Paper Presentation

SPAA 21, July 6-8, 2021, Virtual Event, USA

Non-Clairvoyant Scheduling with Predictions

Sungjin Im
University of California
Merced, CA
sim3@ucmerced.edu

Mahshid Montazer Qaem
University of California
Merced, CA
mmontazerqaem@ucmerced.edu

ABSTRACT

In the single-machine non-clairvoyant scheduling problem, the goal
is to minimize the total completion time of jobs whose processing
times are unknown a priori. We revisit this well-studied problem and
consider the question of how to effectively use (possibly erroneous)
predictions of the processing times. We study this question from
ground zero by first asking what constitutes a good prediction; we
then propose a new measure to gauge prediction quality and design
scheduling algorithms with strong guarantees under this measure.
Our approach to derive a prediction error measure based on natural
desiderata could find applications for other online problems.
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1 INTRODUCTION

Non-clairvoyance, where the scheduler is not aware of the exact
processing times of a job a priori, is a highly desired property in the
design of scheduling algorithms. Due to its myriad practical appli-
cations, non-clairvoyant scheduling has been extensively studied
in various settings in the scheduling literature [12, 14, 25]. With
no access to the processing times (i.e., job sizes), non-clairvoyant
algorithms inherently suffer from worse performance guarantees
than the corresponding clairvoyant algorithms. For example, in the
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most basic version of non-clairvoyant scheduling, we have a set of
jobs that need to be scheduled on a single machine with the goal
of minimizing the total completion time of all jobs. The job sizes
are unknown to the algorithm and only become known after the
job has completed. In this setting, the Round-Robin algorithm [23]
that divides the machine equally among all incomplete jobs is 2-
competitive, and this is known to be optimal. In contrast, in the
clairvoyant setting where job sizes are known a priori, the Shortest
Job First (SJF) algorithm that schedules jobs in non-decreasing order
of their sizes is known to be optimal.

Practitioners often face scheduling problems that lie somewhere
in between clairvoyant and non-clairvoyant settings. While it is
almost impossible to know the exact job sizes, rather than assuming
non-clairvoyance, it is possible to estimate job sizes based on their
features using a predictor [2, 20, 24]; such an estimation can be
error-prone. Can one use the (possibly erroneous) predicted job
sizes to improve the performance of scheduling algorithms?

Augmenting traditional algorithms with machine-learned predic-
tions is a fascinating and newly emerging line of work. In particular,
this paradigm is applicable to online algorithms, which typically
focus on obtaining worst-case guarantees against uncertain future
inputs and thus settle for pessimistic bounds. Recent works have
shown that, using predictions (that may be incorrect), one can prov-
ably improve the guarantees of traditional online algorithms for
caching [13, 19, 26], ski-rental [3, 10, 16], scheduling [7, 16, 22],
load balancing [17], secretary problem [6], metrical task systems
[5], set cover [8], flow and matching [18], and bin packing [4], etc.

In this paper we continue the study of learning-augmented algo-
rithms for single-machine non-clairvoyant scheduling. This prob-
lem, where an algorithm has access to predictions of each job size,
was first investigated in [16]. Without making any assumptions
on the prediction quality, they design a non-clairvoyant algorithm
that satisfies two important properties, namely, consistency and
robustness. Consistency means that the guarantees of the algorithm
improve with good predictions; in particular, the algorithm obtains
a competitive ratio better than 2 if the predictions are good. Robust-
ness ensures that the algorithm gracefully handles bad predictions,
i.e., even if the predictions are adversarially bad, the competitive
ratio stays bounded. For any A € (0, 1), they design an algorithm
that guarantees robustness of ﬁ and consistency of % !

Here, a-robustness and -consistency mean that the algorithm’s cost is at most «
times the optimum for all inputs but improves to at most f factor when the prediction
coincides with the actual input. See Definition 2.
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1.1 The Need for a New Error Measure

Although [16] demonstrates an appealing trade-off between consis-
tency and robustness for non-clairvoyant scheduling, a closer look
reveals some brittleness of the result. Here, we discuss the issue at
a high-level and delve in more detail in the next section when we
formally define the problem and the old/new error notions.

The main issue stems from the total completion time objective.
Since this objective measures the total waiting time of all jobs, a
shorter job could delay more jobs. In fact, different jobs can have
different effect on how much they delay other jobs. The objective
is thus neither linear nor quadratic in the job sizes.?

In [16], it is assumed that the algorithm has a prediction p; of
each job size p;j. The quality of the prediction is the sum of the
prediction errors of individual jobs, ie., &1(p.p) = X;1p; — pjl-
Intuitively, such a linear error measure is incompatible with the
completion time objective and may not distinguish good predictions
vs poor predictions; in fact, small perturbations in the predictions
can result in large changes to the optimal solution. Consequently,
the results in [16] are forced to be pessimistic and have a weak
dependence on the error term. In particular, they show that sched-
uling the jobs in non-decreasing order of their predicted sizes (SPJF)
yields a competitive ratio of at most opT + (n — 1) - £1(p, p) and is
tight, where oPT is the optimum solution and n the number of jobs.

We examine the £ (-, -) error measure and show that it violates
a natural and desirable Lipschitz-like property for the total com-
pletion time objective. This prompts the search for a new error
measure based on two desiderata (see Section 2.2). Our new error
measure better captures the sensitive nature of the objective and
allows us to obtain an algorithm with competitive ratio at most
(1+€)orT+Oc(1) - v(p, p) where v(-, -) is the measure we propose.

In practice, job sizes are predicted using black-box machine-
learned models that utilize various features of the jobs (e.g., history)
and may be expensive to train. While it is impossible to precisely
define the goodness of a prediction, intuitively, an effective error
measure should neither tag bad predictions as good nor miss out
on predictions that could improve the objective.

1.2 Our Contributions

Under the new notion of error (denoted v), we give the following
results, stated informally below. We assume all jobs are available
for scheduling from time 0. Let opT be the optimum objective.

(1) We obtain a non-clairvoyant algorithm that is O(1)-robust
(with no dependency on €) and (1 + €)-consistent for any € > 0
w.h.p., if no subset of O(el3 logn) jobs dominates the objective.
(Theorem 32 and Corollary 33)

(2) We obtain a non-clairvoyant algorithm that is O(é)—robust
and (1+e€)-consistent in expectation for any sufficiently small € > 0.
More precisely, the cost of the algorithm is at most (1 + €)opT +
O(Z% log 1)v. (Theorem 34)

In contrast, [16] obtains an algorithm that is O(%)—robust and
whose cost is at most (1 + €)oPT + (1 +¢€)(n — 1) - £1(p, p). Since
our error measure satisfies £ (p, p) < v < n-£;(p, p), our algorithm

ZFor a concrete example, consider 7 jobs that have unit sizes with sufficiently small
perturbations. The derivative of the objective is n with respect to the smallest job; yet
it is 1 with respect to the largest job.
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never has an asymptotically worse dependence on the prediction
quality and is often sharper.

