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Abstract—Constant communities, i.e., groups of vertices that
are always clustered together, independent of the community
detection algorithm used, are necessary for reducing the inherent
stochasticity of community detection results. Current methods
for identifying constant communities require multiple runs of
community detection algorithm(s). This process is extremely time
consuming and not scalable to large networks. We propose a novel
approach for finding the constant communities, by transforming
the problem to a binary classification of edges. We apply the
Otsu method from image thresholding to classify edges based
on whether they are always within a community or not. Our
algorithm does not require any explicit detection of communities
and can thus scale to very large networks of the order of
millions of vertices. Our results on real-world graphs show that
our method is significantly faster and the constant communities
produced have higher accuracy (as per F1 and NMI scores) than
state-of-the-art baseline methods.

Index Terms—Constant communities, Otsu method, multi-Otsu

I. INTRODUCTION

Community detection, i.e., finding clusters of tightly con-
nected vertices, is a fundamental problem in network analysis
with diverse applications from finding genes with similar
functions to tracking terrorist cells via social networks.
Stochasticity in community detection. Community detection
algorithms are typically based on optimizing parameters, such
as modularity or entropy and are NP-complete. Clusters ob-
tained through community detection can differ based on the
methods used, choice of parameters, and even the order of the

vertices. It is difficult to separate the algorithm artifacts from
the information about the network structure. A critical problem
in community detection is how to reduce the stochasticity and
produce reliable results.
Constant communities. Stable clusters can be obtained by
identifying constant communities [1]. Constant (or consensus)
communities are groups of vertices that are always clustered
together for all non-trivial community detection algorithms,
and thus form the stable and invariant subset of the possible
reasonable community detection results.

Current methods for finding constant communities require
the results from multiple community detection algorithms (or
the same algorithm with different parameters). This process
is expensive in terms of time and memory and consequently,
current methods do not scale to large networks.
We address this challenge by developing efficient algo-
rithms for finding constant communities that are based
on the binary classification of edges and can scale to large
networks with an order of millions of vertices.
Our contribution and key ideas. We present a scalable
and efficient method for identifying constant communities by
transforming this problem into a binary classification task. Our
method is based solely on the local structural properties of the
edges and, requires no communities as input. Our algorithm
is based on these two key ideas;

First, for each edge, we obtain a set of four features based
on how well the neighbors of the endpoints are connected with
each other. Using these features, we identify how likely the
edge will be a within-community edge.

Second, we apply variations of Otsu’s algorithm [2], a
method for thresholding images, to obtain a binary classifi-
cation of the edges based on these features. Otsu’s algorithm
allows for completely unsupervised classification, thus no
information about community structure is needed a-priori. This
reduces the execution time of our algorithm drastically.
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Evaluation. We use three metrics to evaluate our results.
First, using F1-score we show that our methods outperform the
most competitive baselines. Second, we reconstruct the con-
stant communities based on the classified edges and compare
with the ground truth communities. Our method obtains higher
or comparable NMI (Normalized Mutual Information) scores
to the other baseline methods. Third, we report the execution
time. We are 10 times faster than the baseline algorithms for
the smaller networks. On large networks, our methods finish
in a few hours to a day, while the baseline methods did not
finish even after running for several days.

II. OVERVIEW OF OTSU’S ALGORITHM

Binary Otsu. Otsu’s binary classification [2] is used to bina-
rize grayscale images such that the object in the foreground
can be distinguished from the background. The output is
a single intensity threshold that separates pixels into two
classes: foreground and background. To determine this optimal
threshold, the threshold values are adjusted to maximize the
variance in intensity between the two classes.
Multi-level Otsu. As shown in Figure 1, the single threshold
based binarization may not always yield the best results. In this
case, Otsu’s binary-level thresholding [2] can be extended to
multi-level thresholding [3], to determine multiple thresholds
to segment an image into clusters and recognize the various
parts. We have used the Two-Stage Multi-threshold Otsu
algorithm (TSMO) [3].

Fig. 1: Otsu’s binarization and multi-level techniques to obtain
a threshold that delineates the foreground of an image from its
background. Binarization (bottom left) may not always give the
desired result. Here the flower (object) has not been delineated from
its background. Multiple thresholds may be required for an improved
object-background delineation (right side figures).

III. APPLYING OTSU’S METHOD FOR FINDING CONSTANT
COMMUNITIES

We describe how we applied Binary and TSMO (henceforth
called Multi-Otsu) for finding constant communities, using
the following steps. A schematic diagram is given in Figure 2.

Fig. 2: The steps for finding the constant communities.

