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ABSTRACT

Given two point sets 𝐴 and 𝐵 in R𝑑 of size 𝑛 each, for some con-

stant dimension 𝑑 ≥ 1, and a parameter 𝜀 > 0, we present a de-

terministic algorithm that computes, in 𝑛 · (𝜀−1
log𝑛)𝑂 (𝑑) time, a

perfect matching between 𝐴 and 𝐵 whose cost is within a (1 + 𝜀)
factor of the optimal matching under any ℓ𝑝 -norm. Although a

Monte-Carlo algorithm with a similar running time is proposed by

Raghvendra and Agarwal [J. ACM 2020], the best-known determin-

istic 𝜀-approximation algorithm takes Ω(𝑛3/2) time. Our algorithm

constructs a (refinement of a) tree cover of R𝑑 , and we develop

several new tools to apply a tree-cover based approach to compute

an 𝜀-approximate perfect matching.
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1 INTRODUCTION

Let 𝐴 and 𝐵 be two point sets in R𝑑 of size 𝑛 each, where the

dimension 𝑑 is a constant. Consider the complete weighted bi-

partite graph 𝐺 with cost function ¢(𝑒) ≔ ∥𝑎 − 𝑏∥, where ∥·∥
denotes the Euclidean norm.

1
A matching 𝑀 is a set of vertex-

disjoint edges in 𝐺 . We say that a matching is perfect if |𝑀 | = 𝑛.
The cost of 𝑀 is the sum of its edge costs: ¢(𝑀) ≔ ∑︁

𝑒∈𝑀 ¢(𝑒) .
∗
Full version of the paper can be found on arxiv.org/abs/2204.03875.

1
Our algorithm works for any ℓ𝑝 -norm; but to be concrete we focus on the ℓ2-norm.
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The Euclidean minimum-weight matching (EMWM) in𝐺 is denoted

as 𝑀opt ≔ arg min |𝑀 |=𝑛 ¢(𝑀). A perfect matching 𝑀 is called an

𝜀-approximation if ¢(𝑀) ≤ (1 + 𝜀) · ¢(𝑀opt).
EMWM can be used to estimate the Wasserstein distance (a mea-

sure of similarity) between two probability distributions. Due to

this, it has received considerable attention in machine learning

and computer vision [28, 30, 33]. For instance, suppose we are

given two (possibly unknown) probability distributions in R𝑑 , we
can estimate their Wasserstein distance by taking 𝑛 samples from

each distribution and then computing a minimum-weight matching

between them [9, 25]. These applications call for the design of ex-

act and approximation algorithms for the EMWM problem. In this

paper, we present a deterministic near-linear-time 𝜀-approximation

algorithm for the EMWM problem. All known near-linear-time al-

gorithms for this problem are Monte-Carlo algorithms, and existing

deterministic 𝜀-approximations take Ω(𝑛3/2) time.

Related work. The classical Hopcroft-Karp algorithm computes

a maximum-cardinality matching in a bipartite graph with 𝑛 ver-

tices and𝑚 edges in 𝑂 (𝑚
√
𝑛) time [19]. The first improvement in

over thirty years, by Mądry [26], runs in 𝑂 (𝑚10/7
polylog𝑛) time.

The bound was further improved to 𝑂 ((𝑚 + 𝑛3/2) polylog𝑛) by
Brand et al. [10]. The Hungarian algorithm computes the minimum-

weightmaximum cardinalitymatching in𝑂 (𝑚𝑛+𝑛2
log𝑛) time [27];

see also [14, 16]. Faster algorithms for computing optimal match-

ings can be obtained by using recent min-cost max-flow algo-

rithms [10]. There is also extensive work on computing optimal

matchings matchings in non-bipartite graphs [15, 17, 36].

If 𝐴 and 𝐵 are points in R2
, the best known algorithm for com-

puting EMWM runs in 𝑂 (𝑛2
polylog𝑛) time [1, 2, 21]. If points

have integer coordinates bounded by Δ, the running time can be

improved to 𝑂 (𝑛3/2
polylog𝑛 logΔ) [31]. It is an open question

whether a subquadratic algorithm exists for computing EMWM if

coordinates of input points have real values. In contrast, Varadara-

jan [34] presented an𝑂 (𝑛3/2
polylog𝑛)-time algorithm for the non-

bipartite case under any ℓ𝑝 -norm — this is surprising because the

non-bipartite case seems harder for graphs with arbitrary edge

costs. As for higher dimensions, Varadarajan and Agarwal [35] pre-

sented an 𝑂 (𝑛3/2𝜀−𝑑 log
𝑑 𝑛)-time 𝜀-approximation algorithm for

computing EMWMof points lying inR𝑑 . The running timewas later

improved to 𝑂 (𝑛3/2𝜀−𝑑 log
5 𝑛) by Agarwal and Raghvendra [32].

For any 0 < 𝛿 ≤ 1, they also proposed a deterministic 𝑂 (1/𝛿)-
approximation algorithm that runs in 𝑂 (𝑛1+𝛿

log
𝑑 𝑛) time [4].

Randomly-shifted quadtrees have played a central role in de-

signing Monte-Carlo approximation algorithm for EMWM. It is
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well-known that a simple greedy algorithm on a randomly-shifted

quadtree yields (in expectation) an 𝑂 (log𝑛)-approximation algo-

rithm of EMWM [12]. Agarwal and Varadarajan [5] build upon this

observation and use a randomly-shifted-quadtree-type hierarchi-

cal structure to obtain an expected 𝑂 (log 1/𝛿)-approximation of

EMWM in 𝑂 (𝑛1+𝛿 ) time. Combining their approach with impor-

tance sampling, Indyk [20] presented an algorithm that approxi-

mates the cost of EMWMwithin an𝑂 (1)-factor with high probabil-

ity in time𝑂 (𝑛 polylog𝑛). His algorithm, however, only returns the

optimal cost but not the matching itself. Similarly, Andoni et al. [6]

gave an 𝜀-approximation streaming algorithm to the cost that runs

in 𝑂 (𝑛1+𝑜𝜀 (1) ) time. Finally, Raghvendra and Agarwal [29] pro-

posed a Monte-Carlo algorithm that computes an 𝜀-approximate

EMWM with high probability in 𝑛 · (𝜀−1
log𝑛)𝑂 (𝑑) time. Roughly

speaking, their algorithm embeds the Euclidean metric into a tree

metric, based on a refinement of a randomly-shifted quadtree 𝑇 ,

with at most 1+𝜀 distortion in expectation. The algorithm iteratively

computes the minimum net-cost augmenting path with respect to

the tree metric and augments the matching along the path. To com-

pute the minimum net-cost path, it stores 𝑂 (poly log𝑛) sub-paths
(alternating paths) at each cell of the quadtree. They show that any

sub-path at a cell, including the minimum net-cost augmenting

path, can be expressed as some combination of the 𝑂 (poly log𝑛)
sub-paths stored at its children. Using this observation, they build

a dynamic data structure that stores a matching, and supports

computing and augmenting along a minimum net-cost path in

time proportional to its length. Similar to the Gabow-Tarjan algo-

rithm [16], a small fixed penalty is added to the net cost of each

edge so that the total length of the augmenting paths computed

by the algorithm is 𝑂 (𝜀−1𝑛 log𝑛), leading to a near-linear-time 𝜀-

approximation algorithm. The randomized quadtree framework

also has been successfully applied to designing fast approximation

algorithm for the transportation problem as well as for matching

under different cost functions [3, 13, 22, 23].

Our results. The following theorem is our main result:

Theorem 1.1. Let 𝐴 and 𝐵 be two point sets in R𝑑 of size 𝑛 each,

where dimension 𝑑 is a constant, and let 𝜀 > 0 be a parameter. A

perfect matching of 𝐴 and 𝐵 of cost at most (1 + 𝜀) · ¢(𝑀opt) can be

computed in 𝑛 · (𝜀−1
log𝑛)𝑂 (𝑑) time in the worst case.

Extending Raghvendra-Agarwal approach [29] to develop a near-

linear deterministic algorithm runs into several difficulties. Neither

can we use a randomly-shifted quadtree, nor can we use a stochastic

embedding of Euclidean metric into a tree metric. Instead we work

with Euclideanmetric directly.We replace a single randomly-shifted

quadtree with 2
𝑑
deterministically shifted quadtrees and then de-

fine a refinement on each of these trees. Our shifted quadtrees can

be viewed as a tree cover of Euclidean space, a notion introduced

by Gupta, Kumar, and Rastogi [18]; the Euclidean distance between

a pair of points is deterministically approximated in at least one

of these 2
𝑑
quadtrees. The previous applications of tree covers

were limited to decomposable problems where one can solve the

problem by simply merging the solutions for all the trees, for ex-

ample routing, spanners, nearest-neighbor searching, and network

design [7, 8, 11, 18, 24]. It seems challenging to apply a tree-cover-

based approach to non-decomposable geometric problems such as

the TSP or the EMWM, whose approximation algorithms are based

on dynamic programming. We create several new tools to overcome

the challenges that arise in applying tree cover to EMWM.

When we work with a tree cover, portions of the min-net-cost

augmenting path may appear at different levels in different trees.

As a result, maintaining 𝑂 (poly log𝑛) sub-paths per cell will not
be sufficient to faithfully reconstruct the min-net-cost augmenting

path. Nevertheless, we maintain only 𝑂 (poly log𝑛) sub-paths per
cell and settle with a weaker claim. We define the 𝜃 -adjusted cost

of an augmenting path 𝑃 to be its net cost plus 𝜃 · ∥𝑃 ∥, where ∥𝑃 ∥
is the Euclidean arc length of 𝑃 . We show that using the sub-paths

we can compute an augmenting path 𝑃 whose 𝜃 -adjusted cost is at

most the 𝑂 (𝜃 log𝑛)-adjusted cost of the min-net-cost augmenting

path (see FindPath procedure (A1) and Lemma 5.2). Choosing such

sub-optimal paths in tree covers leads to the following problems.

First, augmenting along a path 𝑃 now introduces an additive

error𝑂 (𝜃 log𝑛 · ∥𝑃 ∥) to the cost of the matching. Large errors in the

net-cost are introduced by non-matching edges on the endpoints

of its sub-paths, as a connection cost between sub-paths. This error

accumulates over the execution of the algorithm, thereby making

it difficult to bound the total error in the matching cost. We peri-

odically repair the intermediate matching by canceling alternating

cycles that have a negative 𝜃 -adjusted cost. Any such cycle 𝐶 has a

net-cost at most−𝜃 ∥𝐶 ∥; in other words, canceling this cycle reduces
the matching cost by at least 𝜃 ∥𝐶 ∥. We refer to them as reducing cy-

cles. In fact, our algorithm only finds and cancels sufficiently many

alternating cycles with a negative 𝜃 -adjusted cost so that a weaker

invariant is satisfied, i.e., the (𝜃 log𝑛)-adjusted costs of all cycles

is non-negative. By setting 𝜃 ≔ 𝜀/log𝑛, we are able to bound the

cost of the resulting matching to be (1 + 𝜀)𝑀opt. We show that the

time spent in canceling reducing cycles is bounded by the total time

spent augmenting matchings. All the earlier EMWM approximation

algorithms computed a minimum-net-cost augmenting path under

a suitable cost function and guaranteed that no negative net-cost

cycles were created.

Second, to extract an augmenting path (or a reducing cycle) from

a cell ⊞ in the tree cover, the sub-paths are recursively expanded

using those stored at the children cells of ⊞. A major complication

from the overlapping grid cells of the tree-cover is that the aug-

menting path we compute — by going down the hierarchy of cells

and sub-paths — may be self-intersecting, in which a matching

edge appears multiple times. Suppose 𝑃 = 𝑃1 ◦ 𝑃2, where 𝑃1 and 𝑃2

are expansions of sub-paths at the children cells of ⊞. Assuming 𝑃1

and 𝑃2 are simple, to guarantee that 𝑃 is also simple, we first check

whether 𝑃1 and 𝑃2 share a matching edge. If the answer is yes, then

𝑃 contains a cycle𝐶 , which we can extract from 𝑃 . If𝐶 is a reducing

cycle, then we update the current matching by “canceling” 𝐶 and

ignoring 𝑃 . Otherwise we remove 𝐶 from 𝑃 . We repeat this step

until 𝑃 becomes simple (or a reducing cycle is found).

Unfortunately, it is too expensive to first compute the self-inter-

secting path 𝑃 and then simplify it — namely, check whether a

matching edge in 𝑃 appears more than once, and if so, identify the

cycle 𝐶 in 𝑃 containing the edge and splice out 𝐶 . An important

component of our algorithm is a dynamic data structure for quickly

detecting cycles and simplifying augmenting paths. Roughly speak-

ing, we maintain intersection information about a collection of

canonical paths implicitly, using the hierarchy of residual graphs,
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each of which is guaranteed to be simple. An augmenting path

is constructed by concatenating these canonical paths at various

levels. At the heart of the data structure is a compact representa-

tion of canonical paths (despite the total complexity of canonical

paths being quadratic, we are able to store them using near-linear

space) and efficient procedures to detect whether two canonical

paths share a matching edge (the intersection of two canonical

paths may consist of many components), to extract cycles in the

implicit representation of an alternating path as concatenation of a

sequence of canonical paths, and to splice a cycle from such a path.

The length-dependent penalty in the adjusted cost also acts as a

regularizer, and we use it to bound the total Euclidean length and

total number of edges in all the augmenting paths and reducing

cycles we compute. The total running time remains near-linear (see

Augment procedure (A2)).

The paper is organized as follows: Section 2 gives an overview of

the overall algorithm; many of its details and analysis are presented

in Sections 5 and 6, respectively. The overall data structure based

on tree-cover, that finds an augmenting path and augments the

matching is presented in Section 3, and its performance is analyzed

in Section 7. Section 4 present the data structure for storing canon-

ical paths compactly and the procedures that this data structure

supports, including the intersection query. Due to space constraint,

many proofs and details are omitted from this version.

2 OVERALL ALGORITHM

Preliminaries. Given a matching𝑀 , the residual graph of 𝐺 with

respect to𝑀 , denoted by 𝐺𝑀 = (𝑉 , 𝐸𝑀 ), is a directed graph on the

vertices of 𝐺 in which all non-matching edges are directed from 𝐴

to 𝐵 and all matching edges from 𝐵 to 𝐴. A vertex of 𝐺𝑀 is called

free if it is not incident to any edge of𝑀 , and matched otherwise.

An alternating path (cycle) Π in 𝐺 is a path whose edges alternate

between non-matching and matching edges; Π maps to a directed

path (cycle) in 𝐺𝑀 . Define the net cost ¢̄𝑀 : 𝐸𝑀 → R on 𝐺𝑀 as

follows: ¢̄𝑀 (𝑎, 𝑏) ≔ ¢(𝑎, 𝑏) if (𝑎, 𝑏) ∉ 𝑀 , and ¢̄𝑀 (𝑏, 𝑎) ≔ −¢(𝑎, 𝑏)
if (𝑎, 𝑏) ∈ 𝑀 . The net cost of any alternating path or cycle Π is

¢̄𝑀 (Π) =
∑︁
𝑒∈Π\𝑀 ¢(𝑒) −∑︁

𝑒∈Π∩𝑀 ¢(𝑒) . If Π is an alternating path

or cycle, we use the following shorthand for the arc length of Π (as

a polygonal curve): ∥Π∥ ≔ ∑︁
𝑒∈Π ∥𝑒 ∥. A simple (non-intersecting)

alternating pathΠ between two free vertices is called an augmenting

path, and𝑀 ⊕ Π is a matching of size |𝑀 | + 1 from augmenting𝑀

with Π. If Π is an alternating cycle, then |𝑀 ⊕ Π | = |𝑀 | instead.
The Hungarian algorithm repeatedly finds an augmenting path Π

in 𝐺𝑀 of minimum net cost and augments the matching by Π.

