an algorithm sets out to optimize.

the underlying graph. We analyze each of the 360 synthetic data
sets of various dimensions and distributions discussed in Section
5.2 as well as the 100 Erd6s-Rényi random complexes discussed
in Section 5.3 and display the results in Figure 10. We find that
the majority of the original cycle representatives have one loop.
After optimizing these cycle representatives with the edge-loss
methods, we verify that all FCB and PrsHCB optimal cycles only
have one loop, whereas 0.13% of the triangle-loss cycles have two
loops. However, we observe that 91.93% of the optimal cycle
representatives for Erdds-Rényi complexes have 1 loop, 5.81%
have two loops, and 2.14% have more than two loops, with 15 as
the maximum number of loops.

As shown in Figure 11 the reduction in size of

the original cycle, formalized as %, correlates closely with
the reduction in the number of loops by the optimization.

6.6.2 Overall Effectiveness of Optimization

(L. (X.) vs. L, (x°78))

We compare the optimal representatives against the original cycle
representatives21 with respect to edge-loss functions Lg-y,iy and
Lg-1en. As shown in Figure 12, we find that the optimizations

*'The remainder of this subsection excludes the Erdés-Rényi cycles.

are in general effective in reducing the size of the cycle
representative, especially for representatives with larger size.
On each of the subfigures, the horizontal axis is the size of the
original cycle representative and the vertical axis is the ratio
between the loss of each optimal representative and the loss of the
original representative:
C*
L. (XOrig)'

NI iy

: E-Unij :
The average ratio Loy GO 18 83.17%, aggregated over cycle
representatives obtained from data described in Section 5.1 and
90.35% aggregated over cycle representatives obtained from data

described in Section 5.2 for cycles obtained from the program in

. Ci oy .
Eq. 14. The average ratio L. ooy 18 87.02%  over
cycle representatives obtained from data described in

Section 5.1 and 90.41% over cycle representatives obtained
from data describedra Section 5.2 for cycles N(I)btained
T-Unif
Lr_unir (xO7%)
88.34% over cycle representatives obtained from data described in
Section 5.1 and 95.54% over cycle representatives obtained from
data described in Section 5.2 for cycles obtained from the program
in Eq. 15.

from the program in Eq. 14. The average ratio is
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FIGURE 8 | Box plots of the ratios between (A) Le-en (X;) and CY, o, (B) Le-unir () and G ., and (C) Lsur-rea (X;) @nd Lgyr-area (XY 400)- Within each row, the
denominator is fixed across all three columns, and corresponds to the PrsHCB cycles which are solutions to Programs Edgel . row (A), Edge]". . row (B), or Tril!,,, row
(C). The horizontal axis of each subplot is the type of optimal representative. The cost of the optimal solutions to the programs in Eqs 8, 14, and Program Triﬁ\’fea was equal
regardless of the presence of an integer constraint in nearly all examples (as discussed in Section 6.3), resulting in two columns in each row having ratio 1. The data
used in (A) and (B) aggregate over all cycle representatives from data described in Sections 5.1 and 5.2. The data used in (C) aggregate the 746 cycle representatives
from 40 point clouds with ambient dimension of two from data described in Section 5.2. We observe that some edge-loss and uniform-weighted-triangle-loss optimal
cycles have a surveyor’s area strictly smaller than the denominator in row (C); refer to Figure 8 and Section 6.4 to see why this may happen. It is possible for Lg-ynir (XZ)
to be strictly smaller than CY. ., because the cycle x}. , . is calculated to be optimal relative to £1 loss, not Lg-unir, which is a measure of £, loss. We observe this behavior
in the first plot on the second row, discussed in detail in Section 6.3.

6.6.3 Comparing Solutions to Integral Programs and
Non-Integral Programs (x} vs. x)

Among all cycle representatives found by solving the program in
Eq. 14, 66.38% of them have Xg-lumf = xg_Um.f, and 92.52% of
them have x};,, = xj;_,,. We find x}! ;. = Xy, for 80.44%
of the cycle representatives and x!, = x}_, for 100% of the
cycle representatives when using the triangle-loss program in Eq.
15. Thus, the presence or absence of integer constraints rarely
impacts the result of an area- or length-weighted program, but
often impacts solutions of a uniform-weighted program. We saw
in Section 6.3 that essentially all solutions had coefficients in

{-1,0, 1} regardless of integer or non-integer constraints. As such,
we conjecture that the higher rate of different solutions in the
uniform-weighted problems could result from a larger number of
distinct optimal solutions and be a feature of particular choice of
solution selected by the linear solvers, rather than the non-
existence of a particular integer solution.

