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Abstract—Estimating a sparse signal from its low-dimensional
observations arises in many applications including signal demix-
ing and compression. If each dictionary atom undergoes an
unknown modulation process, this problem becomes a sparse
recovery and blind demodulation problem. In this paper, we
further allow the modulation process to be different for different
dictionary atoms, which is known as non-stationary modulation.
In the presence of noise, the sparse signal and modulation
parameters cannot be recovered exactly. We propose to solve
the support recovery problem with non-stationary modulation
via an optimization-inspired data-driven method. Specifically,
by assuming the modulating signals live in a known common
subspace and applying the lifting technique, we formulate the
support recovery problem as recovering a column-wise sparse
matrix from linear observations, which could then be solved via a
block `1 norm regularized quadratic minimization. By unfolding
the proximal gradient descent algorithm for that regularized
quadratic minimization and replacing the proximal operator
with a proximal network, we construct a novel recurrent neural
network (RNN) to efficiently solve the support recovery problem.
Experiments indicate that the proposed network is very efficient
in solving the support recovery problem, can be adaptive to
different sensing processes without retraining the network, and is
applicable when the matrix of interest is not strictly column-wise
sparse and when we only know an approximation of the sensing
process.

Index Terms—Machine learning, support recovery, blind de-
modulation, proximal gradient descent, compressed sensing

I. INTRODUCTION

Optimization methods [1]–[3] have achieved great success
in signal recovery by exploiting the signal intrinsic properties
like sparsity [4], [5] and low-rankness [6], [7]. For many
optimization methods, we are able to study their statistical per-
formance [8], [9], e.g., by characterizing a sufficient number of
observations and conditions on the regularization parameters
for exact recovery. However, advances in data acquisition lead
to high-dimensional problems [10], [11] that cannot be solved
efficiently by optimization methods, and in many applications,
the complicated sensing process cannot be properly modeled
by the optimization program [12]. Data-driven methods [13],
[14], especially deep learning methods [10], [15], [16], have
emerged as a promising alternative. However, the black box
nature of deep learning methods is a barrier to designing
more effective network structures and limits the adoption of
deep learning methods in applications where interpretability
is important. Thus, the synergistic integration [12], [13], [17],
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[18] of traditional optimization methods and deep learning
techniques has attracted great interest and holds the potential
to significantly accelerate and improve recovery from compli-
cated sensing processes.

In this paper, we apply an optimization-inspired and
physics-informed data-driven method to the support recovery
problem for a sparse signal that has undergone non-stationary
modulation. In the following sections, we first describe the
physics of the non-stationary sensing process mathematically
and provide a case study on applying the physical signal model
to the frequency estimation problem for damped sinusoids.
Then, inspired by a traditional optimization algorithm, proxi-
mal gradient descent [19], and leveraging the knowledge of the
physics of the sensing process, we propose a novel recurrent
neural network (RNN) to address the support recovery prob-
lem. In experiments, we examine its efficiency and robustness
under different conditions.

A. Support Recovery for Sparse Signals with Non-stationary
Modulation

Estimating a sparse signal from low-dimensional observa-
tions arises in many applications such as super-resolution [20]
and image compression [1]. Mathematically, after modulation,
the system observes y = DAc ∈ RN , where y ∈ RN is the
observed signal vector, D ∈ RN×N is a diagonal modulation
matrix, A ∈ RN×M (N < M) is a dictionary matrix, and
c ∈ RM is the sparse signal vector of interest. Since D
performs element-wise multiplication, known as modulation
in signal processing, when A is known, recovering c and D
from the observed y is referred to as sparse recovery and blind
demodulation [1], [9], [21].

In this paper, we further generalize the model by allowing
each dictionary atom to undergo a distinct modulation pro-
cess; such non-stationary modulation is studied in [21], [22].
Namely, the observation vector has the form

y =
M∑
j=1

cjDjaj + n ∈ RN , (1)

where cj is the j-th entry of c, aj is the j-th column of the
dictionary A, and n denotes the noise. Moreover, we assume
that only J (J < M ) of the coefficients cj are non-zero and
the modulating signals live in a known and common subspace:

Dj = diag(Bhj),
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where B ∈ RN×K (N > K) is a known, orthonormal
subspace matrix and hj ∈ RK is the unknown coefficient
vector. In this case, recovering hj is equivalent to recovering
Dj . A similar subspace assumption for the modulating signal
can be found in the deconvolution and demixing literature [23],
[24].

