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Abstract—Damped exponentials appear naturally in a wide
range of applications including structural health monitoring
and electric machine fault detection. In this paper, given finite
time-domain samples of composite, contaminated damped expo-
nentials, we propose novel deep architectures to estimate the
number of exponentials and recover the frequency and damping
coefficient of each exponential. In our architecture, a damped
exponential representation model maps time-domain samples to
a frequency-damping spectrum representation, while a counting
model then counts the number of exponentials. Combining the
spectrum representation and the estimated number of expo-
nentials, the frequencies and damping coefficients of the expo-
nentials can be recovered automatically. Altogether, this yields
an efficient learning-based method for parameter estimation of
contaminated damped exponentials. Our experiments indicate
that the proposed method is very effective and can robustly
handle exponentials with close or even overlapping frequencies
(resp. damping coefficients) as long as the damping coefficients
(resp. frequencies) are sufficiently separated.

Index Terms—Damped exponentials, deep learning, parameter
estimation, signal decomposition

I. INTRODUCTION

Advances in deep learning have led to a growing under-
standing of how to design networks for solving sparse recovery
and estimation problems [1]-[4]. Recently, powerful deep
networks [3], [4] have been designed for solving one of the
most canonical sparse signal processing problems: estimating
sinusoidal frequencies in line spectral estimation. The demon-
strated performance is competitive with traditional methods
such as MUSIC [5]. Meanwhile, the problem of estimating the
frequencies and damping coefficients of damped exponentials
from finite time-domain samples has wide applications, like
structural health monitoring [6], [7] and fault detection [8],
[9]. Unfortunately, this problem is more complicated than line
spectral estimation, and the previous networks [3], [4] cannot
accommodate the damped signal model. In this paper, inspired
by [3], [4], we design novel deep architectures to estimate
the number of exponentials and recover the frequency and
damping coefficient of each exponential. Our work adds to the
growing science of deep network design for signal processing.

A. Estimation Of Contaminated Damped Exponentials

Suppose a system observes a composite signal consisting of
a linear combination of M (unknown) damped exponentials:

where each A; € C is a complex weight incorporating the
unknown magnitude and phase of the j-th exponential, and
7n(t) is additive Gaussian noise of unknown variance. By taking
N samples of y(t) with sampling interval T, we obtain a
vector y € CV whose n-th entry is

y(n) = Aje T ST (1)
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where, without loss of generality (assuming non-aliased sam-
pling), we take 7, = 1 and restrict the active frequencies
fj € [—0.5,0.5). We assume N = 50 and each damping coef-
ficient o¢; € [0,0.1], so that a maximally damped exponential
(o = 0.1) will see its amplitude decay by approximately 100 x
between its first and last sample.

Given the sample vector y, our goals are to determine the
number of exponentials M and to recover the corresponding
frequency f; and damping coefficient a; of each exponential.

B. Related Work

When all a; = 0, our problem reduces to line spectral
estimation [10], [11]. However, when damping is present,
line spectrum estimation methods no longer apply. To take
damping into account, several methods relying on the discrete
Fourier transform (DFT) are proposed in [12]-[15]. These
methods, however, assume either a single sinusoid or multiple
sinusoids with well-separated frequencies. Some least square
methods leveraging sparse techniques [16]-[22] are proposed
in [23]-[25], which iteratively refine the estimated parame-
ters and system order but are computationally cumbersome.
Alternatively, two efficient time-domain approaches that al-
low exponentials with overlapping frequencies but separated
damping coefficients are Prony’s method [26], which solves a
polynomial whose roots encode the parameters, and the matrix
pencil method [27], [28], which constructs a matrix pencil
based on the observed signal and then solves a generalized
eigenvalue problem. However, the polynomial and matrix
pencil methods require prior knowledge of the system order.
And approaches such as Akaike information criterion (AIC)

M o [29], minimum description length (MDL) [30], and second-
y(t) = Z Ajemitem it 4(t), (1) order statistic of eigenvalues (SORTE) [31] are proposed to
J=1 estimate the system order.
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Deep learning has attracted significant interest due to its
efficient end-to-end processing and competitive performance
[2], [32]-[35]. Many deep architectures have been proposed
for sparse recovery of different signal models [1]-[4], [36]. Of
particular interest are deep neural networks such as DeepFreq
[3] and PSnet [4] that achieve superior performance for line
spectral estimation and [36] that extends the work of [3], [4]
to multiband identification. However, those works assume no
damping.

