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ABSTRACT
Multiband signals, whose active frequencies lie within continuous
intervals, arise in a wide range of applications like radar imaging.
In this paper, given limited and varying-length time-domain sam-
ples of a contaminated multiband signal, we propose novel deep net-
works to estimate the number of bands and locate the bands’ cen-
ters. A multiband signal representation model, which combines the
long short-term memory (LSTM) and convolutional neural network,
is trained to map varying-length observed samples to a frequency
spectrum representation. A counting model then counts the number
of bands based on the estimated spectrum. Combining the spectrum
representation and estimated number of bands, the bands’ centers
can be recovered efficiently and automatically. Numerical experi-
ments demonstrate that the proposed method is very effective and
can leverage extended samples for better performance. Moreover, it
outperforms other deep architectures for line spectral estimation at
different noise levels and is much faster than an atomic norm-based
method.

Index Terms— multiband signal, deep learning, super resolu-
tion, signal decomposition

1. INTRODUCTION

1.1. Contaminated Multiband Signal Identification

Conventional line spectral estimation [1] appears widely in many ap-
plications, e.g., power electronics [2]. Mathematically, one observes
a time-domain multitone signal

y(t) =

M∑
j=1

Aje
i2πFjt + η(t) (1)

where the number of tones M is unknown, Aj ∈ C is a complex
weight consisting of the unknown amplitude and phase, Fj is the
unknown frequency of interest, and η(t) denotes additive Gaussian
noise. In [3, 4], deep networks are proposed that solve the line spec-
tral estimation problem with competitive performance. These net-
works give insight into the connections between a fundamental prob-
lem in signal processing and an emerging tool in machine learning.

The multiband signal identification problem generalizes the
model in (1), such that each component is supported over a contin-
uous narrow band in the frequency domain. Namely, y(t) has its
continuous-time Fourier transform, Y (F ), supported on a union of
several bands,

F =

M⋃
j=1

[Fj −Bj , Fj +Bj ], y(t) =

∫
F
Y (F )ei2πFtdF + η(t).

(2)
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Here Bj is the width of the band whose center is Fj . Such multi-
band signals arise in applications like radar imaging [5] and com-
munication [6]. Unfortunately, the deep networks in [3, 4] are not
designed to accommodate multiband signals. In addition, most deep
architectures [3, 4, 7, 8] for signal processing problems only allow a
fixed-length input signal, while leveraging extended samples for bet-
ter identification accuracy is characteristic of many signal processing
techniques like the discrete Fourier transform (DFT).

In this paper, we propose novel deep networks to tackle the
multiband signal identification problem while allowing for input sig-
nals of different lengths. After uniform and non-aliased sampling
with sampling interval Ts, the multiband signal has the form [9–11]

y =

M∑
j=1

Aja(fj)�
∫ Wj

−Wj

a(f)mj(f)df + η ∈ CN (3)

where a(f) = [ei2πf0, ei2πf1, · · · , ei2πf(N−1)]T , N is the length
of the observed samples, fj = TsFj ∈ [−0.5, 0.5) denotes the
band’s digital frequency center, Wj = TsBj 6= 0 denotes the digital
band width, andmj(f) is the envelope of the j-th band in the digital
frequency domain. Moreover, (.)T denotes the transpose operator
and � denotes the element-wise (Hadamard) product.

Given only the sampled signal vector y, the goal of this paper
is to estimate the number of bands M and the center frequency fj
of each band. This task is complicated by the fact that Fourier anal-
ysis techniques, when applied to the finite vector of samples y, are
plagued by the problem of spectral leakage: the boundaries of the
bands become smeared and bands can blend into one another.

1.2. Related Work

When all bands in the multiband signal have zero band width, our
problem reduces to line spectral estimation [1, 12]. When the band
widths are nonzero, however, those methods no longer apply. Most
of the research involving the multiband signal model studies the
signal sampling problem, in which the aim is to reconstruct the
time domain multiband signal using a minimal sampling rate [10,11,
13]. For example, [13] proposes periodic nonuniform sampling for
mutiband signal reconstruction when the number of bands is known,
[10] proposes a universal sampling pattern which requires the low-
est and highest frequencies and the occupancy rate of the bands, and
[11] studies sub-Nyquist sampling for spectrum-blind multiband sig-
nal recovery under a compressed sensing framework [14, 15]. More
sampling schemes are available in [16, 17]. Meanwhile, [9] studies
the multiband signal identification in the noiseless case, using dis-
crete prolate spheroidal sequences (DPSS) [18] to construct a sub-
space model for the active bands and employing these in an atomic
norm minimization framework [19, 20].