Adjusted cost. Let 𝑐0 be a constant whose value will be chosen

later. Let𝑀 be any fixed matching. For a parameter 𝜃 ≥ 0, we define

the 𝜃 -adjusted cost of an edge 𝑒 to be 𝛼𝜃,𝑀 (𝑒) ≔ ¢̄𝑀 (𝑒) + 𝑐0𝜃 · ¢(𝑒),
where ¢̄𝑀 (𝑒) is the net cost of 𝑒 in the residual graph𝐺𝑀 . For a set𝑋

of edges in𝐺𝑀 , define 𝛼𝜃,𝑀 (𝑋 ) ≔
∑︁
𝑒∈𝑋 𝛼𝜃,𝑀 (𝑒).We can interpret

𝛼𝜃,𝑀 as adding a regularizer to the net cost of a residual path or

cycle. We fix two parameters: upper 𝜀 ≔ 𝜀
𝑐1

and lower

¯

𝜀 ≔ 𝜀
𝑐2 log𝑛

where 𝑐1 ≥ 8𝑐0 and 𝑐2 > 0 are constants. For a matching 𝑀 , we

define 𝛼∗
𝜀,𝑀
≔ minΠ 𝛼𝜀,𝑀 (Π), where the minimum is taken over

all augmenting paths with respect to𝑀 . If the matching𝑀 is clear

from the context, we sometimes drop𝑀 from the subscript. We call

a cycle Γ in 𝐺𝑀 reducing if 𝛼
¯

𝜀 (Γ) < 0. We note that if 𝛼𝜀 (Γ) < 0,

then Γ is reducing (since

¯

𝜀 ≤ 𝜀). Intuitively, canceling a reducing

cycle decreases the matching cost significantly relative to the cycle

length (which is proportional to the amount of time required to

cancel): 𝛼
¯

𝜀 (Γ) < 0 implies ¢̄(Γ) < −𝑐0

¯

𝜀 · ∥Γ∥.

Overview of the algorithm. We now present a high-level descrip-

tion of the algorithm. We begin by performing a preprocessing step,

the details of which can be found in the full version so that the

input is “well-conditioned” at a slight increase in the cost of optimal

matching (within an (𝜀/8)-factor). After this preprocessing step,

which takes 𝑂 (𝑛 log
2 𝑛) time in total, we have point sets 𝐴 and 𝐵

that satisfy the following three properties:

P1. All input points have integer coordinates.

P2. No integer grid point contains points of both 𝐴 and 𝐵.

P3. ¢(𝑀opt) ∈
[︁

3

√
𝑑𝑛
𝜀 , 9

√
𝑑𝑛
𝜀

]︁
.

Our goal is to compute an 𝜀-approximate matching of 𝐴 and 𝐵

satisfying (P1)–(P3) in 𝑛 · (𝜀−1
log𝑛)𝑂 (𝑑) time in the worst case.

After the preprocessing, the algorithm works in rounds, each

of which increases the size of the matching by one. The algorithm

maintains the following cycle invariant (cf. Corollary 5.4):

CI. 𝛼𝜀 (Γ) ≥ 0 for every alternating cycle Γ at the beginning of

each round.

Each round of the algorithm consists of two steps. The first step

computes an augmenting path Π such that 𝛼
¯

𝜀 (Π) ≤ 𝛼∗𝜀 (recall that

𝜀 = 𝑂 (
¯

𝜀 log𝑛), so we only compute an approximate min-adjusted-

cost augmenting path). The second step updates𝑀 by augmenting

it by Π. After augmentation, the matching may violate the cycle

invariant CI, so to reinstate the invariant the algorithm finds and

cancels a sequence of simple reducing cycles Γ1, . . . , Γ𝑘 by updating

𝑀 ← (((𝑀 ⊕ Γ1) ⊕ Γ2) ⊕ · · · ). To perform these steps efficiently, we

design a data structure, described in Sections 3 and 4, that maintains

𝐺𝑀 and supports the following two operations:

A1. Find-Path(): Returns an augmenting path Π with 𝛼
¯

𝜀 (Π) ≤
𝛼∗𝜀 .

A2. Augment(Π, 𝑀): Takes an augmenting path Π and the cur-

rent matching 𝑀 as input. First updates 𝑀 to 𝑀 ⊕ Π, then
identifies and cancels a sequence of simple reducing cycles

Γ1, . . . , Γ𝑘 .

Section 5 presents details of these operations, and Section 6 proves

the correctness of the algorithm and analyzes its running time.

3 OVERALL DATA STRUCTURE

In this section we describe the overall data structure that maintains

the current matching𝑀 and residual graph𝐺𝑀 , and that supports

FindPath and Augment. The data structure constructs a hierar-

chical covering of R𝑑 (an instance of the tree cover in R𝑑 [18]) by

overlapping hypercubes, called cells, which is fixed and indepen-

dent of𝑀 . For each cell ⊞, it maintains a weighted, directed graph

𝐺⊞ that depends on𝑀 which can be viewed as a compressed repre-

sentation of the subgraph of𝐺𝑀 of size poly(𝜀−1
log𝑛) induced by

(𝐴 ∪ 𝐵) ∩ ⊞. The data structure detects negative cycles in 𝐺⊞ and
maintains shortest paths between pairs of nodes in 𝐺⊞ if there are

no negative cycles. For each cell ⊞, it also uses an auxiliary data

structure that maps a negative cycle or “augmenting path” 𝜋 in 𝐺⊞
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to a simple (non-self-intersecting) negative cycle or augmenting

path Π such that 𝛼
¯

𝜀 (Π) is at most the weight of 𝜋 in 𝐺⊞; we refer

to this map as an expansion of 𝜋 in 𝐺𝑀 . Path Π can be reported in

time proportional to |Π |. The data structure maintains a priority

queue 𝒬 that stores the cheapest “augmenting path” of each 𝐺⊞.

Hierarchical covering and compressed graph. Let𝔊0 be the

𝑑-dimensional integer grid, that is, the collection of hypercubes

[0, 1]𝑑+Z𝑑 . We build a hierarchy of ever coarser grids𝔊1, . . . ,𝔊logΔ.

Set ℓ𝑖 ≔ 2
𝑖
. A hypercube in𝔊𝑖 has side-length ℓ𝑖 , and is obtained

by merging 2
𝑑
smaller hypercubes of the grid 𝔊𝑖−1 in the pre-

vious level. For each 𝑖 , we build a collection of cells at level 𝑖 as

follows: For any hypercube ⊞ ∈ 𝔊𝑖 , we create 2
𝑑
cells at level 𝑖 ,

namely, ⊞ + ℓ𝑖−1 (𝑏1, . . . , 𝑏𝑑 ) for all 𝑑-bits 𝑏1, . . . , 𝑏𝑑 ∈ {0, 1}, each
corresponds to a shifting of ⊞ by either +0 or +ℓ𝑖−1 in each dimen-

sion; the cells at level 𝑖 is the union of 2
𝑑
different translations

𝔊𝑖 + ℓ𝑖−1 (𝑏1, . . . , 𝑏𝑑 ) of𝔊𝑖 . Every cell at level 𝑖 has its boundary

aligning with the grid boundaries of𝔊𝑖−1,𝔊𝑖−2, . . . ,𝔊0. As a con-

sequence, cells are always perfectly tiled by lower-level grids, and

cells at level 𝑗 are a refinement of those at level 𝑖 for all 𝑗 < 𝑖 . The

children of ⊞ at level 𝑖 are the 3
𝑑
cells at level 𝑖 − 1 contained in ⊞.

We denote the set of children cells of ⊞ as Ch(⊞).
Next, we describe the construction of compressed graphs. We

fix two parameters: height ℎ ≔ 𝑐3 ⌈log𝑛⌉ and penalty 𝛿 ≔ 𝑐4

¯

𝜀 =

Θ( 𝜀
log𝑛
), where 𝑐3, 𝑐4 > 0 are constants. We translate the points

slightly along each coordinate, say, by
𝛿

8

√
𝑑
, so that each point

lies in the interior of a grid cell in 𝔊𝑖 for any 𝑖 >
⌈︁
log

𝛿

4

√
𝑑

⌉︁
. Let

𝒞𝑖 ≔
{︁
level-𝑖 cell ⊞ | ⊞ ∩ (𝐴 ∪ 𝐵) ≠ ∅

}︁
be the set of nonempty

level-𝑖 cells for each 𝑖; set 𝒞 =
⋃︁ℎ

𝑖=1
𝒞𝑖 . For each ⊞ ∈ 𝒞 we con-

struct a weighted directed bipartite graph𝐺⊞ = (𝑉⊞, 𝐸⊞) called the

compressed graph.

Clustering and nodes of𝐺⊞. Each cell ⊞ ∈ 𝒞𝑖 is partitioned into
subcells by the hypercubes of𝔊𝑖−𝜏 , where 𝜏 ≔

⌈︁
log

2
(4
√
𝑑/𝛿)

⌉︁
is

the level-offset.
2
The diameter of each subcell is at most

𝛿
4
ℓ𝑖 . For

each subcell □ of ⊞, let 𝐴□ ≔ 𝐴 ∩ □ and 𝐵□ ≔ 𝐵 ∩ □. We refer

to 𝐴□, 𝐵□ as the 𝐴-clusters and 𝐵-clusters respectively. We call a

cluster 𝐴□ or 𝐵□ unsaturated if at least one of its points is free;

otherwise we call it saturated. Set 𝒜⊞ and ℬ⊞ to be the collections

of nonempty 𝐴- and 𝐵-clusters of ⊞, respectively. The set of nodes

of 𝐺⊞ is 𝑉⊞ ≔ 𝒜⊞ ∪ ℬ⊞; s ≔ |𝑉⊞ | = (𝜀−1
log𝑛)𝑂 (𝑑) . We note that

each cell ⊞ ∈ 𝒞0 either contains only points of 𝐴 or points of 𝐵.

For level 𝑖 ≥ 1, let □ be a subcell of ⊞. Then 𝐴□ =
⋃︁

Δ∈Ch(□) 𝐴Δ

and 𝐵□ =
⋃︁

Δ∈Ch(□) 𝐵Δ, where Ch(□) are the children subcells of □.
Hence, a cluster of ⊞ is obtained by merging the at most 2

𝑑
clusters

of children of ⊞ that contain □.

Arcs, compressed paths, and expansions. Graph 𝐺⊞ is a di-

rected complete bipartite graph with arc set 𝐸⊞ ≔ 𝒜⊞ ×ℬ⊞ ∪ℬ⊞ ×
𝒜⊞. There are two types of arcs in 𝐸⊞: an arc between two clusters

𝐴□ and 𝐵□′ is a bridge arc if no child cell of ⊞ contains both of □
and □′; otherwise it is an internal arc.

We will soon define a recursive weight function𝑤⊞ on the arcs

in 𝐸⊞. Using this weight function, we compute a minimum-weight

path 𝜋⊞ (𝑋,𝑌 ) between all pairs of nodes/clusters (𝑋,𝑌 ) in 𝐺⊞; we
refer to 𝜋⊞ (𝑋,𝑌 ) as a compressed path. For every pair (𝑋,𝑌 ) ∈ 𝐸⊞,
we also compute a simple path in𝐺𝑀 that begins at a point in𝑋 and

2
In this paper, the base of log is always 2.

a1

b1a3

b3

Figure 1: Concatenation of three expansions Φ1 (red), Φ2

(blue), Φ3 (green); solid edges are matching edges. The ending

(starting) tip of Φ1 (Φ3) is changed to connect it to Φ2. Φ1 and

Φ3 share a matching edge.

ends at a point in 𝑌 , which we call the expansion of 𝜋⊞ (𝑋,𝑌 ), de-
noted by Φ⊞ (𝑋,𝑌 ). We refer to the endpoints of Φ⊞ (𝑋,𝑌 ) as tips. If
(𝑋,𝑌 ) = (𝐵□, 𝐴□′), then the first and last edges of Φ⊞ (𝐵□, 𝐴□′) are
matching edges and the tips are never changed. On the other hand,

if (𝑋,𝑌 ) = (𝐴□, 𝐵□′) then the first and last edges ofΦ⊞ (𝐵□, 𝐴□′) are
non-matching edges and we may change the tips as needed. That

is, if the first (resp. last) edge of Φ⊞ (𝐴□, 𝐵□′) is (𝑎, 𝑏) and 𝑎′ ∈ 𝐴□
(resp. 𝑏 ′ ∈ 𝐵□′) is another point, then we may replace (𝑎, 𝑏) with
(𝑎′, 𝑏) (resp. (𝑎, 𝑏 ′)).

The asymmetry in the definition ofΦ⊞ (𝐵□, 𝐴□′) andΦ⊞ (𝐴□, 𝐵□′)
allows us to concatenate the expansion of two shortest paths in𝐺⊞
that share a node. Suppose Φ1 = Φ⊞ (𝐵□1

, 𝐴□2
), Φ2 = Φ⊞ (𝐴□2

, 𝐵□3
),

and 𝑏1 and 𝑎1 the starting and ending tips of Φ1, respectively. We

change the starting tip of Φ2 to 𝑎1. By concatenating this modified

Φ2 with Φ1, we obtain an alternating path in 𝐺𝑀 from the starting

tip of Φ1 to the ending tip of Φ2 (see Figure 1). For brevity, we will

simply write this concatenation as Φ1 ◦ Φ2 in the rest of the text.

If □3 = □1, i.e., 𝜋⊞ (𝐵□1
, 𝐴□2
) ◦ 𝜋⊞ (𝐴□2

, 𝐵□3
) is a cycle in 𝐺⊞, then

by cyclically concatenating Φ1 and Φ2, i.e, changing the starting tip

of Φ2 to 𝑎1 and the ending tip of Φ2 to 𝑏1, Φ1 ◦ Φ2 is an alternating

cycle in 𝐺𝑀 .

There is a mutual recursion between the definition of arc weights

and the construction of expansions: arc weights are defined using

the residual cost of lower-level expansions, and expansions are

constructed based on shortest paths 𝜋⊞ (𝑋,𝑌 ), described below.

Stability. During both the shortest path computation on 𝐺⊞ and

the construction of expansions we may discover a reducing cycle Γ
in𝐺𝑀 , in which case we update𝑀 by canceling Γ (i.e., setting𝑀 ←
𝑀 ⊕ Γ) and rebuilding the data structure at ⊞ and its descendants

(see Repair in Section 5).We say cell⊞ is stable if (i) the children of⊞
are stable, and (ii) no reducing cycle was detected while computing

𝜋⊞ (·, ·) and Φ⊞ (·, ·) for all pairs of nodes in 𝐺⊞.

Arc weights. Assuming all children cells of ⊞ are stable, we define
arc weights𝑤⊞ : 𝐸⊞ → R recursively as follows:

• Bridge arcs: Let (𝑋,𝑌 ) be a bridge arc. Let cntr𝑋 (resp.

cntr𝑌 ) be the center of the subcell containing the cluster 𝑋

(resp. 𝑌 ). For (𝑋,𝑌 ) = (𝐴□, 𝐵□′), we set

𝑤⊞ (𝑋,𝑌 ) ≔ ∥cntr𝑋 − cntr𝑌 ∥ + 𝛿ℓ𝑖 (1)
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if 𝑋 × 𝑌 \𝑀 ≠ ∅ and∞ otherwise. For (𝑋,𝑌 ) = (𝐵□, 𝐴□′),
𝑤⊞ (𝑋,𝑌 ) ≔ −∥cntr𝑋 − cntr𝑌 ∥ + 𝛿ℓ𝑖 (2)

if (𝑋 × 𝑌 ) ∩𝑀 ≠ ∅ and∞ otherwise.

• Internal arcs: If a child ⊞′ of ⊞ contains both □ and □′, then
we set

𝑤⊞ (𝑋□, 𝑌□′) ≔ min

Δ∈Ch(□),Δ′∈Ch(□′)
⊞′∈Ch(⊞) :□,□′⊂⊞′

𝛼
¯

𝜀 (Φ⊞′ (𝑋Δ, 𝑌Δ′)) + 𝛿ℓ𝑖 . (3)

We call the triple (⊞′,Δ,Δ′) that realizes the minimum in (3)

as the weight certificate of the internal arc (𝑋□, 𝑌□′).

