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ABSTRACT

We present a machine learning model for the analysis of
randomly generated discrete signals, modeled as the points of
an inhomogeneous, compound Poisson point process. Like
the wavelet scattering transform introduced by Mallat, our
construction is naturally invariant to translations and reflec-
tions, but it decouples the roles of scale and frequency, replac-
ing wavelets with Gabor-type measurements. We show that,
with suitable nonlinearities, our measurements distinguish
Poisson point processes from common self-similar processes,
and separate different types of Poisson point processes.

Index Terms— Scattering transform, Poisson point pro-
cess, convolutional neural network

1. INTRODUCTION

Convolutional neural networks (CNNs) have obtained im-
pressive results for a number of learning tasks in which the
underlying signal data can be modelled as a stochastic pro-
cess, including texture discrimination [1], texture synthesis
[2, 3], time-series analysis [4], and wireless networks [5].
In many scenarios, it is natural to model the signal data
as the points of a (potentially complex) spatial point pro-
cess. Furthermore, there are numerous other fields, including
stochastic geometry [6], forestry [7], geoscience [8] and ge-
netics [9], in which spatial point processes are used to model
the underlying generating process of certain phenomena (e.g.,
earthquakes). This motivates us to consider the capacity of
CNN s to capture the statistical properties of such processes.
The Wavelet scattering transform [10] is a model for
CNNs, which consists of an alternating cascade of linear
wavelet transforms and complex modulus nonlinearities. It
has provable stability and invariance properties and has been
used to achieve near state of the art results in fields such as
audio signal processing [11], computer vision [12], and quan-
tum chemistry [13]. In this paper, we examine a generalized
scattering transform that utilizes a broader class of filters
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(which includes wavelets). We primarily focus on filters with
small support, which is similar to those used in most CNNSs.

Expected wavelet scattering moments for stochastic pro-
cesses with stationary increments were introduced in [14],
where it is shown that such moments capture important statis-
tical information of one-dimensional Poisson processes, frac-
tional Brownian motion, a-stable Lévy processes, and a num-
ber of other stochastic processes. In this paper, we extend
the notion of scattering moments to our generalized architec-
ture, and generalize many of the results from [14]. However,
the main contributions contained here consist of new results
for more general spatial point processes, including inhomoge-
neous Poisson point processes, which are not stationary and
do not have stationary increments. The collection of expected
scattering moments is a non-parametric model for these pro-
cesses, which we show captures important summary statistics.

In Section 2 we will define our expected scattering mo-
ments. Then, in Sections 3 and 4 we will analyze these
moments for certain generalized Poisson point processes and
self-similar processes. We will present numerical examples
in Section 5, and provide a short conclusion in section 6.

2. EXPECTED SCATTERING MOMENTS

Let 1) € L2(R) be a compactly supported mother wavelet with
dilations v;(t) = 277¢(277¢) for j € Z, and let X (¢),t €
R, be a stochastic process with stationary increments. The
first-order wavelet scattering moments are defined in [14] as
SX(j) = E[|¢;* X|], where the expectation does not depend
on ¢ since X (¢) has stationary increments and 1); is a wavelet
which implies X 1), (t) is stationary. Much of the analysis of
in [14] relies on the fact that these moments can be rewritten
as SX(j) = E[[¢h; * dX|], where dip; = t;. This motivates
us to define scattering moments as the integration of a filter,
against a random signed measure Y (dt).

To that end, let w € L?(R?) be a continuous window func-
tion with support contained in [0,1]%. Denote by w,(t) =
w (L) the dilation of w, and set g,(t) to be the Gabor-type
filter with scale s > 0 and central frequency ¢ € RY,

g, (t) = ws()e®t, vy =(s,6), teRL. (1)



Note that with an appropriately chosen window function w,
(1) includes dyadic wavelet families in the case that s = 27
and |[¢| = C/s . However, it also includes many other filters,
such as Gabor filters used in the windowed Fourier transform.

Let Y (dt) be a random signed measure and assume that Y’
is T-periodic for some 7" > 0 in the sense that for any Borel
set Bwe have Y(B) = Y(B + Te;) , foralll < i < d
(where {e;};<q is the standard orthonormal basis for R). For
fe LA(RY), set f+Y(t) := §pu f(t — u)Y (du). We define
the first-order and second-order expected scattering moments,
1 < p,p’ < o, at location t as

Sy pY (t) =E[lgy *Y(¢)|’] and )
Sypoy oY (t) = E [Hgv # Y|P gy (t)‘p/] . (3)

Note Y (dt) is not assumed to be stationary, which is why
these moments depend on ¢. Since Y (dt) is periodic, we may
also define time-invariant scattering coefficients by

1
SY (v,p) = Td,[[ ]S,%pY(t)dt, and
1
SY(v,p,7,p') = Tdf[ o Sy poyp Y (t)dt

In the following sections, we analyze these moments for
arbitrary frequencies ¢ and small scales s, thus allowing the
filters g, to serve as a model for the learned filters in CNNs.
In particular, we will analyze the asymptotic behavior of the
scattering moments as s decreases to zero.