6.6.4 Cycle Representative Size for Different
Distributions and Dimensions

Figure 13 provides a summary of the size and number of cycle
representatives found for each distribution data set described in
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FIGURE 9 | An example illustrating when the area enclosed by the triangle-loss area-weighted optimal cycle, solution to Program Triﬁ[ea, can be larger than the area
enclosed by the edge-loss length-weighted minimal cycle, solution to Program Edgeﬁ’én (A) is the original cycle of a representative point cloud in R? drawn from the
normal distribution (B) is the length-weighted edge-loss optimal cycle (C) is the area-weighted triangle-loss optimal cycle, in this example, it is the same cycle as the
original cycle (D) is the area-weighted minimal cycle where the blue shaded area marks the triangle born at the death time of the cycle. Constraint Eq. 9 specifies
that the area-weighted optimal cycle must contain the 2-simplex born at the death time of the cycle. Therefore, this cycle must contain (a, d, ) because it was born at the
death time. The length-weighted minimal cycle does not have this constraint, and as such, can result in a smaller area.

Section 5.2. We observe that there tend to be more and larger
(with respect to £y norm) representatives in higher dimensions.

6.6.5 Duplicate Intervals in the Barcode
Of all data sets analyzed, only Klein and C.elegans have barcodes
in which two or more intervals had equal birth and death times
(that is, bars with multiplicity >2). Among the 107 total intervals
of the C.elegans data set, there are 75 unique intervals, 10 intervals
with multiplicity two, and one interval each with multiplicity three,
four, and five. The duplicate bars in the C.elegans data set are
noteworthy for having produced the sole example of an optimized
cycle representative ng Unif with coefficients outside {-1,0,1} (in
particular, it had coefficients in {-0.5,0.5}).

Among the 257 total intervals of the Klein data set, there are 179
unique intervals, 1 interval that is repeated twice, and two intervals

that are repeated 38 times. For the Klein data set, if we replace the
distance matrix provided by Otter et al. (2017) with the Euclidean
distance matrix calculated using Julia (the maximum difference
between the two matrices is on the scale of 107%), we obtain only
one interval that is repeated twice. This indicates that duplicate
intervals are rare in practice, at least in dimension 1.

6.6.6 Edge-Loss Cycle Representatives FCB vs. PrsHCB
We find that for 84.52% of Edgef,, 90.84% of Edge{,, 93.49% of
Edgel” ,and 93.49% of Edge/  , the FCB edge-loss cycle representatives
found by the program in Eq. 8 and the PrsHCB edge-loss cycles
from the program in Eq. 14 are the same, i.e. the £; norm of their
difference is 0. As mentioned in Remark 3.1, the FCB cycles may
not have the same death time as x°"%. For the real-world data sets,
6.72% of the (Edge?Z,,) and (Edgeien), 7.65% of the (Edge@i,,f) and
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FIGURE 10 | (Rows 1-3) Number of loops in the original cycle representative aggregated by dimension (labeled by subfigure title) in the 360 randomly generated
distribution data sets discussed in Section 5.2 and (Row 4) same for the Erdds-Rényi random complexes discussed in Section 5.3, where we bin cycle representatives
that have two to five loops, 6-10, loops, or more than 10 loops. The horizontal axis is the number of cycle representatives and the vertical axis is the number of loops in the
original representative. We observe that for the distribution data, an original cycle representative can have up to 5 loops in higher dimensions, and in general, it is
uncommon to find an original representative with multiple loops. However, we observe that 17.47% of the cycle representatives for Erdés-Rényi complexes have more
than 1 loop, with a maximum number of 17 loops in a cycle representative.