(3) We show that for any sufficiently small €,y > 0, no deter-
ministic algorithm can have a smaller objective than (1 + €)opT +
0(1/€'Y)v. (Theorem 36)

We now discuss the high-level ideas. The main challenge is how
to determine if a prediction is reliable or not before completing
all jobs. If the predictions are somewhat reliable, we can more
or less follow them; otherwise, we will essentially have to rely
on non-clairvoyant algorithms such as Round-Robin. Therefore,
we repeatedly take a small sample of jobs over the course of the
algorithm and partially process them. Informally, we estimate the
median remaining size of jobs, and estimate the prediction error
considering job sizes up to the estimated median. Unfortunately,
this estimation is not free since we have to partially process the
sampled jobs and it can delay all the existing jobs. Therefore, we are
forced to stop sampling once there are too few jobs left. Depending
on how long we sample, we obtain the first and second results.

Due to the dynamic nature of our algorithm, the analysis turns
out to be considerably non-trivial. In a nutshell, we never see the
true error until we finish a job. Nevertheless, we still have to decide
whether to follow the predictions. The mismatch between partial
errors we perceive and the actual errors makes it challenging to
charge our algorithm’s cost to the optimum and the error; special
care is needed throughout the analysis to avoid overcharging. We
note that unlike our algorithm, [16] uses a static algorithm that
linearly combines following the predictions and Round-Robin.

To summarize, our work demonstrates that it is possible to find
quality solutions for a bigger class of predictions by using a more
refined measure and it could lead to new algorithmic techniques.

1.3 Other Related Work

Designing learning-augmented algorithms falls into the new beyond-
worst-case algorithm design paradigm [27]. Starting with the work

of Kraska et al. [15] on using ML predictions to speed up indexing,

there have been many efforts to leverage ML predictions to better

handle common instances that are found in practice. In addition

to the aforementioned works, there also exist works on frequency

counting [1, 9, 11] and membership testing [21, 28].

For single machine scheduling in the clairvoyant setting, Short-
est Remaining Processing Time (SRPT) is known to be optimal
for minimizing the total completion time; it is in fact optimal for
minimizing the total flow/response time®. If all jobs arrive at time
0, SJF coincides with SRPT. In the non-clairvoyant setting, when
jobs have different arrival times, no algorithm is O(1)-competitive
for minimizing the total flow time, but Round-Robin is known to
be O(1)-competitive when compared to the optimum schedule run-
ning on a machine with speed less than 1/2 — ¢, for any € > 0. For
a survey on online scheduling algorithms, see [25].

3In the setting where job j has a release time rj, the flow time of a job is defined
as Cj — rj where C; is the completion time of job j in the schedule. If all jobs are
available at time 0, then the flow time coincides with completion time.
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1.4 Roadmap

In Section 2 we formally define our non-clairvoyant scheduling
problem. In the same section we continue to discuss what desider-
ata constitute a good measure of prediction error and propose a
new measure meeting the desiderata. We also discuss other—both
existing and candidate—measures and show that they fail to satisfy
the desiderata. We present our algorithm in Section 3 and its analy-
sis in Section 4. The lower bounds are presented in Section 5. All
missing proofs and analysis are in the full version.

2 FORMULATION AND BASIC PROPERTIES
2.1 Non-Clairvoyant Scheduling

Let J denote a set of n jobs. In the classical single-machine non-
clairvoyant scheduling setting, each job j € J has an unknown size
or processing time p . The processing time is known only after the
job is complete. A job j completes when it has received p; amount
of processing time, and we denote j’s completion time as C;. A job
may be preempted at any time and resumed at a later time without
any cost. Our goal is to find a schedule that completes all jobs and
minimizes the total completion time of all jobs, i.e., 3 ;c; C;. In the
clairvoyant case, an algorithm knows the p;’s in advance.

Definition 1 (Competitive Ratio). Let I denote the set of all in-
stances of the non-clairvoyant scheduling problem. Let cosT #(I)
be the total completion time of the schedule obtained by a non-
clairvoyant algorithm A and or1(I) be the cost of the optimum
(clairvoyant) algorithm on instance I. A is said to be c-competitive if

cosT (1)
max —————
1er  oprr(I)

In the clairvoyant case, it is well-known that the Shortest Job First
(SJF)* scheduling algorithm minimizes the total completion time.
In the non-clairvoyant case, the Round-Robin® algorithm achieves
a competitive ratio of 2, which is known to be optimal [23].

For any subset Z C J of jobs, we let oPT({x}}ez) denote the
minimum objective to complete all jobs in Z when each job j € Z
has size x; and is known to the algorithm, i.e., oPT is the completion
time of SJF using x; as the size of job j. Here, we can think of orT as a
function that takes as input a multiset of non-negative job sizes and
returns the minimum objective to complete all jobs with the job sizes
in the set. (Note that this is well-defined as SJF is oblivious to job
identities.) If x; is j’s true size, i.e., p;, for notational convenience,
we use OPT(Z) := oPT({pj}ez); in particular, opT := opT(J).

We consider the learning-augmented scheduling problem where
the algorithm has access to predictions for each job size; let p;
denote the predicted size of job j. We emphasize that we make no
assumptions regarding the validity of the predictions and they may
even be adversarial. As in the usual non-clairvoyant scheduling
setup, the true processing size p; of job j is revealed only after
the job has received p; amount of processing time. In the learning-
augmented setting, the competitive ratio of an algorithm A is a
function of the prediction error. Our goal is to design an algorithm
that satisfies the dual notions of robustness and consistency.

4Schedule the jobs in non-decreasing order of job sizes.
SProcess all incomplete jobs equally at each time.
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Definition 2 (Robustness and Consistency). Let I be the set of
all instances of the learning-augmented non-clairvoyant scheduling
problem®. The robustness of an algorithm A is the worst-case ratio
of the algorithm’s cost to the cost of the optimal solution independent
of the quality of the predictions. On the other hand, the consistency
of an algorithm A is the worst-case ratio when restricted to instances
where the predictions are all correct, i.e., ﬁj =ppVjel.

cosTq (1
Robustness(A) = max —ﬂ()
1e17  opr(I)
. cosT (I)
Consistency(A) = max —————
_Iel opt(I)
Pj=p;:VJj

2.1.1  Properties of opT. The following fact is well-known and fol-
lows from the definition of opT, i.e., SJF.

Proposition 3 ([23]). oPT({x;}jej) = X jej Xj+2Xizjey min{xi, x;j} <
Z(i’j)ejxjmin{xi,xﬂ.

The following properties are simple consequences of SJF.