In this paper, we extend the works of [3], [4] by taking
damping into account, and our work shows the potential
for applying deep learning to a more complex sparse signal
processing problem. Specifically, we propose a novel damped
exponential representation model that maps the observed
signal to a two-dimensional frequency-damping spectrum,
in contrast with the one-dimensional frequency spectrum in
[3], [4]. Moreover, to boost the performance in estimating
exponentials with very close or overlapping frequencies but
different damping coefficients, we propose a novel two-branch
structure in the representation model to extract the frequency
and damping information. We also propose a counting model
to determine the number of exponentials, M, based on the es-
timated frequency-damping spectrum. Finally, the frequencies
and damping coefficients can be extracted from the M peaks
with the largest magnitudes in the spectrum.

The rest of the paper is organized as follows. In Section II,
we propose the damped exponential representation model and
counting model for parameter estimation of contaminated
damped exponentials. In Section III, several experiments are
conducted to evaluate the performance of the proposed net-
works and we conclude this paper in Section IV.

II. PROPOSED METHODOLOGY
A. Damped Exponential Representation Model

In applying deep learning to line spectral estimation, [4]
shows that nonparametrically predicting the frequency spec-
trum is more effective than parametrically predicting the
frequencies directly. Inspired by that approach, our damped
exponential representation model aims to map the observed
signal to a nonparametric frequency-damping spectrum (FDS).

More specifically, the input of our representation model
s [yh,yF]T € R?N where (.)7 is the transpose operator.
yr and y; are the real and imaginary parts of the observed
signal y = ygr + iy;. Based on the ground-truth parameters
{(f1,01), (f2,2),...,(far,apr)} of the exponentials con-
tained in an observed signal, the ground-truth FDS is defined
to be the superposition of M generalized 2D Gaussian kernels,

FDS(f,a ZKf fira—ay) 3)

where the kernel has the form K(f, «) = e (£2/og+a?/al)
Larger values of the standard deviations oy and o, allow
for more informative non-zero values backpropagated during
calibration but at the cost of lower resolution. In this paper,
we set N = 50, oy = 0.9/N, and 0, = 0.45/N. The
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(a) The real and imaginary parts of the observed signal.
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Fig. 1: A noisy observed signal consists of three damped exponen-
tials whose parameters (f;, ;) are (—0.2,0.04), (0.0,0.02), and
(0.3,0.08) respectively. The observed signal’s real and imaginary
parts are shown in (a) and its frequency-damping spectrum is shown in
(b). We pad the spectrum with damping coefficient values smaller than
0 and greater than 0.1.
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Fig. 2: The Dank model for damped exponentials. Each convolutional
neural network (CNN) block consists of a convolution layer with
kernel size 6 and circular padding and a batch normalization layer
followed by the rectified linear unit (ReLU). The sizes of linear
encoders, model’s input and output, and each CNN block are marked.

Gaussian kernel applied in the FDS enforces the fact that a
close estimate is more valuable than estimates far from the
ground-truth. Since we use the squared error loss function to
train the network, when the Gaussian kernel is applied, the loss
function value for a close estimate is smaller than an estimate
far from the ground-truth. If the observed signal has more than
50 samples, our network could use the first 50 samples. An
example of the input and output of the representation model
is shown in Fig. 1, in which the discretized FDS is of size
30x100. To account for periodicity in the frequency parameter
f, we use a circular extension of the frequency axis. Since no
such periodicity exists for the damping coefficient, we pad the
spectrum with « values smaller than O and greater than 0.1.
With this discretization, the resolution of f and « are 0.01
and 0.005, respectively.

The structure of our representation model, which we term
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Dank (deep + damp), is shown in Fig. 2. We first linearly
encode the input signal to an intermediate feature space of
60 channels. Then several convolution neural network (CNN)
blocks consisting of a convolution layer with kernel size
6 and circular padding, a batch normalization layer [37],
and a rectified linear unit (ReLU) layer further process the
features. Despite the differences in the size of the feature
channel, convolution kernel, and padding, the structure of the
feature encoder and CNN block are inspired by the DeepFreq
[3] and PSnet [4], respectively, which are designed for line
spectrum estimation. [3] finds that the learned feature en-
coder for undamped exponential signals implements a Fourier-
like transformation and based on that, the localized kernel
in the convolution layer can accurately locate the sinusoid
frequencies. However, the Fourier transform of a damped
exponential is a generalized Dirichlet kernel parameterized
by « [38], which suggests that a fixed size localized con-
volution kernel is not appropriate. Moreover, to enable the
identification of exponentials with overlapping frequencies but
separated damping coefficients, we introduce a novel two-
branch network structure. In particular, the top branch (see Fig.
2) implements the convolution vertically as in the PSnet [4] to
locate the frequencies, while the bottom branch implements the
convolution horizontally to estimate the damping coefficients
utilizing the information from the whole feature channel.
Finally, the transposed convolution [39] decoders with kernel
size 1 produce the estimated spectrum.