Expansions. We now define the expansions Φ⊞ (𝑋,𝑌 ) using the
weights of arcs in𝐺⊞ and their weight certificates. We first define

an expansion Φ(𝜂) of each arc 𝜂 ∈ 𝐸⊞. If 𝜂 is a bridge arc of the form
𝜂 = (𝐴□, 𝐵□′), then we choose Φ(𝜂) to be an arbitrary pair (𝑎, 𝑏) ∈
𝐴□ × 𝐵□′ with the caveat that if 𝐴□ or 𝐵□′ has a free point then we

choose𝑎 or𝑏 to be a free point; and if it is a bridge arc of the form𝜂 =

(𝐵□, 𝐴□′) thenwe chooseΦ(𝜂) = arg max𝑒∈𝑀∩(𝐵□×𝐴□′ ) ∥𝑒 ∥. Finally,
if 𝜂 is an internal arc with (⊞′,Δ,Δ′) as the weight certificate of 𝜂,
then we set Φ(𝜂) ≔ Φ⊞′ (𝑋Δ, 𝑌Δ′).

For a given pair (𝑋,𝑌 ) ∈ 𝐸⊞, we compute Φ⊞ (𝑋,𝑌 ) as follows:
Suppose 𝜋⊞ (𝑋,𝑌 ) = ⟨𝜂1, . . . , 𝜂𝑘 ⟩, where each 𝜂𝑖 is an arc of𝐺⊞. Let

Φ̃← Φ(𝜂1) ◦ · · · ◦ Φ(𝜂𝑘 ), where concatenation is as defined above.

Albeit each Φ(𝜂𝑖 ) being a simple path, Φ̃ may not be simple, i.e.,

some matching edges may appear more than once, so we cannot

simply set Φ⊞ (𝑋,𝑌 ) to Φ̃. Instead, we use a greedy algorithm to

simplify Φ̃ by repeatedly removing cycles, as follows: We check

whether any matching edge in Φ̃ appears more than once. If there

is no such edge, then we stop and set Φ⊞ (𝑋,𝑌 ) ← Φ̃. Otherwise,
suppose Φ̃ = Π1 ◦ ⟨𝑒⟩ ◦ Π2 ◦ ⟨𝑒⟩ ◦ Π3, where 𝑒 is a matching edge.

Then 𝐶 ≔ ⟨𝑒⟩ ◦ Π2 is an alternating cycle in 𝐺𝑀 (see Figure 1). If

𝛼
¯

𝜀 (𝐶) < 0, i.e., 𝐶 is a reducing cycle, then we compute a simple

reducing subcycle of 𝐶 using the procedure SimpleReducingSub-

cycle described below. Otherwise we set Φ̃← Π1 ◦ ⟨𝑒⟩ ◦ Π3, and

repeat the above step. The correctness of the overall algorithm does

not depend on the order in which we find the duplicate match-

ing edges. We refer to this procedure of computing Φ⊞ (𝑋,𝑌 ) from
𝜋⊞ (𝑋,𝑌 ) as ConstructExpansion. Maintaining expansions in a

data structure so that they can be computed efficiently is a major

component of our algorithm and is described in detail in Section 4.

The following lemmas summarize the relationship between the

adjusted cost of paths in 𝐺𝑀 and the weights of paths in 𝐺⊞.

Lemma 3.1 (Expansion Ineqality). Let ⊞ be a stable cell, let

(𝑋,𝑌 ) ∈ 𝐸⊞. Then 𝛼
¯

𝜀 (Φ⊞ (𝑋,𝑌 )) ≤ 𝑤⊞ (𝜋⊞ (𝑋,𝑌 )).

Corollary 3.2. Suppose all children of ⊞ are stable. Let 𝐶 ≔
⟨𝜂1, . . . , 𝜂𝑘 ⟩ ⊆ 𝐸⊞ be a negative cycle in 𝐺⊞, and let Γ ≔ Φ(𝜂1) ◦
· · ·◦Φ(𝜂𝑘 ) be the alternating cycle formed by cyclically concatenating

the expansions of 𝜂1, . . . , 𝜂𝑘 . Then, 𝛼
¯

𝜀 (Γ) < 0.

Lemma 3.3. Let Π be either a reducing cycle, or the augmenting

path (in𝐺𝑀 ) with the minimum 𝜀-adjusted cost 𝛼∗. Then there exists

a level 𝑖 ∈ {0, . . . , ℎ} and ⊞ ∈ 𝒞𝑖 such that Π lies completely in ⊞.

Lemma 3.4 (Lifting Ineqality). Let Π be an alternating path

in 𝐺𝑀 from point 𝑝 to point 𝑞 (possibly 𝑝 = 𝑞 in the case Π is a

cycle) that is completely contained in a cell of level at most ℎ. Let

⊞ be a cell at the smallest level that contains Π and 𝑋 (resp. 𝑌 ) the

cluster in 𝑉⊞ containing 𝑝 (resp. 𝑞). Then either ⊞ is not stable or

𝑤⊞ (𝜋⊞ (𝑋,𝑌 )) ≤ 𝛼𝜀 (Π) .

Putting everything together. In view of the above lemmas, the

data structure works as follows: If ⊞ is not stable (but all its children

are), then the data structure returns a reducing cycle Γ⊞ in𝐺𝑀 that

acts as a witness of its instability. If ⊞ is stable, then for every pair

(𝑋,𝑌 ) ∈ 𝐸⊞, the data structure maintains a minimum-weight path

𝜋⊞ (𝑋,𝑌 ) and its expansion Φ⊞ (𝑋,𝑌 ). If both 𝐴□, 𝐵□′ are unsatu-
rated, then we call 𝜋⊞ (𝐴□, 𝐵□′) an augmenting path in𝐺⊞. Given an

augmenting path 𝜋⊞ (𝐴□, 𝐵□′) in 𝐺⊞, our choice of the expansion
of a bridge arc ensures that Φ⊞ (𝐴□, 𝐵□′) is an augmenting path in

𝐺𝑀 . Let (□⊞,□′⊞) ≔ arg min□,□′ 𝛼
¯

𝜀 (Φ⊞ (𝐴□, 𝐵□′)) where the min-

imum is taken over all cluster pairs 𝐴□, 𝐵□′ of ⊞ such that both

are unsaturated. If 𝐺⊞ does not have any augmenting path, the

pair (□⊞,□′⊞) is undefined. Set OptPairs ≔
{︁
(□⊞,□′⊞) | ⊞ ∈ 𝒞

}︁
. We

store OptPairs in a priority queue with 𝛼
¯

𝜀 (Φ⊞ (□⊞,□′⊞)) as the key
of (□⊞,□′⊞).

FindPath and Augment procedures are described in Section 5.

The information stored at ⊞ depends on𝑀 ∩ ((𝐴∩⊞) × (𝐵∩⊞)). So
whenever the matching edges change (e.g. by Augment), we update

the information stored at the corresponding ⊞. The Repair(⊞)
procedure, also described in Section 5, updates the data structure

at ⊞. Initially𝑀 = ∅, and the data structure can be built by calling

Repair at all cells of 𝒞 in a bottom-up manner.

4 MAINTAINING EXPANSIONS OF

COMPRESSED PATHS

We now describe the algorithms and data structure for comput-

ing and maintaining the expansions of compressed paths at all

cells. We begin by describing a high-level representation of expan-

sions and the two high-level procedures ConstructExpansion

and SimpleReducingSubcycle needed for computing them. Next,

we describe the data structure to maintain the expansions com-

pactly. Finally, we describe the Intersect, Report, and AdjCost

procedures as well as the operations on the data structure needed

by the high-level procedures.

Recall that cells in 𝒞 are processed in a bottom up manner. We

focus on computing expansions at a cell ⊞, assuming (i) they have

been computed at all children cells of ⊞, (ii) the children of ⊞ are
stable, (iii) compressed paths between all pairs of subcells of ⊞ have
been computed, and (iv) no negative cycles have been detected in

𝐺⊞. For an internal arc 𝛾 = (𝐴□, 𝐵□′) at ⊞, the expansion of 𝛾 , Φ(𝛾),
is Φ⊞′ (𝐴Δ, 𝐵Δ′) for some child cell ⊞′ of ⊞ and children clusters

𝐴Δ, 𝐵Δ′ of 𝐴□, 𝐵□′ , where (⊞′,Δ,Δ′) is the weight certificate of 𝛾 .
We have Φ(𝛾) at our disposal when we compute expansions at ⊞.

4.1 Expansions and Pathlets

Representation of expansions. Let ⟨𝑏1, 𝑎1, . . . , 𝑏𝑘 , 𝑎𝑘 ⟩ be a path
in𝐺𝑀 from 𝑏1 ∈ 𝐵 to 𝑎𝑘 ∈ 𝐴, or a cycle (with the edge (𝑎𝑘 , 𝑏1) also
being present). The path (cycle) can be specified by the sequence

⟨(𝑏1, 𝑎1), . . . , (𝑏𝑘 , 𝑎𝑘 )⟩ of matching edges. Conversely, since (𝑎, 𝑏) ∈
𝐺𝑀 if (𝑏, 𝑎) ∉ 𝑀 for any pair (𝑎, 𝑏) ∈ 𝐴 × 𝐵, any sequence Φ ≔
⟨𝑒1, 𝑒2, . . . , 𝑒𝑘 ⟩ of matching edges defines a path ⟨𝑏1, 𝑎1, . . . , 𝑏𝑘 , 𝑎𝑘 ⟩
in 𝐺𝑀 , where 𝑒𝑖 = (𝑏𝑖 , 𝑎𝑖 ). Φ also defines a unique cycle in 𝐺𝑀 . If
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the first or the last edge of an alternating path is a non-matching

edge, then the path can be represented by its sequences of matching

edges and its tips. For example, a path ⟨𝑎0, 𝑏1, 𝑎1, . . . , 𝑏𝑘 , 𝑎𝑘 , 𝑏𝑘+1⟩
can be represented by the edge sequence ⟨(𝑏1, 𝑎1), . . . , (𝑏𝑘 , 𝑎𝑘 )⟩
and the starting and ending tips 𝑎0, 𝑏𝑘+1, respectively. We repre-

sent an alternating paths/cycle Π as a tuple called the compact

representation, denoted by ⟨Π⟩, comprised of:

• a sequence ⟨𝑒1, 𝑒2, . . . , 𝑒𝑘 ⟩ of edges in𝑀 , which we refer to

as the matching edge sequence (MES); this sequence is empty

if Π consists of a single non-matching edge;

• a flag which is set to 1 if Π is a cycle; and

• the tips if the first and/or last edge of Π is non-matching

(otherwise null); tips are always null if 𝜋 is a cycle.

Pathlets. For any MES Φ = ⟨𝑒1, . . . , 𝑒𝑘 ⟩ and two indices 𝑖 ≤ 𝑗 , we
define the splice operators 𝑒𝑖 ▸ Φ ◂ 𝑒 𝑗 ≔ ⟨𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒 𝑗−1, 𝑒 𝑗 ⟩ and
𝑒𝑖 ▹ Φ ◃ 𝑒 𝑗 ≔ ⟨𝑒𝑖+1, 𝑒𝑖+2, . . . , 𝑒 𝑗−2, 𝑒 𝑗−1⟩.We mix the inclusive and

exclusive splices when convenient, e.g., 𝑒𝑖 ▸ Φ ◃ 𝑒 𝑗 = ⟨𝑒𝑖 , . . . , 𝑒 𝑗−1⟩.
We call any contiguous subsequence of Φ a pathlet of Φ. Obviously,
Φ is a pathlet of itself. If 𝜙 is a pathlet of Φ, we also allow further

restriction of 𝜙 using splicing, e.g., to create new pathlets 𝜙 ′ ⊆ 𝜙
of Φ. We say that 𝜙 originates from Φ, and we use “pathlet of an

expansion” as shorthand for “pathlet of the MES of an expansion.”

The pathlet of an expansion is always simple, since an expansion’s

MES is simple. Later, we compose new MES by concatenating mul-

tiple (individually) simple pathlets — these concatenated sequences

need not be simple. Two pathlets intersect if they have a common

matching edge.

Although the compact representation and pathlets can be applied

to any path/cycle in 𝐺𝑀 , we will deal mainly with those of three

types of paths: (i) an expansion, (ii) pathlets of an expansion, and

(iii) concatenations of pathlets of expansions. We work mostly

with the MES except when we need to compute the adjusted cost

(i.e., tips matter), so with a slight abuse of notation we will not

distinguish between an expansion and its MES and use Φ to denote

both. Note that (i) the MES of Φ1 ◦Φ2 is the concatenation of MES’s

of Φ1,Φ2, and (ii) an alternating path is non-simple if and only if

its MES contains duplicate (matching) edges. These two simple

observations will be crucial for our data structure.

Operations on pathlets. MES’s and pathlets are maintained

using a data structure, which consists of a collection of trees, called

MES trees and pathlet trees, respectively, and Boolean look-up ta-

bles, described below in Section 4.3. This data structure supports the

following operations. Here we assume that a pathlet is represented

compactly using 𝑂 (log𝑛) size (see Section 4.3).

• Intersects(𝜙1, 𝜙2): Given two pathlets 𝜙1 and 𝜙2 that origi-

nate from expansions of descendant cells of⊞, report whether
𝜙1 ∩ 𝜙2 ≠ ∅.
• LastCommonEdge(𝜙1, 𝜙2): Given two pathlets 𝜙1 and 𝜙2

that originate from lower-level expansions where 𝜙1 ∩ 𝜙2 ≠

∅, return references to four edges
3
: 𝑒1, the last edge of 𝜙1

in the common intersection; 𝑒2, the copy of 𝑒1 in 𝜙2; 𝑒3, the

predecessor of 𝑒1 in 𝜙1 (maybe null); 𝑒4, the predecessor of

𝑒2 in 𝜙2 (maybe null).

3
We will explain the specific form of the references to these edges when we describe

the data structure. We use the references to 𝑒1, 𝑒2 (resp. 𝑒3, 𝑒4) to implement inclusive

(resp. exclusive) splices involving 𝑒1 in both 𝜙1 and 𝜙2 . None of the procedures will

• Median(𝜙): Given a pathlet 𝜙 , return a reference to the

median edge of 𝜙 . That is, given 𝜙 ≔ ⟨𝑒1, 𝑒2, . . . , 𝑒𝑘 ⟩, return
a reference to 𝑒 ⌈𝑘/2⌉ .

• AdjCost(⟨Π⟩): Given a possibly non-simple path Π ∈ 𝐺𝑀

in its compact representation, where its MES is the concate-

nation of up to 𝑠 pathlets, return 𝛼
¯

𝜀 (Π).
• Report(⟨Π⟩) Given the compact representation of a simple

path/cycle Π ∈ 𝐺𝑀 , with its MES being the concatenation

of at most 𝑠 pathlets, return the sequence of edges in Π.
• Splice(𝜙, 𝑒, ⊲⊳): Given a pathlet 𝜙 , an edge 𝑒 of 𝜙 , and ⊲⊳ ∈
{▸,◂,◃}, splice the pathlet 𝜙 at 𝑒 .

• Concatenate(𝜙1, 𝜙2, . . . , 𝜙𝑡 ): Construct an MES composed

of 𝜙1 ◦ 𝜙2 ◦ · · · ◦ 𝜙𝑡 .
Let 𝑡 (𝑛) denote the maximum time taken by the above pro-

cedures except Report. We will see below in Section 4.4 that

𝑡 (𝑛) = (𝜀−1
log𝑛)𝑂 (𝑑) and Report takes 𝑂 (𝑡 (𝑛) + 𝑘ℎ) time where

𝑘 is the length of the path returned by the procedure.

4.2 High-level Simplification Procedures

We now describe the two main procedures ConstructExpansion

and SimpleReducingSubcycle.