A. Step 1: find features for classifying each edge

The likelihood that an edge (u, v) will always be within
a community is determined by the connections between the
neighbors of the endpoints. Let N(v) be the set of neighbors
of vertex v; ∆(v) be the set of triangles that contain vertex v;
Γ(X), be the density of the subgraph induced by the vertices
in set X . We classify an edge (u, v), based on these features;
• Density of the subgraph induced by neighbors of both u

and v; Dboth(u, v) = Γ(N(v) ∩N(u)).
• Density of the subgraph induced by u and v and their

neighbors; Dany(u, v) = Γ(N(v) ∪N(u)).
• Ratio of the triangles containing both endpoints to those

containing at least one; Dtri(u, v) = |∆(u)∩∆(v)|
|∆(u)∪∆(v)| .

• Jaccard index of the neighbors; JI(u, v) = |N(v)∩N(u)|
|N(v)∪N(u)| .

B. Step 2: create frequency distribution of features.

Let B100 be the set of edges that are always within a
community, and B0 be the remaining set of edges, that may
or may not be within communities. An edge is classified into
B100 if any of the following conditions hold.
(i) the percentage of common neighbors is high (i.e., high JI)
and also the density of the subgraph induced by them is high
(i.e., high Dboth). The edge has many common neighbors,
and the neighbors and the edge form a dense subgraph.
(ii) the density of the subgraph induced by all the neighbors
of u and v is high (i.e., high Dany).
(iii) the ratio of the number of triangles containing both
endpoints, to the number of triangles with at least one
endpoint is high (i.e., high Dtri). The edge supports many
triangles, thus its endpoints are likely to be co-clustered.

C. Step 3: classification of edges using Otsu

We now use Otsu to find a threshold to classify the values
of edges as high and low.

Classification using binary Otsu (Algorithm 1). We find
the optimal threshold for each feature, and then classify the
edges as per the rules in Section III-B. A feature has high
value if the value is higher than the computed threshold.
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Algorithm 1: Edge classification using binary Otsu
method.

Input : The network G(V,E). Feature sets Dboth, Dany, Dtri and JI
consisting features for all the edges.

Output: Edges classified into B100 (in constant community) or B0 (not in
constant community).

/* Generate histograms and compute optimal threshold
via Otsu’s method */

[TDboth
]← OtsuMethod(Dboth)

[TDany ]← OtsuMethod(Dany)
[TDtri

]← OtsuMethod(Dtri)
[TJI ]← OtsuMethod(JI)
/* Classify the edges */
B100← Φ; B0← Φ;
forall e ∈ E do

if ((Dboth(e) >
TDboth

2 AND JI(e) >
TJI
2 ) OR

(Dany(e) > TDany OR Dtri(e) >
TDtri

2 ) then
B100← B100 ∪ e

else
B0← B0 ∪ e

Algorithm 2: Edge classification using multi-Otsu.
Input : The network G(V,E), Feature sets Dboth, Dany, Dtri and JI

consisting features for all the edges.
Output: Edges classified into B100 (constant community) or B0 (not constant

community).
/* Generate histograms and compute multiple thresholds

list via Multi-Otsu’s method */
Tboth set ← MultiOtsuMethod(Dboth)
Tany set ← MultiOtsuMethod(Dany)
Ttri set ← MultiOtsuMethod(Dtri)
TJI set ← MultiOtsuMethod(JI)
/* Compute cross product of the sets for possible

combinations */
Tcomb ← CrossProd(Tboth set, Tany set, Ttri set, TJI set)
/* Calculate the optimum threshold */
RL Ratio← Φ
forall (Tboth, TJI , Tany, Ttri) ∈ Tcomb do

right← max(min(getRight(Tboth/2), getRight(TJI/2)),
getRight(Tany), getRight(Ttri/2))
left← |E| − right
RL Ratio← RL Ratio ∪ (1− right

left )

/* Choose combination for which value of RL_Ratio is
minimum */

(T∗
both, T

∗
JI , T

∗
any, T

∗
tri)←

getOptimumThreshold(Tcomb, RL Ratio)
/* Classify the edges. */
B100← Φ; B0← Φ;
forall e ∈ E do

if ((Dboth(e) >
T∗
both
2 AND JI(e) >

T∗
JI
2 ) OR

(Dany(e) > T∗
any OR Dtri(e) >

T∗
tri
2 ) then

B100← B100 ∪ e

else
B0← B0 ∪ e

Classification using multi-Otsu (Algorithm 2). Applying
Multi-Otsu to test all combinations of the thresholds and
features is computationally expensive. For k thresholds and
4 features, O(k4) combinations should be checked. For com-
putationally feasible classification, we compute the thresholds
for each feature separately, rather than in combination.

