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ABSTRACT
In the single-machine non-clairvoyant scheduling problem, the goal

is to minimize the total completion time of jobs whose processing

times are unknown a priori. We revisit this well-studied problem and

consider the question of how to effectively use (possibly erroneous)

predictions of the processing times. We study this question from

ground zero by first asking what constitutes a good prediction; we

then propose a new measure to gauge prediction quality and design

scheduling algorithms with strong guarantees under this measure.

Our approach to derive a prediction error measure based on natural

desiderata could find applications for other online problems.

CCS CONCEPTS
•Theory of computation→Approximation algorithms anal-
ysis; Online algorithms.
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1 INTRODUCTION
Non-clairvoyance, where the scheduler is not aware of the exact

processing times of a job a priori, is a highly desired property in the

design of scheduling algorithms. Due to its myriad practical appli-

cations, non-clairvoyant scheduling has been extensively studied

in various settings in the scheduling literature [12, 14, 25]. With

no access to the processing times (i.e., job sizes), non-clairvoyant

algorithms inherently suffer from worse performance guarantees

than the corresponding clairvoyant algorithms. For example, in the
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most basic version of non-clairvoyant scheduling, we have a set of

jobs that need to be scheduled on a single machine with the goal

of minimizing the total completion time of all jobs. The job sizes

are unknown to the algorithm and only become known after the

job has completed. In this setting, the Round-Robin algorithm [23]

that divides the machine equally among all incomplete jobs is 2-

competitive, and this is known to be optimal. In contrast, in the

clairvoyant setting where job sizes are known a priori, the Shortest

Job First (SJF) algorithm that schedules jobs in non-decreasing order

of their sizes is known to be optimal.

Practitioners often face scheduling problems that lie somewhere

in between clairvoyant and non-clairvoyant settings. While it is

almost impossible to know the exact job sizes, rather than assuming

non-clairvoyance, it is possible to estimate job sizes based on their

features using a predictor [2, 20, 24]; such an estimation can be

error-prone. Can one use the (possibly erroneous) predicted job

sizes to improve the performance of scheduling algorithms?

Augmenting traditional algorithms with machine-learned predic-

tions is a fascinating and newly emerging line of work. In particular,

this paradigm is applicable to online algorithms, which typically

focus on obtaining worst-case guarantees against uncertain future

inputs and thus settle for pessimistic bounds. Recent works have

shown that, using predictions (that may be incorrect), one can prov-

ably improve the guarantees of traditional online algorithms for

caching [13, 19, 26], ski-rental [3, 10, 16], scheduling [7, 16, 22],

load balancing [17], secretary problem [6], metrical task systems

[5], set cover [8], flow and matching [18], and bin packing [4], etc.

In this paper we continue the study of learning-augmented algo-

rithms for single-machine non-clairvoyant scheduling. This prob-

lem, where an algorithm has access to predictions of each job size,

was first investigated in [16]. Without making any assumptions

on the prediction quality, they design a non-clairvoyant algorithm

that satisfies two important properties, namely, consistency and

robustness. Consistency means that the guarantees of the algorithm

improve with good predictions; in particular, the algorithm obtains

a competitive ratio better than 2 if the predictions are good. Robust-

ness ensures that the algorithm gracefully handles bad predictions,

i.e., even if the predictions are adversarially bad, the competitive

ratio stays bounded. For any 𝜆 ∈ (0, 1), they design an algorithm

that guarantees robustness of
2

1−𝜆 and consistency of
1

𝜆
. 1

1
Here, 𝛼-robustness and 𝛽-consistency mean that the algorithm’s cost is at most 𝛼

times the optimum for all inputs but improves to at most 𝛽 factor when the prediction

coincides with the actual input. See Definition 2.
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1.1 The Need for a New Error Measure
Although [16] demonstrates an appealing trade-off between consis-

tency and robustness for non-clairvoyant scheduling, a closer look

reveals some brittleness of the result. Here, we discuss the issue at

a high-level and delve in more detail in the next section when we

formally define the problem and the old/new error notions.

The main issue stems from the total completion time objective.

Since this objective measures the total waiting time of all jobs, a

shorter job could delay more jobs. In fact, different jobs can have

different effect on how much they delay other jobs. The objective

is thus neither linear nor quadratic in the job sizes.
2

In [16], it is assumed that the algorithm has a prediction 𝑝 𝑗 of

each job size 𝑝 𝑗 . The quality of the prediction is the sum of the

prediction errors of individual jobs, i.e., ℓ1 (𝑝, 𝑝) =
∑
𝑗 |𝑝 𝑗 − 𝑝 𝑗 |.

Intuitively, such a linear error measure is incompatible with the

completion time objective andmay not distinguish good predictions

vs poor predictions; in fact, small perturbations in the predictions

can result in large changes to the optimal solution. Consequently,

the results in [16] are forced to be pessimistic and have a weak

dependence on the error term. In particular, they show that sched-

uling the jobs in non-decreasing order of their predicted sizes (SPJF)

yields a competitive ratio of at most opt + (𝑛 − 1) · ℓ1 (𝑝, 𝑝) and is

tight, where opt is the optimum solution and 𝑛 the number of jobs.

We examine the ℓ1 (·, ·) error measure and show that it violates

a natural and desirable Lipschitz-like property for the total com-

pletion time objective. This prompts the search for a new error

measure based on two desiderata (see Section 2.2). Our new error

measure better captures the sensitive nature of the objective and

allows us to obtain an algorithm with competitive ratio at most

(1 + 𝜖)opt +𝑂𝜖 (1) · 𝜈 (𝑝, 𝑝) where 𝜈 (·, ·) is the measure we propose.

In practice, job sizes are predicted using black-box machine-

learned models that utilize various features of the jobs (e.g., history)

and may be expensive to train. While it is impossible to precisely

define the goodness of a prediction, intuitively, an effective error

measure should neither tag bad predictions as good nor miss out

on predictions that could improve the objective.

1.2 Our Contributions
Under the new notion of error (denoted 𝜈), we give the following

results, stated informally below. We assume all jobs are available

for scheduling from time 0. Let opt be the optimum objective.

(1) We obtain a non-clairvoyant algorithm that is 𝑂 (1)-robust
(with no dependency on 𝜖) and (1 + 𝜖)-consistent for any 𝜖 > 0

w.h.p., if no subset of 𝑂 ( 1
𝜖3

log𝑛) jobs dominates the objective.

(Theorem 32 and Corollary 33)

(2) We obtain a non-clairvoyant algorithm that is 𝑂 ( 1𝜖 )-robust
and (1+𝜖)-consistent in expectation for any sufficiently small 𝜖 > 0.

More precisely, the cost of the algorithm is at most (1 + 𝜖)opt +
𝑂 ( 1

𝜖3
log

1

𝜖 )𝜈 . (Theorem 34)

In contrast, [16] obtains an algorithm that is 𝑂 ( 1𝜖 )-robust and
whose cost is at most (1 + 𝜖)opt + (1 + 𝜖) (𝑛 − 1) · ℓ1 (𝑝, 𝑝). Since
our error measure satisfies ℓ1 (𝑝, 𝑝) ≤ 𝜈 ≤ 𝑛 · ℓ1 (𝑝, 𝑝), our algorithm

2
For a concrete example, consider 𝑛 jobs that have unit sizes with sufficiently small

perturbations. The derivative of the objective is 𝑛 with respect to the smallest job; yet

it is 1 with respect to the largest job.

never has an asymptotically worse dependence on the prediction

quality and is often sharper.

(3) We show that for any sufficiently small 𝜖,𝛾 > 0, no deter-

ministic algorithm can have a smaller objective than (1 + 𝜖)opt +
𝑂 (1/𝜖1−𝛾 )𝜈 . (Theorem 36)

We now discuss the high-level ideas. The main challenge is how

to determine if a prediction is reliable or not before completing

all jobs. If the predictions are somewhat reliable, we can more

or less follow them; otherwise, we will essentially have to rely

on non-clairvoyant algorithms such as Round-Robin. Therefore,

we repeatedly take a small sample of jobs over the course of the

algorithm and partially process them. Informally, we estimate the

median remaining size of jobs, and estimate the prediction error

considering job sizes up to the estimated median. Unfortunately,

this estimation is not free since we have to partially process the

sampled jobs and it can delay all the existing jobs. Therefore, we are

forced to stop sampling once there are too few jobs left. Depending

on how long we sample, we obtain the first and second results.

Due to the dynamic nature of our algorithm, the analysis turns

out to be considerably non-trivial. In a nutshell, we never see the

true error until we finish a job. Nevertheless, we still have to decide

whether to follow the predictions. The mismatch between partial

errors we perceive and the actual errors makes it challenging to

charge our algorithm’s cost to the optimum and the error; special

care is needed throughout the analysis to avoid overcharging. We

note that unlike our algorithm, [16] uses a static algorithm that

linearly combines following the predictions and Round-Robin.

To summarize, our work demonstrates that it is possible to find

quality solutions for a bigger class of predictions by using a more

refined measure and it could lead to new algorithmic techniques.

1.3 Other Related Work
Designing learning-augmented algorithms falls into the new beyond-

worst-case algorithm design paradigm [27]. Starting with the work

of Kraska et al. [15] on using ML predictions to speed up indexing,

there have been many efforts to leverage ML predictions to better

handle common instances that are found in practice. In addition

to the aforementioned works, there also exist works on frequency

counting [1, 9, 11] and membership testing [21, 28].

For single machine scheduling in the clairvoyant setting, Short-

est Remaining Processing Time (SRPT) is known to be optimal

for minimizing the total completion time; it is in fact optimal for

minimizing the total flow/response time
3
. If all jobs arrive at time

0, SJF coincides with SRPT. In the non-clairvoyant setting, when

jobs have different arrival times, no algorithm is 𝑂 (1)-competitive

for minimizing the total flow time, but Round-Robin is known to

be𝑂 (1)-competitive when compared to the optimum schedule run-

ning on a machine with speed less than 1/2 − 𝜖 , for any 𝜖 > 0. For

a survey on online scheduling algorithms, see [25].

3
In the setting where job 𝑗 has a release time 𝑟 𝑗 , the flow time of a job is defined

as 𝐶 𝑗 − 𝑟 𝑗 where 𝐶 𝑗 is the completion time of job 𝑗 in the schedule. If all jobs are

available at time 0, then the flow time coincides with completion time.
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1.4 Roadmap
In Section 2 we formally define our non-clairvoyant scheduling

problem. In the same section we continue to discuss what desider-

ata constitute a good measure of prediction error and propose a

new measure meeting the desiderata. We also discuss other—both

existing and candidate—measures and show that they fail to satisfy

the desiderata. We present our algorithm in Section 3 and its analy-

sis in Section 4. The lower bounds are presented in Section 5. All

missing proofs and analysis are in the full version.