ConstructExpansion. Let 𝜋⊞ (𝑋,𝑌 ) = ⟨𝜂1, . . . , 𝜂𝑘 ⟩ be a short-
est path in𝐺⊞, where each 𝜂𝑖 is an arc of𝐺⊞. We compute the MES

of Φ⊞ (𝑋,𝑌 ) and set the starting (resp. ending) tip of Φ⊞ (𝑋,𝑌 ) to
that ofΦ(𝜂1) (resp.Φ(𝜂𝑘 )). Let𝜙𝑖 be theMES ofΦ(𝜂𝑖 ), for 1 ≤ 𝑖 ≤ 𝑘 .
We initially set

Φ̃← 𝜙1 ◦ · · · ◦ 𝜙𝑘 . (4)

We process the 𝜙𝑖 ’s in sequence and grow a pathlet sequence Ξ =

⟨𝜙 ′
1
, . . . , 𝜙 ′𝑡 ⟩ where 𝜙 ′1 ◦ · · · ◦ 𝜙

′
𝑡 is simple.

Initially, Ξ = ∅ and the first pathlet we process is 𝜙1. To process

𝜙𝑖 , we compare it against each 𝜙 ′
𝑗
∈ Ξ in ascending order to de-

termine whether 𝜙 ′
0
◦ · · · ◦ 𝜙 ′𝑡 ◦ 𝜙𝑖 is simple. Specifically, we query

Intersects(𝜙𝑖 , 𝜙 ′𝑗 ) to find the first pathlet 𝜙 ′
𝑗
∈ Ξ that shares a

matching edge with 𝜙𝑖 . If there is no intersection with any pathlet

inΞ, we simply set𝜙 ′
𝑡+1 ← 𝜙𝑖 , append𝜙

′
𝑡+1 toΞ, and continue on to

𝜙𝑖+1. If there is an intersection against 𝜙 ′
𝑗
, we find 𝑒1, the last edge

in 𝜙𝑖 that intersects 𝜙
′
𝑗
, by invoking LastCommonEdge(𝜙𝑖 , 𝜙 ′𝑗 ).

Then, 𝜙 ′
1
◦ · · · ◦ 𝜙 ′

𝑗−1
◦ (𝜙 ′

𝑗
◃ 𝑒1) ◦ (𝑒1 ▸ 𝜙𝑖 ) is a simple sequence

of matching edges and

𝐶 ≔ (𝑒1 ▸ 𝜙 ′𝑗 ) ◦ 𝜙
′
𝑗+1 ◦ · · · ◦ 𝜙

′
𝑡 ◦ (𝜙𝑖 ◃ 𝑒1)

is a cycle.
4
Next, compute 𝛼

¯

𝜀 (𝐶) using AdjCost(⟨𝐶⟩). If 𝐶 is re-

ducing, we abort ConstructExpansion and return the simple re-

ducing cycle𝐶 by calling SimpleReducingSubcycle(𝐶). If𝐶 is not

reducing, then we update 𝜙 ′
𝑗
= (𝜙 ′

𝑗
◃ 𝑒1), 𝜙 ′𝑗+1 = (𝑒1 ▸ 𝜙𝑖 ), and

set Ξ← ⟨𝜙 ′
1
, . . . , 𝜙 ′

𝑗
, 𝜙 ′

𝑗+1⟩. Then, we continue on to 𝜙𝑖+1. If all el-

ements of Φ̃ are processed without aborting and Ξ = ⟨𝜙 ′
0
, . . . , 𝜙 ′𝑡 ⟩,

then we return the simple sequence 𝜙 ′
1
◦ 𝜙 ′

2
◦ · · · ◦ 𝜙 ′𝑡 as the MES

of Φ⊞ (𝑋,𝑌 ).
We assume that each input pathlet 𝜙𝑖 is represented as a pathlet

tree; intermediate pathlets are also maintained using pathlet trees;

be invoking left exclusive splice operation, i.e., of the form 𝑒 ▹ 𝜙 , so we do not need

references to the successor edges.

4
Note that the exclusive splices (e.g., 𝜙′𝑗 ◃ 𝑒1) may be empty pathlets. If that is the

case, we simply drop the empty pathlet from the concatenation sequence.
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pathlets are spliced using Splice; and Concatenate(𝜙 ′
1
, . . . , 𝜙 ′𝑡 ) is

called at the end to represent the MES as an MES tree.

SimpleReducingSubcycle. This procedure is either called by

ConstructMES or by Repair to expand a negative compressed

cycle 𝜑 in 𝐺⊞. In the latter case, we first construct an intermediate

expansion of 𝜑 of the form (4) as above, so assume that (MES of) the

reducing cycle is represented as a pathlet sequence𝐶 = ⟨𝜙1, . . . , 𝜙𝑘 ⟩.
Like ConstructExpansion, the general case of this procedure

processes the pathlets of the input in sequence while building a

simple prefix. Given a reducing cycle (as a pathlet sequence) 𝐶 , we

grow a pathlet sequence Ξ = ⟨𝜙 ′
1
, . . . , 𝜙 ′𝑡 ⟩ where 𝜙 ′1 ◦ · · · ◦ 𝜙

′
𝑡 is

simple. The case of 𝑘 ≤ 2 is a base case, handled differently, so

assume first that 𝑘 ≥ 3.

Initially Ξ = ∅, and the first element we process is 𝜙1. Suppose

we are processing𝜙𝑖 in𝐶 . For each𝜙
′
𝑗
∈ Ξ in reverse order, we query

Intersects(𝜙𝑖 , 𝜙 ′𝑗 ). If we fail to find any intersections between Ξ
and 𝜙𝑖 , then 𝜙

′
1
◦ · · ·𝜙 ′𝑡 ◦ 𝜙𝑖 is simple, so we set 𝜙 ′

𝑡+1 ← 𝜙𝑖 , append

𝜙 ′
𝑡+1 to Ξ, and continue on to 𝜙𝑖+1. Otherwise, let 𝜙 ′𝑗 be the last ele-

ment ofΞ to intersect𝜙𝑖 , and we invoke LastCommonEdge(𝜙𝑖 , 𝜙 ′𝑗 )
to acquire 𝑒1, the last edge of 𝜙𝑖 in the intersection. There are two

subcycles about 𝑒1:

𝐶0 ≔ (𝑒1 ▸ 𝜙 ′𝑗 ) ◦ 𝜙
′
𝑗+1 ◦ · · · ◦ 𝜙

′
𝑖−1
◦ (𝜙𝑖 ◃ 𝑒1)

𝐶𝐼 ≔ 𝜙 ′
1
◦ · · · ◦ (𝜙 ′𝑗 ◃ 𝑒1) ◦ (𝑒1 ▸ 𝜙𝑖 ) ◦ 𝜙𝑖+1 ◦ · · · ◦ 𝜙𝑡

Neither 𝐶0 nor 𝐶𝐼 need be simple, but:

• In 𝐶0, the only potentially intersecting pathlets are 𝑒1 ▸ 𝜙 ′
𝑗

and 𝜙𝑖 ◃ 𝑒1.

• In 𝐶𝐼 , (𝜙 ′𝑗 ◃ 𝑒1) ∩ (𝑒1 ▸ 𝜙𝑖 ) = ∅, so the number of pairs of

intersecting component pathlets in 𝐶𝐼 is strictly less than

the number in 𝐶 .

Since 𝐶 was reducing, at least one of 𝐶0 and 𝐶𝐼 must be reducing

(the adjusted cost of 𝐶 is simply the sum of adjusted costs of 𝐶0

and 𝐶𝐼 ). Check 𝛼
¯

𝜀 (𝐶0) using AdjCost(⟨𝐶0⟩). If 𝐶0 is reducing, we

return the result of running the base-case algorithm on 𝐶0, below.

If𝐶0 is not reducing, then𝐶𝐼 is reducing and we return the result of

recursively calling SimpleReducingSubcycle(𝐶𝐼 ). If all elements

of𝐶 are processed without finding an intersection, then𝐶 is simple

and we return 𝐶 .

There are two base cases. First, if 𝐶 contains only one pathlet,

then it is simple since the originating MES must also be simple.

Next, if at most two of the component pathlets of𝐶 are intersecting,

we use the following binary-search algorithm:

Given 𝐶 ≔ 𝜙1 ◦ · · · ◦ 𝜙𝑘 where only 𝜙1 and 𝜙𝑘 intersect, the

only-two-intersecting pathlets base-case is handled using a prune-

and-search approach as follows. Let 𝜙1 ≔ 𝑒𝐿 ▸ Φ1 ◃ 𝑒+ and

𝜙𝑘 ≔ 𝑒− ▸ Φ𝑘 ◃ 𝑒𝑅 for two edges 𝑒𝐿, 𝑒𝑅 (initially, 𝑒𝐿 = 𝑒𝑅 ), and

keep an extra pointer 𝑒𝑀 = 𝑒𝐿 ∈ 𝜙1. We recursively shrink 𝜙1

and 𝜙2 until we find a simple reducing cycle, while keeping the

invariant that there are no intersections between (𝑒𝐿 ▸ Φ1 ◃ 𝑒𝑀 )
and (𝑒− ▸ Φ𝑘 ◃ 𝑒𝑅) At each step, we query Intersects((𝑒𝑀 ▸
Φ1 ◃ 𝑒+), (𝑒− ▸ Φ𝑘 ◃ 𝑒𝑅)). If there is no intersection then 𝐶 is

simple, so we return 𝐶 . If there is an intersection, then we invoke

Median(𝑒𝑀 ▸ Φ1 ◃ 𝑒+) to acquire 𝑓 , the median edge of 𝑒𝑀 ▸
Φ1 ◃ 𝑒+, and query Intersects((𝑒𝑀 ▸ Φ1 ◃ 𝑓 ), (𝑒− ▸ Φ𝑘 ◃ 𝑒𝑅)).
If there is no intersection up to the median, then we shrink the

left pathlet to 𝑓 ▸ Φ1 ◃ 𝑒+ by setting 𝑒𝑀 ← 𝑓 , and attempt again.

Otherwise, if (𝑒𝑀 ▸ Φ1 ◃ 𝑓 ) ∩ (𝑒− ▸ Φ𝑘 ◃ 𝑒𝑅) ≠ ∅, we invoke
LastCommonEdge((𝑒𝐿 ▸ Φ1 ◃ 𝑓 ), (𝑒− ▸ Φ𝑘 ◃ 𝑒𝑅)) to acquire 𝑒1,

the last edge of 𝑒𝐿 ▸ Φ1 ◃ 𝑓 that appears in the intersection. There

are two subcycles about 𝑒1:˜︁𝐶0 ≔ (𝑒𝐿 ▸ Φ1 ◃ 𝑒1) ◦ (𝑒1 ▸ Φ𝑘 ◃ 𝑒𝑅)˜︁𝐶𝐼 ≔ (𝑒1 ▸ Φ1 ◃ 𝑒+) ◦ 𝜙2 ◦ · · · ◦ 𝜙𝑘−1
◦ (𝑒− ▸ Φ𝑘 ◃ 𝑒1)

In ˜︁𝐶0, |𝑒𝐿 ▸ Φ1 ◃ 𝑒1 | < |𝜙1 |/2. In ˜︁𝐶𝐼 , 𝑒1 ▸ Φ1 ◃ 𝑒+ has no inter-

section edges before 𝑓 and |𝑓 ▸ Φ1 ◃ 𝑒+ | ≤ |𝜙1/2|. Check 𝛼
¯

𝜀 (˜︁𝐶0)
using AdjCost(⟨˜︁𝐶0⟩). If ˜︁𝐶0 is reducing, we restart the binary search

with input ˜︁𝐶0. If
˜︁𝐶0 is not reducing then ˜︁𝐶𝐼 must be reducing, and

we continue the binary search on ˜︁𝐶𝐼 by setting 𝑒𝐿 ← 𝑒1, 𝑒𝑅 ← 𝑒1,

and 𝑒𝑀 ← 𝑓 . If |𝜙1 | = 1, then 𝜙1 = ⟨𝑒1⟩ and the intersection with

𝑒1 is eliminated in both ˜︁𝐶0 and ˜︁𝐶𝐼 , so the binary search eventually

terminates.

The next lemma bounds the running time of the two procedures.

Lemma 4.1. (i) Given a compressed path 𝑃 in 𝐺⊞, Construct-

Expansion either returns an MES Φ of 𝑃 or a simple reducing cycle

in 𝑂 (𝑠10ℎ4) time. (ii) SimpleReducingSubcycle returns a simple

reducing cycle in 𝑂 (𝑠10ℎ4) time.

4.3 Compact Representation of Pathlets

We now describe the data structure to store MES’s and pathlets

compactly. The MES of an expansion Φ ≔ Φ⊞ (𝑋,𝑌 ) is stored in

a tree 𝑇 (Φ), called an MES tree (to be defined next), whose leaves

are the matching edges of Φ, in sequence from left to right. To

reference a matching edge 𝑒 in 𝑇 (Φ), we specify the root-leaf path

to 𝑒 whenever 𝑒 is passed to a procedure or returned by a procedure.

Let the spine of 𝑇 (Φ) to 𝑒 be the root-leaf path that ends at the leaf

representing 𝑒 . The pathlet subtree of a pathlet 𝜙 ≔ 𝑒− ▸ Φ ◂ 𝑒+

for 𝑒−, 𝑒+ ∈ Φ, denoted by 𝑇 (Φ, 𝜙), is the subtree of 𝑇 (Φ) lying
between and including the two spines to 𝑒− and 𝑒+. Let 𝑢 be a

node in 𝑇 (Φ, 𝜙); 𝑢 is a node in 𝑇 (Φ) as well. If 𝑢 does not lie on

the spines of 𝑒− or 𝑒+ then all children of 𝑢 that appear in 𝑇 (Φ)
also appear in 𝑇 (Φ, 𝜙); otherwise only those children of 𝑢 in 𝑇 (Φ)
that lie between the spines appear in 𝑇 (Φ, 𝜙). Hence, 𝑇 (Φ, 𝜙) can
be implicitly represented by storing a pointer to 𝑇 (Φ) and spines

of 𝑒− and 𝑒+, which takes 𝑂 (ℎ) = 𝑂 (log𝑛) space. See Figure 2.
MES trees are defined recursively. Recall that ConstructExpan-

sion creates the MES for Φ ≔ Φ⊞ (𝑋,𝑌 ), that has the form Φ =

𝜙1◦𝜙2◦· · ·◦𝜙𝑡 for some 𝑡 ≤ 𝑠 , where each𝜙 𝑗 is a pathlet ofΦ(𝜂 𝑗 ) of
an arc 𝜂 𝑗 of𝐺⊞; recall that we discard empty pathlets from the con-

catenation. 𝑇 (Φ) consists of a root node plus 𝑡 subtrees 𝑇1, . . . ,𝑇𝑡
from left to right, where the root of 𝑇𝑖 is the 𝑖-th leftmost child of

the root node. If 𝜙 𝑗 is the pathlet of Φ(𝜂 𝑗 ) then 𝑇𝑗 = 𝑇 (Φ(𝜂 𝑗 ), 𝜙 𝑗 ).
If 𝜙 𝑗 is a pathlet from a bridge arc then the 𝑇𝑗 is a single-node tree

(matching bridge arc). If 𝜂 𝑗 is an internal arc with weight certificate

(⊞′,Δ,Δ′) then 𝑇 (Φ(𝜂 𝑗 )) is the MES tree of Φ⊞′ (𝑋Δ, 𝑌Δ′), and the

children of the root of 𝑇𝑗 are a contiguous subsequence of the chil-

dren of the root of 𝑇 (Φ(𝜂 𝑗 )). Thus, the leaves of 𝑇 (Φ) correspond
to (matching) bridge arcs, and the internal nodes correspond to

internal arcs of some descendant cells of ⊞. Sometimes it will be

convenient to identify a node of 𝑇 (Φ) with the corresponding arc.