3. SCATTERING MOMENTS OF GENERALIZED
POISSON PROCESSES

In this section, we let Y(dt) be an inhomogeneous, com-
pound spatial Poisson point process. Such processes gener-
alize ordinary Poisson point processes by incorporating vari-
able charges (heights) at the points of the process and a non-
uniform intensity for the locations of the points. They thus
provide a flexible family of point processes that can be used
to model many different phenomena. In this section, we pro-
vide a review of such processes and analyze their first and
second-order scattering moments.
Let \(¢) be a continuous, periodic function on R? with

0 < Amin = ilgf)\(t) < Moo < 00, “)

and define its first and second order moments by

1

—— 2 =
my(A) = T J[O,T]d At) dt, p=1,2.

A random measure N (dt) := Zle d¢, (dt) is called an inho-
mogeneous Poisson point process with intensity function A(t)

if for any Borel set B < R,

P(N(B) =n) = e AB) X2

and, in addition, N (B) is independent of N(B’) for all B’
that do not intersect B. Now let (A;)7, be a sequence of
ii.d. random variables independent of N. An inhomoge-
neous, compound Poisson point process Y (dt) is given by

= > Ay, (dt). (5)
Jj=1

For a further overview of these processes, we refer the reader
to Section 6.4 of [15].

3.1. First-order Scattering Asymptotics

Computing the convolution of g, with Y (dt) gives

)= 2 Ayt =),

which can be interpreted as a waveform g., emitting from each

location ;. Invariant scattering moments aggregate the ran-

dom interference patterns in |g, * Y'|. The results below show

that the expectation of these interference patterns encode im-

portant statistical information related to the point process.
For notational convenience, we let

(04700 = | ot =) V(2

As(t) == A ([t —s,t]%) = J[t ) AMu) du

denote the expected number of points of N in the support of
g(t — -). By conditioning on N ([t — s,¢]?), the number of
points in the support of g, and using the fact that

P[N ([t —s,t]*) >m] =0 ((SdH)‘HOO)mH)

one may obtain the following theorem.!

Theorem 1. Ler E[|A1|P] < oo, and A(t) be a periodic con-
tinuous intensity function satisfying (4). Then for every t €
RY every vy = (s, &) such that s¢| A < 1,and everym > 1,

k p
Z zb&V ]’

(6)

m

Z “au As()"

where the error term £(m, s, €, t) satisfies

[Al mA1 d(m
Conpy = [wlPE[ Ar [PTIA s e
(7
and V1, Vs, ... is an i.i.d. sequence of random variables, in-
dependent of the Aj, taking values in the unit cube [0, 1]% and

with density py (v) = Aj?t) At — ws) forv e [0,1]%

le(m, s,&,1)| <

A proof of Theorem 1, as well as the proofs of other theorems stated in
this paper, can be found in the appendix



If we set m = 1, and let s — 0, then one may use the fact
that a small cube [t — s,#]? has at most one point of N with
overwhelming probability to obtain the following result.

Theorem 2. Let Y (dt) satisfy the same assumptions as in
Theorem 1. Let vy, = (sk,&k) be a sequence of scale and
frequency pairs such that limg_, o, s, = 0. Then
Sy.pY (¢
i S s Eapiel;, @

k—o0 sz

for all t, and consequently

. SY (v,
tim SO0 Rl ©)
— 00 sk‘

This theorem shows that for small scales the scattering
moments S, ,Y (t) encode the intensity function A(t), up to
factors depending upon the summary statistics of the charges
(Aj);?O=1 and the window w. Thus even a one-layer location-
dependent scattering network yields considerable information
regarding the underlying data generation process.

In the case of ordinary (non-compound) homogeneous
Poisson processes, Theorem 2 recovers the constant intensity.
For general A(t) and invariant scattering moments, the role of
higher-order moments of A(t) is highlighted by considering
higher-order expansions (e.g., m > 1) in (6). The next the-
orem considers second-order expansions and illustrates their
dependence on the second moment of A(t).

Theorem 3. Let Y satisfy the same assumptions as in The-
orem 1. If (Vi)k>1 = (Sk,&k)k>1, s a sequence such that
limy o0 5% = 0 and limy_, o sp&x = L € RY, then

. SY (ve,p) 1 A, (1)
lim : ~ 7d sa dt
e (sgdﬁ[mpmuvm T Jorye 53!

= ma(N) <E[|A1w(U1)eiL.U1 +A2w(U2)eiL~U2|I)]> |

2|wlpE[Ax]?]
(10)

where Uy, Uy are independent uniform random variables on
[0,1]%; and (Vi) x>1 is a sequence of random variables inde-
pendent of the A; taking values in the unit cube with respec-

d
tive densities, py, (v) = Asik(t))\(t —wsy) forv e [0,1]%
Sk

We note that the scale normalization on the left hand side
of (10) is s—24, compared to a normalization of s~% in The-
orem 2. Thus, intuitively, (10) is capturing information at
moderately small scales that are larger than the scales consid-
ered in Theorem 2. Unlike Theorem 2, which gives a way to
compute m (), Theorem 3 does not allow one to compute
mz(A) since it would require knowledge of Ag, (¢) in addi-
tion to the distribution from which the charges (A4;)% ; are

J
drawn. However, Theorem 3 does show that at moderately

small scales the invariant scattering coefficients depend non-
trivially on the second moment of A(t). Therefore, they can
be used to distinguish between, for example, an inhomoge-
neous Poisson point process with intensity function A(t) and
a homogeneous Poisson point process with constant intensity.

3.2. Second-Order Scattering Moments of Generalized
Poisson Processes

Our next result shows that second-order scattering moments
encode higher-order moment information about the (A;)7 ;.