2 FORMULATION AND BASIC PROPERTIES
2.1 Non-Clairvoyant Scheduling
Let 𝐽 denote a set of 𝑛 jobs. In the classical single-machine non-

clairvoyant scheduling setting, each job 𝑗 ∈ 𝐽 has an unknown size

or processing time 𝑝 𝑗 . The processing time is known only after the

job is complete. A job 𝑗 completes when it has received 𝑝 𝑗 amount

of processing time, and we denote 𝑗 ’s completion time as 𝐶 𝑗 . A job

may be preempted at any time and resumed at a later time without

any cost. Our goal is to find a schedule that completes all jobs and

minimizes the total completion time of all jobs, i.e.,

∑
𝑗 ∈𝐽 𝐶 𝑗 . In the

clairvoyant case, an algorithm knows the 𝑝 𝑗 ’s in advance.

Definition 1 (Competitive Ratio). Let I denote the set of all in-

stances of the non-clairvoyant scheduling problem. Let costA (𝐼 )
be the total completion time of the schedule obtained by a non-

clairvoyant algorithm A and opt(𝐼 ) be the cost of the optimum

(clairvoyant) algorithm on instance 𝐼 .A is said to be 𝑐-competitive if

max

𝐼 ∈I

costA (𝐼 )
opt(𝐼 ) ≤ 𝑐.

In the clairvoyant case, it is well-known that the Shortest Job First

(SJF)
4
scheduling algorithm minimizes the total completion time.

In the non-clairvoyant case, the Round-Robin
5
algorithm achieves

a competitive ratio of 2, which is known to be optimal [23].

For any subset 𝑍 ⊆ 𝐽 of jobs, we let opt({𝑥 𝑗 }𝑗 ∈𝑍 ) denote the
minimum objective to complete all jobs in 𝑍 when each job 𝑗 ∈ 𝑍
has size 𝑥 𝑗 and is known to the algorithm, i.e., opt is the completion

time of SJF using𝑥 𝑗 as the size of job 𝑗 . Here, we can think of opt as a

function that takes as input a multiset of non-negative job sizes and

returns theminimumobjective to complete all jobswith the job sizes

in the set. (Note that this is well-defined as SJF is oblivious to job

identities.) If 𝑥 𝑗 is 𝑗 ’s true size, i.e., 𝑝 𝑗 , for notational convenience,

we use opt(𝑍 ) := opt({𝑝 𝑗 }𝑗 ∈𝑍 ); in particular, opt := opt(𝐽 ).
We consider the learning-augmented scheduling problem where

the algorithm has access to predictions for each job size; let 𝑝 𝑗
denote the predicted size of job 𝑗 . We emphasize that we make no

assumptions regarding the validity of the predictions and they may

even be adversarial. As in the usual non-clairvoyant scheduling

setup, the true processing size 𝑝 𝑗 of job 𝑗 is revealed only after

the job has received 𝑝 𝑗 amount of processing time. In the learning-

augmented setting, the competitive ratio of an algorithm A is a

function of the prediction error. Our goal is to design an algorithm

that satisfies the dual notions of robustness and consistency.

4
Schedule the jobs in non-decreasing order of job sizes.

5
Process all incomplete jobs equally at each time.

Definition 2 (Robustness and Consistency). Let I be the set of

all instances of the learning-augmented non-clairvoyant scheduling

problem
6
. The robustness of an algorithm A is the worst-case ratio

of the algorithm’s cost to the cost of the optimal solution independent

of the quality of the predictions. On the other hand, the consistency

of an algorithmA is the worst-case ratio when restricted to instances

where the predictions are all correct, i.e., 𝑝 𝑗 = 𝑝 𝑗 ,∀𝑗 ∈ 𝐽 .

Robustness(A) = max

𝐼 ∈I

costA (𝐼 )
opt(𝐼 ) ,

Consistency(A) = max

𝐼 ∈I
𝑝 𝑗=𝑝 𝑗 ,∀𝑗

costA (𝐼 )
opt(𝐼 ) .

2.1.1 Properties of opt. The following fact is well-known and fol-

lows from the definition of opt, i.e., SJF.

Proposition 3 ([23]). opt({𝑥 𝑗 }𝑗 ∈𝐽 ) =
∑
𝑗 ∈𝐽 𝑥 𝑗+

∑
𝑖≠𝑗 ∈𝐽 min{𝑥𝑖 , 𝑥 𝑗 } ≤∑

(𝑖, 𝑗) ∈𝐽 ×𝐽 min{𝑥𝑖 , 𝑥 𝑗 }.

The following properties are simple consequences of SJF.

Proposition 4. Let 𝐽 denote an arbitrary set of jobs and {𝑥 𝑗 }𝑗 ∈𝐽
and {𝑦 𝑗 }𝑗 ∈𝐽 be two sets of non-negative job sizes. Then,

(1) If 𝑥 𝑗 ≥ 𝑦 𝑗 for all 𝑗 ∈ 𝐽 , then opt({𝑥 𝑗 }𝑗 ∈𝐽 ) ≥ opt({𝑦 𝑗 }𝑗 ∈𝐽 ).
(2) For any subset 𝑍 ⊆ 𝐽 , opt({𝑥 𝑗 }𝑗 ∈𝐽 ) ≥ opt({𝑥 𝑗 }𝑗 ∈𝑍 ).
(3) opt({𝑥 𝑗 + 𝑦 𝑗 }𝑗 ∈𝐽 ) ≥ opt({𝑥 𝑗 }𝑗 ∈𝐽 ) + opt({𝑦 𝑗 }𝑗 ∈𝐽 ).
(4) Let 𝑋1, . . . , 𝑋𝐿 be a partition of 𝐽 , i.e., 𝐽 =

⋃
ℓ∈[𝐿] 𝑋ℓ and

𝑋ℓ ∩ 𝑋ℓ′ = ∅ for ℓ ≠ ℓ ′, then we have∑
ℓ∈[𝐿]

opt({𝑥 𝑗 }𝑗 ∈𝑋𝑙
) ≤ opt({𝑥 𝑗 }𝑗 ∈𝐽 ) ≤ 𝐿 ·

∑
ℓ∈[𝐿]

opt({𝑥 𝑗 }𝑗 ∈𝑋𝑙
).

2.2 Prediction Error
A key question in the design of algorithms with predictions is how

to define the prediction error, i.e., how to quantify the quality of

predictions. While this definition can be problem-dependent, it

must be algorithm-independent. For the non-clairvoyant scheduling

problem, before we dive into a definition, we identify two desir-

able necessary properties that we want of any such definition. Let

err({𝑝 𝑗 }𝑗 ∈𝐽 , {𝑝 𝑗 }𝑗 ∈𝐽 ) denote the prediction error for an instance

with true sizes {𝑝 𝑗 } and predicted job sizes {𝑝 𝑗 }; note that an algo-

rithm knows the 𝑝 𝑗 ’s but not the 𝑝 𝑗 ’s.

The first property is monotonicity, i.e., if more job sizes predic-

tions are correct, then the error must decrease. Monotonicity is

natural as better predictions are expected to decrease the error.

Property 5 (Monotonicity). For any 𝐼 ⊆ 𝐽 ,
err({𝑝 𝑗 }𝑗 ∈𝐽 , {𝑝 𝑗 }𝑗 ∈𝐽 \𝐼 ∪ {𝑝𝑖 }𝑖∈𝐼 ) ≤ err({𝑝 𝑗 }𝑗 ∈𝐽 , {𝑝 𝑗 }𝑗 ∈𝐽 ).

The second property is a Lipschitz-like condition that states that

a prediction {𝑝 𝑗 }𝑗 ∈𝐽 is said to be good (as measured by err(·, ·))
only if the optimal solution of the predicted instance is close to

the true optimal solution. Indeed if the optimal solution of a pre-

dicted instance differs significantly from true optimal solution, i.e.,

|opt({𝑝 𝑗 }𝑗 ∈𝐽 ) − opt({𝑝 𝑗 }𝑗 ∈𝐽 ) | is large, then the property requires

that a good error measure assigns a large error to such predic-

tions. Intuitively, this property allows us to effectively distinguish

between good and bad predictions.

6
An instance here is specified by both the predicted job sizes and the true job sizes.
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Property 6 (Lipschitzness). |opt({𝑝 𝑗 }𝑗 ∈𝐽 ) − opt({𝑝 𝑗 }𝑗 ∈𝐽 ) | ≤
err({𝑝 𝑗 }𝑗 ∈𝐽 , {𝑝 𝑗 }𝑗 ∈𝐽 ).

A natural way to define the prediction error is to define it as

the ℓ1 norm between the predicted and the true job sizes, i.e.,

ℓ1 (𝑝, 𝑝) = err({𝑝 𝑗 }𝑗 ∈𝐽 , {𝑝 𝑗 }𝑗 ∈𝐽 ) =
∑
𝑗 ∈𝐽 |𝑝 𝑗 − 𝑝 𝑗 |, as was done

in [16]. While this error definition satisfies monotonicity, it is not

Lipschitz. Indeed, consider the following simple problem instance.

Let 𝜖 > 0 be a constant. The true job sizes are given by 𝑝1 = 1 + 𝜖
and 𝑝 𝑗 = 1,∀𝑗 ∈ 𝐽 \ {1}. Let 𝑝 be a set of predicted job sizes

given by 𝑝1 = 1 + 3𝜖 and 𝑝 𝑗 = 1,∀𝑗 ∈ 𝐽 \ {1}. Similarly, let 𝑞

be another set of predicted job sizes given by 𝑞1 = 1 − 𝜖 and

𝑞 𝑗 = 1,∀𝑗 ∈ 𝐽 \ {1}. By construction, ℓ1 (𝑝, 𝑝) = 2𝜖 = ℓ1 (𝑝, 𝑞). How-
ever, by the nature of the total completion time objective, there is a

significant difference in the quality of the predictions in these two

instances. Formally, opt({𝑝 𝑗 }𝑗 ∈𝐽 ) − opt({𝑝 𝑗 }𝑗 ∈𝐽 ) = 2𝜖 whereas

opt({𝑝 𝑗 }𝑗 ∈𝐽 ) − opt({𝑞 𝑗 }𝑗 ∈𝐽 ) = (𝑛 + 1) · 𝜖 ≫ ℓ1 (𝑝, 𝑞). Intuitively,
the lack of Lipschitzness causes the ℓ1 (·, ·) error metric to not be

able to distinguish between {𝑝} and {𝑞} predictions although {𝑝}
is arguably a much better prediction for this instance.