Canonical pathlets and canonical nodes. Let 𝑢 be an internal

non-root node of 𝑇 (Φ). The subtree of 𝑇 (Φ) rooted at 𝑢, denoted



STOC ’22, June 20–24, 2022, Rome, Italy Pankaj K. Agarwal, Hsien-Chih Chang, Sharath Raghvendra, and Allen Xiao

A B

D

F G I J

E

C H K

〈A,B,C,D,E, F,G,H, I, J,K〉
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〈C〉 ◦ 〈D〉 ◦ 〈E〉 ◦ 〈F,G〉 ◦ 〈H〉 ◦ 〈I〉

D

Figure 2: Left: An MES tree representing a sequence

⟨𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺, 𝐻, 𝐼, 𝐽 , 𝐾⟩. Right: Pathlet-subtree (shaded)

of the same MES tree representing subsequence

⟨𝐶, 𝐷, 𝐸, 𝐹,𝐺, 𝐻, 𝐼 ⟩. Its two spines are marked in red, and its

canonical nodes are marked blue.

𝑇𝑢 , is a pathlet subtree 𝑇 (Φ(𝜂), 𝜙), where 𝜂 is an internal arc at a

descendant cell of ⊞, corresponding to the node𝑢, and 𝜙 is a pathlet

of Φ(𝜂). We call 𝜙 a canonical pathlet of Φ(𝜂), denoted as 𝜙𝑢 . An

MES Φ of length 𝑘 has Θ(𝑘2) possible pathlets, but we show below

that the number of canonical pathlets of an expansion is much

smaller (cf. Lemma 4.4).

For a pathlet 𝜙 of an expansion Φ, we define the canonical nodes
of 𝑇 (Φ, 𝜙) to be the ordered sequence of non-spine children of

spine nodes plus the leaves at the ends of the spines, denoted by

C(Φ, 𝜙) = ⟨𝑢1, 𝑢2, . . . , 𝑢𝑘 ⟩. |C(Φ, 𝜙) | = 𝑂 (𝑠ℎ). Each canonical node

𝑢𝑖 is a pathlet subtree of some MES tree Φ(𝜂𝑖 ), i.e., represents a
canonical pathlet 𝜙𝑢𝑖 (of Φ(𝜂𝑖 )). We can write 𝜙 = 𝜙𝑢1

◦ · · · ◦ 𝜙𝑢𝑘
(Figure 2) — any pathlet can be represented as the concatenation of

𝑂 (𝑠ℎ) canonical pathlets.
Compact form of MES trees. Let Φ be an MES computed by

ConstructExpansion as Φ = 𝜙1 ◦ · · · ◦ 𝜙𝑡 , where pathlet 𝜙𝑖
originates from an MES Φ𝑖 . Then the compact form of 𝑇 (Φ) con-
sists of the root of 𝑇 (Φ) plus the sequence of pathlet subtrees

𝑇 (Φ1, 𝜙1), . . . ,𝑇 (Φ𝑡 , 𝜙𝑡 ), each represented by a pointer to the root

of the MES tree and by the (two) spines to the first and last edges.

We call the root and the spine nodes of these pathlet subtrees the

exposed nodes. We store only the compact form of𝑇 (Φ). For each ex-
posed node 𝑢 of𝑇 (Φ), we store the following auxiliary information

about 𝜙𝑢 (say, originating from the expansion Φ𝑢 ):

(i) 𝑏𝑢 and 𝑎𝑢 , the first and last endpoints of 𝜙𝑢 ;

(ii) 𝑚𝑢 ≔ |𝜙𝑢 |, which is equal to the number of leaves in 𝑇𝑢 ;

(iii) 𝛼
¯

𝜀 (𝜙𝑢 ), the
¯

𝜀-adjusted cost of 𝜙𝑢 (here we view the canon-

ical pathlet 𝜙𝑢 as a path in 𝐺𝑀 and not just a sequence of

matching edges).

(iv) Pointers to the root of 𝑇 (Φ𝑢 ) and to its two children that

correspond to the leftmost and the rightmost children of 𝑢

in 𝑇 (Φ).
Since there are up to 𝑠 children of the root, the space used by this

compact representation of 𝑇 (Φ) is 𝑂 (𝑠ℎ). ConstructExpansion
and SimpleReducingSubcycle procedures return the MES of the

output alternating path/cycle in this compact form.

Lemma 4.2. Let Φ be an MES, and let 𝑢 be an unexposed child of

an exposed node 𝑣 in 𝑇 (Φ). Suppose the canonical pathlet 𝜙𝑢 (resp.

𝜙𝑣) originates from Φ𝑢 (resp. Φ𝑣). Then the root of 𝑇 (Φ𝑣, 𝜙𝑣) has a
child 𝑢 ′ such that (i) both 𝑢 and 𝑢 ′ are identified with the same arc,

and (ii) 𝑇 (Φ𝑢 , 𝜙𝑢 ), which is also the subtree of 𝑇 (Φ) rooted at 𝑢, is

identical to the subtree of 𝑇 (Φ𝑣) rooted at 𝑢 ′.

Lemma 4.2 suggests how we can traverse𝑇 (Φ) recursively using
its compact form: Suppose we are a node 𝑢 of 𝑇 (Φ). If 𝑢 is a leaf,

then we return. If 𝑢 is an exposed node, then we visit the children

of 𝑢 using the information stored at 𝑢. Finally, if 𝑢 is unexposed

but its parent 𝑣 is exposed, then we use Lemma 4.2 to find the

(exposed) child 𝑢 ′ of the root of 𝑇 (Φ𝑣) that corresponds to 𝑢, and
we recursively visit the subtree rooted at 𝑢 ′ in 𝑇 (Φ𝑣).
Cells, level, and rank. Let Φ be an expansion in a cell ⊞ of level

𝑖 . We assign the cell and level of Φ to be ⊞ and 𝑖 , respectively. Recall

that expansion Φ(𝛾) of an internal arc 𝛾 at ⊞ is an expansion from

a child cell of ⊞ (given by its weight certificate) — Φ(𝛾) inherits
cell and level assigned to that expansion. If 𝛾 is a bridge arc at a

cell Δ, then we assign Δ and the level of Δ as the cell and level of

Φ(𝛾), respectively. For a pathlet 𝜙 originating from Φ, we assign
the cell and level of 𝜙 to be those of Φ. For a node 𝑢 of 𝑇 (Φ), we
define the cell of 𝑢, denoted by ⊞(𝑢), to be the cell assigned to

the canonical pathlet 𝜙𝑢 associated with 𝑢, and level(𝑢) to be the
level of ⊞(𝑢). Hence, if a non-root node 𝑢 is an internal node (resp.

leaf) then level(𝑢) = level(𝑝 (𝑢)) − 1 (resp. level(𝑢) = level(𝑝 (𝑢))),
where 𝑝 (𝑢) is the parent of 𝑢 in 𝑇 (Φ).

The rank of a canonical pathlet 𝜙 originating from Φ, denoted
rank(𝜙), is the smallest value 𝑖 for which there is a node 𝑢 in the

MES tree 𝑇 (Φ′) of some level-𝑖 expansion Φ′ such that 𝜙 = 𝜙𝑢 , i.e.,

𝑇 (Φ, 𝜙) is identical to the subtree of 𝑇 (Φ′) rooted at 𝑢. Informally,

𝑖 is the first level where an MES tree "creates" 𝜙 .

Lemma 4.3. Let 𝜙𝑢 be a canonical pathlet associated with a node 𝑢

of an MES tree 𝑇 (Φ). Then there is another MES Φ′ with level(Φ′) ≤
level(Φ) and a node 𝑢 ′ in 𝑇 (Φ′) such that 𝜙𝑢 = 𝜙𝑢′ and 𝑢

′
is an

exposed node of 𝑇 (Φ′).

The above lemma helps to prove Lemma 4.4, which bounds the

number of canonical pathlets.

Lemma 4.4. (i) There are𝑂 (𝑛𝑠3ℎ2) canonical pathlets. (ii) For any
cell ⊞ ∈ 𝒞, there are 𝑂 (𝑠3ℎ) canonical pathlets 𝜙 whose cell is ⊞.

Intersection tables. Define 𝒫 (Φ) as the set of canonical pathlets
that originate from Φ. Let 𝜂1, 𝜂2 be two arcs of a pair of sibling cells.

Recall that if 𝜂 is a matching bridge arc then Φ(𝜂) is the longest
matching edge corresponding to𝜂. Wemaintain an intersection table

𝛽𝜂1,𝜂2
: 𝒫 (Φ(𝜂1)) ×𝒫 (Φ(𝜂2)) → {0, 1} such that 𝛽𝜂1,𝜂2

(𝜙1, 𝜙2) = 1

if the two pathlets share an edge and 0 otherwise.

The intersection table is populated dynamically. In particular,

we maintain the following invariant: before we compute MES for

any cells at level 𝑖 , we have already computed 𝛽𝜂1,𝜂2
(𝜙1, 𝜙2) for all

pairs of pathlets of rank at most 𝑖 − 1. Therefore, after we finish

computingMES for cells at level 𝑖 , we compute all not-yet-computed

𝛽𝜂1,𝜂2
(𝜙1, 𝜙2) where 𝜙1, 𝜙2 are canonical pathlets of rank at most 𝑖

(i.e., one of 𝜙1, 𝜙2 has rank 𝑖), using Intersect procedure, which

we present later in this section.
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Since |𝒫 (Φ(𝜂)) | = 𝑂 (𝑠3ℎ) and the total number of canonical

pathlets is 𝑂 (𝑛𝑠3ℎ2) by Lemma 4.4, the total size of intersection

tables is 𝑂 (𝑛𝑠6ℎ3). We thus obtain the following.

Lemma 4.5. The total size of the data structure that maintains

MES is 𝑂 (𝑛𝑠6ℎ3), where ℎ is the height of the hierarchy and 𝑠 is the

maximum number of clusters in a cell ⊞.

4.4 Pathlet Operations

We now describe how operations on pathlets and expansions (cf.

Section 4.1) are implemented using MES and pathlet trees. Recall

that ⊞ is the cell at which we are constructing expansions.

Intersects. Given two pathlets 𝜙1, 𝜙2 originating from lower-

level MES’s Φ1,Φ2 (which are expansions at descendant cells of

⊞) respectively, the Intersects procedure determines whether

𝜙1 ∩ 𝜙2 ≠ ∅. The input pathlets 𝜙1 and 𝜙2 are given as (the

spines of) pathlet subtrees 𝑇 (Φ1, 𝜙1) and 𝑇 (Φ2, 𝜙2). For 𝑖 = 1, 2,

let C(Φ𝑖 , 𝜙𝑖 ) be the set of canonical nodes in of 𝑇 (Φ𝑖 , 𝜙𝑖 ). We de-

scribe the intersection-detection procedure for a pair (𝑢1, 𝑢2) ∈
C(Φ1, 𝜙1) × C(Φ2, 𝜙2). Using this procedure for all such pairs, we

determine whether 𝜙1 ∩ 𝜙2 ≠ ∅.
Fix a pair 𝑢1 ∈ C(Φ1, 𝜙1) and 𝑢2 ∈ C(Φ2, 𝜙2). We want to

determine whether 𝜙𝑢1
∩ 𝜙𝑢2

≠ ∅. If ⊞(𝑢1) ∩ ⊞(𝑢2) = ∅ then

𝜙𝑢1
∩𝜙𝑢2

= ∅, so we return no. Assume that ⊞(𝑢1)∩⊞(𝑢2) ≠ ∅ and

level(𝑢1) ≥ level(𝑢2). If level(𝑢1) = level(𝑢2), then ⊞(𝑢1),⊞(𝑢2)
are sibling cells. Let 𝜂𝑖 be the arc in 𝐺⊞(𝑢𝑖 ) corresponding to 𝑢𝑖 . If
𝜂1 or 𝜂2 is a bridge arc then we return yes only if both of them

are bridge arcs and Φ(𝜂1) and Φ(𝜂2) are the same matching edge,

otherwise return no. On the other hand, if both 𝜂1, 𝜂2 are inter-

nal arcs then level(𝜂𝑖 ), rank(𝜙𝑖 ) < level(⊞), so 𝛽𝜂1,𝜂2
(𝜙𝑢1

, 𝜙𝑢2
) has

been computed and we return this value.

We now assume that level(𝑢1) > level(𝑢2). If 𝑢1 is a leaf, then

it is impossible for the matching bridge edge 𝜙𝑢1
to appear in 𝜙𝑢2

(which is composed of lower-level edges) so we return no. If 𝑢1 is

an internal node then we recursively test 𝑢2 against every children

𝑣 (level(𝑣) ≥ level(𝑢2)) of 𝑢1, to determine whether 𝜙𝑣 ∩ 𝜙𝑢2
≠ ∅.

If any of them returns yes, we return yes. The following lemma

bounds the running time using a packing argument.

Lemma 4.6. Given a pair of canonical pathlets 𝜙1, 𝜙2 originating

from Φ1,Φ2, Intersects takes 𝑂 (𝑠4ℎ2) time to determine whether

𝜙1 ∩ Φ2 ≠ ∅.

Summing this bound over all pairs in C(Φ1, 𝜙1) × C(Φ2, 𝜙2), we
obtain the following:

Corollary 4.7. Intersects procedure takes 𝑂 (𝑠6ℎ4) time.

LastCommonEdge. Given two pathlets 𝜙1, 𝜙2 originating from

lower-level MES’s Φ1 = Φ(𝜂1),Φ2 = Φ(𝜂2), respectively, returns
the last edge of 𝜙1 that appears in 𝜙2. If such an edge exists, let 𝑒1

denote this edge. The procedure first finds the edge 𝑒1 ∈ 𝜙1, then

its copy in 𝜙2, and then computes the spines of 𝑒1, of its copy in 𝜙2,

and of their predecessors.

By invoking Intersects, we first determine whether𝜙1∩𝜙2 ≠ ∅.
If the answer is yes, we also find the last canonical node 𝑢1 ∈
C(Φ1, 𝜙1) such that 𝜙𝑢1

∩ 𝜙2 ≠ ∅, i.e., 𝑒1 ∈ 𝜙𝑢1
. Let 𝑈2 ≔ {𝑢2 ∈

C(Φ2, 𝜙2) | 𝜙𝑢1
∩ 𝜙𝑢2

≠ ∅}. If 𝑢1 is a leaf node with matching edge

𝑒 , then we set 𝑒1 ← 𝑒 . We assume that we have the spine to 𝑢1 in

Φ1. If 𝑢1 is not a leaf, then by invoking Intersects for all pairs

Ch(𝑢1) ×𝑈2 (where Ch(𝑢1) is the set of children of𝑢1 in𝑇 (Φ1)), we
find the last child 𝑣 ∈ Ch(𝑢1) such that 𝜙𝑣 intersects the canonical

pathlet corresponding to a node in𝑈2. We now set 𝑢1 ← 𝑣 and𝑈2

as above.

After having computed 𝑒1, we compute its copy in 𝜙2 as follows.

Let 𝑢2 ∈ 𝑈2 be the node such that 𝑒1 ∈ 𝜙𝑢2
. Since 𝜙2 does not have

any duplicate edges, 𝑢2 is unique. By following a variant of Inter-

sects procedure, we can traverse to the unique leaf of 𝑇 (Φ2, 𝜙2)
that contains a copy of 𝑒1. After computing spines for 𝑒1 and 𝑒2, the

predecessors 𝑒3, 𝑒4 can be computed by traversing backwards up

the spines to find the first leaf left of 𝑒1, 𝑒2, respectively. If 𝑒1 (resp.

𝑒2) happen to be the first edge in 𝜙1 (resp. 𝜙2), then we return 𝑒3

(resp. 𝑒4) as null instead.

Since the maximum degree of a node in𝑇 (Φ1) is 𝑠 , the procedure
calls Intersects procedure for 𝑂 (𝑠2ℎ) pairs of canonical nodes at
each level of the recursion. The depth of the recursion is ℎ, so by

Lemma 4.6, we obtain the following:

Lemma 4.8. LastCommonEdge runs in time 𝑂 (𝑠6ℎ4).