For each threshold, we group edges based on whether
they are higher or lower than the threshold. Given a strong
community structure, the number of edges within communities
should be at least as much as the number of edges across
communities. As a first cut, we identify the optimal threshold
as one that produces an almost equal number of edges on the

left (lower) and right (higher) sides.
Classification using iterative multi-Otsu. The thresholds

obtained by Algorithm 2 provide a lower bound on the number
of within-community edges. To further improve the accuracy,
we apply Multi-Otsu iteratively on the edges in B0. We
apply Algorithm 2 to find the optimal threshold on the edges
remaining in B0 and obtain a new division of B0 and B100.
We continue this iteration until the change in threshold is ≤ δ,
(we set δ = 0.01) and no new edges move from B0 to B100.
We call this method Multi-Otsu iterative.

Handling singleton communities The subgraph indu-ced
by the edges in B100 provides the constant communities. Some
communities may be singletons, i.e. composed of one vertex.
For a singleton vertex of degree 2, if both the neighbors are in
the same community, we move the vertex to that community.
If the neighbors are in different communities, the vertex is
moved to any one of the communities.

This heuristic gives a slightly higher F1-score, but the
accuracy decreases if applied to vertices of higher degree. This
is because the probability of a singleton being in a community
decreases with the number of neighboring communities.

IV. EXPERIMENTAL SETUP

Datasets and Ground Truth. We used a set of real-world
networks as given in Table I. To obtain ground truth, we exe-
cuted 50 runs of a community detection method per network.
At each execution, we permuted vertex order to change the
community results. The communities that were common to
all of these runs were designated as the constant community
ground truth, for the given community detection method.

For small networks, we created ground truth for three
community detection algorithms; the Louvain method [4], the
Infomap method [5] and the Label Propagation method [6].

Executing multiple runs was too expensive on medium
(10K+ nodes and 10K+ to 1M+ edges) and large (1M+ nodes
and 1M+ to 10M+ edges) networks. We created ground truths
only for Louvain, the fastest of the three methods.

Name Vertices Edges
Small-size n/ws

Football [7] 115 1226
Jazz [7] 198 2742
Dolphin [7] 62 159
Email [8] 1133 5451
Karate club [7] 34 77
Polbooks [7] 105 441

Medium-size n/ws
Co-authorship [9] 103,677 352,183
Com-dblp [10] 317,080 1,049,866
Com-amazon [10] 334,863 925,872

Large-size n/ws
Com-Youtube [10] 1,134,890 2,987,624
Com-LiveJournal [10] 3,997,962 34,681,189
Wiki-topcats [10] 1,791,489 28,511,807

TABLE I: The test suite of real-world networks.

V. EMPIRICAL RESULTS

We compare our proposed methods: (i) Binary-Otsu; (ii)
multi-level Otsu thresholding (Multi-Otsu); (iii) iterative multi-
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Method GT Small-size graphs (F1-Scores)
Football Jazz Email Dolphin Karate Polbooks

Binary-
Otsu

Louvain 0.97 0.78 0.73 0.88 0.82 0.87
Infomap 0.97 0.92 0.73 0.89 0.90 0.88
LP 0.96 0.89 0.72 0.79 0.90 0.89

Multi-Otsu
Louvain 0.96 0.81 0.73 0.88 0.84 0.88
Infomap 0.93 0.81 0.70 0.86 0.93 0.88
LP 0.92 0.84 0.68 0.87 0.94 0.89

Multi-Otsu
iterative

Louvain 0.96 0.82 0.75 0.88 0.85 0.88
Infomap 0.94 0.81 0.70 0.87 0.94 0.88
LP 0.93 0.84 0.68 0.87 0.94 0.89

Multi-Otsu
iterative+SC

Louvain 0.96 0.82 0.75 0.88 0.85 0.88
Infomap 0.94 0.79 0.70 0.87 0.94 0.88
LP 0.93 0.84 0.68 0.87 0.94 0.89

Consensus
(cp=2%)

Louvain 0.92 0.74 0.30 0.85 0.78 0.71
Infomap 0.99 0.79 0.77 0.87 0.94 0.89
LP 0.91 0.88 0.37 0.70 0.52 0.76

Consensus
(cp=4%)

Louvain 0.90 0.74 0.29 0.85 0.78 0.71
Infomap 0.99 0.80 0.77 0.87 0.94 0.89
LP 0.92 0.88 0.36 0.71 0.52 0.76

Consensus
(cp=8%)

Louvain 0.90 0.74 0.29 0.85 0.77 0.71
Infomap 0.97 0.79 0.77 0.87 0.94 0.89
LP 0.92 0.87 0.36 0.70 0.53 0.76

CHAMP
Louvain 0.97 0.88 0.74 0.89 0.87 0.87
Infomap 0.15 0.54 0.64 0.34 0.40 0.65
LP 0.61 0.65 0.23 0.38 0.6 0.47

TABLE II: Performance of different methods for obtaining constant communities for small networks. Green cells indicate the highest
F1-scores results, blue cells indicate the second highest and red cells indicate the worst results (for Consensus method cp is the convergence
percentage; in Multi-Otsu iterative+SC, SC stands for singleton communities).