Theorem 4. Let Y (dt) satisfy the same assumptions as in
Theorem 1. Let vy, = (s, &) and vy}, = (s}, &}.) be sequences
of scale-frequency pairs with s}, = csy, for some ¢ > 0 and
limy o Suéx = L € RE Let 1 < p,p’ < o0 and ¢ = pp'.

Assume E|A1]7 < o0, and let K := | g, 1/ * |g1,0/P z: Then,
Syip Yie pY (t)
; Pk - q
kh_)OO Sz(pl+1) = KA()E[|A1]|?], and (11)
Y ! /
lim SY (e, 2 930 ) _ Kmy(VE[|A1]9] . (12)
—00

d(p'+1)
Sk

Theorem 2 shows first-order scattering moments with p =
1 are not able to distinguish between different types of Pois-
son point processes at very small scales if the charges have
the same first moment. However, Theorem 4 shows second-
order scattering moments encode higher-moment information
about the charges, and thus are better able to distinguish them
(when used in combination with the first-order coefficients).
In Sec. 4, we will see first-order invariant scattering moments
can distinguish Poisson point processes from self-similar pro-
cesses if p = 1, but may fail to do so for larger values of p.

4. COMPARISON TO SELF-SIMILAR PROCESSES

We will show first-order invariant scattering moments can dis-
tinguish between Poisson point processes and certain self-
similar processes, such as a-stable processes, 1 < a < 2,
or fractional Brownian motion (fBM). These results general-
ize those in [14] both by considering more general filters and
general p" scattering moments.

For a stochastic process X (t), ¢ € R, we consider the
convolution of the filter g, with the noise dX defined by g., *
dX(t) == {3 g,(t — u) dX (u), and define (in a slight abuse
of notation) the first-order scattering moments at time ¢ by
SypX (t) == E[|gy * dX(¢)[?] . In the case where X (¢) is a
compound, inhomogeneous Poisson (counting) process, Y =
dX will be a compound Poisson random measure and these
scattering moments will coincide with those defined in (2).

The following theorem analyzes the small-scale first-
order scattering moments when X is either an a-stable pro-
cess, or an fBM. It shows the small-scale asymptotics of the
corresponding scattering moments are guaranteed to differ
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Fig. 1. First-order invariant scattering moments of homoge-
neous compound Poisson point processes with the same in-
tensity Ao and different A;. Left: Realizations of the process
with arrival rates given by Top: A; = 1 Middle: A; are nor-
mal random variables Bottom: A; are Rademacher random
variables. Middle: Plots of normalized first-order scattering
Y61 moments with p = 1.Right: Plots of normalized

sfwl
first-order scattering w
sfwll3

moments with p = 2.

from those of a Poisson point process when p = 1. We also
note that both «-stable processes and fBM have stationary
increments and thus S, , X (¢t) = SX (v, p) for all ¢.

Theorem 5. Let 1 < p < oo, and let v, = (s, &) be a
sequence of scale-frequency pairs with limy_, o, s = 0 and
limg_, o $p&k = L € R. Then, if X (t) is a symmetric a-stable
process, p < a < 2, we have

p]

Similarly, if X (t) is an fBM with Hurst parameter H € (0, 1)
and w has bounded variation on [0, 1], then

flw@oeMUdX(u)

0

1 SX (D) _ El

k—o0 Sz/a

X ! : i
szvf”_Elfw@wm¢ww].
k—o0 SZIZ 0

This theorem shows that first-order invariant scattering
moments distinguish inhomogeneous, compound Poisson
processes from both «a-stable processes and fractional Brow-
nian motion except in the cases where p = c«orp = 1/H. In
particular, these measurements distinguish Brownian motion,
from a Poisson point process except in the case where p = 2.

5. NUMERICAL ILLUSTRATIONS

We carry out several experiments to numerically validate the
previously stated results. In all of our experiments, we hold
the frequency £ constant while letting s decrease to zero.

Compound Poisson point processes with the same inten-
sities: We generated three homogeneous compound Poisson
point processes, all with intensity A(t) = A9 = 0.01, where
the charges A; ;, Az ;, and A3 ; are chosen so that A; ; = 1
uniformly, Az ; ~ N'(0,4/%), and As ; are Rademacher ran-
dom variables. The charges of the three signals have the same
first moment E[| A4, ;|] = 1 and different second moment with

00101 — =3

]
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Fig. 2. First-order scattering moments for inhomogeneous
Poisson point processes. Left: Sample realization with
A(t) = 0.01(1 + 0.5sin(25t)). Right: Time-dependent scat-
B arty = §ty = 5t = 2. Note
that the scattering coefficients at times %1, t2, t3 converges to
A(t1) = 0.015, A(t2) = 0.01, \(t3) = 0.005.

tering moments

Fig. 3. First-order invariant scattering moments for standard
Brownian motion and Poisson point process. Left: Sample
realizations Top: Brownian motion. Bottom: Ordinary Pois-
son point process. Middle: Normalized scattering moments

S Ypoisson (,€,P) S Xpm(s,€,p) : H —
and >0 for Poisson and BM with p = 1.
AE[Aq [P [w] AE[Z[P |w]} p

Right: The same but with p = 2.