On the other hand, to satisfy the Lipschitz property, one can con-

sider simply defining the prediction error as err({𝑝 𝑗 }𝑗 ∈𝐽 , {𝑝 𝑗 }𝑗 ∈𝐽 ) =
|opt({𝑝 𝑗 }𝑗 ∈𝐽 ) − opt({𝑝 𝑗 }𝑗 ∈𝐽 ) |. Unfortunately, this may not be

monotone. Indeed, consider a simple instance where the predic-

tions are a reassignment of the true job sizes to the jobs, i.e., the

job sizes are predicted correctly but the job identities are permuted.

In this case, we have |opt({𝑝 𝑗 }𝑗 ∈𝐽 ) −opt({𝑝 𝑗 }𝑗 ∈𝐽 ) | = 0. However,

an improvement to any of the predictions will only result in a dif-

ferent optimum, and hence a non-zero error. In other words, this

definition does not satisfy monotonicity.

These examples motivate a new definition of prediction error.

Definition 7 (Prediction Error). For any instance of the non-clairvoyant
scheduling problem with predictions where each job 𝑗 ∈ 𝐽 has a true
size 𝑝 𝑗 and a predicted size 𝑝 𝑗 , the prediction error is defined as:

𝜈 (𝐽 ; {𝑝 𝑗 }, {𝑝 𝑗 }) := err({𝑝 𝑗 }𝑗 ∈𝐽 , {𝑝 𝑗 }𝑗 ∈𝐽 )

= opt

(
{𝑝 𝑗 }𝑗 ∈𝐽𝑜 ∪ {𝑝 𝑗 }𝑗 ∈𝐽𝑢

)
− opt

(
{𝑝 𝑗 }𝑗 ∈𝐽𝑜 ∪ {𝑝 𝑗 }𝑗 ∈𝐽𝑢

)
,

where 𝐽𝑜 = { 𝑗 ∈ 𝐽 | 𝑝 𝑗 > 𝑝 𝑗 }, 𝐽𝑢 = { 𝑗 ∈ 𝐽 | 𝑝 𝑗 ≤ 𝑝 𝑗 } denote the set
of jobs whose sizes are overestimated and underestimated respectively.

Intuitively, the above definition follows ensures

𝜈 ≥ opt

(
{𝑝 𝑗 }𝑗 ∈𝐽𝑜 ∪ {𝑝 𝑗 }𝑗 ∈𝐽𝑢

)
− opt

(
{𝑝 𝑗 }𝑗 ∈𝐽𝑜 ∪ {𝑝 𝑗 }𝑗 ∈𝐽𝑢

)
,

by pretending that all underestimated job sizes were predicted

correctly. Similarly, we also want

𝜈 ≥ opt

(
{𝑝 𝑗 }𝑗 ∈𝐽𝑜 ∪ {𝑝 𝑗 }𝑗 ∈𝐽𝑢

)
− opt

(
{𝑝 𝑗 }𝑗 ∈𝐽𝑜 ∪ {𝑝 𝑗 }𝑗 ∈𝐽𝑢

)
.

Our error measure follows by adding the RHS of these inequalities.

It is easy to see that this definition, besides being symmetric and

non-negative, also satisfies both monotonicity and the Lipschitz

property. While this may not be the unique such definition, it is

simple. Further, we are not aware of any other error measures,

including those used in the previous work [8, 16], that satisfy the

two desired properties. For more details, see Section 2.2.2.

Proposition 8. The error measure given in Definition 7 satisfies

both Monotonicity and Lipschitzness.

When the scheduling instance is clear from context, we drop

the arguments and let 𝜈 = 𝜈 (𝐽 ; {𝑝 𝑗 }, {𝑝 𝑗 }). Note that in case all

the predicted job sizes are overestimates (or underestimates) of

the true sizes, then we have 𝜈 (𝐽 ; {𝑝 𝑗 }, {𝑝 𝑗 }) = |opt({𝑝 𝑗 }𝑗 ∈𝐽 ) −
opt({𝑝 𝑗 }𝑗 ∈𝐽 ) |.

2.2.1 Surrogate Error. For the sake of analysis, we define a sur-

rogate (prediction) error where we measure the error for overes-

timated and underestimated jobs separately. The surrogate error

lower bounds the prediction error in Definition 7 and will be more

convenient for our analysis. While it does not satisfy Lipschitzness,

nevertheless, it will turn out to be a useful tool for analysis.

Definition 9 (Surrogate Error). For any set 𝑍 ⊆ 𝐽 of jobs, where

each job 𝑗 ∈ 𝑍 has a true size 𝑥 𝑗 and a predicted size 𝑥 𝑗 , the surrogate

error is defined as:

𝜂 (𝑍 ; {𝑥 𝑗 }, {𝑥 𝑗 }) :=
(
opt({𝑥 𝑗 }𝑗 ∈𝑍𝑜 ) − opt({𝑥 𝑗 }𝑗 ∈𝑍𝑜 )

)
+(

opt({𝑥 𝑗 }𝑗 ∈𝑍𝑢 ) − opt({𝑥 𝑗 }𝑗 ∈𝑍𝑢 )
)
,

where𝑍𝑜 = { 𝑗 ∈ 𝑍 | 𝑥 𝑗 > 𝑥 𝑗 },𝑍𝑢 = { 𝑗 ∈ 𝑍 | 𝑥 𝑗 ≤ 𝑥 𝑗 } denote the set
of jobs whose sizes are overestimated and underestimated respectively.

Again, when the scheduling instance is clear from context, we

drop the arguments and let 𝜂 = 𝜂 (𝐽 ; {𝑝 𝑗 }, {𝑝 𝑗 }). We first show that

the surrogate error can be used to lower bound the prediction error.

Proposition 10. For any set 𝑍 ⊆ 𝐽 of jobs where each job 𝑗 ∈ 𝑍 has

true size𝑥 𝑗 and predicted size𝑥 𝑗 ,𝜈 (𝑍 ; {𝑥 𝑗 }, {𝑥 𝑗 }) ≥ 𝜂 (𝑍 ; {𝑥 𝑗 }, {𝑥 𝑗 }).

A key advantage of the surrogate error 𝜂 is that it is easier

to decompose as opposed to 𝜈 . As our analysis carefully charges

our algorithm’s cost in each round to the error and the optimum,

decomposability will be very useful to avoid overcharging.

Proposition 11 (Superadditivity of Surrogate Error). For any set

𝑍 ⊆ 𝐽 of jobs, any set of true and predicted job sizes {(𝑥 𝑗 , 𝑥 𝑗 )}𝑗 ∈𝑍
and any partition of 𝑍 into two disjoint subsets 𝑍1 and 𝑍2, we have

𝜂 (𝑍 ; {𝑥 𝑗 }, {𝑥 𝑗 }) ≥ 𝜂 (𝑍1; {𝑥 𝑗 }, {𝑥 𝑗 }) + 𝜂 (𝑍2; {𝑥 𝑗 }, {𝑥 𝑗 }).

2.2.2 Comparisons with Other Error Measures. We compare our

new error measure with others, including those in [8, 16]. First, we

observe that our error measure is always lower bounded by the

ℓ1 (𝑝, 𝑝) error utilized by [16] but is at most a factor of 𝑛 larger.

Proposition 12. For any set {𝑝 𝑗 }𝑗 ∈𝐽 and {𝑝 𝑗 }𝑗 ∈𝐽 of true and pre-
dicted job sizes, we have

ℓ1 (𝑝, 𝑝) ≤ 𝜈 (𝐽 ; {𝑝 𝑗 }, {𝑝 𝑗 }) ≤ 𝑛 · ℓ1 (𝑝, 𝑝)

Thus our error measure lends itself to asymptotically stronger

algorithmic guarantees than the ℓ1 (𝑝, 𝑝) measure. In [16], the cost

of their algorithm is shown to be bounded by (1 + 𝜖)opt + (1 + 𝜖) ·
(𝑛 − 1)ℓ1 (𝑝, 𝑝). As we show in the following sections, we obtain

an algorithm whose cost is bounded by (1 + 𝜖)opt +𝑂𝜖 (1) · 𝜈 . By
Proposition 12, our bound is asymptotically never worse than that

in [16], and can often be sharper.

Next, we discuss the error measure used by Bamas et al. [8] in

their primal-dual framework. Their measure, which we call 𝜂𝐵𝑀𝑆 ,

can be defined as the cost of SPJF
7
minus the optimum. It is easy to

see that 𝜂𝐵𝑀𝑆 is neither monotone nor Lipschitz. This is because

7
Shortest Predicted Job First (SPJF) is the algorithm that blindly follows the predictions.
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SPJF yields an optimal schedule as long as jobs have the same order

both in their actual sizes and estimated sizes, i.e., 𝑝 𝑗 ≤ 𝑝𝑖 if and
only if 𝑝 𝑗 ≤ 𝑝𝑖 . Further, it is hard to compare our error measure to

𝜂𝐵𝑀𝑆 as the latter does not directly factor in estimated job sizes but

measures the cost for running an algorithm (that is based on the

prediction) on the actual input. However, the following example

shows that 𝜂𝐵𝑀𝑆 can be excessively large even for estimating just

one job size: The true job sizes are given by 𝑝 𝑗 = 1 ∀𝑗 ∈ 𝐽 \ {𝑛} and
𝑝𝑛 = 𝑛2. All jobs sizes are predicted correctly, except job 𝑛, where

𝑝𝑛 = 0. Then, 𝜈 = 1+2+· · ·+𝑛−1+(𝑛+𝑛2)−(1+2+· · ·+𝑛−1) = 𝑛+𝑛2,
whileas 𝜂𝐵𝑀𝑆 ≥ 𝑛2 ·𝑛 − (1 + 2 + · · · +𝑛 − 1 +𝑛 +𝑛2) = Ω(𝑛3), Here,
𝑛2 · 𝑛 comes from the fact that job 𝑛 completes first under SPJF.

Finally, we note that the error measure cannot be oblivious to

job identities. For example, consider the Earth Mover’s distance

between the true job sizes and the estimated job sizes. That is, find

a mincost matching between two multi-sets {𝑝 𝑗 }𝑗 ∈𝐽 and {𝑝𝑖 }𝑖∈𝐽
where matching 𝑝𝑖 to 𝑝 𝑗 incurs cost |𝑝𝑖 − 𝑝 𝑗 |. However, it is easy
see that such measures have zero error when the two multi-sets

are identical yet the predictions are incorrect for individual jobs.

