
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 195 (2021) 135–144

1877-0509 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the XI Latin and American Algorithms, Graphs and Optimization
Symposium
10.1016/j.procs.2021.11.019

10.1016/j.procs.2021.11.019 1877-0509

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the XI Latin and American Algorithms, Graphs and Optimization
Symposium

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2021) 000–000
www.elsevier.com/locate/procedia

XI Latin and American Algorithms, Graphs and Optimization Symposium

Instance Optimal Join Size Estimation
Mahmoud Abo-Khamisa, Sungjin Imb,1, Benjamin Moseleyc,2, Kirk Pruhsd,3, Alireza

Samadiand,4
aRelationalAI, Berkeley, USA

bUniversity of Callifornia, Merced, Merced, USA
cCarnegie Mellon University, Pittsburgh, USA
dUniversity of Pittsburgh, Pittsburgh, USA

Abstract

We consider the problem of efficiently estimating the size of the join of a collection of preprocessed relational tables from the
perspective of instance optimality analysis. The running time of instance optimal algorithms is comparable to the minimum time
needed to verify the correctness of a solution. Previously, instance optimal algorithms were only known when the size of the join
was small (as one component of their running time was linear in the join size). We give an instance optimal algorithm for estimating
the join size for all instances, including when the join size is large, by removing the dependency on the join size. As a byproduct,
we show how to sample rows from the join uniformly at random in a comparable amount of time.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the XI Latin and American Algorithms, Graphs and Optimization
Symposium.

Keywords: join size estimation; instance optimality analysis; beyond worst-case analysis.

1. Introduction

1.1. The Problem Statement

We consider the problem of efficiently estimating the size, or equivalently the number of rows, in a join (natural
inner join) J = T1 � T2 � · · · � Tt given as input the collection τ = {T1, . . . ,Tt} of relational tables, and some
associated data structures that were obtained by independently preprocessing the tables. Recall that the join of two

1 Supported in part by NSF grants CCF-1409130, CCF-1617653, and CCF-1844939.
2 Supported in part by a Google Research Award, an Infor Research Award, a Carnegie Bosch Junior Faculty Chair and NSF grants CCF-1824303,

CCF-1845146, CCF-1733873 and CMMI-1938909.
3 Supported in part by NSF grants CCF-1535755, CCF-1907673, CCF-2036077 and an IBM Faculty Award.
4 Corresponding author: emailsamadian@cs.pitt.edu.

1877-0509 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the XI Latin and American Algorithms, Graphs and Optimization Symposium.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2021) 000–000
www.elsevier.com/locate/procedia

XI Latin and American Algorithms, Graphs and Optimization Symposium

Instance Optimal Join Size Estimation
Mahmoud Abo-Khamisa, Sungjin Imb,1, Benjamin Moseleyc,2, Kirk Pruhsd,3, Alireza

Samadiand,4
aRelationalAI, Berkeley, USA

bUniversity of Callifornia, Merced, Merced, USA
cCarnegie Mellon University, Pittsburgh, USA
dUniversity of Pittsburgh, Pittsburgh, USA

Abstract

We consider the problem of efficiently estimating the size of the join of a collection of preprocessed relational tables from the
perspective of instance optimality analysis. The running time of instance optimal algorithms is comparable to the minimum time
needed to verify the correctness of a solution. Previously, instance optimal algorithms were only known when the size of the join
was small (as one component of their running time was linear in the join size). We give an instance optimal algorithm for estimating
the join size for all instances, including when the join size is large, by removing the dependency on the join size. As a byproduct,
we show how to sample rows from the join uniformly at random in a comparable amount of time.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the XI Latin and American Algorithms, Graphs and Optimization
Symposium.

Keywords: join size estimation; instance optimality analysis; beyond worst-case analysis.

1. Introduction

1.1. The Problem Statement

We consider the problem of efficiently estimating the size, or equivalently the number of rows, in a join (natural
inner join) J = T1 � T2 � · · · � Tt given as input the collection τ = {T1, . . . ,Tt} of relational tables, and some
associated data structures that were obtained by independently preprocessing the tables. Recall that the join of two

1 Supported in part by NSF grants CCF-1409130, CCF-1617653, and CCF-1844939.
2 Supported in part by a Google Research Award, an Infor Research Award, a Carnegie Bosch Junior Faculty Chair and NSF grants CCF-1824303,

CCF-1845146, CCF-1733873 and CMMI-1938909.
3 Supported in part by NSF grants CCF-1535755, CCF-1907673, CCF-2036077 and an IBM Faculty Award.
4 Corresponding author: emailsamadian@cs.pitt.edu.