E[|A1;]?] = E[|A5,[*] = 1 and E[|A2,[*] = F. As pre-
dicted by Theorem 2, Figure 1 shows first-order scattering
moments will not be able to distinguish between the three
processes with p = 1, but will distinguish the process with
Gaussian charges from the other two when p = 2.
Inhomogeneous, non-compound Poisson point processes:
We also consider an inhomogeneous, non-compound Pois-
son point processes with intensity function A(¢) = 0.01(1 +
0.5sin(2%)) (where we estimate S, ,Y (¢), by averaging
over 1000 realizations). Figure 2 plots the scattering mo-
ments for the inhomogeneous process at different times, and
shows they align with the true intensity function.

Poisson point process and self similar process: We consider
a Brownian motion compared to a Poisson point process with
intensity A = 0.01 and charges (A);2; = 10. Figure 3 shows
the convergence rate of the first-order scattering moments can
distinguish these processes when p = 1 but not when p = 2.

6. CONCLUSION

We have constructed Gabor-filter scattering transforms for
random measures on R?. Our work is closely related to [14]
but considers more general classes of filters and point pro-
cesses (although we note that [14] provides a more detailed
analysis of self-similar processes). In future work, it would
be interesting to explore the use of these measurements for
tasks such as, e.g., synthesizing new signals.
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A. PROOF OF THEOREM 1

To prove Theorem 1 we will need the following lemma.

Lemma 1. Let Z be a Poisson random variable with param-
eter \. Then foralla e R, m e N, 0 < X\ < 1, we have

0 Ak
D e kY < O AT

E[Za]l{z>m}] = A
k=m+1 :

Proof. ForO < A<landkeN, e~ *\F < 1. Therefore,

0 )\)\k
E[Z2Uzom] = ), ek
k=m+1 :
+1 A
= \" 7k 1)«
26 (k+m +1)( tmtl)
(k+m+1
)\m+12
= k+m+1
_Cam)\m+1
O

The proof of Theorem 1. Recalling the definitions of Y (dt)
and S, ,Y (t), and setting Ny (t) = N ([t — 5,t]%), we see

P
J w (t ; u) S Y (du) ]
[s—t,t]4

No () p
PR

t—t; .
< > Git(t—t)

where t1,ts, ...ty (1) are the points N (t) in [t — s, ¢]%. Con-
ditioned on the event that N,(¢) = k, the locations of the &k
points on [t — s,¢]¢ are distributed as i.i.d. random variables

S, ,Y(t)=E l

=E

Z1, ..., Zy taking values in [t — s,t]¢ with density

A(z) d

= e |t —s,t|".
pZ(Z) As(t) ; [ S ]
Therefore, the random variables
t—Z;
Vi =
s

take values in the unit cube [0, 1]¢ and have density

e [0,1]¢.

0 At —wvs),

Note that in the special case that /N is homogeneous, i.e.
A(t) = Ao is constant, the V; are uniform random variables
on [0,1]<.

Therefore, computing the conditional expectation, we
have for k > 1

li

) =) N = k| (13)
p]
”/\Hoo
where (14) follows from (i) the independence of the random

variables A; and Vj; (ii) the fact that for any sequence of i.i.d.
random variables 7y, Zs, .. .,

p

zsf V;

o PRIl (14)

k p

> 7

n=1

and (iii) the fact that

BVl = | ey @) <

k
E <kPT'E lE Zn|p1 = kPE[| Z4|]

n=1

)\min P

Therefore, since P[N,(t) = k] = e~ 2®) . (A1) /g,

N (t)
E Z Asw
=1

p

(t — tj) o6 (t=t;) _
S

p
X k Ns(t)
= e 0 el 2 (t t])ei5 =t 2 N(t) = k
k!
k=0 [ i=1
G nen A [ eisevs|
= Kl 24
k=1 A=t
m k k p
= Y e By 2, Ag(V)ee Ls(m,s,g,t),
k!
k=1 A=t
where
0
e(m, s, t,§) := Z —aa As(O)" Z Ajw(V))esEVs
k=m+1

By (14) and Lemma 1, if s is small enough so that A4(t) <
5% Ao < 1, then:

k=m+1
H)\”ao O —ae (As(0)*
E[ A P]|w]p ), e '“’Tk”

m k=m+1
Al m
Conp B[ A1 ] fw][(As (£))™

< Cup H;‘”@

155 V;

e(m,s,&,t) =

N

E[| A1 [P][w]BI AL+ s D).

min

|
|




B. PROOF OF THEOREM 2

Proof. Let (si, &) be a sequence of scale and frequency pairs
such that limy_, o, s = 0. Applying Theorem 1 with m = 1,
we obtain:

Syen¥ (1)
s
AS t 3 1) ) 7t
=e_A'—"k(t)7s’“d( )]E [|A1w(V1,k)€”5'V1”"|p] + £, st 8 1) Szdgk )
k k
_ As(t) 8(178k7§k7t)
—e e ;ﬁ E[| A1 [PIE[Jw(Va,r)[P] + T

where we write V; ,, = V) to emphasize the fact that the den-
sity of V7 1, is:

k2t usp)
—E At —wvsg).
A, (1)
Using the error bound (7), we see that:

1, t
lim e( Sk(}fkv )
k—o0 sk

Pvy (U) =

=0.

Furthermore, since 0 < A, () < s¢| [, we observe that:

Sk

lim e 2 = 1,
k—0o0

and by the continuity of A(¢),

A () = lim L

k—o0 sz

lim
k—owo sy [sk—t,t]¢

Finally, by the continuity of A(t), we see that

A
v, (V) < H)\ﬁ and klim pv.(v) =1, Yvelo,1]%.
min —0
(16)
Therefore, by the bounded convergence theorem,
lim E[|w(V7)[’] = lim |w(v)|Ppy, (v) dv
k—o0 k—o0 [0,1]¢
= J lw(v)P lim py, (v) dv
[O,I]d k—o0
= [wl} .