Proposition 4. Let ] denote an arbitrary set of jobs and {x;}jc;
and {y;}jej be two sets of non-negative job sizes. Then,
(1) Ifxj 2 yj forall j € J, then orT({x;}jej) = oPT({y;}jey)-
(2) For any subset Z C J, opT({xj};ey) = oPT({xj}jez).
(3) opr({xj +yj}jey) = oPr({xj}jes) + oPT({y;}jej)-
(4) Let Xi,..., X, be a partition of ], i.e, ] = Upejr) Xe and
Xy N Xp =0 fort + ', then we have

> orr({xj}jex) < op({xj}jep) <L+ ) opr({x;}jex,).

te[L] te[L]

2.2 Prediction Error

A key question in the design of algorithms with predictions is how
to define the prediction error, i.e., how to quantify the quality of
predictions. While this definition can be problem-dependent, it
must be algorithm-independent. For the non-clairvoyant scheduling
problem, before we dive into a definition, we identify two desir-
able necessary properties that we want of any such definition. Let
ERR({p;}jes. {P)}jey) denote the prediction error for an instance
with true sizes {p;} and predicted job sizes {{;}; note that an algo-
rithm knows the p;’s but not the p;’s.

The first property is monotonicity, i.e., if more job sizes predic-
tions are correct, then the error must decrease. Monotonicity is
natural as better predictions are expected to decrease the error.

Property 5 (Monotonicity). ForanyI C ],
ERR({pj}jey \Dj}jepa Y Apitier) < ERR({pj}jes. {Dj}je))-

The second property is a Lipschitz-like condition that states that
a prediction {f;} ;¢ is said to be good (as measured by ERR(, -))
only if the optimal solution of the predicted instance is close to
the true optimal solution. Indeed if the optimal solution of a pre-
dicted instance differs significantly from true optimal solution, i.e.,
lopT({f;}jes) — 0PT({pj};ey)| is large, then the property requires
that a good error measure assigns a large error to such predic-
tions. Intuitively, this property allows us to effectively distinguish
between good and bad predictions.

® An instance here is specified by both the predicted job sizes and the true job sizes.
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Property 6 (Lipschitzness). |op({$;}je) — oPr({pj}jes)| <
ERR({pj}jes {bj}jer)-

A natural way to define the prediction error is to define it as
the #; norm between the predicted and the true job sizes, i.e.,
a(p.p) = ERR({pj}jes. {Pj}jej) = ZjeyIpj — bjl, as was done
in [16]. While this error definition satisfies monotonicity, it is not
Lipschitz. Indeed, consider the following simple problem instance.
Let € > 0 be a constant. The true job sizes are given by p1 = 1+¢€
and p; = 1,Vj € J\ {1}. Let p be a set of predicted job sizes
given by p1 = 1+3e and p; = 1,Vj € J\ {1}. Similarly, let §
be another set of predicted job sizes given by ¢ = 1 — € and
dj = 1,Vj € J\ {1}. By construction, #; (p, p) = 2 = £1(p, §). How-
ever, by the nature of the total completion time objective, there is a
significant difference in the quality of the predictions in these two
instances. Formally, opT({f;}jej) — oPT({p;j}jes) = 2€ whereas
opT({pj}jes) —oPT({g;}jey) = (n+1) - € > £1(p,§). Intuitively,
the lack of Lipschitzness causes the #; (-, -) error metric to not be
able to distinguish between {p} and {g} predictions although {p}
is arguably a much better prediction for this instance.

On the other hand, to satisfy the Lipschitz property, one can con-
sider simply defining the prediction error as ERR({p;} jes. {fj}jey) =
lorT({$j}jes) — oPT({pj}jes)|. Unfortunately, this may not be
monotone. Indeed, consider a simple instance where the predic-
tions are a reassignment of the true job sizes to the jobs, i.e., the
job sizes are predicted correctly but the job identities are permuted.
In this case, we have [oPT({p;};cj) —0PT({p;};ecs)| = 0. However,
an improvement to any of the predictions will only result in a dif-
ferent optimum, and hence a non-zero error. In other words, this
definition does not satisfy monotonicity.

These examples motivate a new definition of prediction error.

Definition 7 (Prediction Error). Forany instance of the non-clairvoyant

scheduling problem with predictions where each job j € ] has a true
size pj and a predicted size pj, the prediction error is defined as:

v(JsApjtAPj}) = ERR({pj}jes. {Dj}jey)
= orr{{1}en, UApsYien ) = opr({psbien, U idsen, )

where Jo ={j € J | pj > pj}, Ju={j €J|pj < pj} denote the set
of jobs whose sizes are overestimated and underestimated respectively.

Intuitively, the above definition follows ensures

vz orr((hjjes, U pibsen) - ovr((psses, U (pide)

by pretending that all underestimated job sizes were predicted
correctly. Similarly, we also want

v 2 oer({ps}je, U ipsbien ) - ovr({pi} e U (i) e )

Our error measure follows by adding the RHS of these inequalities.

It is easy to see that this definition, besides being symmetric and
non-negative, also satisfies both monotonicity and the Lipschitz
property. While this may not be the unique such definition, it is
simple. Further, we are not aware of any other error measures,
including those used in the previous work [8, 16], that satisfy the
two desired properties. For more details, see Section 2.2.2.

Proposition 8. The error measure given in Definition 7 satisfies
both Monotonicity and Lipschitzness.
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When the scheduling instance is clear from context, we drop
the arguments and let v = v(J;{p;}, {p;}). Note that in case all
the predicted job sizes are overestimates (or underestimates) of
the true sizes, then we have v(J; {p;}, {p;}) = lopT({p;}jes) —
orT({p;} el

2.2.1 Surrogate Error. For the sake of analysis, we define a sur-
rogate (prediction) error where we measure the error for overes-
timated and underestimated jobs separately. The surrogate error
lower bounds the prediction error in Definition 7 and will be more
convenient for our analysis. While it does not satisfy Lipschitzness,
nevertheless, it will turn out to be a useful tool for analysis.

Definition 9 (Surrogate Error). For any set Z C ] of jobs, where
each job j € Z has a true size x; and a predicted size X j, the surrogate
error is defined as:

1Z: (), (D) = (0p1({8)}jez,) = oPr({xs}jez,) )+

(opr({x}jez,) = 01t} jez,)).

whereZo ={j € Z | Xj > xj},Zy = {j € Z | Xj < xj} denote the set
of jobs whose sizes are overestimated and underestimated respectively.

Again, when the scheduling instance is clear from context, we
drop the arguments and let n = n(J; {p;}, {p;}). We first show that

the surrogate error can be used to lower bound the prediction error.

Proposition 10. For any set Z C ] of jobs where each job j € Z has
true sizex;j and predicted size X;, v(Z; {x;}, {X;}) = n(Z; {x;}, {%;}).

A key advantage of the surrogate error 7 is that it is easier
to decompose as opposed to v. As our analysis carefully charges
our algorithm’s cost in each round to the error and the optimum,
decomposability will be very useful to avoid overcharging.