Deep learning has gained much attention in signal processing
[8, 21] due to its efficiency and promising performance. Relevant
to our work are [3, 4], which address line spectral estimation via
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deep architectures for sample vectors of a fixed size. Their networks
map the observed samples to a pseudo-spectrum [3], from which
the frequencies can be located by finding peaks. This mapping pro-
cess is inspired by atomic norm minimization methods [1, 9], which
take time-domain samples and solve for the dual polynomial. In this
paper, we extend these works to solve the multiband signal iden-
tification problem, and we allow for varying numbers of observed
samples. Our work shows the potential to design deep architectures
that enjoy both the efficiency of deep learning and the capability
of leveraging extended data points for better performance. Specif-
ically, we propose a novel multiband signal representation model,
which combines a long short-term memory (LSTM) [22] and con-
volutional neural network [23], to encode the observed samples and
map the encoded signal to a frequency spectrum representation. A
counting model is then applied to estimate the number of bands, M ,
based on the predicted spectrum. The bands’ centers can then be
automatically extracted from the M tallest peaks in the spectrum.

Our paper is organized as follows. In Section 2, we introduce the
proposed multiband signal representation and counting models for
multiband signal identification. Several numerical experiments are
conducted in Section 3 to evaluate the effectiveness of the proposed
method. We conclude this paper in Section 4.

2. PROPOSED METHOD

2.1. Multiband Signal Representation Model

For line spectral estimation, [3] demonstrates that predicting a fre-
quency spectrum which encodes the frequency information is more
effective than estimating the frequencies directly. Inspired by their
methodology and traditional atomic norm optimization methods [1,
24], where a dual solution is constructed and a frequency spectrum
can be plotted to locate the ground truth frequencies by correlating
the dual solution against exponential atoms of different frequencies,
our multiband signal representation model maps the observed signal
to a frequency spectrum (FS) representation. In the dual polynomial-
generated frequency spectrum, the ground truth frequencies would
have magnitude 1 just like the estimated frequency spectrum in [3]
and our work. An example of a length-50 observed signal, its length-
1000 over-complete DFT, the signal’s ground-truth bands, and the
target frequency spectrum for the deep network are shown in Fig. 1.
The target FS is a superposition of M Gaussian kernels, FS(f) =∑M
j=1K(f−fj) where each Gaussian kernel has the formK(f) =

exp(−f2/σ2
f ). We set σf = 0.006 as in [4] and note that there is a

trade-off between the resolution in the spectrum and the number of
informative non-zero values for network calibration. The discretized
FS is of length-1000 with circular periodization.

The architecture of the proposed multiband signal representation
model, termed DeepMultiband, is shown in Fig. 2. The input of the
model is [yR,yI ] ∈ RN×2 where yR and yI denote the real and
imaginary parts of the observed signal y and y = yR + iyI . Long
short-term memory (LSTM) [22] has achieved great success in han-
dling data of different lengths and is introduced in our model to deal
with varying length inputs (N is not fixed). However, an individ-
ual exponential signal sample can not provide valuable information
about the signal’s frequency. Thus, we add an input convolutional
layer, whose convolution kernel has the view of several consecutive
data samples, to embed the raw time series exponential signal data.
Intuitively, each embedded data point will contain the frequency and
noise information within its time window. The LSTM is then respon-
sible for examining all the embedded data and outputting a decon-
volution signal. Specifically, an input convolution layer with kernel

10 20 30 40 50
-3

-2

-1

0

1

2

3

Real part

Imaginary part

(a) Observed signal.

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

(b) Over-complete DFT.

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.05

0.1

0.15

0.2

(c) Signal’s ground-truth bands.

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

(d) Target frequency spectrum.

Fig. 1: An observed signal of 50 length at SNR 30 dB, whose
bands’ digital frequency centers are {−0.15, 0, 0.15} with digital
band width W = 3/N = 0.06. (a) The real and imaginary parts
of the observed signal. (b) The signal’s 1000 length over-complete
DFT. (c) The signal’s ground-truth bands. (d) The target FS.

size 20 (we assumeN ≥ 20) first encodes the observed samples into
a data bank of 30 channels, which results in an (N−20+1)×30 ma-
trix. An LSTM with hidden size 200 then processes each row of the
data matrix one at a time starting from the first row. After process-
ing all encoded data, the last hidden state of size 200× 1 is mapped
to an intermediate feature space with 32 channels by a linear trans-
formation. Intuitively, we expect that each feature channel encodes
a Fourier transformation-like spectrum as in the network proposed
in [4] for line spectral estimation. The transformed features are then
processed by 20 convolutional neural network (CNN) blocks of the
same structure but with different weights; the data preserves its size
through those CNN blocks. Each CNN block consists of a convo-
lution layer with kernel size 3 with circular padding to process the
local frequency information, a batch norm minimization to facili-
tate the training, and a rectified linear unit (ReLU) layer to impose
non-linearity. The structure of the CNN block in DeepMultiband
and counting model in Section 2.2 are inspired by [3, 4] but with the
hyper-parameters, e.g., the kernel size and number of feature chan-
nel, fine tuned based on the mutiband signals in our experiments.
Finally, a transposed convolution layer [25] with kernel size 12 and
stride 5 produces the estimated frequency spectrum of length 1000.