1877-0509 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the XI Latin and American Algorithms, Graphs and Optimization Symposium.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2021.11.019&domain=pdf

136	 Mahmoud Abo-Khamis et al. / Procedia Computer Science 195 (2021) 135–144
132 Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000

tables is a table with a row for each pair of rows of the given tables that match the values of the common columns. We
also consider the related problem of uniformly sampling a row from J without constructing J.

One application of estimating the join size is in the context of determining a physical query plan for a particular
logical query [12, Chapter 15]. As an example, let us consider the logical query T1 � T2 � T3. Assume that one
knew that T1 � T2 was large, but T2 � T3 and T1 � T2 � T3 were small. Then first joining T2 with T3, and then
joining the result with T1, would likely be a more efficient physical query plan than first joining T1 and T2 as it would
avoid (unnecessarily) computing a large intermediate result. If the joined table J is large, one common method for
efficiently solving some computational problem on a joined table J is to solve the problem on a uniformly sampled
collection of points from J. For example, [11] shows that uniform sampling can be used to efficiently solve a wide
range of common regularized loss minimization problems with arbitrary accuracy.

It is NP-hard to determine whether or not the joined table J is empty (see, for example, [7, 9]). Thus, it is NP-hard
to approximate the join size within any reasonable factor. Due to this hardness result, this paper addresses join size
estimation from the perspective of instance optimality analysis.

1.2. Instance Optimality Analysis

We first informally build up the underlying intuition for instance optimality analysis before giving a formal defi-
nition. In instance optimality analysis, one ideally seeks a correct algorithm A that on every instance I is as fast as
the fastest correct algorithm A′ is on instance I. That is, A(I) ≤ minA′∈D A′(I), where A(I) is the running time for
algorithm A on input I, A′(I) is the time for algorithm A′ on input I, andD is the collection of all correct algorithms.
Note that in order for an algorithm to be correct, it must be correct on all inputs, not just on input I.

However, this ideal is overly ambitious and impractical for most problems for several reasons. One of these
reasons is that characterizing the fastest time that an algorithm can solve a particular problem or problem instance is
generally well beyond our current understanding (the P=NP problem is essentially the problem of characterizing the
fastest time that instances of NP-complete problems can be solved). A standard workaround is to first observe that
the nondeterministic time complexity lower bounds the deterministic time complexity. That is, the fastest time that an
algorithm can solve an instance is lower bounded by the fastest time that an algorithm can verify a proof or certificate
that a candidate solution is correct for that instance. Again, allowing arbitrary certificates is overly ambitious and
impractical. So generally for each problem one picks a particular type C of certificate that seems natural for the par-
ticular problem under consideration. Then one might seek an algorithm A whose running time is at most the minimum
certificate size. That is, A(I) = O(minC∈C(I) |C|), where here C(I) is the collection of certificates of type C that prove
that a particular answer is correct for the instance I, and |C| denotes the size of C. Such an algorithm A would then
be instance optimal among all algorithms that produce a certificate of type C. For example, [1] gives an algorithm for
finding a Pareto frontier of points in the plane that is instance optimal among comparison-based sorting algorithms.

One often needs to relax this requirement a bit more via approximation. Therefore, we seek an algorithm A where
A(I) = Õ(minC∈C(I) F(|C|)), where the Õ hides poly-log factors of the input size, and F is some function that is as
close to linear as possible. That is, ignoring poly-log factors, we want the time to be a function of the certificate size,
and we want this function to be as slowly growing as possible.

Instance optimality analysis is often viewed as falling under the rubric of “beyond worst-case” analysis techniques.
A survey of instance optimality analysis and other “beyond worst-case” analysis techniques can be found in [10].