Proposition 11 (Superadditivity of Surrogate Error). For any set
Z C J of jobs, any set of true and predicted job sizes {(x},%j)}jez
and any partition of Z into two disjoint subsets Z1 and Z, we have
N(Z; {xjhAx5}) 2 n(Zy; {xj 1 A%} +n(Za; {xj}, {%;}).

2.2.2 Comparisons with Other Error Measures. We compare our
new error measure with others, including those in [8, 16]. First, we
observe that our error measure is always lower bounded by the
£1(p, p) error utilized by [16] but is at most a factor of n larger.

Proposition 12. For any set {p;};cy and {pj}jes of true and pre-
dicted job sizes, we have

u(p,p) < v(J;{pj}. {pj}) <n-t(p,p)

Thus our error measure lends itself to asymptotically stronger
algorithmic guarantees than the #; (p, p) measure. In [16], the cost
of their algorithm is shown to be bounded by (1 + €)orT + (1 +¢€) -
(n—1)t1(p, p). As we show in the following sections, we obtain
an algorithm whose cost is bounded by (1 + €)opPT + O¢(1) - v. By
Proposition 12, our bound is asymptotically never worse than that
in [16], and can often be sharper.

Next, we discuss the error measure used by Bamas et al. [8] in
their primal-dual framework. Their measure, which we call nppss,
can be defined as the cost of SPJE” minus the optimum. It is easy to
see that npss is neither monotone nor Lipschitz. This is because

7Shortest Predicted Job First (SPJF) is the algorithm that blindly follows the predictions.
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SPJF yields an optimal schedule as long as jobs have the same order
both in their actual sizes and estimated sizes, i.e., p; < p; if and
only if pj < p;. Further, it is hard to compare our error measure to
nBMs as the latter does not directly factor in estimated job sizes but
measures the cost for running an algorithm (that is based on the
prediction) on the actual input. However, the following example
shows that npyrs can be excessively large even for estimating just
one job size: The true job sizes are given by p; = 1 Vj € J\ {n} and
pn = n?. All jobs sizes are predicted correctly, except job n, where
pn =0.Then, v = 142+ - -+n—1+(n+n?) = (142+- - -+n—1) = n+n?,
whileas npys = n? -n—(1+2+---+n—1+n+n?) = Q(n), Here,
n? - n comes from the fact that job n completes first under SPJF.
Finally, we note that the error measure cannot be oblivious to
job identities. For example, consider the Earth Mover’s distance
between the true job sizes and the estimated job sizes. That is, find
a mincost matching between two multi-sets {p;};cy and {p;}ics
where matching p; to p; incurs cost |p; — p;|. However, it is easy
see that such measures have zero error when the two multi-sets
are identical yet the predictions are incorrect for individual jobs.

3 ALGORITHM

In this section we present our algorithm for scheduling with pre-
dictions. Our algorithm runs in rounds. To formalize, we need to
set up some notation. We let J. be the set of unfinished (alive) jobs
at the beginning of round k, where k > 1. Let ng = | Ji|. Let gy ;
be the amount of processing done on job j in round k. We define
® Pk =pj— Zl,i,_:ll qw,j: the true remaining size of j at the
beginning of round k.
® py ;= max{p;— Zlfv_:ll qw,j, 0}: the predicted remaining size
of j at the beginning of round k.

Note that if a job j has been processed by more than its predicted
size f; in the previous rounds before k, we have py ; = 0.

Our algorithm employs two subprocedures in each round to
estimate the median my of the true remaining size of jobs in Ji
and the magnitude of the error in the round. We first present the
subprocedures and then present our main algorithm.

3.1 Median Estimation

We first present the method to estimate the median my. of the true
remaining size of jobs in Ji. To streamline the analysis, we will
assume that all remaining sizes are distinct, which can be achieved
almost surely by adding small random perturbations to the initial
job sizes. Let my. denote our estimate of the true median my. Recall
that Round-Robin processes all alive jobs equally at each time.

Algorithm 1 Median-Estimator(Ji, 6, n)

1: Let S be a uniform random sample, with replacement, of size
h‘a%" from Ji.

2: Run Round-Robin on S until half of the jobs in S complete; let
Jjk be the job that completed the last.

3: Return my = py j, -

Algorithm 1 takes a sample S of the remaining jobs and returns
as riy the median of the jobs in S in terms of their remaining size.
This can be done by completing half of the jobs in S by Round-Robin.
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The sampling with replacement is done as follows. When we take
job j as the ith sample, we pretend to create a job i with size x;
equal to py ;. Thus, S could contain multiple “copies” originating
from the same job in Ji. So, if S has two copies of the same job, it
will get twice the processor share in Round-Robin. This is not an
issue as we can simulate the execution of Round-Robin quicker.

When the condition in the following lemma holds true, we will
say that iy is a (1 + §) order-approximation of my, or (1 + )-
approximation for brevity.

Lemma 13. The order of . among {pr; | j € J} is in ((% -
S)ng, (% + d)ni], with probability at least 1 — %

3.2 Error Estimation

Next, we would like to see if the prediction for the remaining jobs in
round k is accurate enough to follow closely. However, measuring
the error of the predictions even by running all jobs in a small
sample to completion could take too much time. Thus, we estimate
the error of the remaining jobs by capping all remaining sizes and
predicted sizes at (1 + €)my. The error we seek to estimate is below.

Definition 14 (Error in Round k). ny = opt({dy ;}jej.), where
dk,j = | min{(l + E)Y;lk,pk,j} - min{(l + €)I’hk,ﬁk!]—}|.

Algorithm 2 Error-Estimator(Ji, €, n, my)

1: Let P be a uniform random sample, with replacement, of size
I logn from a family Q := {(j,j) | j € kY U{(Lj) |i<je
Ji} of unordered pairs.

2: For every sampled job j, calculate dj ; by running j up to
(1 + €) iy units.

. 1 .
3: Return as our estimate: 7j. := |Q|m Z min{dy;, di ;}.
(i.j)epP

Forany k € [K], we say for brevity that 7j;. is a (1+€)-approximation
of ;. if it satisfies

5 2 o =2
Nk — €Mpnyg < N < N +emgny.

Lemma 15. For each k € [K], fjx is a (1 + €)-approximation of n.
with probability at least 1 — #

3.3 Main Algorithm

Given the methods to estimate the median size of all jobs in Ji
and the remaining available error, we now describe our algorithm
running in rounds k > 1.