B. Damped Exponential Counting Model

Based on the predicted FDS, we train a counting model
to determine the number of valid damped exponentials in the
observed signal. Specifically, the input of the counting model
is the estimated FDS and the output is a single value to be
rounded to the nearest integer. Based on the estimated system
order M, the frequency and damping coefficients are then
extracted from the M peaks having the largest magnitudes in
the input spectrum. Since the system order should be invariant
to the translation of the peaks in the FDS, the counting model
consists of 20 CNN blocks introduced in Section II-A followed
by a convolution layer with output channel and kernel size 1
and a fully connected layer to predict the final value.

III. NUMERICAL EXPERIMENTS
A. Experiment Setup

To validate our approach, we generate simulation data based
on (2). The training, validation, and testing datasets consist of
200000, 1000, and 1000 composite signals, respectively. For
each signal, N = 50, M is uniformly selected from 1 to 5, and
Aj = (0.1 + |g|)e'®, where g follows the standard Gaussian
distribution and 6 is uniformly selected in [0, 27]. All pairs of
frequencies and damping coefficients are required to satisfy
at least one minimum separation condition between the pair
of frequencies (4/N) or damping coefficients (0.04). First,
the frequency f; and damping coefficient a; are selected uni-
formly in the range of [—0.5,0.5) and [0.0,0.1], respectively.
When M > 2, the second exponential is generated to have

Gounting model (Dank)
= § = Counting model (DeepFreq)
Counting model (PSnet)

SNR (dB)

SNR (dB)

(a) False negative rate. (b) Counting accuracy.

Fig. 3: Performance of Dank and counting models.

its frequency close to the frequency of the first exponential.
Specifically, fo = fi1 + u where u is uniformly selected
in [-1/N,1/N]. Thus, the first and second exponentials
have very close or overlapping frequencies but well-separated
damping coefficients (due to the separation condition). We
apply the same procedure for generating the third and fourth
exponentials if M > 4. Moreover, exponentials with well-
separated frequencies may have very close or overlapping
damping coefficients. We train the proposed Dank model by
applying the Adam algorithm [40] for 200 epochs, minimizing
the squared ¢y error between the network estimated FDS
and the ground-truth FDS, ||[FDS.s; — F DS, ||3. The initial
learning rate is 0.0003 which reduces by half when the loss
function does not decrease for 3 consecutive epochs on the
validation set. The batch size is 256. During each epoch, we
add scaled Gaussian noise to the signals so that the SNR for
each example is chosen uniformly at random between O and
50 dB. The counting model is trained using a fixed-weight
representation model to generate the FDS and following the
same training setup with 100 epochs. Similarly, the counting
model’s loss function is the squared /> norm error between
the network output and the ground-truth system order.

B. Performance Of Dank And Counting Models

We first validate the performance of the Dank representation
model in terms of the false negative rate (FNR) given the
ground-truth number of exponentials for each observed signal.
A successful recovery is counted for a damped exponential
when the frequency and damping coefficient errors are both
smaller than 1/N. In addition, we compare the proposed
Dank model to several representative methods: DeepFreq [3],
PSnet [4], total-least-squares (TLS) matrix pencil [27], TLS
Prony’s method [41], and RELAX [23] which minimizes a
nonlinear least squares problem. Note that because the original
DeepFreq [3] and PSnet [4] only concern the frequency
spectrum, we modify their final layers by changing the output
dimension so that they too can predict the FDS. We train these
networks following the same training setup as our model.
The results are recorded in Fig. 3 (a). The proposed model
outperforms other methods in the low to medium SNR regimes
and achieves less than 3% FNR when SNR > 35 dB.