3 ALGORITHM
In this section we present our algorithm for scheduling with pre-

dictions. Our algorithm runs in rounds. To formalize, we need to

set up some notation. We let 𝐽𝑘 be the set of unfinished (alive) jobs

at the beginning of round 𝑘 , where 𝑘 ≥ 1. Let 𝑛𝑘 := |𝐽𝑘 |. Let 𝑞𝑘,𝑗
be the amount of processing done on job 𝑗 in round 𝑘 . We define

• 𝑝𝑘,𝑗 = 𝑝 𝑗 −
∑𝑘−1
𝑤=1 𝑞𝑤,𝑗 : the true remaining size of 𝑗 at the

beginning of round 𝑘 .

• 𝑝𝑘,𝑗 = max{𝑝 𝑗 −
∑𝑘−1
𝑤=1 𝑞𝑤,𝑗 , 0}: the predicted remaining size

of 𝑗 at the beginning of round 𝑘 .

Note that if a job 𝑗 has been processed by more than its predicted

size 𝑝 𝑗 in the previous rounds before 𝑘 , we have 𝑝𝑘,𝑗 = 0.

Our algorithm employs two subprocedures in each round to

estimate the median 𝑚𝑘 of the true remaining size of jobs in 𝐽𝑘
and the magnitude of the error in the round. We first present the

subprocedures and then present our main algorithm.

3.1 Median Estimation
We first present the method to estimate the median𝑚𝑘 of the true

remaining size of jobs in 𝐽𝑘 . To streamline the analysis, we will

assume that all remaining sizes are distinct, which can be achieved

almost surely by adding small random perturbations to the initial

job sizes. Let 𝑚̃𝑘 denote our estimate of the true median𝑚𝑘 . Recall

that Round-Robin processes all alive jobs equally at each time.

Algorithm 1 Median-Estimator(𝐽𝑘 , 𝛿, 𝑛)

1: Let 𝑆 be a uniform random sample, with replacement, of size

ln 2𝑛
𝛿2

from 𝐽𝑘 .

2: Run Round-Robin on 𝑆 until half of the jobs in 𝑆 complete; let

𝑗𝑘 be the job that completed the last.

3: Return 𝑚̃𝑘 = 𝑝𝑘,𝑗𝑘 .

Algorithm 1 takes a sample 𝑆 of the remaining jobs and returns

as 𝑚̃𝑘 the median of the jobs in 𝑆 in terms of their remaining size.

This can be done by completing half of the jobs in 𝑆 by Round-Robin.

The sampling with replacement is done as follows. When we take

job 𝑗 as the 𝑖th sample, we pretend to create a job 𝑖 with size 𝑥𝑖
equal to 𝑝𝑘,𝑗 . Thus, 𝑆 could contain multiple “copies” originating

from the same job in 𝐽𝑘 . So, if 𝑆 has two copies of the same job, it

will get twice the processor share in Round-Robin. This is not an

issue as we can simulate the execution of Round-Robin quicker.

When the condition in the following lemma holds true, we will

say that 𝑚̃𝑘 is a (1 + 𝛿) order-approximation of 𝑚𝑘 , or (1 + 𝛿)-
approximation for brevity.

Lemma 13. The order of 𝑚̃𝑘 among {𝑝𝑘,𝑗 | 𝑗 ∈ 𝐽𝑘 } is in (( 12 −
𝛿)𝑛𝑘 , ( 12 + 𝛿)𝑛𝑘 ], with probability at least 1 − 1

𝑛2
.

3.2 Error Estimation
Next, we would like to see if the prediction for the remaining jobs in

round 𝑘 is accurate enough to follow closely. However, measuring

the error of the predictions even by running all jobs in a small

sample to completion could take too much time. Thus, we estimate

the error of the remaining jobs by capping all remaining sizes and

predicted sizes at (1 + 𝜖)𝑚̃𝑘 . The error we seek to estimate is below.

Definition 14 (Error in Round 𝑘). 𝜂𝑘 := opt({𝑑𝑘,𝑗 }𝑗 ∈𝐽𝑘 ), where
𝑑𝑘,𝑗 := |min{(1 + 𝜖)𝑚̃𝑘 , 𝑝𝑘,𝑗 } −min{(1 + 𝜖)𝑚̃𝑘 , 𝑝𝑘,𝑗 }|.

Algorithm 2 Error-Estimator(𝐽𝑘 , 𝜖, 𝑛, 𝑚̃𝑘 )
1: Let 𝑃 be a uniform random sample, with replacement, of size

1

𝜖2
log𝑛 from a family Q := {( 𝑗, 𝑗) | 𝑗 ∈ 𝐽𝑘 } ∪ {(𝑖, 𝑗) | 𝑖 < 𝑗 ∈

𝐽𝑘 } of unordered pairs.

2: For every sampled job 𝑗 , calculate 𝑑𝑘,𝑗 by running 𝑗 up to

(1 + 𝜖)𝑚̃𝑘 units.

3: Return as our estimate: 𝜂𝑘 := |Q| 1|𝑃 |
∑
(𝑖, 𝑗) ∈𝑃

min{𝑑𝑘,𝑖 , 𝑑𝑘,𝑗 }.

For any𝑘 ∈ [𝐾], we say for brevity that𝜂𝑘 is a (1+𝜖)-approximation

of 𝜂𝑘 if it satisfies

𝜂𝑘 − 𝜖𝑚̃𝑘𝑛2𝑘 ≤ 𝜂𝑘 ≤ 𝜂𝑘 + 𝜖𝑚̃𝑘𝑛
2

𝑘
.

Lemma 15. For each 𝑘 ∈ [𝐾], 𝜂𝑘 is a (1 + 𝜖)-approximation of 𝜂𝑘
with probability at least 1 − 1

𝑛2
.

3.3 Main Algorithm
Given the methods to estimate the median size of all jobs in 𝐽𝑘
and the remaining available error, we now describe our algorithm

running in rounds 𝑘 ≥ 1.

If there are enough jobs alive for accurate sampling, we use our

estimators to estimate the median and the error. If the estimated

error is big, then we say that the current round is a RR round, and

run Round-Robin to process all jobs equally up to 2𝑚̃𝑘 units.
8
This is

intuitive as our estimator indicates that the prediction is unreliable.

If not, we closely follow the prediction. We only consider jobs that

are predicted to be small and process them in increasing order of

their (remaining) predicted size. To allow for a small prediction

error, we allow a job to get processed 3𝜖𝑚̃𝑘 more units than its

8
In fact, the jobs can be processed in an arbitrary order as long as they are processed

up to 2𝑚̃𝑘 units.
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Algorithm 3 Scheduling with Predictions

1: 𝑘 ← 1 and 𝛿 ← 1/50.
2: while 𝑛𝑘 ≥ 1

𝜖3
log𝑛 do

3: 𝑚̃𝑘 ←Median-Estimator(𝐽𝑘 , 𝛿, 𝑛).
4: 𝜂𝑘 ← Error-Estimator(𝐽𝑘 , 𝜖, 𝑛, 𝑚̃𝑘 ).
5: if 𝜂𝑘 ≥ 𝜖𝛿2𝑚̃𝑘𝑛2𝑘/16 ⊲ RR (big error) round

6: Process each job in 𝐽𝑘 up to 2𝑚̃𝑘 units with Round-Robin.

7: else ⊲ Non-RR (small error) round

8: Process jobs 𝑗 with 𝑝𝑘,𝑗 ≤ (1 + 𝜖)𝑚̃𝑘 up to 𝑝𝑘,𝑗 + 3𝜖𝑚̃𝑘
units in increasing order of 𝑝𝑘,𝑗 .

9: 𝑘 ← 𝑘 + 1.
10: Run Round-Robin to complete remaining jobs. ⊲ Round 𝐾 + 1

remaining predicted size. In this case, we say that the current round

is a non-RR round. Finally, we run Round-Robin to complete all

remaining jobs, if any; this is the final round, indexed by 𝐾 + 1.
It is worth mentioning the following easy observations, which

will be useful for our analysis later.

Observation 16. (1) Every overestimated job remains overesti-

mated in every round, i.e., if 𝑝 𝑗 ≥ 𝑝 𝑗 , then 𝑝𝑘,𝑗 ≥ 𝑝𝑘,𝑗 for all
𝑘 . A similar statement holds for every underestimated job.

(2) If a job 𝑗 is processed in a non-RR round 𝑘 , then its remaining

predicted size is 0 for all the subsequent rounds, i.e., 𝑝𝑘′, 𝑗 = 0

for all 𝑘 ′ > 𝑘 .
(3) For each job, there is exactly one round where the job’s remain-

ing predicted size becomes 0.

4 ANALYSIS
To streamline the presentation of our analysis, we will do the anal-

ysis under the following simplifying assumption. We will remove

this assumption in Section 4.3.

Assumption 17. We assume that 𝑚̃𝑘 is a (1 + 𝛿)-approximation of

𝑚𝑘 (𝛿 = 1/50) and 𝜂𝑘 is a (1 + 𝜖)-approximation of 𝜂𝑘 . Further, we

will assume that the estimation procedures incur no additional delay.

For analysis we extend the definition of 𝜂𝑘 .

Definition 18 (Error in round𝑘 on a subset). 𝜂𝑘 (𝑋 ) := opt({𝑑𝑘,𝑗 }𝑗 ∈𝑋 )
for all 𝑋 ⊆ 𝐽𝑘 , where 𝑑𝑘,𝑗 := |min{(1 + 𝜖)𝑚̃𝑘 , 𝑝𝑘,𝑗 } − min{(1 +
𝜖)𝑚̃𝑘 , 𝑝𝑘,𝑗 }|.

Note that 𝜂𝑘 = 𝜂𝑘 (𝐽𝑘 ).

4.1 Robustness
In this section, we show that our algorithm always yields a con-

stant approximation. This guarantee holds in all cases even if the

predicted job sizes are arbitrarily bad or even adversarially chosen.

Theorem 19. Algorithm 3 is an 𝑂 (1)-approximation, under As-

sumption 17.

Key to the analysis is to show that a constant fraction of jobs

complete in each round.

Lemma 20. For all 𝑘 ∈ [𝐾], we have 𝑛𝑘+1 ≤ (1/2 + 2𝛿)𝑛𝑘 .

Proof. Suppose round 𝑘 is an RR round. Since there are (1/2 −
𝛿)𝑛𝑘 jobs with 𝑝𝑘,𝑗 ≤ 𝑚̃𝑘 and all jobs are processed up to 2𝑚̃𝑘 units,
clearly we complete at least (1/2 − 𝛿)𝑛𝑘 jobs in the round.