B. The `2,1 norm Regularized Quadratic Minimization

In order to recover c and h by using the lifting technique
based on Proposition 1 in [25], we can construct a column-
wise sparse matrix X = [c1h1 c2h2 · · · cMhM ] ∈
RK×M containing all the unknown parameters. In terms of
the constructed unknown matrix X, the observation (1) can
be represented as y = Φ · vec(X) where

Φ = [φ1,1, · · · , φK,1, · · · , φ1,M , · · · , φK,M ] ∈ RN×KM ,

φi,j = diag(bi)aj ∈ RN×1, and bi is the i-th column of B.
In presence of noise, the observations become y = Φ ·

vec(X)+n. In this paper, we assume each entry of n is drawn
from the Gaussian distribution and denote the ground-truth
matrix as X0. Due to the additive noise, we cannot recover
X0 exactly. Thus we aim to recover the indices of the non-zero
columns (support) in X0 which is equivalent to the support of
the sparse signal c if we assume there is no null modulation,
Dj = 0. In order to recover the support of X0 from y, [22],
[26] propose to apply the block `1 (`2,1) norm regularized
quadratic minimization

minimize
X∈RK×M

1

2
||y −Φ · vec(X)||22 + λ||X||2,1, (2)

where the `2,1 norm is defined as ||A||2,1 =
∑M
j=1 ||aj ||2 and

the value of λ for exact support recovery is derived in [22].
Equivalently, (2) can be written as

minimize
X∈RK×M

1

2
||y −Φ · vec(X)||22 + λ

M∑
j=1

||xj ||2, (3)

where xj is the j-th column of X.
Proximal gradient descent [19] can be applied to solve (3),

using gradient descent and proximal operator steps that run
sequentially and iteratively. By unfolding proximal gradient
descent and applying a proximal network with the skip con-
nection, we propose a novel RNN in Section II to efficiently
solve the support recovery problem for a sparse signal with
non-stationary modulation.

C. Case Study for Damped Frequency Estimation

In this section, we describe how our signal model introduced
in (1) can be applied to the frequency estimation problem
for damped sinusoids which naturally appears in structural
health monitoring [27] and fault detection [7]. In fault de-
tection for induction machines [28], when a fault occurs, a
damped frequency component is generated and locating this
frequency is essential for machine monitoring. Estimating the
frequency is made more complicated due to the damping [17].
Mathematically, after discretizing the normalized frequency, θ,

onto M uniformly separated grid points in [0, 1], the observed
signal has the form

y =
M∑
j=1

cjDja(θj) + ñ ∈ RN×1, (4)

where cj denotes the signal magnitude, a(θj) is a sinusoidal
atom with normalized frequency θj , Dj contains the damping
signal e−αj ·n for n = {0, 1, · · · , N−1} in its diagonal entries,
and ñ denotes additive noise.

By stacking damped (real) exponential samples with the
damping parameter on a fine grid into a matrix and applying
the singular value decomposition (SVD), we can construct a
subspace matrix B using the left singular vectors to approxi-
mate the damping signal. Namely, we have Dj = diag(Bhj)
and

y =
M∑
j=1

cj diag(Bhj)a(θj) + n ∈ RN×1,

where n consists of both the additive noise, ñ, and the
subspace approximation error. In this case, the support of the
lifted unknown matrix X = [c1h1 c2h2 · · · cMhM ] ∈
RK×M indicates the active frequency components. The signal
model studied in this paper can also be applied to other appli-
cations such as directional of arrival estimation [21], CDMA
systems [9], and nuclear magnetic resonance spectroscopy
[20], [29].

D. Related Work

Most sparse recovery and blind demodulation literature [9],
[24], [30]–[32] assumes a common modulation matrix Dj =
D for each dictionary atom. Specifically, [24] assumes a com-
mon modulation matrix and a dictionary consisting of complex
sinusoids over a continuous frequency range. [20] generalizes
the problem in [24] to accommodate non-stationary modu-
lation. However, that paper makes a random ‘sign’ assump-
tion on hj which makes it difficult to consider the noise.
In addition, [9] assumes a common modulation matrix but
considers random Gaussian and Fourier dictionaries. [21],
[25] extend the work of [9] by introducing non-stationary
modulation with bounded noise. The support recovery problem
with non-stationary modulation and unbounded Gaussian noise
is studied in [22], [26] and is also the problem we study in
this paper. While [22], [26] analyze and study the support
recovery problem from the optimization perspective, however,
this paper studies this problem from an optimization-inspired
data-driven perspective.