Method GT Medium- and large-size graphs (F1-scores)
com-dblp coauthorship com-amazon com-youtube wiki-topcats com-liveJ

Binary-Otsu Louvain 0.75 0.89 0.73 0.54 0.39 0.54
Multi-Otsu Louvain 0.75 0.91 0.87 0.55 0.61 0.75
Multi-Otsu iterative Louvain 0.75 0.91 0.87 0.68 0.63 0.78
Multi-Otsu iterative+SC Louvain 0.75 0.91 0.87 0.81 0.65 0.79

Consensus(2%) Louvain X 0.70 X X X X

CHAMP Louvain X X X X X X

TABLE III: Performance of different methods for obtaining constant communities for million scale networks. Green cells represent the
highest F1-scores, blue cells indicate the second highest and red cells indicate worst results. X: The process did not end within a sizable
amount of time. In Multi-Otsu iterative+SC, SC stands for singleton communities.

level Otsu thresholding (Multi-Otsu iterative) with these base-
line methods; the consensus community algorithm in [11]
and the CHAMP method from [12]. The average results from
several runs are reported. The algorithms were executed on
an IntelXeon(R) Processor with CPU E3-1270 V2, speed
3.50GHz×8, and 32 GB Memory. All relevant codes are at
https://github.com/anjangit000/ImgThAlgoConsComm
Accuracy with respect to the ground truth. We compared
the set of edges classified as part of constant communities
with the edges that are internal to constant communities as
per the ground truth. Table II shows the F1-score for the small
networks and Table III for medium and large networks. The
results show that our methods almost always produce the
highest F1-score for all three algorithms.
Overlap with the ground truth communities. We obtained
the connected components induced by the edges predicted to
be in constant communities. These components form the pre-
dicted constant communities. We compute the NMI between
these predicted constants and those obtained from the ground
truth. Table IV shows that our results are comparable or
better than the baseline methods.
Execution time. Table V shows the execution time for ob-
taining constant communities using our algorithms and the

baselines for the small networks. Our algorithms are ≈ 10
times faster. For medium and large networks (see Table V),
our algorithms are fast even for networks with 10M+ nodes
and 100M+ edges. The baseline methods take either a huge
time to finish or do not complete within a feasible time frame.

VI. RELATED WORK

Community detection is well-studied and numerous algo-
rithms exist (see survey [13]). However, finding constant
communities is less studied. Newman [14] shows that clus-
terings leading to optimum parameter values are similar and
built from nodes that are usually found together in the same
community. In [1] properties of constant communities are
studied with respect to within community and across commu-
nity edges. In [15] authors use a greedy approach(consensus
matrix) to produce consistent and stable partitions. Variations
include [11], [12], [16]–[20]. Nevertheless, as seen here, these
are not yet fast for large networks.

VII. CONCLUSIONS AND FUTURE WORK

We developed an efficient algorithm, using variants of
the image thresholding techniques to classify the edges, for
identifying constant communities that scale to large networks.
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Method Networks
football jazz email dolphin polbook karate com-amazon com-dblp coauthorship youtube wiki-top

Our method with best F1 0.97 0.82 0.71 0.86 0.85 0.91 0.82 0.79 0.80 0.76 0.67
Consensus with best F1 0.96 0.77 0.77 0.86 0.80 0.90 X X 0.63 X X
CHAMP with best F1 0.97 0.83 0.71 0.77 0.79 0.91 X X X X X

TABLE IV: Comparison of NMI. Best results are highlighted in green and the worst in red.

Method All networks
com-
dblp

co-
author-
ship

com-
ama-
zon

com-
youtube

wiki-
topcats

com-
liveJ

Binary-Otsu 19.26s 6.17s 1m10s 8m12s 16h04m 10h23m
Multi-Otsu 23.29s 6.47s 1m12s 10m12s 17h03m 12h21m
Multi-Otsu it-
erative

24.25s 7.13s 1m14s 23m06s 27h03m 24h21m

Multi-Otsu it-
erative+SC

24.25s 7.13s 1m19s 26m41s 28h10m 25h21m

BF 2h26m 5h25m 34h8m 140h8m 872h10m 963h3m

Consensus
(cp=2%)

X 141m X X X X

CHAMP X X X X X X

TABLE V: Time for identifying constant communities for some
networks. Best timing performances for each dataset are denoted
by green cells and the worst by red cells. X: The process did not
end within a sizable amount of time. In Multi-Otsu iterative+SC, SC
stands for singleton communities. BF stands for bruteforce method
also used to generate our Groud truth(#iterations = 50).

We plan to apply the constant communities to various
downstream applications, including outlier detection, domain
adaptation, and feature selection. We also aim to parallelize
our algorithms to further improve the performance.
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