Now suppose round 𝑘 is a non-RR round. We first show that

there are many jobs considered by the algorithm. Let 𝑋 := { 𝑗 ∈
𝐽𝑘 | 𝑝𝑘,𝑗 ≤ (1 + 𝜖)𝑚̃𝑘 } and 𝑌 := { 𝑗 ∈ 𝐽𝑘 | 𝑝𝑘,𝑗 ≤ 𝑚̃𝑘 }. We claim,

|𝑋 | ≥ (1/2 − 1.5𝛿)𝑛𝑘 .
Suppose not. Knowing that |𝑌 | ≥ (1/2 − 𝛿)𝑛𝑘 , we have |𝑌 \ 𝑋 | ≥
0.5𝛿𝑛𝑘 . Note that for all 𝑗 ∈ 𝑌 \ 𝑋 , 𝑑𝑘,𝑗 ≥ 𝜖𝑚̃𝑘 . We have a contra-

diction as we have 𝜂𝑘 ≥ 𝜂𝑘 (𝑌 \ 𝑋 ) ≥ 1

2
𝜖𝑚̃𝑘 (0.5𝛿𝑛𝑘 )2.

Note that all jobs in 𝑋 are processed by the algorithm. Now we

show most of jobs in 𝑋 complete in the round. Let 𝑍 denote those

in 𝑋 that do not complete in the round 𝑘 . Note that for every job

𝑗 ∈ 𝑍 , we have 𝑑𝑘,𝑗 ≥ 3𝜖𝑚̃𝑘 . Thus, if we have |𝑍 | ≥ 0.5𝛿𝑛𝑘 , as

before, we will have 𝜂𝑘 ≥ 𝜂𝑘 (𝑍 ) ≥ 1

2
(3𝜖𝑚̃𝑘 ) (0.5𝛿𝑛𝑘 )2, another

contradiction.

Thus, we have shown |𝑋 \ 𝑍 | ≥ (1/2 − 2𝛿)𝑛𝑘 , meaning the

algorithm completes at least (1/2− 2𝛿)𝑛𝑘 jobs in each round 𝑘 . □

Intuitively, from Lemma 20, we know that a large number of

jobs must complete in each round and further since we assume

that 𝑚̃𝑘 approximates the true median well, many of those jobs

have remaining sizes at least 𝑚̃𝑘 . The following lemma shows that

Ω(𝑛𝑘 ) jobs must have remaining size at least 𝑚𝑘 and hence the

optimal solution must incur a total cost of at least Ω(∑𝑘𝑚𝑘𝑛2𝑘 ).
Lemma 21.

∑𝐾
𝑘=1

𝑚̃𝑘𝑛
2

𝑘
≤ 266 · opt(𝐽 \ 𝐽𝐾+1).

Proof. By Proposition 4 (4), we know opt(𝐽 \ 𝐽𝐾+1) is lower
bounded by

∑
odd 𝑘∈[𝐾−1] opt(𝐽𝑘\𝐽𝑘+2), and also by

∑
even 𝑘∈[𝐾−1] opt(𝐽𝑘\

𝐽𝑘+2). Thus, we have

2opt(𝐽 \ 𝐽𝐾+1) ≥
𝐾−1∑
𝑘=1

opt(𝐽𝑘 \ 𝐽𝑘+2) .

By Lemma 20, we know that at least (1 − (1/2 + 2𝛿)2)𝑛𝑘 jobs in

𝐽𝑘 or more complete in round 𝑘 or 𝑘 + 1. Further, as 𝑚̃𝑘 is a (1 + 𝛿)-
approximation, less than (1/2+𝛿)𝑛𝑘 jobs in 𝐽𝑘 have 𝑝𝑘,𝑗 ≤ 𝑚̃𝑘 . Thus,
we conclude that there are at least (1−((1/2+2𝛿)2)−(1/2+𝛿))𝑛𝑘 ≥
(1/8)𝑛𝑘 jobs in 𝐽𝑘 with 𝑝𝑘,𝑗 ≥ 𝑚̃𝑘 that complete in round 𝑘 or 𝑘 +1;
here, 𝛿 ≤ 1/50. Let 𝐹𝑘 denote the set of those jobs. Note that

opt(𝐽𝑘 \ 𝐽𝑘+2) ≥ opt(𝐹𝑘 ) ≥ (1/2)𝑚̃𝑘 ((1/8)𝑛𝑘 )2 = 𝑚̃𝑘𝑛2𝑘/128.
Therefore, we have,

2opt(𝐽 \ 𝐽𝐾+1) ≥
𝐾−1∑
𝑘=1

1

128

𝑚̃𝑘𝑛
2

𝑘
.

Further, we have,

opt(𝐽 \ 𝐽𝐾+1) ≥ opt(𝐽𝐾 ) ≥ (1/2)𝑚̃𝐾 (0.45𝑛𝐾 )2 ≥ 0.1𝑚̃𝐾𝑛
2

𝐾 ,

as there are at least (1/2 − 𝛿)𝑛𝐾 ≥ 0.45𝑛𝐾 jobs of sizes ≥ 𝑚̃𝐾 . □

Next, we upper bound our algorithm’s cost. Let 𝐴𝑘 be the total

delay incurred by our algorithm in round 𝑘 . Formally, we have:

𝐴𝑘 :=
∑
𝑗 ∈𝐽𝑘

𝑞𝑘,𝑗 · 𝑛𝑘,𝑗 ,

where 𝑛𝑘,𝑗 is the number of jobs that are still alive when job 𝑗 is

processed in round 𝑘 .

The following notes that each job 𝑗 gets processed by amaximum

of 2𝑚̃𝑘 units and it can delay at most (𝑛𝑘 − 1) jobs in round 𝑘 .

Lemma 22. For any 𝑘 ∈ [𝐾], 𝐴𝑘 ≤ 2𝑚̃𝑘𝑛
2

𝑘
.
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Observe that we use Round-Robin in the final round𝐾 +1, which
is known to be 2-competitive. Hence, to complete all the remaining

jobs, by considering each job’s contribution to the objective, our

algorithm’s cost is upper bounded as follows.

Lemma23. The algorithm’s cost is atmost

∑𝐾
𝑘=1

2𝑚̃𝑘𝑛
2

𝑘
+2opt(𝐽𝐾+1)+∑

𝑗 ∈𝐽 𝑝 𝑗 .

By Lemmas 21 and 23, the algorithm’s cost is atmost 2·266opt(𝐽\
𝐽𝐾+1)+2opt(𝐽𝐾+1)+opt(𝐽 ) ≤ 535 opt(𝐽 ), where the last inequality
follows from Proposition 4. This completes the proof of Theorem 19.

4.2 Consistency
In this section, we show that Algorithm 3 also utilizes good predic-

tions to obtain improved guarantees. We analyze the delay incurred

by our algorithm in RR rounds and non-RR rounds separately.

4.2.1 RR round. This section is devoted to showing the following

lemma. Intuitively, using the fact that the error is huge in each RR

round, we can upper bound our algorithm’s total delay in all RR

rounds by the error. Recall 𝐴𝑘 :=
∑
𝑗 ∈𝐽𝑘 𝑞𝑘,𝑗 · 𝑛𝑘,𝑗 . As 𝛿 is set to an

absolute constant (𝛿 = 1/50), we will hide it in asymptotic notation.

(Recall the surrogate error 𝜂 from Definition 9.)

Lemma 24.
∑
𝑘∈𝑅𝑅 𝐴𝑘 ≤ 𝑂 ( 1𝜖 )𝜂 ≤ 𝑂 (

1

𝜖 )𝜈 , under Assumption 17.

From Lemma 22, the total delay 𝐴𝑘 incurred in round 𝑘 ∈ [𝐾]
in our algorithm is at most 2𝑚̃𝑘𝑛

2

𝑘
. Thus, our goal is to carefully

identify a part of the surrogate error of magnitude Ω(𝜖𝑚̃𝑘𝑛2𝑘 ) to
charge 𝐴𝑘 to in each RR round 𝑘 .

In the following lemma, we consider three types of jobs and

show that the error is big enough for at least one type of jobs. The

job types are: (i) those completing in round 𝑘 , (ii) whose remaining

predicted sizes become 0 in the round, and (iii) whose remaining

predicted sizes are 0 and that do not complete in this round. We

need to be careful when extracting some error for type (iii) jobs as

they may reappear as type (iii) jobs in subsequent RR rounds. This

is why we measure the error by pretending their remaining sizes

are 2𝑚̃𝑘 , exactly the amount by which the jobs each are processed

in the round.

Lemma 25. In any RR round 𝑘 , at least one of the following is

Ω(𝜖)𝑚̃𝑘 (𝑛𝑘 )2:
(1) 𝜂 (𝐽𝑘 \ 𝐽𝑘+1).
(2) 𝜂 (𝐹𝑘 ) where 𝐹𝑘 = { 𝑗 ∈ 𝐽𝑘 | 𝑝𝑘,𝑗 > 0 and 𝑝𝑘+1, 𝑗 = 0}.
(3) 𝜂 (𝑍𝑘 ; {2𝑚̃𝑘 }, {0}) = opt({2𝑚̃𝑘 }𝑗 ∈𝑍𝑘 ) where 𝑍𝑘 := { 𝑗 ∈

𝐽𝑘 | 𝑝𝑘,𝑗 = 0 and 𝑝𝑘,𝑗 > 2𝑚̃𝑘 }.

Proof. Let 𝑆𝑘 := { 𝑗 ∈ 𝐽𝑘 | 𝑝𝑘,𝑗 ≤ (1+𝜖)𝑚̃𝑘 or 𝑝𝑘,𝑗 ≤ (1+𝜖)𝑚̃𝑘 }.
Since 𝑑𝑘,𝑗 = 0 for all jobs 𝑗 ∈ 𝐽𝑘 \ 𝑆𝑘 , by definition of 𝜂𝑘 , we have

𝜂𝑘 = 𝜂𝑘 (𝑆𝑘 ). For notational convenience, let 𝑋 := 𝑆𝑘 ∩ (𝐽𝑘 \ 𝐽𝑘+1),
𝑌 := 𝑆𝑘 ∩ 𝐹𝑘 and 𝑍 := 𝑆𝑘 ∩ 𝑍𝑘 . As each job in 𝐽𝑘 is of one of the

above three types, we have 𝑆𝑘 = 𝑋 ∪ 𝑌 ∪ 𝑍 .
Since 𝑘 is an RR round, we have 𝜂𝑘 = 𝜂𝑘 (𝑆𝑘 ) = Ω(𝜖𝑚̃𝑘𝑛2𝑘 ).

Because of the monotonicity of 𝜂𝑘 (it can only become larger when

more jobs are considered) and the fact that 𝑆𝑘 = 𝑋 ∪ 𝑌 ∪ 𝑍 , by
Proposition 4, we know at least one of 𝜂𝑘 (𝑋 ), 𝜂𝑘 (𝑌 ), 𝜂𝑘 (𝑍 ) must

be no smaller than (1/3)𝜂𝑘 . We consider each case in the following.