4.48% of (Edge{;,,if) have lifetimes different than x°. For the
randomly generated distribution data sets, 7.11% of the (Edge,

and (Edgefg,,), 8.06% of the (Edgegﬂ,-f) and 4.25% of (Edgeie,,) have
lifetimes different than x°". All cycle representatives with lifetimes

different than x°8 have death time beyond that of x°".

6.7 Optimal Cycle Representatives for

Erdos-Rényi Random Clique Complexes

We observe qualitatively different behavior in cycle representatives
from the Erdos-Rényi random clique complexes. Among the 34, 214
cycle representatives from the 100 dissimilarity matrices found by
solving the programs in Eqs 14, 15, we find that 91.04% of the original
cycle representatives have entries in {-1,0,1} and 99.75% of the
original cycle representatives have integral entries. We have
3.89% of the length-weighted edge-loss representatives, 4.49%
of the uniform-weighted edge-loss representatives, and 3.52%

of the uniform-weighted triangle-loss representatives with entries
notin {-1,0, 1}. We find 2.66% of the length-weighted edge-loss
representatives, 3.57% of the uniform-weighted edge-
loss representatives, and 1.58% of the uniform-weighted
triangle-loss representatives with non-integral entries when not
requiring integral solutions.
We find 220 ®e-onr) Op gy
L ynif (XE_ Unir)

Lg-ron (X3! .
Lt X5oia) 5 1 for 1.09% of the representatives. All such

> 1 for 1.07% of the cycle representatives

and Le—ren (X5_p,,)
representatives have entries outside of {-1,0,1} and involve some
fractional entries. An average of 96.75% of the nonzero entries in the
reduced boundary matrices are in {-1, 1}, 2.15% in {-2, 2}, and 0.27%
with an absolute value greater than or equal to 3.

Because of the non-integrality of some original cycle
representatives found by the persistence algorithm, we fail to
find an integral solution for 0.27% of the edge-loss
representatives and 0.11% of the triangle-loss representatives.

Frontiers in Artificial Inteligence | www.frontiersin.org

October 2021 | Volume 4 | Article 681117


https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Lietal

Comparing size ratio with num of loops ratio

=

DS- I
N '

0.1 0.14 017 02 025 033 05 1
n n=1 n=3 n=5 n=6 n=27 n=284 n=18047
Number of loops in the optimal cycle representative

NI
E-Len

C

LeLen(Xorig)

Number of loops in the original cycle representative

FIGURE 11 | Violin plot of the effectiveness of the optimization as a
function of the number of loops in the original cycle representative. Results are
aggregated over the data sets from Section 5.1 and Section 5.2. The x-axis
shows the size reduction in terms of number of loops, and the y-axis
shows the size reduction in terms of the length of the cycle. We see that in
general, the reduction in size of the original cycle mostly comes from the
reduction in the number of loops by the optimization.

A partial explanation for this behavior can be found in the work of
(Costa et al., 2015). Here, the authors show that a connected two-
dimensional simplicial complex for which every subcomplex has fewer
than three times as many edges as vertices must have the homotopy
type of a wedge of circles, 2-spheres, and real projective planes. With
high probability, certain ranges of thresholds for the iid. dissimilarity
matrices on which the Erdds-Rényi random complexes are built
produces random complexes with approximately such density
patterns at each vertex. Thus, some of the persistent cycles are
highly likely to correspond to projective planes. Because of their
non-orientability, the corresponding minimal generators could be
expected to have entries outside of the range {-1,0, 1}.

7 CONCLUSION

In this work, we provide a theoretical, computational, and empirical
user’s guide to optimizing cycle representatives against four criteria
of optimality: total length, number of edges, internal volume, and
area-weighted internal volume. Utilizing this framework, we
undertook a study on statistical properties of minimal cycle
representatives for H; homology found via linear programming.
In doing so, we made the following four main contributions.

1. We developed a publicly available code library (Li and
Thompson, 2021) to compute persistent homology with
rational coefficients, building on the software package Eirene
(Henselman and Ghrist, 2016) and implemented and extended
algorithms from (Escolar and Hiraoka, 2016; Obayashi, 2018)
for computing minimal cycle representatives. The library
employs standard linear solvers (GLPK and Gurobi) and
implements various acceleration techniques described in
Section 4.4 to make the computations more efficient.