2.2. Multiband Signal Counting Model

Given the frequency spectrum estimated by a pre-trained DeepMulti-
band model, a counting model is trained to determine the number of
bands within the observed signal. The input of the counting model is
the estimated FS and the output is a single value that is rounded to the
nearest integer. The counting model consists of an input convolution
layer with 32 kernels of size 12 and stride 8, 20 CNN blocks as in-
troduced in Section 2.1 with the same setting, an output convolution
layer with kernel and output channel size 1, and a fully connected
layer that outputs the final value.
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Fig. 2: DeepMultiband, the multiband signal representation model.
The input and output sizes of the model and the data sizes between
the hidden layers are marked below.

3. NUMERICAL EXPERIMENTS

3.1. Experiment Setup

We generate the simulation data based on (3). The training, valida-
tion, and testing data sets contain 200000, 1000, and 1000 multi-
band signals, respectively. The length of each multiband signal, N ,
is uniformly selected from {25, 26, . . . , 50}, while the number of
bands, M , is uniformly selected from {1, 2, 3}. The bands’ digi-
tal frequency centers are uniformly sampled within [−0.5, 0.5) with
a minimal separation of 2W + 1/N so that they are not overlap-
ping; we study the case of overlapping bands in Section 3.4. All
bands have a fixed maximum digital band width W = 0.06 and 200
complex exponentials with frequencies uniformly sampled within
[fj −W, fj +W ] are summed together to generate the correspond-
ing signal component within the j th band. Each complex exponen-
tial’s amplitude is generated as (0.1 + |g|)eiθ , where g follows the
standard normal distribution and θ is uniformly selected in [0, 2π].
We train the DeepMultiband and counting models for 200 and 100
epochs, respectively, with batch size 256 and using the Adam algo-
rithm [26] with learning rate 0.001. In each epoch, we add additive
Gaussian noise to the multiband signal to yield an SNR drawn from
the uniform distribution over [0, 50] dB. The loss functions for the
DeepMultiband and counting models are the squared `2 error be-
tween the ground-truth and predicted FS, ||FSgt − FSpred||22, and
the squared error between the ground-truth number of bands and the
predicted number of bands, (Mgt−Mpred)

2, respectively. We train
DeepMultiband first and the counting model second based on the FS
predicted by a fixed-weight DeepMultiband.

Compared methods. Since the multiband signal identification
problem can be viewed as a generalized line spectral estimation
problem with a band convolution in the frequency domain, we im-
plement the PSnet [3] and DeepFreq [4] models, which to the best
of our knowledge are the state of the art deep architectures for line
spectral estimation, for comparison. Because PSnet and DeepFreq
take a fixed-length input, their networks are trained following the
same setting as our model but using a truncated input consisting of
the first 25 samples. In addition, for each compared deep model, a
counting model is also trained based on its predicted FS to deter-
mine the number of bands. When the bands are modeled using the
DPSS dictionary [18] in Section 3.5, we implement an atomic norm
minimization method proposed in [9].

Metrics. We analyze the performance of the proposed method
in terms of false negative rate (FNR), F1 score, and chamfer error.
Specifically, FNR is defined as the percent of undetected true band
centers. A successful detection is counted when there is a detected
band center within ±0.02 of a true band center. The F1 score is
calculated based on the precision and recall. The chamfer error [27]

between the ground-truth bands’ centers, f0 = {f1, · · · , fn1}, and
estimated centers, f̂ = {f̂1, · · · , f̂n2}, is 1

n1

∑
fi∈f0 minf̂j∈f̂ |fi−

f̂j |+ 1
n2

∑
f̂j∈f̂ minfi∈f0 |f̂j − fi|.