If there are enough jobs alive for accurate sampling, we use our
estimators to estimate the median and the error. If the estimated
error is big, then we say that the current round is a RR round, and
run Round-Robin to process all jobs equally up to 27 units.® This is
intuitive as our estimator indicates that the prediction is unreliable.
If not, we closely follow the prediction. We only consider jobs that
are predicted to be small and process them in increasing order of
their (remaining) predicted size. To allow for a small prediction
error, we allow a job to get processed 3erm more units than its

81n fact, the jobs can be processed in an arbitrary order as long as they are processed
up to 21y units.
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Algorithm 3 Scheduling with Predictions

1: k< 1land § « 1/50.
2: while nj. > E% logn do
3 My «— Median-Estimator(Ji, 8, n).
fix < Error-Estimator(Ji, €, n, my).
if 7 > eézrhknlzc/lé > RR (big error) round
Process each job in Ji. up to 27 units with Round-Robin.
else > Non-RR (small error) round
Process jobs j with fy ; < (1 + €)ry up to fy. ; + 3ery
units in increasing order of fy ;.
9: ke—k+1.
10: Run Round-Robin to complete remaining jobs. > Round K + 1

® Dok

remaining predicted size. In this case, we say that the current round
is a non-RR round. Finally, we run Round-Robin to complete all
remaining jobs, if any; this is the final round, indexed by K + 1.

It is worth mentioning the following easy observations, which
will be useful for our analysis later.

Observation 16. (1) Every overestimated job remains overesti-
mated in every round, i.e., if pj > pj, then py j > py ; for all
k. A similar statement holds for every underestimated job.

(2) If ajob j is processed in a non-RR round k, then its remaining
predicted size is 0 for all the subsequent rounds, ie., pys ; = 0
forallk’ > k.

(3) For each job, there is exactly one round where the job’s remain-
ing predicted size becomes 0.

4 ANALYSIS

To streamline the presentation of our analysis, we will do the anal-
ysis under the following simplifying assumption. We will remove
this assumption in Section 4.3.

Assumption 17. We assume that riy. is a (1 + 8)-approximation of
my (6 =1/50) and fjy. is a (1 + €)-approximation of ny. Further, we
will assume that the estimation procedures incur no additional delay.

For analysis we extend the definition of 7.

Definition 18 (Error inround k on a subset). ng(X) = oPr({dy ;}jex)

forallX C Ji, where di ; = |min{(1 + €)ry, py ;} — min{(1 +
€)1, P j H-
Note that ny = 5 (Ji)-

4.1 Robustness

In this section, we show that our algorithm always yields a con-
stant approximation. This guarantee holds in all cases even if the
predicted job sizes are arbitrarily bad or even adversarially chosen.

Theorem 19. Algorithm 3 is an O(1)-approximation, under As-
sumption 17.

Key to the analysis is to show that a constant fraction of jobs
complete in each round.

Lemma 20. Forallk € [K], we have npyq < (1/2+ 28)ng.

PRrOOF. Suppose round k is an RR round. Since there are (1/2 —
8)ny. jobs with py. ; < 7y and all jobs are processed up to 27 units,
clearly we complete at least (1/2 — §)ny jobs in the round.
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Now suppose round k is a non-RR round. We first show that
there are many jobs considered by the algorithm. Let X := {j €
Ji | prj < (+ ey} and Y := {j € Ji | prj < ). We claim,

IX] > (1/2 - 1.58)ng.

Suppose not. Knowing that |Y| > (1/2 — §)ny, we have |Y \ X| >
0.56ny. Note that for all j € Y \ X, dy ; > ermy. We have a contra-
diction as we have i > (Y \ X) > %erﬁk(O.S(Snk)Z.

Note that all jobs in X are processed by the algorithm. Now we
show most of jobs in X complete in the round. Let Z denote those
in X that do not complete in the round k. Note that for every job
j € Z, we have d; > 3ery. Thus, if we have |Z| > 0.5ng, as
before, we will have i > np(Z) > %(Ser?zk)(o.Scsnk)z, another
contradiction.

Thus, we have shown |X \ Z| >

algorithm completes at least (1/2 — 26)ny jobs in each round k.

(1/2 — 26)ng, meaning the
o

Intuitively, from Lemma 20, we know that a large number of
jobs must complete in each round and further since we assume
that ri. approximates the true median well, many of those jobs
have remaining sizes at least M. The following lemma shows that
Q(ng) jobs must have remaining size at least miy and hence the
optimal solution must incur a total cost of at least Q(X rﬂkni).

Lemma 21. YX

P rhkni < 266 - orT(J \ Jr+1)-

Proor. By Proposition 4 (4), we know opT(J \ Jk+1) is lower

bounded by Y.odd ke[kx-1] OPT(Jk \Jk+2), and also by Yeven ke[kx-1] OPT(Jk\

Jie+2)- Thus, we have
K-1
20pT(J \ Jics1) = ) 0PT( \ Jia2)-
k=1
By Lemma 20, we know that at least (1 — (1/2 + 25)?)ny, jobs in
Ji or more complete in round k or k + 1. Further, as iy is a (1 + 9)-
approximation, less than (1/2+6)ny jobsin Ji have py ; < . Thus,
we conclude that there are at least (1—((1/2+28)2)—(1/2+8))n; >
(1/8)ng jobs in Ji with py ; > ri that complete in round k or k+1;
here, § < 1/50. Let F denote the set of those jobs. Note that
oPT(Ji \ Jexz) = OPT(Fi) = (1/2)rie ((1/8)ng)® = ringni /128.
Therefore, we have,
K-1
20T(J \ Jic+1) = )

k=1

~ 2
—mpn,;.
128 K"k

Further, we have,

opr(J \ J+1) = 0pT(Jk) > (1/2)rig (0.45nk)* > 0.1rigcng,

as there are at least (1/2 — §)ng > 0.45ng jobs of sizes > mg. O

Next, we upper bound our algorithm’s cost. Let Ay be the total
delay incurred by our algorithm in round k. Formally, we have:

Ay = Z qk,j * Nk,j>
J€k
where ny ; is the number of jobs that are still alive when job j is
processed in round k.

The following notes that each job j gets processed by a maximum
of 2riy. units and it can delay at most (ng — 1) jobs in round k.

Lemma 22. Foranyk € [K], Ax < 2n~1kn]2<.
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Observe that we use Round-Robin in the final round K + 1, which
is known to be 2-competitive. Hence, to complete all the remaining
jobs, by considering each job’s contribution to the objective, our
algorithm’s cost is upper bounded as follows.

Lemma 23. The algorithm’s cost is at mosth:1 21y, ni+20PT(]K+1)+
Zje] pj-

By Lemmas 21 and 23, the algorithm’s cost is at most 2-266 opT(J\
Jr+1)+20PT(Jg4+1)+0PT(J) < 535 0PT(J), where the last inequality
follows from Proposition 4. This completes the proof of Theorem 19.

4.2 Consistency

In this section, we show that Algorithm 3 also utilizes good predic-
tions to obtain improved guarantees. We analyze the delay incurred
by our algorithm in RR rounds and non-RR rounds separately.