We also examine the system order estimation performance
of the proposed counting model, which determines the number
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of exponentials based on the FDS estimated by the pre-trained
Dank model. We compare with the AIC [29], MDL [30], and
SORTE [31] methods which estimate the system order based
on the signal covariance matrix. Moreover, we train separate
counting models of the same structure using the FDS estimated
by DeepFreq [3] and PSnet [4] respectively. The results are
shown in Fig. 3 (b). We observe that our counting model
outperforms the covariance matrix based methods except at
high SNR, and the quality of the predicted spectrum has a
great impact on the counting accuracy.

C. The Overall Performance Of The Combined Models

We assess the overall performance of the combined models
in terms of the F1 score and root mean square error (RMSE).
Based on the success recovery criteria in Section III-B,
we calculate the PRECISION and RECALL and define
the F1 score to be 2/(PRECISION~! + RECALL™?!).
Moreover, for each ground-truth exponential, we calculate the
recovery errors of the frequency and damping coefficient. Then
the RMSEs of the frequency and damping coefficient are
calculated based on the recovery errors of all ground-truth
exponentials in the testing dataset. We combine the system
order estimation method AIC with the matrix pencil, Prony’s
method, and RELAX method and the DeepFreq and PSnet
with their trained counting models for comparison. The results
are recorded in Fig. 4. We see that, in terms of FI score,
the proposed method outperforms other deep learning methods
over the whole range of SNRs and the traditional methods by a
large margin in low to medium SNRs. And in terms of RMSE,
although the traditional methods and proposed method achieve
comparable performance for frequency estimation, our method
is much more effective in estimating the damping coefficients
in low to medium SNRs. Results show that our method can
robustly handle damped exponentials with close or overlapping
frequencies and well-separated damping coefficients.

D. Without Overlapping Frequencies And Real Data

In this section, we generate a synthetic signal with-
out overlapping frequencies based on a measured nuclear
magnetic resonance (NMR) signal in [25]. We set M =
3, (f1,f2,fs) = 1(0.078,0.196,0.287), (a1,aa,a3) =
(0.015,0.023,0.017), (|A1], |Az|, |As]) = (7.09,2.31,5.98) x
10%, and (LA, LAy, ZA3) = (—0.102,—0.283, —0.173) x
27w. We add complex Gaussian noise with zero mean and
different variances, cr%, and we define the magnitude-to-noise
ratio ¥ = 10log, (Zﬁl |A;? /032. The ground-truth sys-
tem order, 3, is provided for all methods and we record their
accumulated RMSE in Fig. 5. The accumulated RMSEs of
frequency and damping coefficient are defined as the sum
of the RMSE of (f1, f2, f3) and (a1, as,a3) respectively
across 1000 trials. The Cramér-Rao Lower Bound (CRLB)
is calculated based on [23]. The 2-D cubic interpolation is
applied to the estimated FDS by Dank for better accuracy. We
observe that when there are no exponentials with overlapping
frequencies, our method has a comparable performance to
traditional methods. In addition, measured on a system with
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Fig. 4: The overall performance of the combined models.
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Fig. 5: Damped exponentials without overlapping frequencies.

17-6700 CPU and GTX 1080 GPU, Dank takes around 2.05
seconds to process 1000 signals of length 50. In contrast,
matrix pencil, the Prony’s method, and RELAX method take
0.87, 0.22, and 11.02 seconds respectively. Although Dank is
efficient in testing, it takes around eight hours to train.
Finally, we examine the reconstruction error of different
methods in a real data experiment. Specifically, we hang an
iPhone from a 1 centimeter line, release the phone from
a 45 degree initial position, and record its accelerometer
data. The recorded data is real-valued; we pass Os as the
imaginary part to the input of Dank. Based on the rank of
the Hankel matrix formed by the recorded data [9], we set
the system order to be 5 for all methods. We then attempt to
reconstruct the data based on the parameters estimated by each
method. And the average relative reconstruction errors among
10 trials for Dank, matrix pencil, Prony’s method, and RELAX
method are 12.8%, 10.5%, 13.6%, and 8.3% respectively. This
demonstrates the effectiveness of Dank on real data.

IV. CONCLUSION

We apply deep learning to the parameter estimation prob-
lem for contaminated damped exponentials. We propose two
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novel networks, the Dank representation model and the cor-
responding counting model, to map the observed signal to an
FDS and subsequently determine the number of exponentials
based on the estimated spectrum. Experiments show that the
proposed approach can handle composite signals of damped
exponentials with () very close or overlapping frequencies
(resp. damping coefficients) but different damping coefficients
(resp. frequencies) and (#¢) contamination by Gaussian noise
at varying noise levels.
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