3.2. Effect Of The Signal Length

We first examine the capability of our model to handle different
lengths of signals. The results with different SNRs are recorded
in Fig. 3, where figures in the left column show different models’
performance on the testing dataset with signal lengths following the
uniform distribution over [25, 50]. Without retraining the models,
figures in the right column of Fig. 3 present the models’ perfor-
mance with signal lengths uniformly drawn from [100, 200]. We
observe that the DeepMultiband model outperforms other models at
the low to middle SNRs when the signal length is within [25, 50] and
outperforms those models across all SNRs when the signal length is
within [100, 200]. The results also show that the DeepMultiband
model can leverage extended samples to achieve better performance.
Note that when N increases, the minimum separation 2W + 1/N
reduces, which makes the identification problem harder. Taking a
fixed-size input limits the problem complexity that PSnet and Deep-
Freq models can solve, which explains the diminished performance.

3.3. Effect Of The Band Shape

We again generate each signal in the testing dataset with length uni-
formly drawn from [100, 200]. For each band in the testing dataset,
however, we evenly generate 200 exponentials within the band with
magnitudes gradually increasing from 0.1 to 0.2. This gives all
bands in the testing dataset a trapezoidal shape rather than the rect-
angular power spectrum used for training. Without retraining, the
performance of different models on this testing dataset is recorded
in Fig. 4. Although the performance of all models is slightly worse
compared to the results in the right column of Fig. 3, our method
still outperforms other models and achieves around 2% FNR, 0.98
F1 score, and 0.013 chamfer error when SNR is above 20 dB.

3.4. Multiband Signal With Overlapping Bands

To examine the effect of overlapping bands, we fix the number of
bands in each multiband signal to 3, where the first and second bands
have separation uniformly selected in [W, 2W ]. Thus, there exist
two bands with overlapping ratio uniformly drawn within [0%, 50%]
and another non-overlapping band that is at least 2W + 1/N sepa-
rated from them. Since the number of bands is fixed, no counting
model is needed. We retrain different representation models on this
distribution with a signal length uniformly selected from [25, 50]. In
Fig. 5, we record the performance of different models on the testing
dataset with overlapping bands and signal length uniformly selected
from [100, 200]. The results demonstrate that the DeepMultiband
model is robust to the overlapping bands and outperforms other mod-
els by a large margin over the whole range of noise levels.

3.5. Multiband Signal Modeled By DPSS

The DPSS dictionary [18] gives a collection of time-limited and
essentially band-limited functions. In this section, all bands in the
training, validation, and testing datasets are generated using the
DPSS dictionary of length 50 with W = 3/N = 0.06 and using the
2NW = 6 most band-limited sequences. Dictionary coefficients
follow the random normal distribution and are normalized to have
unit `2 norm. Thus, all observed samples have the same length of
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Fig. 3: The effect of the length of the observed signal. Figures (a),
(c), and (e) show the FNR, F1 score, and chamfer error of different
models for signal lengths uniformly selected in [25, 50]. (b), (d),
and (f) show the performance for signal lengths uniformly selected
in [100, 200] without retraining the models.
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Fig. 4: The effect of a nonrectangular power spectrum in each band.
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Fig. 5: Multiband signal with overlapping bands.

50, and we retrain our DeepMultiband model on this distribution.
The atomic norm minimization method proposed for multiband
identification in [9] involves solving for a dual polynomial, but it
does not include an estimator for the number of bands. Thus, the
ground-truth number of bands is provided in this experiment. The
performance of the atomic norm minimization method [9] and the
proposed DeepMultiband method on noiseless mutiband signals are
recorded in Table 1. Both methods perform very well in this case

Table 1: Noiseless multiband signal with bands modeled by DPSS.

FNR F1 score Chamfer error
AtomicNorm [9] 0.15% 0.9985 0.0009
DeepMultiband 0.07% 0.9993 0.0012

and achieve less than 0.2% FNR, over 0.99 F1 score, and around
0.001 chamfer error. It is worth noting, however, that our model
is trained on the noisy dataset and thus is applicable to different
noise levels, while [9] assumes a noiseless observation. Moreover,
measured on an i7-6700 CPU, the DeepMultiband model only takes
around 1.5 seconds to predict the frequency spectrum for 1000
multiband signals of length 50, which is similar to DeepFreq and
PSnet but more than two orders of magnitude faster than the atomic
norm-based method [9] using CVX [28].

4. CONCLUSION

In this paper we solve the contaminated multiband signal identifica-
tion problem via deep learning. A novel deep architecture, Deep-
Multiband, is proposed to map the observed varying-length multi-
band signal to a frequency spectrum; a counting model then de-
termines the number of bands. Based on the estimated frequency
spectrum and number of bands, the bands’ centers can be identified
automatically. Our experiments verify the effectiveness and robust-
ness of the proposed method, which outperforms other state of the
art deep architectures for line spectral estimation under a range of
noise levels and is more than two orders of magnitude faster than
atomic norm minimization.
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