Minimal Persistent Homology Cycle Representatives

2. We formulated specific recommendations concerning procedural

factors that lie beyond the scope of the optimization problems
per se (for example, the process used to generate inputs to a
solver) but which bear directly on the overall cost of computation,
and of which practitioners should be aware.

. We used this library to compute optimal cycle representatives for

a variety of real-world data sets and randomly generated point
clouds. Somewhat surprisingly, these experiments demonstrate
that computationally advantageous properties are typical for
persistent cycle representatives in data. Indeed, we find that we
are able to compute uniform/length-weighted optimal cycles for
all data sets we considered, and that we are able to compute
triangle-loss optimal cycles for all but six cycle representatives,
which fail due to the large number of triangles (more than 20
million) used in the optimization problem. Computation time
information is summarized in Table 1 and Table 2.
Consequently, heuristic techniques may provide efficient means to
extract solutions to cycle representative optimization problems across
a broad range of contexts. For example, we find that edge-loss
optimal cycles are faster to compute than triangle-loss optimal cycles
for cycle representatives with a longer persistence interval, whereas
for cycles with shorter persistence intervals, the triangle-loss cycle can
be less computationally expensive to compute.

. We provided statistics on various minimal cycle representatives

found in these data, such as their effectiveness in reducing the

size of the original cycle representative found by the persistence

algorithm and their effectiveness evaluated against different loss
functions. In doing so, we identified consistent trends across

samples that address the questions raised in Section 1.

a. Optimal cycle representatives are often significant improvements
in terms of a given loss function over the initial cyde
representatives provided by persistent homology computations
(typically, by a factor of 0.3-1.0). Interestingly, we find that area-
weighted triangle-loss optimal cycle representatives can enclose a
greater area than length- or uniform-weighted optimal cycle
representatives.

b. We find that length-weighted edge-loss optimal cycles are also
optimal with respect to a uniform-weighted edge-loss function
upwards of 99% of the time in the data we studied. This
suggests that one can often find a solution that is both length-
weighted minimal and uniform-weighted minimal by solving
only the length-weighted minimal optimization problem.
However, the triangle-loss optimal cycles can have a
relatively higher length-weighted edge-loss or uniform-
weighted edge-loss than the length/uniform-weighted
minimal cycles. Thus, computing triangle-loss optimal cycles
might provide distinct information and insights.

c. Strikingly, all but one ¢; optimal representatives were also
¢y optimal (that is, £, optimal among cycles taking
{0,1,-1} coefficients; £, optimality among cycles taking
7. coefficients was not tested) in the real-world and
synthetic point cloud data. Thus, it appears that
solutions to the NP-hard problem of finding ¢, optimal
cycle representatives can often be solved using linear
programming in real data. In the Erd6és-Rényi random
complexes, qualitatively different behavior was found;
this may relate to the fact that spaces in this random
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FIGURE 12| The effectiveness of length-weighted and uniform-weighted optimization for the data sets in Sections 5.1 and 5.2 in reducing the size of the original cycle
representative found by the persistence algorithm. In each subfigure, the horizontal axis is the size of the original representative and the vertical axis is the ratio between the size
of the optimal representative and the size of the original representative. The uniform-weighted graphs appear more sparse because reductions in the cost L7y (X°%9) can
only come in multiples of the reciprocal of the original length. The node size in the uniform-weighted graphs corresponds to the number of overlapping points.
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family contain non-orientable subcomplexes with high
probability.

Several questions lie beyond the scope of this text and merit
future investigation. For example, while the methods discussed in
Section 4 apply equally to homology in any dimension, we have
focused our empirical investigation exclusively in dimension one;
it would be useful and interesting to compare these results with
homology in higher dimensions. It would likewise be interesting
to compare with different weighting strategies on simplices, and
loss functions other than €, and ¢;, e.g. £,. Future work may also
consider whether the modified approach to the edge-loss
minimization program in Eq. 14 could be incorporated into
persistence solvers themselves, as pioneered in (Escolar and
Hiraoka, 2016). Unlike the programs formulated in this earlier
work, the program in Eq. 14 requires information about the death
times of cycles in addition to their births; typically this information is
not available until after the persistence computation has already
finished, so new innovations would probably be needed to make
progress in this direction.
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