Median. Let 𝜙 be a pathlet originating from an MES Φ, repre-
sented as the spine of 𝑇 (Φ, 𝜙). Using the length information stored

at the nodes of𝑇 (Φ), the spine of the median edge of 𝜙 can be com-

puted in 𝑂 (𝑠ℎ) time by traversing 𝑇 (Φ, 𝜙) in a top-down manner.

Lemma 4.9. Median runs in time 𝑂 (𝑠ℎ).

AdjCost. Given the compact representation ⟨Π⟩ of a path/cycle
Π in 𝐺𝑀 , whose MES is represented as a sequence 𝜙1 ◦ · · · ◦ 𝜙𝑡
of at most 𝑠 pathlets, the procedure returns 𝛼

¯

𝜀 (Π). Let 𝑏𝑖 and 𝑎𝑖
be the starting and ending tips of 𝜙𝑖 , respectively, and suppose 𝜙𝑖
originates from the MES Φ𝑖 . Since the compact representation of

𝜙𝑖 consists of the spines of 𝑇 (Φ𝑖 , 𝜙𝑖 ), by accessing the nodes of

C(Φ𝑖 , 𝜙𝑖 ), we can compute 𝛼
¯

𝜀 (𝜙𝑖 ) in 𝑂 (𝑠ℎ) time. Next we compute

𝜃 ≔ 𝛼
¯

𝜀 (𝜙1 ◦ · · · ◦ 𝜙𝑡 ) =
𝑡∑︂
𝑖=1

𝛼
¯

𝜀 (𝜙𝑖 ) +
𝑡−1∑︂
𝑖=1

𝛼
¯

𝜀 (𝑎𝑖𝑏𝑖+1) .

If Π is a cycle then we set 𝛼
¯

𝜀 (Π) ≔ 𝜃 + 𝛼
¯

𝜀 (𝑎𝑡𝑏1). If Π is a path

with its beginning and ending tips being 𝑏1 and 𝑎𝑡 respectively,

then we set 𝛼
¯

𝜀 (Π) ≔ 𝜃 . Finally, if the first and last edges of Π are

non-matching edges with its starting and ending tips being 𝑎0 and

𝑏𝑡+1, respectively, then we set 𝛼
¯

𝜀 (Π) ≔ 𝜃 + 𝛼
¯

𝜀 (𝑎0𝑏1) + 𝛼
¯

𝜀 (𝑎𝑡𝑏𝑡+1).

Lemma 4.10. Given the compact representation of a path or a cycle

in 𝐺𝑀 with its MES composed of at most 𝑠 pathlets, AdjCost runs in

time 𝑂 (𝑠2ℎ).

Report. Given the compact representation of a path/cycle ⟨Π⟩
of a path/cycle Π in 𝐺𝑀 , whose MES is represented as a sequence

𝜙1◦· · ·◦𝜙𝑡 of at most 𝑠 pathlets, the procedure returns the sequence

of edges in Π. Let 𝑏𝑖 , 𝑎𝑖 ,Φ𝑖 be as above.
We first compute the sequence of edges in the alternating path

𝜙1 ◦ · · · ◦ 𝜙𝑡 with 𝑏1 and 𝑎𝑡 as its tips. If 𝑡 = 1 and 𝑇 (Φ1, 𝜙1) is a
leaf, then the desired path is the matching (bridge) edge associated

with the leaf. If 𝑡 = 1 but 𝜙1 consists of more than one edge, then

we recursively traverse the subtree rooted at each canonical node

of C(Φ1, 𝜙1), compute the alternating path represented by each

canonical pathlet of 𝜙1, concatenate the results in sequence, and
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add the non-matching edges between two canonical pathlets. For

𝑡 > 1, we repeat this procedure for each 𝜙𝑖 , concatenate the paths

for all 𝜙𝑖 ’s, and add the non-matching edges between the paths of

two consecutive pathlets. Let Γ be the resulting sequence of edges.

If Π is an alternating path from 𝑏1 to 𝑎𝑡 , we simply return Γ. If
Π is a path with its starting and ending tips being 𝑎0 and 𝑏𝑡+1, we
return 𝑎0𝑏1 ◦ Γ ◦ 𝑎𝑡𝑏𝑡+1. Finally, if Π is a cycle then we return the

cycle Γ ◦ 𝑏𝑡𝑎1.

Lemma 4.11. Given the compact representation of a path or a cycle

in 𝐺𝑀 with its MES composed of at most 𝑠 pathlets, Report run in

time 𝑂 ((𝑠2 + 𝑘)ℎ) where 𝑘 is the output size.

Splice andConcatenate. Assuming that an edge 𝑒 of a pathlet

𝜙 , originating from an MES Φ, is specified by the root-to-leaf path

in 𝑇 (Φ, 𝜙). The splice operation 𝑒 ▸ 𝜙 can be performed in 𝑂 (𝑠ℎ)
time by creating a pathlet subtree for the spliced pathlet from the

compact representation of 𝑇 (Φ, 𝜙).
Given pathlet subtrees 𝑇 (Φ1, 𝜙1), . . . ,𝑇 (Φ𝑡 , 𝜙𝑡 ) of 𝜙1, . . . , 𝜙𝑡 in

their compact forms, the MES tree𝑇 (Φ) for Φ = 𝜙1 ◦ · · · ◦𝜙𝑡 can be

constructed in 𝑂 (𝑠ℎ) time by first creating the root of 𝑇 (Φ), then
copying the spines of each 𝜙 𝑗 , and attaching it as the subtree rooted

at the 𝑗-th child of the root. We omit the straightforward details of

the two procedures.

Updating intersection tables. After we have computed MES’s at

cells of level 𝑖 , we update the intersection tables to add the entries

for canonical pathlets of rank 𝑖 . Let Φ be an MES in a cell ⊞ at level 𝑖
that was newly constructed. The canonical pathlets associated with

the exposed nodes of 𝑇 (Φ) are new canonical pathlets for which

the intersection-table entries need to be computed. Let 𝜑1 be such

a canonical pathlet originating from an MES Φ𝜂1
. Let Δ1 ≔ ⊞(Φ𝜂1

).
Then for all matching/internal arcs 𝜂2 in sibling cells Δ2 of Δ1 and

for all canonical pathlets of Φ(𝜂2) of rank at most 𝑖 (which we

already have at our disposal), we compute 𝛽𝜂1,𝜂2
(𝜑1, 𝜑2) by calling

Intersects (𝜑1, 𝜑2). Since there are 𝑂 (1) sibling cells of Δ1, each

with𝑂 (𝑠2) arcs, and there are𝑂 (𝑠3ℎ) canonical pathlets originating
from each arc, the total number of entries computed for𝜑1 is𝑂 (𝑠5ℎ).
MES Φ has𝑂 (𝑠ℎ) canonical pathlets, and ⊞ has𝑂 (𝑠2) MES’s, so the

total number entries computed for⊞ is𝑂 (𝑠8ℎ2). Using Corollary 4.7,
we obtain the following:

Lemma 4.12. The total time spent in updating the intersection

tables because of the new canonical pathlets generated in the compu-

tation of expansions at a cell is 𝑂 (𝑠14ℎ6).
Putting everything together, we obtain the following:

Lemma 4.13. For any cell ⊞ at level 𝑖 , the total time spent in com-

puting expansions, constructing MES trees, and updating intersection

tables, assuming that all nodes at level greater than 𝑖 have been been

processed, is (𝜀−1
log𝑛)𝑂 (𝑑) .

5 FINDPATH, AUGMENT, AND REPAIR

PROCEDURES

We describe the operations FindPath, Augment, and Repair per-

formed on the data structure built on each cell ⊞. For an alternating

path Π in 𝐺𝑀 , we call a cell ⊞ ∈ 𝒞 affected by Π if ⊞ contains a

vertex of Π (that is, a point in R𝑑 ). Let 𝒞Π ⊆ 𝒞 denote the set of

cells affected by Π.

FindPath(): It performs a DeleteMin operation on the priority

queue𝒬 storing the candidate subcell pairs OptPairs and retrieves a

pair (□⊞,□′⊞), such that Φ ≔ Φ⊞ (𝐴□⊞ , 𝐵□′⊞ ) is an augmenting path.

Recall that the data structure at ⊞ stores a compact representation

⟨Φ⟩ ofΦ. The procedure calls Report(⟨Φ⟩) and returns the resulting
sequences of edges. The total time spent is |Φ| · (𝜀−1

log𝑛)𝑂 (𝑑) .
Augment(𝑀,Π): It first sets𝑀 ← 𝑀 ⊕Π. We store 𝒞Π , the set of
cells affected by Π, in a priority queue Ξ with the level of the cell as

its key. At each step, we retrieve a cell ⊞ from Ξ of the lowest level

and update the data structure by calling Repair(⊞). If the call to
Repair returns a reducing simple cycle Γ, we set𝑀 ← 𝑀 ⊕ Γ and

insert all cells in 𝒞Γ into Ξ and continue. This process continues

until Ξ becomes empty. The procedure then returns𝑀 .

Let Γ1, . . . , Γ𝑡 be the reducing cycles returned by Repair. As

we see below, Repair takes (𝜀−1
log𝑛)𝑂 (𝑑) amortized time. Then

Augment takes time ( |Π | +∑︁
𝑖 |Γ𝑖 |) · (𝜀−1

log𝑛)𝑂 (𝑑) time.

Augment(𝑀,Π) :
Ξ← ∅, 𝑀 ← 𝑀 ⊕ Π
for all ⊞ ∈ 𝒞Π : Insert(⊞,Ξ)
while Ξ ≠ ∅:
⊞← DeleteMin(Ξ) , Γ ← Repair(⊞)
if Γ ≠ null:

𝑀 ← 𝑀 ⊕ Γ
for all ⊞′ ∈ 𝒞Γ : Insert(⊞′,Ξ)

return𝑀

Figure 3: Implementation of Augment using Repair.

Repair(⊞): Repair is always called in a bottom-up manner, so

we assume that all children of ⊞ that were affected by the update

in 𝑀 are stable before the invocation of Repair at ⊞. Repair(⊞)
reconstructs all the information stored at ⊞, in the following steps:

(i) (Updating clusters) For each subcell □ of ⊞, we update the
saturation status of𝐴□ and 𝐵□. We maintain the free vertices

of 𝐴□ and 𝐵□ in linked lists, and as they get matched we

delete them.

(ii) (Assigning arc weights) Let □,□′ be subcells of ⊞.
• If no child cell of ⊞ contains both □ and □′, then we update
the set of matching edges whose endpoints are in □,□′.
We use Eq. (1) and (2) to compute the weights of arcs

between the clusters of □ and □′.
• If some child cell contains both □ and □′, we use the re-
cursive expression in Eq. (3) to compute the weights of

arcs between the clusters of □,□′.
(iii) (APSP computation) We compute the minimum-weight

compressed paths between every pair of nodes in 𝐺⊞. If

during this computation, we find a negative cycle 𝐶 , (i.e.

𝑤⊞ (𝐶) < 0), we compute (the compact representation of) a

simple reducing subcycle Γ by calling SimpleReducingSub-

Cycle(𝐶). In this case, we abort the update of ⊞ and return

Report(⟨Γ⟩), which retrieves the sequence of edges in Γ.
(iv) (Computing expansions) For every pair of subcells □,□′,

we compute Φ⊞ (𝐴□, 𝐵□′) as described above. The procedure

may abort and return a simple reducing cycle Γ, in which

case we abort the update of ⊞ and return Report(⟨Γ⟩). If we
succeed in computing expansions for all pairs, ⊞ is stable.
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(v) (Augmenting paths) For each pair of subcells □,□′ of ⊞
such that both 𝐴□ and 𝐵□′ are unsaturated, let Π□,□′ :=

Φ⊞ (□,□′); by construction, its tips are free points. We com-

puting 𝛼
¯

𝜀 (Π□,□′) by calling AdjCost(⟨Π□,□′⟩). Otherwise,
Π□,□′ is undefined and𝛼

¯

𝜀 (Π□,□′) = ∞. We compute (□⊞,□′⊞)
≔ arg min□,□′ 𝛼

¯

𝜀 (Π□,□′) and insert (□⊞,□′⊞) into OptPairs.

Omitting the details, we conclude:

Lemma 5.1. FindPath takes |Π | · (𝜀−1
log𝑛)𝑂 (𝑑) time, where Π

is the augmenting path returned by the procedure. Augment(Π, 𝑀)
takes ( |Π | +∑︁

𝑖 |Γ𝑖 |) · (𝜀−1
log𝑛)𝑂 (𝑑) time, where {Γ𝑖 } is the set of

reducing cycles canceled by the procedure.

The correctness of FindPath and Augment and the invariant CI

follow from the following lemmas:

Lemma 5.2. FindPath returns an augmenting path Π such that

𝛼
¯

𝜀 (Π) ≤ 𝛼∗𝜀,𝑀 .

Proof: Let𝑀 be the current matching in the beginning of an itera-

tion (when FindPath is called), and let Π∗ be the augmenting path

in 𝐺𝑀 with the minimum 𝜀-adjusted cost, i.e., 𝛼𝜀 (Π∗) = 𝛼∗𝜀,𝑀 . By

Lemma 3.3, there is a cell in 𝒞 that contains Π∗. Let ⊞ be the small-

est cell in 𝒞 that contains Π∗ (if there is more than one, choose an

arbitrary one). Let □ (resp. □′) be the subcell of ⊞ that contains the

starting (resp. ending) tip of Π∗. By Lifting Inequality (Lemma 3.4),

𝑤⊞ (𝜋⊞ (𝐴□, 𝐵□′)) ≤ 𝛼𝜀 (Π∗) = 𝛼∗𝜀 .
Since both𝐴□ and 𝐵□′ are unsaturated, Repair procedure considers

the expansion Φ⊞ (𝐴□, 𝐵□′) with free vertices being its tips as a

candidate augmenting path. By Expansion Inequality (Lemma 3.1),

𝛼
¯

𝜀 (Φ⊞ (𝐴□, 𝐵□′)) ≤ 𝑤⊞ (𝜋⊞ (𝐴□, 𝐵□′)) . (5)

Let (□⊞,□′⊞) be the pair chosen by Repair(⊞) for ⊞ in Step (v):

𝛼
¯

𝜀 (Φ⊞ (𝐴□⊞ , 𝐵□′⊞ )) ≤ 𝛼
¯

𝜀 (Φ⊞ (𝐴□, 𝐵□′)) ≤ 𝛼∗𝜀 .
Since (□⊞,□′⊞) ∈ OptPairs, FindPath returns an augmenting path

Π with 𝛼
¯

𝜀 (Π) ≤ 𝛼
¯

𝜀 (Φ⊞ (𝐴□⊞ , 𝐵□′⊞ )) ≤ 𝛼
∗
𝜀 . □

Lemma 5.3. Let𝑀 be any matching. If𝐺𝑀 contains an alternating

cycle Γ with 𝛼𝜀 (Γ) < 0 then Augment returns a reducing cycle.

Corollary 5.4. Invariant CI holds at the start of each iteration.

6 ANALYSIS OF THE ALGORITHM

In this section, we analyze the performance of the overall algorithm.

We first analyze the cost of 𝑀
alg

, the matching computed by the

algorithm, and then analyze the running time of the algorithm.

Lemma 6.1. The following properties hold throughout the algo-

rithm: (i) The cost of any intermediate matching is at most (1 + 𝜀
2
) ·

¢(𝑀opt). (ii) In the beginning of each iteration when the invariant CI

is satisfied, let 𝑀 be the current matching and Π any augmenting

path (with respect to𝑀) such that 𝛼
¯

𝜀 (Π) ≤ 𝛼∗𝜀,𝑀 . Then,

¢̄(Π) ≤ (1 + 𝜀
2

) · ¢(𝑀opt) − ¢(𝑀).