1.3. Previous Instance Optimality Results for Join Size

We consider a type of certificate that has been used in previous papers on join size computation using instance
optimality analysis [8, 2, 3], namely a collection of gap boxes. To apply this certificate one assumes that a priori it is
the case that all table entries have been mapped to integers in the range [1, n]. Thus, if there are a total of d attributes
in the tables in τ then J can be viewed as a collection of z axis-parallel unit hypercubes in [0, n]d. To accomplish
this, one can view each row r of J as a point in Nd in the natural way, and then associate r with the axis-parallel
unit hypercube h that contains r, and where r is the furthest point in h from the origin. We define a box to be an
axis-parallel hyperrectangle that is the Cartesian product of intervals. Then a gap box b is a box that does not intersect
any unit hypercube in J. A collection B of gap boxes, whose union has volume V , can be viewed as a certificate that
the join size z is at most nd − V . Let C be the smallest set of gap boxes that cover [0, n]d − J.

	 Mahmoud Abo-Khamis et al. / Procedia Computer Science 195 (2021) 135–144� 137
Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000 133

(a) (b)

Fig. 1: Two points (represented by two unit hypercubes) in two dimensional space and the minimum number of gap boxes needed to cover the
empty space.

As an example of these definitions, consider the instance in Figure 1 where d = 2. Figure 1a shows the two unit
hypercubes associated with the points (2, 4) and (3, 1). Figure 1b shows a minimum cardinality collection of gap boxes
that establishes that the volume of these points is at most two. Thus, C = 4 for this instance.

The algorithm Tetris is introduced in [8] for the join size problem. The algorithm Tetris and its analysis were
extended in [2, 3]. The authors of [2, 3] show how to preprocess each table to construct a collection of O(dtm logd n)
gap boxes, which are the maximal dyadic gap boxes. A dyadic gap box is a gap box such that its size in each dimension
is a power of 2 and the ith coordinate of each vertex is an integer multiple of the size of the box in that dimension.
Without loss of generality, we assume the whole space has dimensions that are powers of 2. It is also shown that
any certificate of gap boxes can be replaced by a certificate that is a subset of maximal dyadic gap boxes without a
substantial increase in the size of the certificate [2, 3]. The running time of the preprocessing is Õ(n). The work in [8]
explains how to store dyadic gap boxes in what is essentially a trie (prefix tree) using space O(d log n) per box. Using
this data structure, Tetris computes the exact join size z in time Õ(|C|d/2 + z) by constructing a collection B of Õ(C)
gap boxes. Conceptually, in each iteration, Tetris finds a point p that is not in the joined table J, and not covered by
any box in B, and then adds to B all the dyadic boxes that contain p in any of the data structures associated with any
of the tables. The costly operation is finding p, which conceptually is achieved by exhaustive enumeration.

1.4. Our Results

In many applications of the join size computation/estimation, such as the application of computing a physical query
plan, the linear dependence on the join size z in the running time of Tetris is not desirable. In these settings one wants
to be able to estimate quickly even if the join is large. Our main result is an algorithm Welltris5 that is a variation of
Tetris that estimates the join size without any dependence in the running time on the join size z. So we assume that
the input to the join size problem additionally contains two parameters ε and δ. Welltris then computes an estimate z̃
to the number of rows z in the joined table J that is accurate to within a factor of 1 + ε with probability at least 1 − δ.
That is Pr

[
z

1+ε ≤ z̃ ≤ (1 + ε)z
]
≥ 1 − δ.

The preprocessing of the tables in Welltris is identical to that of Tetris used in [2, 3]. But for completeness we
cover this in Section 3. When computing the join size, Welltris, like Tetris, maintains a collection B of Õ(C) dyadic
boxes, and in each iteration it finds a point p not in the joined table and not covered by any box in B. But Welltris does
not use exhaustive search to find p. Instead Welltris samples points uniformly at random from points not covered by
the boxes in B. The intuition behind this is that the uniform sampling will likely lead to choosing boxes that contain
a large number of points uncovered by any box in B. To accomplish this it modifies Chan’s algorithm [5] for Klee’s
measure problem, which is the problem of computing the volume of the union of a collection of boxes. The running
time for Chan’s algorithm is Õ(Cd/2). We show that the running time of Welltris is Õ(Cd/2+1)6, or more precisely,

O
(
Cd/2+1 · 1

ε
· log(1/δ) · 2d2/2+d · logd2+d(n) · log(m)

)

where m is the number of rows in the largest input table.