4.2.1 RR round. This section is devoted to showing the following
lemma. Intuitively, using the fact that the error is huge in each RR
round, we can upper bound our algorithm’s total delay in all RR
rounds by the error. Recall A == 3 ;cy qi,j - N, j- As & is set to an
absolute constant (§ = 1/50), we will hide it in asymptotic notation.
(Recall the surrogate error 7 from Definition 9.)

Lemma 24. Y crr Ax < O(é)n < O(é)V, under Assumption 17.

From Lemma 22, the total delay Ay incurred in round k € [K]
in our algorithm is at most Zr?tknlzc. Thus, our goal is to carefully
identify a part of the surrogate error of magnitude Q(erhkni) to
charge Ay to in each RR round k.

In the following lemma, we consider three types of jobs and
show that the error is big enough for at least one type of jobs. The
job types are: (i) those completing in round k, (ii) whose remaining
predicted sizes become 0 in the round, and (iii) whose remaining
predicted sizes are 0 and that do not complete in this round. We
need to be careful when extracting some error for type (iii) jobs as
they may reappear as type (iii) jobs in subsequent RR rounds. This
is why we measure the error by pretending their remaining sizes
are 2my., exactly the amount by which the jobs each are processed
in the round.

Lemma 25. In any RR round k, at least one of the following is
Q(e)iy (n)?:
(1) nUge \Jes1)-
(2) n(Fy) where Fy = {j € Ji | pr,j > 0 and pyyq,j = 0}
(3) n(Zy: {2mg 1, {0}) = opr({2rmy}; 5 ) where Zy = {j €
Je | Prj =0 and py ; > 2my}.

PROOF. Let S := {j € Ji | prj < (1+€)iy or py j < (1+€)riy }.
Since di ; = 0 for all jobs j € Ji \ Sk, by definition of 1, we have
Nk = Nk (Sg). For notational convenience, let X := Sg. N (Ji \ Jes1)s
Y := S N Fy and Z := S, N Z. As each job in Jj is of one of the
above three types, we have S = X UY U Z.

Since k is an RR round, we have np = ni(Sx) = Q(er?zkni).
Because of the monotonicity of . (it can only become larger when
more jobs are considered) and the fact that S = X UY U Z, by
Proposition 4, we know at least one of ny (X), ni(Y), nx(Z) must
be no smaller than (1/3)n. We consider each case in the following.
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Case i. ni(X) = (1/3)ng. Let X,, Xy, denote the jobs in X that are
overestimated and underestimated, respectively. By definition of
1k and Proposition 4, we have ;. (Xo) + i (Xy) = (1/2)n,(X), and
M (Xu) = opt({min{(1 + )y, py ;} — min{(1 + €)rm, i j}}jex, )

<orT({pk,j — Pk j}jex.)

< orT({pk j}tjex,) — oPT({Pr j}jex,) = n(Xw).

Similarly, we can show ni(X,) < n(Xp). Thus, we have,
Nk N\ Jk+1) 2 1(X) 2 n(Xu) +17(Xo) 2 g (Xu) + i (Xo)
2 (1/2)mi(X) = (1/6)n.

where the first two inequalities follow from Proposition 11.

Case ii. n.(Y) = (1/3)n. This case can be similarly handled as the
first case, and we can show r](ﬁk) >n(Y) = (1/6)n.

Case iii. ni.(Z) = (1/3)ng. Note that all jobs j in Z are underesti-
mated because of py ; > 2rit; and py ; = 0 and by Observation 16.

Also, by definition of S, Z, Zk, we have Z = Zk. Therefore,

Nk (Z) = opT({min{(1 + €)my, py. ;} — min{(1 + €)my, p ;j}}jez)
=orr({(1+&)mg}jez) < n(Zks {2}, {0}).

Thus we have 7(Z; {2}, {0}) > (1/3)n. o

We next show that the above errors add up to O(n).

Lemma 26. Yer 10k \Jest)+1(Fo)+n(Zs (277}, (0))) < 31,

ProoF. We start by considering the first quantity. Since the sets
in {Ji \ Je+1}i>1 are disjoint, from Proposition 11, we know that

Ykerr MUk \ Jkx1) < 1. Similarly, we can show Y rcpr r](ﬁk) <n.
It now remains to show

D n(Zgs {2y, o) <.
keRR

Note that by definition of Z; and Observation 16, we know that if
je Zk, then j must be underestimated, i.e., ﬁj < pj. Let J, denote
the set of all underestimated jobs. By definition of 1, we know that
n 2 opt({pj}jez,) — oPT({p;j};ejz,)- Further, by Proposition 4,
nz orT({pj = pjljes):
The proof idea is to show the decrease of opT({py ; — px j}jes,)
in each RR round k is as big as n(Zx; {2y}, {0}). By definition of
p1,j and py j, we have
opT({p1,j — p1,j}jen) = OPT({pj — Pj}jes,)-
Further, by Observation 16, we know Z; C J,,. Note that for every

job j € Zi, ((prj = Pr.j) — (Pis1,j — Pk+1,)) = Pr,j — Phj = 2.
Thus, we have,

oPT({pkj = Pij}jes) — OPT({Prs1,j — Pr+1,j}jes)
2 opT({(prj = Pr,j) — (Phsr,j — Pr+1,j)Yjel)
[Proposition 4 and (pg j — P, ;) is decreasing in k Vj € J ]
> opT({(prj = Pr,j) — (Pis1,j — ﬁk+1,j)}j52k)
[Monotonicity of opT]

= opr({2miy} ;e z,) = 1(Zgs {2}, {0}). o

Lemmas 25, 26 with Lemma 22 complete the proof of Lemma 24.



Paper Presentation

4.2.2  Non-RR round. This section is devoted to proving the fol-
lowing lemma that bounds our algorithm’s total delay in non-RR
rounds (denoted NRR). As we do not have sufficiently large errors
in non-RR rounds, we will have to bound it by both opT and v. Note
that opT — (2;¢; pi) is the total delay cost of the optimal schedule.

Lemma 27. Under Assumption 17, we have Y pcNgrr Ax < (1 +
O(e))orT = (Ziey pi) + O(1/€)v.

We begin our analysis of consistency for non-RR rounds by
proving the following lemma, which shows how much error we
can use for each pair of jobs.

Lemma 28. v(J,{p;},{pj}) = Dizjey v(i. j), where
v(i, j) = |min{p;, pj} — min{p;, p;}|.