That completes the proof of (8).

To prove (9), we assume that A(t) is periodic with period
T along each coordinate and again use Theorem 1 withm = 1
to observe,

SY (5. &k )
st
= ]E[IAllp]idf oo (®) Askd(t) y
T Jorye s
1 1 "
f [w(v)[Ppy, (v) dvdt + — ZS(L,}&w)dt.
(0.1 T [0,1]4 Sk

By (7), the second integral converges to zero as k — 0.
Therefore,

I SY (sk, &k, p)
m
k—o0 Sk

g
P A(t) dt
PTd (0,77

by the continuity of A(¢) and the bounded convergence theo-
rem. O

= E[|A1["][wl|

C. PROOF OF THEOREM 3

Proof. We apply Theorem 1 with m = 2 and obtain:

SV (1) 0
—e Mo DA, (B[ AL PIE[w (Vi) 7] (18)

A, (1))? : '
+e—Ask(t)%E [|A1w(V1,k)e”’“5k'V”“ + Agw(Va p)e*ron Vo |p]

(19)
+6(27 Sk £k7 t) )

where V; i, ¢ = 1,2, are random variables taking values on
the unit cube [0, 1]¢ with densities,

d
Sk

m)\(t — USE) .

pv; (v) =

Dividing both sides in (18) by s7%|w|EE[| A; "] and subtract-

. As, (t w )|P
ing S;}%(S)E[\ H(u‘jhg)l]

yields:

S V() Ay (O Ellw(ViP] 0)
st lwlpElJ AP s3d w7
_ eiAs’“(t)ASk (t) = As, () E[Jw(Va,i) 7] Q1)
s [wl?
+67A5k(t) (Ask (t))2 E [|A1w(V1,k)€iskf""V1'k + Agw(VM)eis’“&k'VM |;0]
53! 2|wlpE[| A1 ]?]
£(2, sk, &k, t)
st lwlPE[A1[P]
Using the error bound (7),
(2, 8k, Ems 1) _ 0, 22)

koo s [wlpE[ Ay 7]

at a rate independent of ¢. Recalling (16) from the proof of
Theorem 2, we use the fact that limy_,o, py, = 1 and the
bounded convergence theorem to conclude,

lim E [’Alw(vl.k)eiskg""vl*’“ + Agw(VQ,k)eiskg’“'V2=‘“|p]
k—00 '

(23)
= E|[Aiw(U)e ™ + Aqu(Ua)e ™) @4



where U;, i = 1, 2, are uniform random variables on the unit
cube and L = limy_, o, Sx€. Similarly,

(25)

Lastly, recalling that s, — 0 as £k — oo and using (15) from
the proof of Theorem 2, we see

eiASk (t)ASk (t) — Ask (t)

khir;o 2 (26)
—Aq, () _

~ lim (Ad@‘)> fim (=1

k—o0 Sk k—o0 Sk‘

—Ag, () _ 1
A0 1 ()
k—o0 Sk

=—\(t)%. 27)

Now we integrate both sides of (21) over [0,7']¢ and di-
vide by T%. Taking the limit as k — oo, on the left hand side
we get:

lim - f ( SyepY (1) Ask<>E[|w<v1,k>p])
koo T4 )i rja \ 53 [w[pE[|Avfr] 7 Jw[?

dt

o SYGk&p) | Eu(Vig)l] As, (1)
i \ 2T wBE[Arr] ~ [wlpTd 2
- k P 1 P [0,T]¢ Sk
Y 1 A
koo \ SPE[[w(Vi ) PIE[[ A1 7]~ T2 Jjogpe o2

where we used the definition of the invariant scattering mo-
ments and (25). On the right hand side of (21), we use (25),
(27) and the dominated convergence theorem to see that the
first term is:

e_ASk (t)A Sk (t) B

lim if As, (1)
k—o0 Td [O,T]d id

Eflw(Vii)["]

Jwls

dt

_As (f)
[ 000,
k—owo T [0,77]4 St
1
=7 A(t)

[0,T]4

Using (15), (23), and the bounded convergence theorem, the
second term of (21) is:

1
lim — J e MM X, dt
[o,T]4

k= T4
iL-Uy 1L-Uz|p
_ E[lAyw(@)et U + Agw(Up)eit Uz P) ( [ e dt)
[0,7]¢

277w pE[| A1 |P]
where

E [’Alw(VLk)@iSk&k.VLk + Agw(Vgﬂk)eisk@C'VM ’p]

Xy =
2[w[[PE[] Ar[?]

| )
dt) (g = V) (1) -
| )

Finally, the third term of (21) goes to zero using the bounded
convergence theorem and (22). Putting together the left and
right hand sides of (21) with these calculations finishes the

proof. O
D. PROOF OF THEOREM 4

Proof. Asin the proof of Theorem 1, let Ny (t) = N ([t — s,t]%)

denote the number of points in the cube [t — s, ¢]¢. Then since

the support of w is contained in [0, 1],

f w t-u e 0 Y (duy)
[t—sg,t]? Sk

N, ()
A 0 ] 7/5!» (t— t])
Sk ’

2

where t1,ts,..., 1y, (;) are the points of N in [t — sk, t]e
Therefore, in the event that N, () = 1,