Data-driven deep learning has achieved competitive perfor-
mance in signal processing [12], [33], [34], and in particular,
there are many deep networks proposed for the sparse recovery
problem [12]–[14], [35], [36]. Compared to them, in this paper,
we take non-stationary modulation into account. By unfolding
the proximal gradient descent algorithm, we propose a novel
RNN to solve the support recovery problem for a sparse
signal with non-stationary modulation. The unfolding data-
driven approach for signal processing was pioneered in [13]
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and has been applied to many signal processing problems
including matrix factorization [37], [38] and non-negative
sparse recovery [12]. The unfolded version of proximal gra-
dient descent has been mainly investigated in imaging inverse
problems [39]–[41].

The rest of the paper is organized as follows. In Section II,
we present our proposed RNN for support recovery of a sparse
signal with non-stationary modulation. Numerical simulations
are conducted in Section III to analyze the performance of the
proposed approach and compare to the optimization method.
Finally, we conclude this paper in Section IV.

II. PROPOSED RECURRENT NEURAL NETWORK

As introduced in Section I-B, `2,1 norm regularized
quadratic minimization can be applied to recover the support
of the signal of interest X. Proximal gradient descent [19] for
solving (2) can be viewed as a two step iterative algorithm.
The first step implements gradient descent with respect to the
data fidelity, 1

2 ||y − Φ · vec(X)||22, and the second step runs
a proximal operator to impose the regularization, λ||X||2,1.
Mathematically, the proximal gradient descent iteration has
the form

vec(Xk+1) = P
[
vec(Xk)− ηΦT (Φ · vec(Xk)− y)

]
= P

[
(I− ηΦTΦ) · vec(Xk) + ηΦTy

]
,

where k is the iteration number, η is the gradient descent step
size, and

P [vec(Z)] = arg min
vec(X)

1

2
||vec(X)− vec(Z)||22 + λ||X||2,1

(5)
is the proximal operator.

By unfolding the proximal gradient descent and replacing
the proximal operator with a proximal network with the skip
connection, we construct a recurrent neural network (RNN)
for support recovery shown in Fig. 1. We use ΦTy as the
network initial input. In the data fidelity gradient descent step,
the sensing matrix Φ and observation y are associated with
a learnable step size η. The proximal operator is replaced by
a proximal network consisting of convolutional layers, batch
normalization layers, and ReLU layers with skip connections.
All recurrent blocks share the same weights. Intuitively, the
convolutional layer is responsible for analyzing the signal
and combining with the ReLU layer to impose the column-
wise sparsity prior. The batch normalization layer aims to
improve the stability and convergence rate of the network for
training. Those network layers are also found useful in deep
architectures for other signal inverse problems [14], [36].

III. NUMERICAL SIMULATIONS

We conduct several numerical simulations to evaluate the
performance of our proposed RNN for the support recovery
problem. We set the system parameters based on [22], such
that `2,1 regularized quadratic minimization could recover the
support exactly with an overwhelming probability. Specifi-
cally, we set J = K = 2, M = 120, N = 100, and
the mean and standard deviation of the Gaussian noise to

(a) The block diagram of proposed RNN.

(b) The proximal network (ProximalNet).

Fig. 1: The proposed recurrent neural network (RNN) for
support recovery. In the proposed RNN, all recurrent blocks
share the same weights. In the proximal network, ‘Conv’,
‘BatchNorm’, and ‘ReLU’ denote the convolutional layer,
batch normalization layer, and the Rectified Linear Unit
(ReLU) layer respectively.

0 and σ = 0.1 respectively. The entries of A are drawn
from the standard normal distribution, and we generate a
second random matrix using the standard normal distribu-
tion and orthogonalize its columns to construct B. The J
indices of non-zero columns (support) in X0 are uniformly
selected from {1, 2, · · · , 120}. The non-zero entries of X0

have the form sign(x) + x where x follows the standard
normal distribution and sign(x) = −1 when x < 0 and
sign(x) = 1 for x > 0. Moreover, we scale X0 such that
γ = γ0

minj∈T ||x0,j ||2 = 0.1 to ensure the support recovery
problem is theoretically solvable with an overwhelming prob-
ability [22], where γ0 =

√
σ2µ2

maxK [log(M − J) + log(N)]
and µmax = maxi,j

√
N |Bij |.