Case i. 𝜂𝑘 (𝑋 ) ≥ (1/3)𝜂𝑘 . Let 𝑋𝑜 , 𝑋𝑢 denote the jobs in 𝑋 that are

overestimated and underestimated, respectively. By definition of

𝜂𝑘 and Proposition 4, we have 𝜂𝑘 (𝑋𝑜 ) +𝜂𝑘 (𝑋𝑢 ) ≥ (1/2)𝜂𝑘 (𝑋 ), and
𝜂𝑘 (𝑋𝑢 ) = opt({min{(1 + 𝜖)𝑚̃𝑘 , 𝑝𝑘,𝑗 } −min{(1 + 𝜖)𝑚̃𝑘 , 𝑝𝑘,𝑗 }}𝑗 ∈𝑋𝑢

)
≤ opt({𝑝𝑘,𝑗 − 𝑝𝑘,𝑗 }𝑗 ∈𝑋𝑢

)
≤ opt({𝑝𝑘,𝑗 }𝑗 ∈𝑋𝑢

) − opt({𝑝𝑘,𝑗 }𝑗 ∈𝑋𝑢
) = 𝜂 (𝑋𝑢 ).

Similarly, we can show 𝜂𝑘 (𝑋𝑜 ) ≤ 𝜂 (𝑋𝑜 ). Thus, we have,
𝜂 (𝐽𝑘 \ 𝐽𝑘+1) ≥ 𝜂 (𝑋 ) ≥ 𝜂 (𝑋𝑢 ) + 𝜂 (𝑋𝑜 ) ≥ 𝜂𝑘 (𝑋𝑢 ) + 𝜂𝑘 (𝑋𝑜 )

≥ (1/2)𝜂𝑘 (𝑋 ) ≥ (1/6)𝜂𝑘 ,
where the first two inequalities follow from Proposition 11.

Case ii. 𝜂𝑘 (𝑌 ) ≥ (1/3)𝜂𝑘 . This case can be similarly handled as the

first case, and we can show 𝜂 (𝐹𝑘 ) ≥ 𝜂 (𝑌 ) ≥ (1/6)𝜂𝑘 .
Case iii. 𝜂𝑘 (𝑍 ) ≥ (1/3)𝜂𝑘 . Note that all jobs 𝑗 in 𝑍 are underesti-

mated because of 𝑝𝑘,𝑗 > 2𝑚̃𝑘 and 𝑝𝑘,𝑗 = 0 and by Observation 16.

Also, by definition of 𝑆𝑘 , 𝑍 , 𝑍𝑘 , we have 𝑍 = 𝑍𝑘 . Therefore,

𝜂𝑘 (𝑍 ) = opt({min{(1 + 𝜖)𝑚𝑘 , 𝑝𝑘,𝑗 } −min{(1 + 𝜖)𝑚𝑘 , 𝑝𝑘,𝑗 }}𝑗 ∈𝑍 )
= opt({(1 + 𝜖)𝑚̃𝑘 }𝑗 ∈𝑍 ) ≤ 𝜂 (𝑍𝑘 ; {2𝑚̃𝑘 }, {0}) .

Thus we have 𝜂 (𝑍𝑘 ; {2𝑚̃𝑘 }, {0}) ≥ (1/3)𝜂𝑘 . □

We next show that the above errors add up to 𝑂 (𝜂).

Lemma 26.
∑
𝑘∈𝑅𝑅

(
𝜂 (𝐽𝑘 \𝐽𝑘+1)+𝜂 (𝐹𝑘 )+𝜂 (𝑍𝑘 ; {2𝑚̃𝑘 }, {0})

)
≤ 3𝜂.

Proof. We start by considering the first quantity. Since the sets

in {𝐽𝑘 \ 𝐽𝑘+1}𝑘≥1 are disjoint, from Proposition 11, we know that∑
𝑘∈𝑅𝑅 𝜂 (𝐽𝑘 \ 𝐽𝑘+1) ≤ 𝜂. Similarly, we can show

∑
𝑘∈𝑅𝑅 𝜂 (𝐹𝑘 ) ≤ 𝜂.

It now remains to show∑
𝑘∈𝑅𝑅

𝜂 (𝑍𝑘 ; {2𝑚𝑘 }, {0}) ≤ 𝜂.

Note that by definition of 𝑍𝑘 and Observation 16, we know that if

𝑗 ∈ 𝑍𝑘 , then 𝑗 must be underestimated, i.e., 𝑝 𝑗 ≤ 𝑝 𝑗 . Let 𝐽𝑢 denote

the set of all underestimated jobs. By definition of 𝜂, we know that

𝜂 ≥ opt({𝑝 𝑗 }𝑗 ∈𝐽𝑢 ) − opt({𝑝 𝑗 }𝑗 ∈𝐽𝑢 ). Further, by Proposition 4,

𝜂 ≥ opt({𝑝 𝑗 − 𝑝 𝑗 }𝑗 ∈𝐽𝑢 ) .
The proof idea is to show the decrease of opt({𝑝𝑘,𝑗 − 𝑝𝑘,𝑗 }𝑗 ∈𝐽𝑢 )
in each RR round 𝑘 is as big as 𝜂 (𝑍𝑘 ; {2𝑚̃𝑘 }, {0}). By definition of

𝑝1, 𝑗 and 𝑝1, 𝑗 , we have

opt({𝑝1, 𝑗 − 𝑝1, 𝑗 }𝑗 ∈𝐽𝑢 ) = opt({𝑝 𝑗 − 𝑝 𝑗 }𝑗 ∈𝐽𝑢 ) .

Further, by Observation 16, we know 𝑍𝑘 ⊆ 𝐽𝑢 . Note that for every
job 𝑗 ∈ 𝑍𝑘 , ((𝑝𝑘,𝑗 −𝑝𝑘,𝑗 ) − (𝑝𝑘+1, 𝑗 −𝑝𝑘+1, 𝑗 )) = 𝑝𝑘,𝑗 −𝑝𝑘+1, 𝑗 = 2𝑚̃𝑘 .

Thus, we have,

opt({𝑝𝑘,𝑗 − 𝑝𝑘,𝑗 }𝑗 ∈𝐽𝑢 ) − opt({𝑝𝑘+1, 𝑗 − 𝑝𝑘+1, 𝑗 }𝑗 ∈𝐽𝑢 )
≥ opt({(𝑝𝑘,𝑗 − 𝑝𝑘,𝑗 ) − (𝑝𝑘+1, 𝑗 − 𝑝𝑘+1, 𝑗 )}𝑗 ∈𝐽𝑢 )
[Proposition 4 and (𝑝𝑘,𝑗 − 𝑝𝑘,𝑗 ) is decreasing in 𝑘 ∀𝑗 ∈ 𝐽𝑢]
≥ opt({(𝑝𝑘,𝑗 − 𝑝𝑘,𝑗 ) − (𝑝𝑘+1, 𝑗 − 𝑝𝑘+1, 𝑗 )}𝑗 ∈𝑍𝑘 )
[Monotonicity of opt]

= opt({2𝑚̃𝑘 }𝑗 ∈𝑍𝑘 ) = 𝜂 (𝑍𝑘 ; {2𝑚̃𝑘 }, {0}) . □

Lemmas 25, 26 with Lemma 22 complete the proof of Lemma 24.
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4.2.2 Non-RR round. This section is devoted to proving the fol-

lowing lemma that bounds our algorithm’s total delay in non-RR

rounds (denoted NRR). As we do not have sufficiently large errors

in non-RR rounds, we will have to bound it by both opt and 𝜈 . Note

that opt − (∑𝑖∈𝐽 𝑝𝑖 ) is the total delay cost of the optimal schedule.

Lemma 27. Under Assumption 17, we have

∑
𝑘∈NRR𝐴𝑘 ≤ (1 +

𝑂 (𝜖))opt − (∑𝑖∈𝐽 𝑝𝑖 ) +𝑂 (1/𝜖2)𝜈 .
We begin our analysis of consistency for non-RR rounds by

proving the following lemma, which shows how much error we

can use for each pair of jobs.

Lemma 28. 𝜈 (𝐽 , {𝑝 𝑗 }, {𝑝 𝑗 }) ≥
∑
𝑖≠𝑗 ∈𝐽 𝜈 (𝑖, 𝑗), where

𝜈 (𝑖, 𝑗) = |min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 }|.

Proof. By Proposition 3 we can decompose 𝜈 as follows.

𝜈 (𝐽 , {𝑝 𝑗 }, {𝑝 𝑗 })

= opt

(
{𝑝 𝑗 }𝑗 ∈𝐽𝑜 ∪ {𝑝 𝑗 }𝑗 ∈𝐽𝑢

)
− opt

(
{𝑝 𝑗 }𝑗 ∈𝐽𝑜 ∪ {𝑝 𝑗 }𝑗 ∈𝐽𝑢

)
≥

∑
𝑖, 𝑗 ∈𝐽𝑜

(min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 }) +
∑
𝑖, 𝑗 ∈𝐽𝑢

(min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 })

+
∑

𝑖∈𝐽𝑜 , 𝑗 ∈𝐽𝑢
(min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 }) .

Since every term in the summation is non-negative, to prove the

lemma it suffices to show

min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 } ≥ |min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 }|,
∀𝑖 ∈ 𝐽𝑜 and 𝑗 ∈ 𝐽𝑢 .

(1)

By definition, we have 𝑝𝑖 ≥ 𝑝𝑖 for 𝑖 ∈ 𝐽𝑜 , and hence we have

min{𝑝𝑖 , 𝑝 𝑗 } ≥ min{𝑝𝑖 , 𝑝 𝑗 } and min{𝑝𝑖 , 𝑝 𝑗 } ≤ min{𝑝𝑖 , 𝑝 𝑗 }. Hence,

min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 } ≥ min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 }.

Similarly, since 𝑝 𝑗 ≤ 𝑝 𝑗 for 𝑗 ∈ 𝐽𝑢 , we have min{𝑝𝑖 , 𝑝 𝑗 } ≥
min{𝑝𝑖 , 𝑝 𝑗 } and min{𝑝𝑖 , 𝑝 𝑗 } ≤ min{𝑝𝑖 , 𝑝 𝑗 }. Hence,

min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 } ≥ min{𝑝𝑖 , 𝑝 𝑗 } −min{𝑝𝑖 , 𝑝 𝑗 }.