Proof: We prove the two statements of the lemma together by

induction on the number of iterations. Initially 𝑀 = ∅ and each

edge of𝑀opt is an augmenting path, so both claims hold trivially.

Suppose the claims hold for the first 𝑖 − 1 iterations. Consider the

𝑖-th iteration, and let𝑀 be the current matching at the beginning of

the 𝑖-th iteration. By induction hypothesis, ¢(𝑀) ≤ (1+ 𝜀
2
) ·¢(𝑀opt).

If 𝛼∗𝜀 < 0, then

¢̄(Π) ≤ 𝛼
¯

𝜀 (Π) ≤ 𝛼∗𝜀 < 0 ≤ (1 + 𝜀
2

) · ¢(𝑀opt) − ¢(𝑀) .

Since FindPath returns an augmenting path 𝑃 with ¢̄(𝑃) ≤ 𝛼
¯

𝜀 (𝑃) ≤
𝛼∗𝜀 < 0,

¢(𝑀 ⊕ 𝑃) = ¢(𝑀) + ¢̄(𝑃) ≤ ¢(𝑀) ≤ (1 + 𝜀
2

) · ¢(𝑀opt). (6)

Next, consider the case when 𝛼∗ ≥ 0. The symmetric difference

𝑀 ⊕ 𝑀opt consists of a nonempty set 𝒫 of pairwise-disjoint aug-

menting paths and a (possibly empty) set𝒩 of alternating cycles.

Every augmenting path Π′ ∈ 𝒫 has 𝛼𝜀 (Π′) ≥ 𝛼∗𝜀 ≥ 0 by defin-

ition of 𝛼∗𝜀 , and every cycle Γ ∈ 𝒩 has 𝛼𝜀 (Γ) ≥ 0 by the cycle

invariant CI. Let Π be an augmenting path with 𝛼
¯

𝜀 (Π) ≤ 𝛼∗𝜀 . Then

¢̄(Π) ≤ 𝛼∗𝜀 ≤
∑︂
Π′∈𝒫

𝛼𝜀 (Π′) +
∑︂
Γ∈𝒩

𝛼𝜀 (Γ)

=
∑︂
Π′∈𝒫

(︁
¢̄(Π′) + 𝑐0𝜀 · ∥Π′∥

)︁
+

∑︂
Γ∈𝒩
(¢̄(Γ) + 𝑐0𝜀 · ∥Γ∥)

≤ ¢(𝑀opt) − ¢(𝑀) + 𝑐0𝜀 ·
(︁
¢(𝑀opt) + ¢(𝑀)

)︁
= (1 + 𝑐0𝜀) · ¢(𝑀opt) + 𝑐0𝜀 · ¢(𝑀) − ¢(𝑀)

≤
(︂
1 + 𝑐0𝜀

(︂
2 + 𝜀

2

)︂)︂
· ¢(𝑀opt) − ¢(𝑀) (induction hypothesis)

≤
(︂
1 + 𝜀

8

(︂
2 + 𝜀

2

)︂)︂
· ¢(𝑀opt) − ¢(𝑀)

(︃
𝜀 =

𝜀

𝑐1

and 𝑐1 ≥ 8𝑐0

)︃
≤

(︂
1 + 𝜀

2

)︂
· ¢(𝑀opt) − ¢(𝑀). (0 ≤ 𝜀 ≤ 1)

FindPath returns an augmenting path 𝑃 with 𝛼
¯

𝜀 (𝑃) ≤ 𝛼∗𝜀 . Thus

¢(𝑀 ⊕ 𝑃) = ¢(𝑀) + ¢̄(𝑃) ≤ ¢(𝑀) +
(︂
1 + 𝜀

2

)︂
· ¢(𝑀opt) − ¢(𝑀)

=

(︂
1 + 𝜀

2

)︂
· ¢(𝑀opt). (7)

After augmenting𝑀 with 𝑃 , the algorithm may cancel a sequence

of reducing cycles. Since each of these cycles has negative net cost,

the cycle cancellations only reduces the cost of the matching. We

conclude that the cost of an intermediate matching remains at most

(1 + 𝜀
2
) · ¢(𝑀opt) during the 𝑖-th iteration. □

Lemma 6.2. The following two statements hold:

(i) Let 𝑀 be an intermediate matching and Π an augmenting

path in 𝐺𝑀 with 𝛼
¯

𝜀 (Π) ≤ 𝛼∗𝜀 . Then, ∥Π∥ ≤
27

√
𝑑𝑛
𝜀 .

(ii) Let𝑀 be an intermediate matching and Γ a reducing cycle in

𝐺𝑀 . Then, ∥Γ∥ ≤ 27

√
𝑑𝑛
𝜀 .

We now analyze the running time of the algorithm. Denote

the sequence of augmenting paths computed by the algorithm as

Π1, . . . ,Π𝑛 , let𝒩𝑖 be the set of alternating cycles that were canceled

after augmenting by Π𝑖 during a call to the Augment procedure,

and let 𝑀𝑖 be the matching returned by the Augment(Π𝑖 , 𝑀𝑖−1).
Then by Lemma 5.1, the total time spent by the algorithm is (∑︁𝑖 |Π𝑖 |+∑︁

Γ∈𝒩 |Γ |) · (𝜀−1
log𝑛)𝑂 (𝑑) , where 𝒩 ≔ ⋃︁

𝑖 𝒩𝑖 . Since the cost of

each edge in 𝐺 is at least 1 by (P1), |Π𝑖 | ≤ ∥Π𝑖 ∥ and |Γ | ≤ ∥Γ∥, so
we will bound their Euclidean lengths instead.
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We use the shorthand 𝛼𝜃,𝑖 to denote 𝛼𝜃,𝑀𝑖
—the 𝜀-adjusted cost

after the 𝑖-th iteration where𝑀𝑖 is a partial matching with 𝑖 edges—

and set 𝛼∗
𝑖
≔ 𝛼∗

𝜃,𝑀𝑖
. We begin by bounding 𝛼∗

𝑖
.

Lemma 6.3. 𝛼∗𝑖 ≤ 𝑂
(︃

𝑛

𝜀 (𝑛 − 𝑖)

)︃
.

Proof: 𝑀opt ⊕ 𝑀𝑖 consists of a set of pairwise-disjoint alternating

cycles and 𝑛 − 𝑖 augmenting paths 𝑃1, . . . , 𝑃𝑛−𝑖 . Since 𝛼∗𝜀,𝑖 is the
minimum 𝜀-adjusted cost of an augmenting path in 𝐺𝑀𝑖

, we have

(𝑛 − 𝑖) · 𝛼∗𝑖 ≤
𝑛−𝑖∑︂
𝑗=1

𝛼𝜀,𝑖 (𝑃 𝑗 ) ≤
𝑛−𝑖∑︂
𝑗=1

(︁
¢̄𝑀𝑖
(𝑃 𝑗 ) + 𝑐0𝜀 · ∥𝑃 𝑗 ∥

)︁
≤

𝑛−𝑖∑︂
𝑗=1

(︁
¢(𝑃 𝑗 ∩𝑀opt) − ¢(𝑃 𝑗 ∩𝑀𝑖 )

)︁
+ 𝑐0𝜀

𝑐1

𝑛−𝑖∑︂
𝑗=1

(︁
¢(𝑃 𝑗 ∩𝑀opt) + ¢(𝑃 𝑗 ∩𝑀𝑖 )

)︁
≤ ¢(𝑀opt) +

𝜀

8

(︁
¢(𝑀opt) + ¢(𝑀𝑖 )

)︁
= 𝑂 (𝑛/𝜀),

where the last inequality follows from property (P3) of the input

and combining Lemma 6.1(i) with (P3) and 𝜀 < 1. □

Corollary 6.4.

𝑛−1∑︂
𝑖=0

𝛼∗𝑖 = 𝑂 (𝜀−1𝑛 log𝑛).

Lemma 6.5.

∑︂
𝑖

∥Π𝑖 ∥ +
∑︂
Γ∈𝒩
∥Γ∥ = 𝑂 (𝜀−2𝑛 log

2 𝑛).

Proof: Recall that Find-Path guarantees 𝛼
¯

𝜀,𝑖 (Π𝑖+1) ≤ 𝛼∗𝑖 . There-
fore, by Lemma 6.3,

𝑛∑︂
𝑖=1

𝛼
¯

𝜀,𝑖−1 (Π𝑖 ) = 𝑂 (𝜀−1𝑛 log𝑛) .

Since 𝛼
¯

𝜀 (Γ) < 0 for all cycles Γ ∈ 𝒩 , we have

𝑛∑︂
𝑖=1

𝛼
¯

𝜀,𝑖−1 (Π𝑖 ) +
∑︂
Γ∈𝒩

𝛼
¯

𝜀 (Γ) = 𝑂 (𝜀−1𝑛 log𝑛) .

On the other hand, by definition of the adjusted cost,

𝑛∑︂
𝑖=1

𝛼
¯

𝜀,𝑖−1 (Π𝑖 ) +
∑︂
Γ∈𝒩

𝛼
¯

𝜀 (Γ) =
𝑛∑︂
𝑖=1

¢̄(Π𝑖 ) +
∑︂
Γ∈𝒩

¢̄(Γ)

+ 𝑐0

¯

𝜀

(︄
𝑛∑︂
𝑖=1

∥Π𝑖 ∥ +
∑︂
Γ∈𝒩
∥Γ∥

)︄
.

(8)

Observe that the augmentation of all paths and cycles results in

the final matching𝑀
alg

. Therefore, the net-cost terms in (8) sum to

¢(𝑀
alg
) ≥ 0, and we obtain

𝑛∑︂
𝑖=1

∥Π𝑖 ∥ +
∑︂
Γ∈𝒩
∥Γ∥ = 1

𝑐0

¯

𝜀

(︃
𝑂

(︃
𝑛 log𝑛

𝜀

)︃
− ¢(𝑀

alg
)
)︃

=
𝑐1𝑐2

𝑐0

· log𝑛

𝜀
·𝑂

(︃
𝑛 log𝑛

𝜀

)︃
= 𝑂

(︃
𝑛 log

2 𝑛

𝜀2

)︃
.

The second equality is obtained by substituting the value of

¯

𝜀 and

using ¢(𝑀
alg
) > 0. □

Using (P1), (P2), and Lemmas 5.1 and 6.5, we obtain

Lemma 6.6. The overall algorithm runs in 𝑛 · (𝜀−1
log𝑛)𝑂 (𝑑) time.

Lemmas 6.1 and 6.6 together prove Theorem 1.1.

7 PROOF OF EXPANSION AND LIFTING

INEQUALITIES

Finally, we prove the expansion and lifting inequalities.

7.1 Proof of Expansion Inequality

Lemma 3.1. Let ⊞ be a stable cell, and let (𝑋,𝑌 ) ∈ 𝐸⊞. Then

𝛼
¯

𝜀 (Φ⊞ (𝑋,𝑌 )) ≤ 𝑤⊞ (𝜋⊞ (𝑋,𝑌 )).

Proof: We write 𝜋⊞ (𝑋,𝑌 ) as its arc sequence ⟨𝜂1 ◦ 𝜂2 ◦ · · · ◦ 𝜂𝑘 ⟩.
Let Π ≔ Φ(𝜂1) ◦ Φ(𝜂2) ◦ · · · ◦ Φ(𝜂𝑘 ). Recall that if 𝜂𝑖 is an internal

arc of the form (𝐴□, 𝐵□′) and 𝑖 > 1 (resp. 𝑖 < 𝑘), then the starting

(resp. ending) tip of Φ(𝜂𝑖 ) is changed to the ending (resp. starting)

tip of Φ(𝜂𝑖−1) (resp. Φ(𝜂𝑖+1)) during the concatenation.

Π is a possibly self-intersecting path in 𝐺𝑀 , and Φ⊞ (𝑋,𝑌 ) is
formed by simplifying Π (cycle removal) as described in Section 4.

Since ⊞ is stable, none of these cycles were reducing. Therefore

𝛼
¯

𝜀 (Φ⊞ (𝑋,𝑌 )) ≤ 𝛼
¯

𝜀 (Π).We complete the proof by showing𝛼
¯

𝜀 (Π) ≤
𝑤⊞ (𝜋⊞ (𝑋,𝑌 )).

Recall that 𝛿 ≔ 𝑐4

¯

𝜀. We choose 𝑐4 ≥ 2𝑐0

√
𝑑 . For each arc 𝜂 𝑗 ≔

(𝑋 𝑗 , 𝑋 𝑗+1) in 𝜋⊞ (𝑋,𝑌 ), let □𝑗 be the subcell containing 𝑋 𝑗 , and

cntr𝑗 the center of □𝑗 . Recall that diam(□𝑗 ) = diam(□𝑗+1) ≤ 𝛿
4
ℓ𝑖 .

We obtain a bound for each 𝜂 𝑗 :

Case 1: 𝜂 𝑗 is a bridge arc. First suppose that 𝜂 𝑗 is a non-matching

arc, i.e., 𝑋 𝑗 ⊆ 𝐴□𝑗 , 𝑋 𝑗+1 ⊆ 𝐵□𝑗+1 and Φ(𝜂 𝑗 ) = (𝑎 𝑗 , 𝑏 𝑗+1) for some

pair in 𝐴□𝑗 × 𝐵□𝑗+1 (even after modifying the tips).

𝛼
¯

𝜀 (𝑎 𝑗 , 𝑏 𝑗+1) = ∥𝑎 𝑗 − 𝑏 𝑗+1∥ + 𝑐0

¯

𝜀 · ∥𝑎 𝑗 − 𝑏 𝑗+1∥
≤ ∥cntr𝑗 − cntr𝑗+1∥ + 2 · 𝛿

4
ℓ𝑖 + 𝑐0

¯

𝜀
√
𝑑ℓ𝑖

≤ ∥cntr𝑗 − cntr𝑗+1∥ + 𝛿ℓ𝑖 = 𝑤⊞ (𝑋 𝑗 , 𝑋 𝑗+1).

Next, if 𝜂 𝑗 is a matching arc then Φ(𝜂 𝑗 ) = (𝑏 𝑗 , 𝑎 𝑗+1) ∈ 𝑀 ∩ 𝐵□𝑗 ×
𝐴□𝑗+1 . We repeat a similar analysis on this matching edge:

𝛼
¯

𝜀 (Φ(𝜂 𝑗 )) = −∥𝑏 𝑗 − 𝑎 𝑗+1∥ + 𝑐0

¯

𝜀 · ∥𝑏 𝑗 − 𝑎 𝑗+1∥
≤ −∥cntr𝑗 − cntr𝑗+1∥ + 𝛿ℓ𝑖 = 𝑤⊞ (𝑋 𝑗 , 𝑋 𝑗+1) .

Case 2: 𝜂 𝑗 = (𝑋 𝑗 , 𝑋 𝑗+1) is an internal arc. Let (⊞′,Δ,Δ′) be the

weight certificate of 𝜂 𝑗 , and let 𝑋 ′
𝑗
⊂ Δ (resp. 𝑋 ′

𝑗+1 ⊂ Δ′) be the
child cluster of 𝑋 𝑗 (resp. 𝑋 𝑗+1) in ⊞′. Then Φ(𝜂 𝑗 ) is the expansion
Φ⊞′ (𝑋 ′𝑗 , 𝑋

′
𝑗+1) with its starting and ending tips possibly being mod-

ified to another point in □𝑗 and □𝑗+1, respectively. Changing the

tips increases the length of each of first and last edges in Φ(𝜂 𝑗 ) by
at most diam(□𝑗 ) = diam(□𝑗+1) ≤ 𝛿

4
ℓ𝑖 each, thus

𝛼
¯

𝜀 (Φ(𝜂 𝑗 )) ≤ 𝛼
¯

𝜀 (Φ⊞′ (𝑋 ′𝑗 , 𝑋
′
𝑗+1)) +

𝛿

2

ℓ𝑖 ≤ 𝑤⊞ (𝑋 𝑗 , 𝑋 𝑗+1).