Following the process above, we obtain y following (1) and
generate 16000 (y,X0) pairs for training and 4000 for testing.
All convolutional layers in the proximal network have a kernel
size of 3 with stride 1 and 1 zero padding. The proposed RNN
is trained using Adam optimization [42] with an initial 0.01
learning rate. The network is trained with batch size 32 for
200 epochs. During training, we halve the learning rate if the
loss function value, ||vec(X)− vec(X0)||2, does not decrease
for 3 consecutive epochs.

A. Unfolding Different Numbers of Iterations

Normally, proximal gradient descent will stop when a pre-
set convergence criterion is satisfied. For the proposed RNN,
we fix in advance the number of iterations for unfolding. To
examine the effect of the number of unfolding iterations, we
train our RNN with different numbers of unfolding iterations
and record their performance in Table I in terms of the exact
support recovery rate, the average recovery error, ||vec(X)−
vec(X0)||2, and the average processing time measured on a
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system with an i7-6700 CPU and GTX 1080 GPU. We use
RNN-k to denote the network constructed from k unfolded
iterations of proximal gradient descent. Exact support recovery
is achieved when the estimated X has the same support as
the ground-truth X0. We compare our method to the `2,1
optimization method proposed in [22].

From Table I we can observe that, when the number of
unfolding iterations is ≥ 3, the proposed network achieves
a comparable exact support recovery rate compared to the
`2,1 optimization method. However, the proposed network is
much more efficient compared to the `2,1 optimization method
solved via CVX [43].

B. Effect of Φ

In (5), we see that the proximal operator is independent
of Φ, which implies that the proximal network could also
be independent of Φ. Namely, for a different sensing matrix
Φ, our proposed network can be reused by simply replacing
the Φ matrix in the recurrent network and plugging in the
pre-trained proximal network. To verify that, we construct
4000 (y,X0) pairs for different sensing matrices Φ following
the same random generation process and record the exact
support recovery rate of our proposed recurrent network in
Table II without retraining the network. From the results we
can observe that our proposed network can be easily adaptive
to other systems with a different sensing matrix Φ.

C. Comparison to A Generic ResNet

Recovering the indices of non-zero columns in X0 is
equivalent to recovering the indices of non-zero entries in the
vector c. Thus, an alternative approach for solving the support
recovery problem is to directly recover a sparse vector c from
the observation y via a generic network without applying the
lifting technique to construct X. To examine this approach,
we design a generic ResNet [44] shown in Fig. 2(a), in
which the ResNet block consists of a sequential stack of
three independent ProximalNets whose structures are shown in
Fig. 1. The fully connected layers accommodate the data sizes
for the input and output accordingly. Because in our proposed
recurrent network all ProximalNets share the same weights, the
number of learnable weights in RNN-3 is about 75.8% of the
number of learnable weights in the compared generic ResNet.
We record the exact support recovery rate of the RNN-3 and
the generic ResNet in Fig. 2(b), from which we can observe
that incorporating the optimization technique into the network
design improves the network performance significantly, even
with a smaller number of learnable weights.

D. Effect of J

In this section, without retraining the network, we examine
the exact support recovery rate of the proposed network RNN-
3 when X0 has different numbers, J , of non-zero columns.
The result is shown in Fig. 3, from which we can observe
that although RNN-3 is trained only on data with J = 2, it is
robust to the change of J and achieves a comparable support
recovery rate of the `2,1 optimization method [22].

(a) A generic ResNet.
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(b) Exact support recovery rate.

Fig. 2: The comparison between RNN-3 and a generic ResNet
that predicts the sparse vector c directly for support recovery.
(a) The ResNet for comparison, whose ResNet block consists
of a sequential stack of three independent ProximalNets. (b)
The exact support recovery rate of RNN-3 and the generic
ResNet.
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L21 optimization

Fig. 3: The exact support recovery rate of the proposed RNN-3
with different numbers J of non-zero columns in X0.

E. Approximately Column-wise Sparse X

Due to system noise, the matrix X of interest might be only
approximately column-wise sparse. For example, we suppose
the system observes y = Φ · vec(X) + n where the signal
of interest vec(X) = G · vec(X0) and G = I + H. X0 is
the original column-wise sparse matrix, I ∈ RKM×KM is the
identity matrix, and H ∈ RKM×KM is a random Gaussian
matrix with entries drawn from the Gaussian distribution with
mean 0 and standard deviation σG. In this section, we set
σG = 0.01 and record the recovery performance of the `2,1
optimization method [22] and the re-trained RNN-3 network
in Table III. We see that even when the matrix of interest is
not strictly column-wise sparse, the proposed network can still
be very effective in recovering the signal.
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TABLE I: The performance of the proposed RNN with different numbers of unfolding iterations. Specifically, RNN-k denotes
that we unfold k iterations of proximal gradient descent and thus RNN-k contains k recurrent blocks.