PRrOOF. By Proposition 3 we can decompose v as follows.

v(J.Apjhpi})
= orr({ps) e, U pibjen) = orr({psdsen U (hibsen)

> > (min{p;, p;} —min{pi,p;}) + . (min{p;, p;} —min{pi, p;})

i.j€Jo 5j €
+ > (min{p;, p;} - min{p;, p;}).
i€Jo.j€Ju
Since every term in the summation is non-negative, to prove the
lemma it suffices to show

mln{ﬁl’p]} - mln{Pbﬁ]} 2 | mln{plspj} - mln{ﬁbﬁ]}')

Vie Joand j € J,. )

By definition, we have p; > p; for i € J,, and hence we have
min{p;, pj} = min{p;, p;} and min{p;, p;} < min{p;, p;}. Hence,

min{ﬁi,pj} - min{pi,ﬁj} > min{pi,pj} - min{ﬁi,ﬁj}.

Similarly, since p; < pj for j € J, we have min{p;, p;} >
min{ﬁi,ﬁj} and min{pi,[)j} < min{pi,pj}. Hence,

min{p;, pj} — min{p;, p;} > min{p;, p;} — min{p;, p;}.

In either case, we have shown (1) holds, as desired. o

Knowing how much error we can use for each pair of jobs, we
are now ready to give an overview of the analysis. We let Dy (i, j)
denote the delay i causes to j in a non-RR round k. Note that
Dy (i, j) = qy; if j is still alive while i gets processed in round k;
otherwise, Dy (i, j) = 0.

1. Total delay involving jobs with zero remaining predicted sizes.
We show that the delay involving the following jobs across all
non-RR rounds is at most O(e€) - OPT.

Zy ={j € Ji | pri =0}

Fix a job i € Zj. Note that such a job i gets processed by at most
3erny. Further, if job j gets processed before i, it implies fy ; = 0,
where j can delay i by at most 3ermy in the round. Similarly, job i
can delay another job by at most 3eriy in the round. It is an easy
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exercise to see that total delay involving a job i with fy; = 0 is at
most 3emyng. As there are at most ny jobs remaining in this round,

SN S (D) +DeGii)

KeNRR je2, jelkj#i

< Z 36ﬂ1kni < O(e)ort(J \ Jk+1) < O(e)ort, (2)
keNRR

where the second inequality follows from Lemma 21.

2. Total delay involving jobs that execute but do not complete. We
show the total delay across all non-RR rounds is at most O(€)opT +
0(1/€?)v. To precisely articulate what we aim to prove, define:

Ue={ieJr|0< pk,i < (1+e)my andpk,,- > pk,i +3emyg},

which, roughly speaking, are the jobs with relatively small non-zero
remaining predicted sizes that execute but do not complete in round
k. Note that if i € U, then py; > 0 and py,q; = 0. Therefore, the
family {Uy }re (k) is disjoint.

The following bounds the total delay incurred due to jobs in Uy.

Lemma 29. For each i € Uy, let Di; = X jcp.jzi(Di (i j) +

Dy (j, 1) = ( Yjefijti Ghj+ Ljefej#iCy> Ly (3€Mk +ﬁk,i)) be the
total delay involving job i in a non-RR round k, where Ly ; denotes the
last time when i gets processed in round k and Cj is j’s completion
time. Then, we have

" Dri < O(e)int +0(1/e?) 37 > v(ii)).

i€l iUy jefeijti

Note that in Dy ;, the first term is how much other jobs delay i
and the second is how much job i delays other jobs: job i delays
job j in the round by exactly py ; + 3ery, if j is still alive when the
algorithm stops processing i in the round. The proof is a bit subtle
and is omitted for space, but the intuition is the following. Suppose
we made a bad mistake by working on job i € Uy in round k—we
thought the job was small based on its prediction but it turned out
to be big. This means that job i’s processing delays many jobs in
Ji» which we could have avoided had we had known that i was in
fact big. Thus, to charge the delay, we show that the considerable
underprediction of job i creates a huge error as it makes a large
difference in how much i delays other big jobs.

Assuming Lemma 29, we have,

D0 Y Dris D) Ot +o(1/e) Y T wii))

keNRR i€Ug keNRR i€eUy jeji:j#i
<O0(eorr+0(1/eh) > 3T w(ij)
keNRR i€Ug,je]:j#i
[Lemma 21 and J C J]
< O(e)opT + O(1/€?) Z v(i, j)
i#je]
[U1,..., Uk are disjoint]
< 0(e)orT+0(1/e?) - v [Lemma28].  (3)

3. Total delay due to the other jobs. Finally we consider delay not
considered by the two cases. Let us see for which pairs of jobs we
did not consider their pairwise delay. For job i to delay job j in a
non-RR round k, i must be processed, meaning that p ; < (1+€)my.
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Since Case 1 already considered py; = 0,i € Z, we assume Pri>0.
Further, if i does not complete in round k, we already covered the
delay in Case 2 as i € Ug. Thus, we only need to consider the case
when i € Vi, where Vy is defined as follows.

Vie={i € ik 10 < pr; < (1+ )ik, prei < P + 3emmyc ).
Note that every i € Vi completes in round k. The following upper
bounds the total delay we did not consider in the previous cases.
Lemma 30. Foranyi € Vi, j € i \(Zx UUy), the delay i causes to j
in non-RR round k, Dy (i, j), is at most min{p;, p; } +v(pi, pj) +3€my.

Note that {V } is a family of disjoint job sets. This is because
every job i € Vi has non-zero remaining predicted size and gets
processed in the round; see Observation 16. Thus, k is the last round
where i’s remaining predicted size is non-zero. Therefore, we have,

>, Dy (i, ) (4)

keNRR i eV, je i\ (ZxUUk) pr ;> Pri

2, 2.

keNRR eV, je Ji\(ZiUUk) P ;> P,

(min{Pi,pj} +v(pi, pj) + Semk)

[Lemma 30]
Z (min{pi,pj}+v(p,~,pj)) + Z Seriny
{i,j}CJ:i#j ke[K]
[V1,..., Vg are disjoint]

<

< OPT — Zpi +v+O(e)orT [Proposition 3, Lemmas 28, 21].
ie]

Putting all pieces together. Note that the delay incurred between
every pair of jobs i and j in every non-RR round k falls into at least
one of the above three categories. Thus, from (2), (3), and (4), the
total pairwise delay in non-RR rounds is at most,

O(e)opT + O(1/€%)v + oPT — Zpi +v+0(e)opT.  (5)
ie]

We are now ready to give the final upper bound on the objective
of our algorithm, which is obtained by combining the upper bound
in Lemma 24 and (5) and by factoring in the total job size, ;¢ p;.
We state the result with e scaled appropriately by a constant factor.

Theorem 31. Under Assumption 17, Algorithm 3’s objective is at
most (1 + €)oPT+ 20PT(Jr41) + O(1/€2)v.