The last inequality follows because (⊞′,Δ,Δ′) is the weight certifi-
cate of 𝜂 𝑗 .

Summing over the expansions of all arcs in Π, we obtain 𝛼
¯

𝜀 (Π) ≤
𝑤⊞ (𝜋⊞ (𝐵□, 𝐴□′)). □
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7.2 Proof of Lifting Inequality

We first state two lemmas needed to prove the lifting inequality.

Lemma 7.1. Let (𝑝, 𝑞) be a pair of points in 𝐴 ∪ 𝐵 ⊂ R𝑑 . Let 𝑖 be
the smallest value for which a cell ⊞ ∈ 𝒞𝑖 contains both 𝑝 and 𝑞. Then

(i) ℓ𝑖−2 ≤ ∥𝑝 − 𝑞∥∞ ≤ ℓ𝑖 and
(ii) ℓ𝑖−2 ≤ ∥𝑝 − 𝑞∥2 ≤

√
𝑑ℓ𝑖 .

Lemma 7.2. Let ⊞ be a level-𝑖 cell and (𝑋,𝑌 ) ∈ 𝐸⊞ be a pair of

clusters. Let ⊞′ be a level-𝑖 ′ ancestor cell of ⊞ for 𝑖 ′ > 𝑖 , and 𝑋 ′ (resp.
𝑌 ′) the ancestor cluster of 𝑋 (resp. 𝑌 ) in ⊞′. Then,

𝑤⊞′ (𝜋⊞′ (𝑋 ′, 𝑌 ′)) ≤ 𝑤⊞ (𝜋⊞ (𝑋,𝑌 )) + 2𝛿ℓ𝑖′ .

We are now ready to prove the lifting inequality.

Lemma 3.4. Let Π be an alternating path in 𝐺𝑀 from a point 𝑝 to

a point 𝑞 (possibly 𝑝 = 𝑞 in the case Π is a cycle) that is completely

contained in a cell of level at mostℎ. Let ⊞ be a cell at the smallest level

that contains Π, and let 𝑋 (resp. 𝑌 ) be the cluster in 𝑉⊞ containing 𝑝

(resp. 𝑞). Then either ⊞ is not stable or𝑤⊞ (𝜋⊞ (𝑋,𝑌 )) ≤ 𝛼𝜀 (Π) .
Proof: If ⊞ is not stable then the lemma follows trivially, so assume

that ⊞ is stable. Then all descendants of ⊞ are also stable, and arc

weights and expansions are well-defined at all of them.We construct

a compressed path 𝑃 in 𝐺⊞ where

𝑤⊞ (𝑃) ≤ ¢̄(Π) + 𝑐5𝑖𝛿 ∥Π∥ (9)

for some constant 𝑐5 ≥ 64. If ⊞ is at level 𝑖 , then by assumption

𝑖 ≤ ℎ ≤ 𝑐3 log𝑛. Since 𝛿 = 𝑐4

¯

𝜀 and
¯

𝜀 = 𝜀
𝑐2 log𝑛

, we obtain

𝑤⊞ (𝑃) ≤ ¢̄(Π) + 𝑐5 (𝑐3 log𝑛)𝑐4

(︃
𝜀

𝑐2 log𝑛

)︃
· ∥Π∥

≤ ¢̄(Π) + 𝑐0𝜀 · ∥Π∥ = 𝛼𝜀 (Π),
(10)

provided that 𝑐0 ≥ 𝑐3𝑐4𝑐5/𝑐2.

We prove (9) by induction over hierarchy levels. Let ⊞ be the

smallest cell containing Π and let 𝑖 be the level of ⊞. If 𝑖 = 0 then

Π is an empty path, as each cell at level 0 contains no edge of 𝐺𝑀 ,

so the lemma holds trivially. Assume that the lemma holds for all

levels less than 𝑖 .

Let Π = ⟨𝑝1 = 𝑝, 𝑝2, . . . , 𝑝𝑡 = 𝑞⟩. We first construct a sequence

𝑃 of nodes in 𝑉⊞ by traversing Π and using a greedy approach,

and then refine it to ensure that the resulting sequence is a path

in 𝐺⊞. For a point 𝑝𝑘 , let 𝑋 (𝑝𝑘 ) be the cluster in 𝑉⊞ containing 𝑝𝑘 .
To start, set 𝑃 ≔ ⟨𝑋1⟩ = ⟨𝑋 (𝑝1)⟩. Suppose we have traversed a

prefix of Π, constructed a prefix of 𝑃 = ⟨𝑋1, 𝑋2, . . . , 𝑋 𝑗 ⟩, and we

are currently at point 𝑝𝑘 where 𝑋 (𝑝𝑘 ) = 𝑋 𝑗 . Let 𝑝
∗
be the furthest

point of ⟨𝑝𝑘 , 𝑝𝑘+1, . . . , 𝑝𝑡 ⟩ such that the subpath ⟨𝑝𝑘 , . . . , 𝑝∗⟩ ⊆ Π
lies in a single child cell of ⊞. There are a few special cases where

𝑝∗ may not be well-defined above.

• If 𝑝∗ = 𝑝𝑘 (the longest single-child prefix is one point), then

(𝑝𝑘 , 𝑝𝑘+1) corresponds to a bridge arc in 𝐺⊞, and we set

𝑝∗ ← 𝑝𝑘+1.
• If the longest single-child prefix starting from 𝑝𝑘 is at least

two points, but one child cell contains the entire suffix of Π.
We set 𝑝∗ ← 𝑞.

After setting 𝑝∗, we choose 𝑋𝑘+1 ≔ 𝑋 (𝑝∗). If 𝑝∗ is the last point of
Π, we stop. Otherwise, we continue.

We note that 𝑃 is not necessarily a path in 𝐺⊞ because it might

contain a consecutive pair 𝑋 𝑗 , 𝑋 𝑗+1 where 𝑋 𝑗 and 𝑋 𝑗+1 are both

𝐴-clusters or both 𝐵-clusters (hence, (𝑋 𝑗 , 𝑋 𝑗+1) is not an arc in

the bipartite graph 𝐺⊞). We fix these pairs by inserting an extra

cluster in between each such occurrence. For each 𝑋 𝑗 , let 𝑢 𝑗 = 𝑘

be the index for which 𝑋 (𝑝𝑘 ) = 𝑗 . Let Π 𝑗 = ⟨𝑝𝑢 𝑗
, . . . , 𝑝𝑢 𝑗+1 ⟩ ⊆ Π.

Assume both 𝑋 𝑗 and 𝑋 𝑗+1 are 𝐴-clusters (the other case can be

handled in an analogous way), then 𝑝𝑢 𝑗
, 𝑝𝑢 𝑗+1 ∈ 𝐴 and Π 𝑗 ∩ 𝐵

is nonempty. Choose any point 𝑦 ∈ Π 𝑗 ∩ 𝐵, set 𝑌𝑗 = 𝑋 (𝑦), and
replace the substring 𝑋 𝑗 , 𝑋 𝑗+1 in 𝑃 with 𝑋 𝑗 , 𝑌𝑗 , 𝑋 𝑗+1. Both (𝑋 𝑗 , 𝑌𝑗 )
and (𝑌𝑗 , 𝑋 𝑗+1) are internal arcs in𝐺⊞, as a single child of ⊞ contains
all of Π 𝑗 , and the sequence alternates between 𝐴- and 𝐵-clusters.

Let 𝑃 ≔ ⟨𝑋1 = 𝑋,𝑋2, . . . , 𝑋𝑠−1, 𝑋𝑠 = 𝑌 ⟩ be the resulting com-

pressed path from 𝑋 = 𝑋 (𝑝) to 𝑌 = 𝑋 (𝑞) in 𝐺⊞. The above con-
struction guarantees that for any 𝑗 ≤ 𝑠−3, no contiguous quadruple

𝑋 𝑗 , 𝑋 𝑗+1, 𝑋 𝑗+2, 𝑋 𝑗+3 lie in a single child cell of ⊞. For 1 ≤ 𝑗 ≤ 𝑠 , let
□𝑗 be the subcell of ⊞ containing 𝑋 𝑗 , and let cntr𝑗 be the center of

□𝑗 . We now bound𝑤⊞ (𝑃) by relating𝑤⊞ (𝑋 𝑗 , 𝑋 𝑗+1) to the cost of
Π 𝑗 . There are two main cases:

Case 1: (𝑋 𝑗 , 𝑋 𝑗+1) is a bridge arc. Since diam(□𝑗 ) = diam(□𝑗+1) ≤
𝛿ℓ𝑖
4
, we have

∥𝑝𝑢 𝑗
− 𝑝𝑢 𝑗+1 ∥ −

𝛿ℓ𝑖

2

≤ ∥cntr𝑗 − cntr𝑗+1∥ ≤ ∥𝑝𝑢 𝑗
− 𝑝𝑢 𝑗+1 ∥ +

𝛿ℓ𝑖

2

.

If (𝑋 𝑗 , 𝑋 𝑗+1) is a non-matching bridge arc, then

𝑤⊞ (𝑋 𝑗 , 𝑋 𝑗+1) = ∥cntr𝑗 − cntr𝑗+1∥ + 𝛿ℓ𝑖

≤ ∥𝑝𝑢 𝑗
− 𝑝𝑢 𝑗+1 ∥ +

𝛿ℓ𝑖

2

+ 𝛿ℓ𝑖 = ¢̄(Π 𝑗 ) +
3

2

𝛿ℓ𝑖 .
(11)

If (𝑋 𝑗 , 𝑋 𝑗+1) is a matching bridge arc, following a similar argument,

we obtain

𝑤⊞ (𝑋 𝑗 , 𝑋 𝑗+1) = −∥cntr𝑗 − cntr𝑗+1∥ + 𝛿ℓ𝑖

≤ −∥𝑝𝑢 𝑗
− 𝑝𝑢 𝑗+1 ∥ +

3

2

𝛿ℓ𝑖 = ¢̄(Π 𝑗 ) +
3

2

𝛿ℓ𝑖 .
(12)

Case 2: (𝑋 𝑗 , 𝑋 𝑗+1) is an internal arc. (𝑋 𝑗 , 𝑋 𝑗+1) is a pair of clusters
contained in a single child cell ⊞′ of ⊞. Let 𝑋 ′

𝑗
(resp. 𝑋 ′

𝑗+1) be the
child cluster of 𝑋 𝑗 (resp. 𝑋 𝑗+1) in ⊞′ that contains 𝑝𝑢 𝑗

(resp. 𝑝𝑢 𝑗+1 ).

By the definition of internal arc weights, we have

𝑤⊞ (𝑋 𝑗 , 𝑋 𝑗+1) ≤ 𝛼
¯

𝜀 (Φ⊞′ (𝑋 ′𝑗 , 𝑋
′
𝑗+1)) + 𝛿ℓ𝑖

≤ 𝑤⊞′ (𝜋⊞′ (𝑋 ′𝑗 , 𝑋
′
𝑗+1)) + 𝛿ℓ𝑖 ,

(13)

where the last inequality follows from Lemma 3.1 and the fact that

⊞′ is stable.
Let ⊞̂ be the smallest descendant of ⊞′ that contains Π 𝑗 , and let

𝑖 ≤ 𝑖 −1 be the level of ⊞̂ (note that ⊞̂may be ⊞′ itself). Let𝑋 𝑗 (resp.

𝑋 𝑗+1) be the descendant cluster of 𝑋 𝑗 (resp. 𝑋 𝑗+1) in ⊞̂ containing

𝑝𝑢 𝑗
(resp. 𝑝𝑢 𝑗+1 ). Since 𝜋⊞̂ (𝑋 𝑗 , 𝑋 𝑗+1) is the minimum-weight path

from 𝑋 𝑗 to 𝑋 𝑗+1 in 𝐺⊞̂, by the induction hypothesis,

𝑤⊞̂ (𝜋⊞̂ (𝑋 𝑗 , 𝑋 𝑗+1)) ≤ ¢̄(Π 𝑗 ) + 𝑐5𝑖𝛿 ∥Π 𝑗 ∥.
Using Lemma 7.2, we obtain

𝑤⊞′ (𝜋⊞′ (𝑋 ′𝑗 , 𝑋
′
𝑗+1)) ≤ 𝑤⊞̂ (𝜋⊞̂ (𝑋 𝑗 , 𝑋 𝑗+1)) + 2𝛿ℓ𝑖−1

≤ ¢̄(Π 𝑗 ) + 𝑐5𝑖𝛿 ∥Π 𝑗 ∥ + 𝛿ℓ𝑖
≤ ¢̄(Π 𝑗 ) + 𝑐5 (𝑖 − 1)𝛿 ∥Π 𝑗 ∥ + 𝛿ℓ𝑖 .

(14)

Substituting (14) into (13) we obtain

𝑤⊞ (𝑋 𝑗 , 𝑋 𝑗+1) ≤ ¢̄(Π 𝑗 ) + 𝑐5 (𝑖 − 1)𝛿 ∥Π 𝑗 ∥ + 2𝛿ℓ𝑖 . (15)
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Combining (11) and (15), the terms from (15) dominate, so

𝑤⊞ (𝑃) =
𝑠−1∑︂
𝑗=1

𝑤⊞ (𝑋 𝑗 , 𝑋 𝑗+1)

≤
𝑠−1∑︂
𝑗=1

(︁
¢̄(Π 𝑗 ) + 𝑐5 (𝑖 − 1)𝛿 ∥Π 𝑗 ∥ + 2𝛿ℓ𝑖

)︁
= ¢̄(Π) + 𝑐5 (𝑖 − 1)𝛿 ∥Π∥ + 2(𝑠 − 1)𝛿ℓ𝑖

(16)

Recall that no contiguous quadruple 𝑋 𝑗 , 𝑋 𝑗+1, 𝑋 𝑗+2, 𝑋 𝑗+3 (alter-
natively, three consecutive arcs of 𝑃 ) lie in a single child cell, for all

𝑗 ≤ 𝑠 − 3. Then, by Lemma 7.1, ∥Π 𝑗 ◦Π 𝑗+1 ◦Π 𝑗+2∥ ≥ ℓ𝑖−1/4 = ℓ𝑖/8.
Summing,

𝑠−3∑︂
𝑗=1

∥Π 𝑗 ◦ Π 𝑗+1 ◦ Π 𝑗+2∥ ≥ (𝑠 − 3) ℓ𝑖
8

.

In this sum, each subpath Π 𝑗 is being counted at most three times.

Hence, the left-hand quantity is at most 3∥Π∥, therefore
(𝑠 − 3)ℓ𝑖 ≤ 24∥Π∥ . (17)

Since ⊞ is the smallest cell to contain Π, by Lemma 7.1, ∥Π∥ ≥ ℓ𝑖/4.
Plugging (17) into (16),

𝑤⊞ (𝑃) ≤ ¢̄(Π) + 𝑐5 (𝑖 − 1)𝛿 ∥Π∥ + 2(𝑠 − 1)𝛿ℓ𝑖
≤ ¢̄(Π) + 𝑐5 (𝑖 − 1)𝛿 ∥Π∥ + 48𝛿 ∥Π∥ + 4𝛿ℓ𝑖

≤ ¢̄(Π) + 𝑐5 (𝑖 − 1)𝛿 ∥Π∥ + 64𝛿 ∥Π∥
≤ ¢̄(Π) + 𝑐5𝑖 · 𝛿 ∥Π∥,

provided that 𝑐5 ≥ 64. This completes the proof of the lemma. □

8 CONCLUDING REMARKS

In this paper, we presented the first near-linear deterministic 𝜀-

approximation algorithm for computing EMWM in any fixed di-

mension. We conclude by mentioning a few open problems: Can

our approach be extended to attain a near-linear-time deterministic

algorithm for computing an 𝜀-optimal transport, or for computing

an RMS matching? More broadly, can a cover-tree based approach

lead to near-linear-time deterministic approximation algorithms

for other network-design problems such as Euclidean TSP?
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