In either case, we have shown (1) holds, as desired. □

Knowing how much error we can use for each pair of jobs, we

are now ready to give an overview of the analysis. We let 𝐷𝑘 (𝑖, 𝑗)
denote the delay 𝑖 causes to 𝑗 in a non-RR round 𝑘 . Note that

𝐷𝑘 (𝑖, 𝑗) = 𝑞𝑘,𝑖 if 𝑗 is still alive while 𝑖 gets processed in round 𝑘 ;

otherwise, 𝐷𝑘 (𝑖, 𝑗) = 0.

1. Total delay involving jobs with zero remaining predicted sizes.

We show that the delay involving the following jobs across all

non-RR rounds is at most 𝑂 (𝜖) · opt.

𝑍𝑘 := { 𝑗 ∈ 𝐽𝑘 | 𝑝𝑘,𝑖 = 0}.

Fix a job 𝑖 ∈ 𝑍𝑘 . Note that such a job 𝑖 gets processed by at most

3𝜖𝑚̃𝑘 . Further, if job 𝑗 gets processed before 𝑖 , it implies 𝑝𝑘,𝑗 = 0,

where 𝑗 can delay 𝑖 by at most 3𝜖𝑚̃𝑘 in the round. Similarly, job 𝑖

can delay another job by at most 3𝜖𝑚̃𝑘 in the round. It is an easy

exercise to see that total delay involving a job 𝑖 with 𝑝𝑘,𝑖 = 0 is at

most 3𝜖𝑚̃𝑘𝑛𝑘 . As there are at most 𝑛𝑘 jobs remaining in this round,∑
𝑘∈NRR

∑
𝑖∈𝑍𝑘

∑
𝑗 ∈𝐽𝑘 :𝑗≠𝑖

(𝐷𝑘 (𝑖, 𝑗) + 𝐷𝑘 ( 𝑗, 𝑖))

≤
∑

𝑘∈NRR
3𝜖𝑚̃𝑘𝑛

2

𝑘
≤ 𝑂 (𝜖)opt(𝐽 \ 𝐽𝐾+1) ≤ 𝑂 (𝜖)opt, (2)

where the second inequality follows from Lemma 21.

2. Total delay involving jobs that execute but do not complete. We

show the total delay across all non-RR rounds is at most𝑂 (𝜖)opt +
𝑂 (1/𝜖2)𝜈 . To precisely articulate what we aim to prove, define:

𝑈𝑘 := {𝑖 ∈ 𝐽𝑘 | 0 < 𝑝𝑘,𝑖 ≤ (1 + 𝜖)𝑚̃𝑘 and 𝑝𝑘,𝑖 > 𝑝𝑘,𝑖 + 3𝜖𝑚̃𝑘 },
which, roughly speaking, are the jobs with relatively small non-zero

remaining predicted sizes that execute but do not complete in round

𝑘 . Note that if 𝑖 ∈ 𝑈𝑘 , then 𝑝𝑘,𝑖 > 0 and 𝑝𝑘+1,𝑖 = 0. Therefore, the

family {𝑈𝑘 }𝑘∈[𝐾 ] is disjoint.
The following bounds the total delay incurred due to jobs in 𝑈𝑘 .

Lemma 29. For each 𝑖 ∈ 𝑈𝑘 , let 𝐷𝑘,𝑖 :=
∑
𝑗 ∈𝐽𝑘 :𝑗≠𝑖 (𝐷𝑘 (𝑖, 𝑗) +

𝐷𝑘 ( 𝑗, 𝑖)) =
( ∑

𝑗 ∈𝐽𝑘 :𝑗≠𝑖 𝑞𝑘,𝑗 +
∑
𝑗 ∈𝐽𝑘 :𝑗≠𝑖,𝐶 𝑗>𝐿𝑘,𝑖

(3𝜖𝑚̃𝑘 + 𝑝𝑘,𝑖 )
)
be the

total delay involving job 𝑖 in a non-RR round 𝑘 , where 𝐿𝑘,𝑖 denotes the

last time when 𝑖 gets processed in round 𝑘 and 𝐶 𝑗 is 𝑗 ’s completion

time. Then, we have∑
𝑖∈𝑈𝑘

𝐷𝑘,𝑖 ≤ 𝑂 (𝜖)𝑚̃𝑘𝑛2𝑘 +𝑂 (1/𝜖
2)

∑
𝑖∈𝑈𝑘

∑
𝑗 ∈𝐽𝑘 :𝑗≠𝑖

𝜈 (𝑖, 𝑗).

Note that in 𝐷𝑘,𝑖 , the first term is how much other jobs delay 𝑖

and the second is how much job 𝑖 delays other jobs: job 𝑖 delays

job 𝑗 in the round by exactly 𝑝𝑘,𝑖 + 3𝜖𝑚̃𝑘 if 𝑗 is still alive when the

algorithm stops processing 𝑖 in the round. The proof is a bit subtle

and is omitted for space, but the intuition is the following. Suppose

we made a bad mistake by working on job 𝑖 ∈ 𝑈𝑘 in round 𝑘—we

thought the job was small based on its prediction but it turned out

to be big. This means that job 𝑖’s processing delays many jobs in

𝐽𝑘 , which we could have avoided had we had known that 𝑖 was in

fact big. Thus, to charge the delay, we show that the considerable

underprediction of job 𝑖 creates a huge error as it makes a large

difference in how much 𝑖 delays other big jobs.

Assuming Lemma 29, we have,∑
𝑘∈NRR

∑
𝑖∈𝑈𝑘

𝐷𝑘,𝑖 ≤
∑

𝑘∈NRR
𝑂 (𝜖)𝑚̃𝑘𝑛2𝑘 +𝑂 (1/𝜖

2)
∑
𝑖∈𝑈𝑘

∑
𝑗 ∈𝐽𝑘 :𝑗≠𝑖

𝜈 (𝑖, 𝑗)

≤ 𝑂 (𝜖)opt +𝑂 (1/𝜖2)
∑

𝑘∈NRR

∑
𝑖∈𝑈𝑘 , 𝑗 ∈𝐽 :𝑗≠𝑖

𝜈 (𝑖, 𝑗)

[Lemma 21 and 𝐽𝑘 ⊆ 𝐽 ]

≤ 𝑂 (𝜖)opt +𝑂 (1/𝜖2)
∑
𝑖≠𝑗 ∈𝐽

𝜈 (𝑖, 𝑗)

[𝑈1, . . . ,𝑈𝐾 are disjoint]

≤ 𝑂 (𝜖)opt +𝑂 (1/𝜖2) · 𝜈 [Lemma 28]. (3)

3. Total delay due to the other jobs. Finally we consider delay not

considered by the two cases. Let us see for which pairs of jobs we

did not consider their pairwise delay. For job 𝑖 to delay job 𝑗 in a

non-RR round 𝑘 , 𝑖 must be processed, meaning that 𝑝𝑘,𝑖 ≤ (1+𝜖)𝑚̃𝑘 .
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Since Case 1 already considered 𝑝𝑘,𝑖 = 0, 𝑖 ∈ 𝑍𝑘 , we assume 𝑝𝑘,𝑖 > 0.

Further, if 𝑖 does not complete in round 𝑘 , we already covered the

delay in Case 2 as 𝑖 ∈ 𝑈𝑘 . Thus, we only need to consider the case

when 𝑖 ∈ 𝑉𝑘 , where 𝑉𝑘 is defined as follows.

𝑉𝑘 := {𝑖 ∈ 𝐽𝑘 | 0 < 𝑝𝑘,𝑖 ≤ (1 + 𝜖)𝑚̃𝑘 , 𝑝𝑘,𝑖 ≤ 𝑝𝑘,𝑖 + 3𝜖𝑚̃𝑘 }.
Note that every 𝑖 ∈ 𝑉𝑘 completes in round 𝑘 . The following upper

bounds the total delay we did not consider in the previous cases.

Lemma 30. For any 𝑖 ∈ 𝑉𝑘 , 𝑗 ∈ 𝐽𝑘 \ (𝑍𝑘∪𝑈𝑘 ), the delay 𝑖 causes to 𝑗
in non-RR round 𝑘 ,𝐷𝑘 (𝑖, 𝑗), is at mostmin{𝑝𝑖 , 𝑝 𝑗 }+𝜈 (𝑝𝑖 , 𝑝 𝑗 ) +3𝜖𝑚̃𝑘 .

Note that {𝑉𝑘 }𝑘 is a family of disjoint job sets. This is because

every job 𝑖 ∈ 𝑉𝑘 has non-zero remaining predicted size and gets

processed in the round; see Observation 16. Thus, 𝑘 is the last round

where 𝑖’s remaining predicted size is non-zero. Therefore, we have,∑
𝑘∈NRR

∑
𝑖∈𝑉𝑘 , 𝑗 ∈𝐽𝑘\(𝑍𝑘∪𝑈𝑘 ) :𝑝𝑘,𝑗>𝑝𝑘,𝑖

𝐷𝑘 (𝑖, 𝑗) (4)

=
∑

𝑘∈NRR

∑
𝑖∈𝑉𝑘 , 𝑗 ∈𝐽𝑘\(𝑍𝑘∪𝑈𝑘 ) :𝑝𝑘,𝑗>𝑝𝑘,𝑖

(
min{𝑝𝑖 , 𝑝 𝑗 } + 𝜈 (𝑝𝑖 , 𝑝 𝑗 ) + 3𝜖𝑚̃𝑘

)
[Lemma 30]

≤
∑

{𝑖, 𝑗 }⊆𝐽 :𝑖≠𝑗

(
min{𝑝𝑖 , 𝑝 𝑗 } + 𝜈 (𝑝𝑖 , 𝑝 𝑗 )

)
+

∑
𝑘∈[𝐾 ]

3𝜖𝑚̃𝑘𝑛
2

𝑘

[𝑉1, . . . ,𝑉𝐾 are disjoint]

≤ opt − ©­«
∑
𝑖∈𝐽

𝑝𝑖
ª®¬ + 𝜈 +𝑂 (𝜖)opt [Proposition 3, Lemmas 28, 21].

Putting all pieces together. Note that the delay incurred between

every pair of jobs 𝑖 and 𝑗 in every non-RR round 𝑘 falls into at least

one of the above three categories. Thus, from (2), (3), and (4), the

total pairwise delay in non-RR rounds is at most,

𝑂 (𝜖)opt +𝑂 (1/𝜖2)𝜈 + opt − ©­«
∑
𝑖∈𝐽

𝑝𝑖
ª®¬ + 𝜈 +𝑂 (𝜖)opt. (5)

We are now ready to give the final upper bound on the objective

of our algorithm, which is obtained by combining the upper bound

in Lemma 24 and (5) and by factoring in the total job size,

∑
𝑖∈𝐽 𝑝 𝑗 .