`2,1 optimization [22] RNN-1 RNN-3 RNN-5 RNN-7
Exact support recovery rate 100.0% 75.6% 97.0% 97.2% 98.7%

Average recovery error 4.69 4.35 2.35 1.79 1.16
Average processing time (seconds) 0.58 0.69×10−4 1.61×10−4 2.54×10−4 3.51×10−4

TABLE II: The exact support recovery rate of the proposed
RNN-3 with different sensing matrices Φ.

Φ1 Φ2 Φ3

The exact support recovery rate 97.0% 97.6% 96.8%

TABLE III: The average recovery error with the approximately
column-wise sparse X

`2,1 optimization [22] RNN-3
Average recovery error 5.40 3.67

F. Frequency Estimation for Damped Sinusoids

In this section, we apply the proposed RNN-3 to the
frequency estimation problem for damped sinusoids introduced
in Section I-C. Specifically, each column in A has the form
a(θ) = [1, cos(θ), · · · , cos(θ(N − 1))]T where we choose θ
from among M = 120 evenly separated values in [0, 1]. Dj

contains the damping signal e−α·n for n = {0, 1, · · · , N − 1}
in its diagonal entries and we sample α uniformly in [0, 0.05]
such that a maximally damped sinusoid (α = 0.05) would
see its amplitude decay by around 100× between its first and
last samples when N = 100. To approximate the damping
signal, we generate 10000 damping signals whose damping
coefficients range from 0 to 0.05 and perform the singular
value decomposition (SVD) to construct the subspace matrix
B. The magnitudes of the singular values of B are shown in
Fig. 4(a), based on which we set K = 3. For each observed
signal, the J = 2 frequencies of damped sinusoids are
uniformly selected on the frequency grids with at least 2/M
separation and signal magnitudes are uniformly sampled in
[0.5, 1.0]. The observation is also contaminated with additive
Gaussian noise ñ as in (4). An observed signal with 30 dB
signal-to-noise ratio (SNR),

SNR(dB) = 20 log10

(
||
∑M
j=1 cjDja(θj)||2
||ñ||2

)
,

is shown in Fig. 4(b) and whose ground truth frequencies are
indicated in Fig. 4(c) using magnitude-1 spikes.

Since we constructed y via the Dj matrices directly,
for network training, we construct the target X =
[c1h1 c2h2 · · · cMhM ] via the sampled cj and hj es-
timated from minhj ||Dj − diag(Bhj)||2F . The sizes of the
training, validation, and testing datasets are 16000, 4000, and
1000 respectively. The `2 norm of the columns in the recovered
X for the signal observed in Fig. 4(b) are shown in Fig. 4(c)
for both the RNN-3 and the `2,1 optimization method [22].
The exact support recovery rate on the testing dataset with
different SNRs is shown in Fig. 4(d). From the results we can
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(c) `2 norm of columns in recovered X.
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(d) Exact support recovery rate.

Fig. 4: Frequency estimation for damped sinusoids. (a) The
singular values of the collected damped signals’ matrix.
(b) One observed signal with 30 dB SNR. (c) The ground-truth
frequencies and the `2 norm of the columns in the recovered
X. (d) The exact support recovery rate with different SNRs.

observe that when Φ is only an approximation of the sensing
process, the proposed RNN-3 is still very robust in estimating
the support.

IV. CONCLUSION

In this paper, we study the support recovery problem of
sparse signals with non-stationary modulation via a proximal
gradient descent inspired data-driven method. With the com-
mon modulating signal subspace assumption and using the
lifting technique, we reformulate the support recovery problem
into a column-wise sparse matrix recovery problem, which can
be effectively solved via the `2,1 norm regularized quadratic
minimization. By unfolding the proximal gradient descent
for the `2,1 norm regularized quadratic minimization, we
propose a novel recurrent neural network to solve the original
support recovery problem. Simulation results show that the
proposed network is extremely efficient, can be adaptive to
different sensing matrices without retraining the network, and
can be applied to the cases where the matrix of interest is
not strictly column-wise sparse and where we only know an
approximation of the sensing process.
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