[ (g *Y) (O = (g |7 = [Y]7) (),

and so, partitioning the space of possible outcomes based on
Ng, (t), we obtain:

(G = Y) (D)

(9 #Y) (1)

Lin,, (=1} + (g *Y) (1) - Ly, 0y=13l”

=[ (g *Y) () - L, iy=131" + [ (g7 #Y) () - Ly, )=

=gy [P = Y1) @) - Lin, y=1y + [ (g7 #Y) (8) - Ly, ()13 "

(
= (lgy [P = [Y]P) (£) + ex(2) ,
where
er(t) == (gy *Y) () Lyn,, )=13 [P = (g [P = V") () Tywv., (1)>13

Using the above, we can write the second order convolution
term as:

(9l # Y1) ®) = (921 # goal? 5 V1) 0+ (90 ) (1)

The following lemma implies that <g,y;ﬂ * ek> (t) decays
rapidly in L* at a rate independent of ¢.

Lemma 2. There exists 6 > 0, independent of t, such that if
Sk < 5,

£ H(% * ek) (t>‘p] < C(p,p’,w,c,L) ”/\HOO H)\HZ a(p'+2)

Once we have proved Lemma 2, equation (11) will follow
once we show,

. [‘(9%2 # ]G | |y‘p) (t)‘p']

p’'+1)

i, oL
(28)

= K(p,p',w, ¢, L)\(t)E[|Aq|7] .



Let us prove (28) first and postpone the proof of Lemma
2. We will use the fact that the support of g, * |9+, |P is con-
tained in [0, s + s},]%. Let 5k := si, + s, Ni(t) := Ns, (t),
Ak(t) = Agk (t), and let tl,tQ, .

st (¢) be the points
of N in the cube [t — 3;,t]?. We have that P[Ny(t) =

n] = _Ak(t)m, and conditioned on the event that
Ni(t) = n, the locatlons of the points ¢1,...,t, are dis-
tributed as i.i.d. random variables Z;(t),... Z ( ) taking
values in [t — 55, ] with density pz ;) (z) = A (t) There-

fore the i.i.d. random variables V; (£), ..., V,(t) defined by
V;(t) :=t — Z;(t) take values in [0, 5;]¢ and have density

At —v)
A(t)

Now, we condition on Ny (t) to see that

Py (v) = € [ngk]d-

EU( ,;*Igwklp*lYl”)()(p] (29)
Nk (1) v
—E || 3 14517 (g * 120 ]?) (¢~ 1)
j=1
_ 3 e (Akg))” (30)
n=1 :
Nu(t) 4
B 40 (gv;. *|gw|p) (t—tj)| Ne(t)=n
j=1
0 [ » P
= 3, OB | ISP (9, b ) (5 0)
j=1

n=1
r ’

(920 #192017) (Ta0)|

214
j=1

—e MO AL (DR[| AL]7]E
(31

0

v

n=2

-t Bl (924 % |9 l7) (V3 (0))

(32)

The following lemma will be used to estimate the scaling of
the term in (31).

Lemma 3. Forallt € R,
=d
. Sk
A i)
k
(33)
Furthermore, there exists 0 > 0, independent of t, such that if
Sk < 0 then

i '] < oA
b (o <o) i) | < 220 w1,
k

(34)

/

P

~ P/ ’
: “(972, Lo l”) (1) ] = 1ge,/e*lg1.0 1%

Proof. Making a change of variables in both u and v, and
recalling the assumption that sﬁﬁ = ¢S, we observe that

54 N~ P
Sd(Tﬁl)E U (gv; * |g'7k|p) (Vl(t))‘ ]
k
—W def/(t)(v)‘ (35)
p p’
f w v-u PRI C R Y du| dv
Rd s Sk
p/
~ SV —U ispél-(v—u
=t [ oo | [ w (B ) et op - ao
Rd Rd Sk
«d P’
:f SEA(t — skv) f w ([ LY etk o)y ()P du|  d.
Rd Ak(t) R c

(36)
The continuity of A(¢) implies that
FIN(E — spv) _
Aw(t) ’
Furthermore, the assumption 0 < Apin < Ao < 0 implies
A = s) _ Al
Ak (t) )\min

Therefore, (33) follows from the dominated convergence the-

lim Vue[0,1+c]?.

k—o0

, VYEk>1. (37)

] orem and by the observation that the inner integral of (36)

is zero unless v € [0,1 + ¢]¢. Equation (34) follows from

inserting (37) into (36) and sending k to infinity. O

Since

A
Jim kf) — A1),
k—0o0 S

~ the independence of V; (¢) and A1, the continuity of A(¢), and

Lemma 3 imply that taking k& — o0 in (31) yields:

G*Ak(t)Ak(t)EHAﬂ IE [‘g’y’ * |gm|p(vl( ))|pl]

lim

k—o0 Si(p +1)

Ax(t) ¢ '
_ —Ap(t) 2k\Y) ,
— lim ( O B e Elgay * g2 " ( ()" |

= K(p,p',c,w, L)A(t)E[|A1|7] .
d(p’'+2)

The following lemma shows that (32) is O (sk

(and converges at a rate independent of t), and therefore
completes the proof of (11) subject to proving Lemma 2.