We state the result with 𝜖 scaled appropriately by a constant factor.

Theorem 31. Under Assumption 17, Algorithm 3’s objective is at

most (1 + 𝜖)opt + 2opt(𝐽𝐾+1) +𝑂 (1/𝜖2)𝜈 .

4.3 Removing Simplifying Assumptions
Our goal here is to extend Theorem 31 by removing Assumption 17.

We say that a bad event 𝐵𝑘 occurs in round 𝑘 if 𝑚̃𝑘 fails to be (1+𝛿)-
approximate or 𝜂𝑘 fails to be (1+𝜖)-approximate; by Lemmas 13, 15,

𝐵𝑘 occurs with probability at most 2/𝑛2. If 𝐵𝑘 does not occur, we

know that a constant fraction of jobs complete in round 𝑘 thanks to

Lemma 20. Thus, if no bad events occur, we have 𝐾 = 𝑂 (log𝑛). By
a union bound, bad events occur with probability 𝑂 ((log𝑛)/𝑛2).

We now factor in the extra delays due to estimating 𝑚𝑘 and

𝜂𝑘 , assuming no bad events occur. In the median estimation, we

took a sample 𝑆 of size 𝑂 ( log 2𝑛
𝛿2
) and processed every job in 𝑆 by

exactly 𝑚̃𝑘 . So, the maximum delay due to the processing is at most

(𝑚̃𝑘 ) · |𝑆 | · |𝐽𝑘 | = 𝑂 ((log𝑛)𝑚̃𝑘𝑛𝑘 ). Similarly, in estimating 𝜂𝑘 , we

took a sample 𝑃 of size𝑂 ( 1
𝜖2

log𝑛) and processed both jobs in each

pair in 𝑃 up to (1 + 𝜖)𝑚̃𝑘 units. Thus, this processing cause total

extra delay at most 2(1 + 𝜖)𝑚̃𝑘 · |𝑃 | · |𝐽𝑘 | = 𝑂 ( 1𝜖2 (log𝑛)𝑚̃𝑘𝑛𝑘 ).
Hence, the extra delay cost due to the estimation is bounded by

𝑂 ( 1
𝜖2
) (log𝑛)

∑
𝑘∈[𝐾 ]

𝑚̃𝑘𝑛𝑘

≤𝑂 (𝜖)
∑
𝑘∈[𝐾 ]

𝑚̃𝑘𝑛
2

𝑘
[𝑛𝑘 = |𝐽𝑘 | ≥ 1

𝜖3
log𝑛 for all 𝑘 ∈ [𝐾]]

≤𝑂 (𝜖)opt(𝐽 \ 𝐽𝐾+1) [Lemma 21],

with probability 1 −𝑂 ((log𝑛)/𝑛2).
Thus, the extra delay is negligible w.h.p. Further, knowing that

any (non-idle) algorithm, including ours, is 𝑛-approximate, the

bad events can increase the objective by 𝑂 ((log𝑛)/𝑛2)𝑛 · opt in

expectation, which is again negligible.

The above discussions, Theorem 19, and Theorem 31, yield:

Theorem 32. Algorithm 3’s objective is at most min{𝑂 (1)opt, (1 +
𝜖)opt+2opt(𝐽𝐾+1)+𝑂 (1/𝜖2)𝜈}with high probability, where |𝐽𝐾+1 | ≤
1

𝜖3
log𝑛. Further, the same bound holds in expectation.

Corollary 33. Suppose for any𝑍 ⊆ 𝐽 with |𝑍 | ≤ 1

𝜖3
log𝑛, opt(𝑍 ) ≤

𝜖opt. Then, Algorithm 3’s objective is at most min{𝑂 (1)opt, (1 +
𝜖)opt +𝑂 (1/𝜖2)𝜈} with high probability. Further, the same bound

holds in expectation.

4.4 Guarantees in Expectation
Previously we showed high probability guarantees on our algo-

rithm’s objective. However, high probability guarantees inherently

require Ω(log𝑛) samples and therefore we are forced to stop sam-

pling once the number of jobs alive becomes 𝑜 (log𝑛). Here we show
that we can further continue to sample, if we only need guarantees

in expectation, until we have 𝑂 ( 1
𝜖3

log
1

𝜖 ) unfinished.
Towards this end, we slightly change the algorithm.

(1) Reduce the sample sizes: for estimating𝑚𝑘 take a sample of

size
1

𝛿2
log 2𝑛𝑘 in Algorithm 1 and for estimating 𝜂𝑘 take a sample

of size
1

𝜖2
log𝑛𝑘 in Algorithm 2.

(2) Run Round-Robin concurrently:We divide each instantaneous

time to Round-Robin by 𝜖 fraction of time and to run our algorithm

by 1−𝜖 fraction of time. Since this can only slow down the execution

of our algorithm by a factor of 1 − 𝜖 , the bound in Theorem 32

only increases by a factor of 1/(1 − 𝜖), which has no effect on our

asymptotic bounds. But by running the 2-competitive Round-Robin

concurrently, our final schedule will always be 2/𝜖-competitive.

(3) Stop sampling if 𝑛𝑘 ≤ 𝑂 ( 1𝜖3 log
1

𝜖 ) (Line 2, Algorithm 3): This

is doable as we can withstand higher probabilities of bad events

thanks to the concurrent execution of Round-Robin.

(4) In the final round 𝐾 + 1, process all jobs in increasing order

of their predicted size: As we only have |𝐽𝐾+1 | = 𝑂 ( 1𝜖3 log
1

𝜖 ) jobs
left, following the prediction blindly will not hurt much!

Theorem 34. For any sufficiently small 𝜖 > 0, there exists an algo-

rithm whose expected objective is at most

max

{
2

𝜖
opt, (1 + 𝜖)opt +𝑂 ( 1

𝜖3
log

1

𝜖
)𝜈
}
.

Paper Presentation  SPAA ’21, July 6–8, 2021, Virtual Event, USA

293



5 LOWER BOUNDS
We first show our analysis of Algorithm 3 is tight. Theorem 31

implies that the algorithm’s objective is at most (1 + 𝜖)opt + 1

𝜖2
𝜈

if for any subset 𝑍 ⊆ 𝐽 of jobs whose size is polylogarithmic in 𝑛,

opt(𝑍 ) = 𝑜 (opt). The lower bound instance used in the proof of

the following theorem satisfies the property.

Theorem 35. For any 𝛾 > 0, there exists a sufficiently small 𝜖 > 0,

such that there is an instance that shows our algorithm’s objective is

greater than (1 + 𝜖)opt + Ω(1/𝜖2−𝛾 )𝜈 .

Proof. Let 𝛽 := 𝜖1−𝛾 . There are two groups of jobs, 𝑋 and 𝑌 .

Group 𝑋 consists of 𝛽𝑛 jobs that each have true size 𝑝 𝑗 = 1 + 𝛽 and

predicted size 𝑝 𝑗 = 1. Group 𝑌 consists of the remaining (1 − 𝛽)𝑛
jobs with unit true and predicted sizes, i.e., 𝑝 𝑗 = 𝑝 𝑗 = 1 for all 𝑗 ∈ 𝑌 .

Let 𝐴 denote the total completion time of the schedule found by

our algorithm, and let opt denote that of the optimal solution for

the true job sizes. In this case, it is easy to verify that opt = Θ(𝑛2)
and the total error 𝜈 = 𝜂 (𝑋 ) = Θ(𝛽3𝑛2). For brevity, assume that the

algorithm’s median and error estimation is exact. Then, 𝑚̃1 = 1 and

𝜂1 = Θ(𝜖𝛽2𝑛2). Thus, the algorithm’s first round is non-RR. All jobs

have the same predicted size and therefore are indistinguishable

to our algorithm. Say it first considers jobs in 𝑋 . Unfortunately,

it finishes no jobs in 𝑋 in the first round as 𝛽 = 𝜔 (𝜖). Thus, the
algorithm has at least |𝑋 | · |𝑌 | more units of delay than the optimum

solution that first completes all jobs in 𝑌 and then those in 𝑋 . Thus,

we have𝐴−opt ≥ (1+ 𝜖) |𝑋 | |𝑌 | ≥ 𝛽 (1− 𝛽)𝑛2 = Θ(𝛽𝑛2). But since
𝜖 = 𝑜 (𝛽) and opt = Θ(𝑛2), we have 𝐴 − (1 + 𝜖)opt ≥ Ω(𝛽𝑛2) =
Ω( 1

𝛽2
)𝜈 . □

Next, we show no deterministic algorithm can improve upon

(1 + 𝜖)-consistency and 𝑂 (1/𝜖)-robustness simultaneously.

Theorem 36. For any sufficiently small 𝜖 > 0 and 𝛾 > 0, no deter-

ministic algorithm’s objective is at most (1 + 𝜖)opt +𝑂 (1/𝜖1−𝛾 )𝜈 .

Proof. Consider the following lower bound instance. There are

𝑛 := 1/𝜖1−𝛾 jobs, where 𝛾 > 0 is a sufficiently small constant.

All jobs have predicted sizes 1. Suppose all jobs have true sizes

exactly 1, except one job having size 2, which we call big. Note that

opt = 𝑛(𝑛 + 1)/2 + 1 and 𝜈 = 1. Thus, we have 𝜖opt +𝑂 (1/𝜖)𝜈 =

𝑂 (1/𝜖1−2𝛾 + 1/𝜖) = 𝑂 (1/𝜖1−2𝛾 ). Since our goal is to show that 𝐴 =

(1+𝜖)opt+𝑂 (1/𝜖)𝜈 , it suffices to show𝐴−opt = 𝜔 (1/𝜖1−2𝛾 ). The
adversary lets the big job to be the first the algorithm has processed

by at least one unit. This is a valid strategy for the adversary as all

jobs are indistinguishable to the algorithm until it processes jobs

by one unit or more. Thus, the big job delays each of the rest of

the jobs by at least one unit in the adversary. Let 𝐴 denote a fixed

algorithm’s objective. We have 𝐴 − opt ≥ 𝑛 − 1 = 𝜔 (1/𝜖1−2𝛾 ). □

6 CONCLUSIONS AND OPEN PROBLEMS
In this paper we defined a new prediction error measure based on

the desiderata we established. We believe that our new measure

could be useful for other optimization problemswithML predictions

where ℓ1-normmeasure is not ideal. Applying our approach to other

problems could lead to new algorithmic solutions.

Regarding the specific problem considered in the paper, interest-

ing directions include finding a deterministic algorithmwith similar

guarantees, obtaining a better dependence on 𝜈 , and extending the

error notion to the setting where jobs have different arrival times.
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