4.3 Removing Simplifying Assumptions
Our goal here is to extend Theorem 31 by removing Assumption 17.
We say that a bad event By occurs in round k if m fails to be (1+6)-
approximate or fj. fails to be (1+¢€)-approximate; by Lemmas 13, 15,
By occurs with probability at most 2/n?. If B does not occur, we
know that a constant fraction of jobs complete in round k thanks to
Lemma 20. Thus, if no bad events occur, we have K = O(log n). By
a union bound, bad events occur with probability O((log n)/n?).
We now factor in the extra delays due to estimating mj and
Nk, assuming no bad events occur. In the median estimation, we
took a sample S of size O( lo§22n) and processed every job in S by
exactly myg. So, the maximum delay due to the processing is at most
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(mg) - |S| - |Jk| = O((log n)myny). Similarly, in estimating g, we
took a sample P of size O(é log n) and processed both jobs in each
pair in P up to (1 + €)rii; units. Thus, this processing cause total
extra delay at most 2(1 + €)my - |P| - |Jk| = O(é(log n)mgng).
Hence, the extra delay cost due to the estimation is bounded by

O()(logn) Y g

ke[K]
<0(e) Z gn?  [ng = il > L logn forall k € [K]]
ke[K]
<0(e)ort(J \ Jk+1) [Lemma 21],

with probability 1 — O((log n)/n?).

Thus, the extra delay is negligible w.h.p. Further, knowing that
any (non-idle) algorithm, including ours, is n-approximate, the
bad events can increase the objective by O((logn)/n®)n - opT in
expectation, which is again negligible.

The above discussions, Theorem 19, and Theorem 31, yield:

Theorem 32. Algorithm 3’s objective is at most min{O(1)orT, (1 +
€)opT+20PT(Jic41)+O(1/€2)v} with high probability, where | Ji41| <
e% log n. Further, the same bound holds in expectation.

Corollary 33. Suppose foranyZ C J with|Z| < 6—13 logn, orT(Z) <
eopT. Then, Algorithm 3’s objective is at most min{O(1)orr, (1 +
€)opT + O(1/€%)v} with high probability. Further, the same bound
holds in expectation.

4.4 Guarantees in Expectation

Previously we showed high probability guarantees on our algo-
rithm’s objective. However, high probability guarantees inherently
require Q(logn) samples and therefore we are forced to stop sam-
pling once the number of jobs alive becomes o(log n). Here we show
that we can further continue to sample, if we only need guarantees
in expectation, until we have O(< log %) unfinished.

Towards this end, we slightly change the algorithm.

(1) Reduce the sample sizes: for estimating my take a sample of
size é log 2n in Algorithm 1 and for estimating n; take a sample
of size é log ny in Algorithm 2.

(2) Run Round-Robin concurrently: We divide each instantaneous
time to Round-Robin by € fraction of time and to run our algorithm
by 1—e fraction of time. Since this can only slow down the execution
of our algorithm by a factor of 1 — ¢, the bound in Theorem 32
only increases by a factor of 1/(1 — €), which has no effect on our
asymptotic bounds. But by running the 2-competitive Round-Robin
concurrently, our final schedule will always be 2/e-competitive.

(3) Stop sampling if np. < O( é log %) (Line 2, Algorithm 3): This
is doable as we can withstand higher probabilities of bad events
thanks to the concurrent execution of Round-Robin.

(4) In the final round K + 1, process all jobs in increasing order
of their predicted size: As we only have |Jg41| = O(e—l3 log é) jobs
left, following the prediction blindly will not hurt much!

Theorem 34. For any sufficiently small € > 0, there exists an algo-
rithm whose expected objective is at most

2 1 1
max {—OPT, (1+e)orT+ O(—3 log —)v} .
€ € €
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5 LOWER BOUNDS

We first show our analysis of Algorithm 3 is tight. Theorem 31
implies that the algorithm’s objective is at most (1 + €)opPT + év
if for any subset Z C J of jobs whose size is polylogarithmic in n,
oPT(Z) = o(opT). The lower bound instance used in the proof of
the following theorem satisfies the property.

Theorem 35. For anyy > 0, there exists a sufficiently small € > 0,
such that there is an instance that shows our algorithm’s objective is
greater than (1 + €)oPT+ Q(1/€27V)v.

PROOF. Let B := €17V, There are two groups of jobs, X and Y.
Group X consists of fn jobs that each have true size p; = 1+ f and
predicted size p; = 1. Group Y consists of the remaining (1 — f)n
jobs with unit true and predicted sizes, i.e., pj = p; = 1forall j € Y.

Let A denote the total completion time of the schedule found by
our algorithm, and let opT denote that of the optimal solution for
the true job sizes. In this case, it is easy to verify that opT = ©(n?)
and the total error v = (X) = ©(>n?). For brevity, assume that the
algorithm’s median and error estimation is exact. Then, m; = 1 and
fi1 = ©(ef?n?). Thus, the algorithm’s first round is non-RR. All jobs
have the same predicted size and therefore are indistinguishable
to our algorithm. Say it first considers jobs in X. Unfortunately,
it finishes no jobs in X in the first round as f§ = w(€). Thus, the
algorithm has at least | X| - |Y| more units of delay than the optimum
solution that first completes all jobs in Y and then those in X. Thus,
we have A — opT > (1+€)|X||Y| = (1 - B)n? = ©(Bn?). But since
€ = 0(B) and opT = O(n?), we have A — (1 + €)opT > Q(fn?) =
Q( ﬁ)v. O

Next, we show no deterministic algorithm can improve upon
(1 + €)-consistency and O(1/€)-robustness simultaneously.

Theorem 36. For any sufficiently small € > 0 andy > 0, no deter-
ministic algorithm’s objective is at most (1 + €)opT+ O(1/€l7¥)v.

Proor. Consider the following lower bound instance. There are
1/€'Y jobs, where y > 0 is a sufficiently small constant.
All jobs have predicted sizes 1. Suppose all jobs have true sizes
exactly 1, except one job having size 2, which we call big. Note that
opT = n(n+1)/2+ 1 and v = 1. Thus, we have eopT + O(1/€)v =
O(1/€'7% +1/€) = O(1/€17?Y). Since our goal is to show that A =
(1+€)oPT+0(1/€)v, it suffices to show A —opPT = w(1/e'72Y). The
adversary lets the big job to be the first the algorithm has processed
by at least one unit. This is a valid strategy for the adversary as all
jobs are indistinguishable to the algorithm until it processes jobs
by one unit or more. Thus, the big job delays each of the rest of
the jobs by at least one unit in the adversary. Let A denote a fixed
algorithm’s objective. We have A —opT > n— 1 = w(1/e!"%). 0O

n =

6 CONCLUSIONS AND OPEN PROBLEMS

In this paper we defined a new prediction error measure based on
the desiderata we established. We believe that our new measure
could be useful for other optimization problems with ML predictions
where #;-norm measure is not ideal. Applying our approach to other
problems could lead to new algorithmic solutions.

Regarding the specific problem considered in the paper, interest-
ing directions include finding a deterministic algorithm with similar
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guarantees, obtaining a better dependence on v, and extending the
error notion to the setting where jobs have different arrival times.
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