Lemma 4. For all o € R there exists § > 0, independent of
t, such that if s, < 0, then

/

0 p
Z e—Ak t) Ak )) n°E

n=2

S 14 (g, * a7 (B (0)

Jj=1

[Alloo

d(p'+2
o M EL A s

< C(p7p/’w?c7a’L)




Proof. For any sequence of i.i.d. random variables, Z1, Z5, ..., First turning our attention to the second term, we note that

it holds that » »
951, ((lg” < 1Y) L, 151y ) )

k

Z Zn t—u 26 (t—u) p

n=1 [ ]dw 7 K (g7 ? # [YP) (w)Lgw,, (wy>1y du
~ t—sl t k

Therefore, by Lemma 1, Lemma 3, and the fact that the V;(¢) r

] < KPR [i Zn|p] = kPE[|Z1]7].

n=1

and A; are i.i.d. and independent of each other, we see that if < LN y>1) J ( : u) (lgon |7 % [Y]P) (u) du
Sk < d, where 0 is as in (34), t—s) ] Sk
$ e o GO o = Lwaw=1) (9.0 * 9" [VT7) (). (38)
!
n=2 " since Ny, (u) < Ny 4o (t) = N5 (t) = Ni(t) forall u €

’

P [t — s}, t]%. Therefore, conditioning on Ny (t), if s, < 6,
p/
E “gy,; * ((\gvk\p *[V[P) 1{N5k<4>>1}> () ]

'
< ]E |:‘]]-{Nk(t)>1} (gs;c70 * ‘g')’k‘p * |Y|p) (t)‘ ]

1A (g * 1o, ) (V50

=1

o0
Z e—Ak(t) Ak )) noznp/

n=2
<8 [l (3 oo V) B0 | 5 o[ o
’“ =2 ~uto L B |2 1458 (.0 o0 l") (0)
0 k
_ Z WO (Ak(t))nnp/Jra n=2 " /=1
| ‘ ’
N <O D) S B A5
~ P min
E[|A1|7]E “ (97; * |G, |p> % (t))‘ ] by Lemma 4. Now, turning our attention to the first term, note
N that
- q , P\ (v _
*E[|A1| ]E |:‘ (g’yk * |gw| ) (Vl(t))‘ :| |(g’Yk * Y)(t)|p ]I{Nsk(t)>1} < Nsk (t)p ! (‘g'yk ‘p * |Y|p) (t)]l{Ns,C (t)>1} -
Z _Ak(t) ))n i+ Therefore, by the same logic aspm (38)
n=2 ‘gv; * (‘(Qm *Y) 1{N5k(»)>1}‘ ) (t)‘
d(p’+1)
C L H ”30 A S t—u -1 D
(P, w, ¢, L) S——E[| A1 || —— < w{ —— | Now ()" (Igy[” # [Y17) () L, (wy>13 du
)\mln Sk [t B 14 Sk *
o 7Ak(t k(1)" P +a p—1 t—u P p
E 7” < Lyng)>13 Ve (2) w( —— ) (|g7.[" = [Y]") () du
n=2 [t—s) ]9 Sk
A d(p’+1) < p—1 , p P .
<C(p,p/,w,c,L a)H)\ HOC E[|A; |9 ]%T(Ak(t)f ]l{Nk(t)>1}Nk(t> (gsk,O % (g, [" Y] )) (t)
;\mn k So again conditioning on N/(t), and applying Lemma 4, we
<C(p.p w0, Loa) L2 AL B4, 1], see thatif s, < &
AIIlll'l D p/
where the last inequality uses the fact that Ay, () < 5¢[N|oo = E Ugv;c * (‘(gw *Y) ]l{Nsk(-)>1}‘ ) (t) ]
(L + )i Ao O :
0 )k n N p p
We will now complete the proof of the theorem by proving Z e*Ak(t)inP*E Z |A; P ‘(g%o # |Gy \) (V](t))‘
Lemma 2. n=2 j=1
. A /
Proof. [Lemma 2] Since < C’(p,p’ w. ¢ L) I Hoo H)‘Hoo [|A1|q]sz(p +2)
er(t) .
=[ (g *Y) (O L., =13 F = (g " # YP) (O Liwv,, ()>1
This completes the proof of (11). Line (12) follows from
we see that

» integrating with respect to ¢, observing that the error bounds

)g%; * ek(t)’ < ’g%; * ()(g% *Y) ]l{Nsk(~)>1}’ ) (t)‘ in Lemmas 2 and 3 are independent of ¢, and applying the
bounded convergence theorem.

g # (gl V) L, o)) 0] 0



E. THE PROOF OF THEOREM 5

In order to prove Theorems 5, we will need the follow-
ing lemma which shows that the scaling relationship of a
self-similar process X (t) induces a similar relationship on
stochastic integrals against d.X ().

Lemma 5. Let X be a stochastic process that satisfies the
scaling relation

X(st) =q "X (t) (39)

for some 5 > 0 (where =4 denotes equality in distribution).
Then for any measurable function f : R — R,

JOS f(u)dX (u) := s" Ll fsu)dX (u).

Proof. Let X = (X (t)):cr be a stochastic process satisfying
(39), and let P, = {0 = #§ < 7 < ... <t} =1}bea
sequence of partitions of [0, 1] such that

lim max{|tk —tr 4|} =0.

n—oo0

Then, by the scaling relation (39),

| " f(u) dX (u)

N (st (X(sth )
k=0

=57 lim Z f(st) (

n—0o0

= lim
n—0o0

— X(stz))

X(tiy) — X (1))

f(su) dX (u) .

0

We will now use Lemma 5 to prove Theorem 5.

Proof. We first consider the case where X = (X (t))er is
an a-stable process, p < a < 2. Since X has stationary in-
crements, its scattering coefficients do not depend on ¢ and it
suffices to analyze

pl

p]

)
where the second equality uses the fact the distribution of X
does not change if it is run in reverse, i.e.

Ellig,. * aX)(O)F] - U | snwix

—||[ gt ax)

(X()ter =a (X(=1))rer

It is well known that X (¢) satisfies (39) for § =
fore, by Lemma 5

1/a. There-

[+(z)aner]

= SZ/QE lJ w(u)e® kY dX (u) ] .

1

E[|(gy, *dX)(0)] = E [

So,

E[|(gy, #dX)O)] _ l
P/a
Sk

Jl w(w)e Sk dX (u)

0

The proof will be complete as soon as we show that

P\ V7
- (IE [ D
k=0
1 P\ V7
= (E l J w(u)eiL“ dX (u) 1) )

0
By the triangle inequality,
p] ) )

8
— (E l Ll w(u)e™ dX (u)
N —

Since 1 < p < «, we may choose p’ strictly greater than 1
such that p < p’ < «, and note that by Jensen’s inequality

¥ b
f )

and since X (t) is a p’-integrable martingale, the boundedness
of martingale transforms (see [16] and also [17]) implies

(4 I

< Cy sup |w(u) (" —e'l)|E [|X1|pl]

O<ux<l1

r w(w)e Sk dX (u)

0

| () dX (u)

0

lﬁksku

f w(u) (e’f’“s’““ —e'™) dX (u)

0

Jl w(u) (ei&csw _

0

e’) dX (u)

et ) dX (u)

| ) (e

0

< Cylsign — LllwlE ||X:1" ]

which converges to zero by the continuity of w on [0, 1] and
the assumption that s;&; converges to L.



Similarly, in the case where (X (t)):er is a fractional
Brownian motion with Hurst parameter H, we again need to

show
P\ V7
- @[ D _o.
k—o0

However, fractional Brownian motion is not a semi-martingale
so we cannot apply Burkholder’s theorem as we did in the
proof of Theorem 5. Instead, we use the Young-Ldeve es-
timate [18] which states that if x(u) is any (deterministic)
function with bounded variation, and y(u) is any function
which is a-Holder continuous, 0 < a < 1, then

[t (s -

0

e™") dX (u)

| " () dy(w)

0

is well-defined as the limit of Riemann sums and

L (u) dy(u) —(0) (y(1) — y(O))’ < Galzlsvlyla,

where ||| pv and | -||, are the bounded variation and a-Hélder
seminorms respectively. For all k, the function hy(u) :=
w(u) (ekset — etlv) = w(u) fr(u) satisfies, hy(0) = 0
and

Ihil v < [wllo| felBv + |lw] BV filo -

One can check that the fact that s & converges to L implies
that fj converges to zero in both L and in the bounded vari-
ation seminorm, and that therefore that ||h| 5y converges to
Zero0.

It is well-known that fractional Brownian motion with
Hurst parameter A admits a continuous modification which
is a-Holder continuous for any o < H. Therefore,

E

0

Lastly, one can use the Garsia-Rodemich-Rumsey inequality
[19], to show that
E[[X]8] < oo

for all 1 < p < oo. For details we refer the reader to the
survey article [20]. Therefore,

P

] o

1

lim E l f w(u) (eif’“s’““ —

k—0 0
as desired.
Remark 1. The assumption that w has bounded-variation
was used to justify that the stochastic integral against frac-
tional Brownian motion was well defined as the limit of Rie-
mann sums because of its Holder continuity and the above
mentioned result of [18]. This allowed us to avoid the techni-
cal complexities of defining such an integral using either the
Malliavin calculus or the Wick product.

et) dX (u)

O

1 P
f wu) (€545 — ) dX(u)| < C2|hg B E[IX]2].

F. DETAILS OF NUMERICAL EXPERIMENTS

Algorithm 1: Algorithm for simulating inhomoge-
neous Poisson point process
Initialize V =0,t =0
while { < N do
generate U ~ U([0,1])

V<V-logU
t =inf{v:A(v) <V}
deliver ¢

F.1. Definition of Filters

For all the numerical experiments, we take the window func-
tion w to be the smooth bump function

w(t) = {GXP (~5k) . te©)

0, otherwise.
Therefore for v = (s, £), our filters are given by

. 82 o ap2
et /uam1e®) e (0, 5)
0, otherwise

9:(1) = e u(t) = {

F.2. Frequencies

In all of our experiments, we hold the frequency, £, which
we sample uniformly at random from (0, 27), constant while
allowing the scale to decrease to zero.

F.3. Simulation of Poisson point process

We use the standard method to generate a realization of a
Poisson point process. For Poisson point process with inten-
sity A, the time interval between two neighbor jumps follows
exponential distribution:

Aj = tj — tj_l ~ EXp()\) .

Therefore, taking the inverse cumulative distribution func-
tion, we sample the time interval between two neighbor jumps
through:
log U 7

-—
where U; are i.i.d. uniform random variables on [0, 1], and
assign the charge A; to the jump at location ¢;.

For inhomogeneous Poisson process with intensity funci-
ton A(t), we simulate the time interval based on a well-known
algorithm. We, first define the cumulated intensity:

A =

then generate the location of jumps ¢; by the Algorithm 1.
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