5 The game Welltris is a variation of the original game Tetris [6].
6 This assumes that ε, δ and d are constants.

138	 Mahmoud Abo-Khamis et al. / Procedia Computer Science 195 (2021) 135–144
134 Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000

Therefore, Welltris can estimate the join size quickly for instances in which there is a modestly-sized certificate
bounding the join size, and in which the number of dimensions is small, even if the join size is large. As one simple
example where our bounds for Welltris improve the bound for Tetris, consider the cross product join of two one
column tables with m = n. In this case |C| = O(1). The running time of Tetris is Ω(m2), whereas the running time of
Welltris is O(1

ε
· log(1/δ) · log4(m)).

Welltris can be modified to sample q points uniformly from the joined table J in time Õ(Cd/2+1 + qC), or more
precisely,

O
(
Cd/2+1 · log(q) · 2d2/2+d · logd2/2+d(n) · logd2/2(m) + q ·C · d42d · log2d+1(n)

)
.

Given a universe box S , it is W[1]-hard with respect to d to decide if a collection of boxes covers the whole space
of S [4]. That is, it is W[1]-hard to decide whether z = 0 or whether z > 0. Thus a running time that did not have
exponential dependence on d would imply W[1] = FPT, which is considered unlikely. For this reason, we believe
Welltris has roughly optimal efficiency for join size estimation with this type of certificate.

2. Formal Definitions

In this section we state the formal definitions of the terms used in the rest of the paper. A table/relation Ti with
di columns/dimensions is a collection of points in a di dimensional space such that each dimension has an associated
positive integer that we refer to as the attribute of the column. No attribute can be associated with more than one
dimension in the table. Different tables may share attributes. The natural inner join of T1, . . . ,Tt denoted by T1 � · · · �
Tt is a table J such that the set of attributes of J is the union of the attributes of T1, . . . ,Tt and a point x is in J if and only
if for all Ti the projection of x onto the subspace formed by the columns of Ti exists in Ti. In this paper we use the term
join instead of natural inner join since it is the most common type of join. We use t to denote the number of tables in
our join query, d to denote the total number of columns in J, m to be the maximum number of rows in any of the input
tables, and n to be the size of the domain of each dimension (the maximum number of unique values in that dimension).
Therefore, we can assume all the values in the input tables are integers in [1, n], and are represented by fixed-length
binary strings. Note that if we assume that the tables involved in the join are the only tables in the database, then n ≤ tm.

Given a set of points in d dimensional space, a gap box is a d dimensional box that does not contain any of the
points. We denote the set of all gap boxes by B. A box b ∈ B is a maximal gap box if and only if there is no other box
in B that covers b entirely and is not equal to b. Given a set of boxes B′, we call C(B′) a certificate for B′ if and only
if it is a set of minimum number of boxes needed to cover the union of B′. It is easy to observe that if B′ is the set of
maximal boxes in B then |C(B)| = |C(B′)|. If B is the collection of all the gap boxes of the tables T1, . . . ,Tt, then C(B)
is the optimal certificate of the join query T1 � T2 � · · · � Tt. Based on the definition of the join, a point is in J if
and only if it is not covered by any of the gap boxes.

Recall that a dyadic gap box is a gap box such that its size in each dimension is a power of 2 and the ith coordinate
of each vertex is an integer multiple of the size of the box in that dimension. We denote the set of maximal dyadic
gap boxes by BD. A dyadic gap box is maximal if no other dyadic gap box contains it. In our setting, every point is a
unit size box, and it can be represented using a d dimensional vector specifying its location. Then a dyadic box can
be represented by a d dimensional vector, and in each dimension its value can be seen as the binary prefix of a set of
points; then such a dyadic box covers all the points that this box is a prefix of in all dimensions. Note that the binary
prefix can be empty in a dimension (denoted by λ) and in that case that dyadic box spans that dimension entirely. Note
that each point is also a dyadic box of size 1. For d = 3 and n = 8, a dyadic box can be (λ, 1, 101) which means its
size in the first dimension is 8, in the second one 4, and in the third dimension is 1. In this case, (111, 100, 101) is a
point covered by this dyadic box and (111, 000, 101) is an uncovered point.

Lemma 2.1 ([8]). Each dyadic box can be fully contained in at most logd(n) other dyadic boxes.

Proof. Based on the definition of a dyadic box, a dyadic box A = (a1, . . . , ad) contains all the points x = (x1, . . . , xd)
such that ai is a prefix of xi for all i. Therefore, a dyadic box A = (a1, . . . , ad) contains a dyadic box B = (b1, . . . , bd)
if and only if ai is a prefix of bi for all i. Since each dimension has at most log(n) prefixes, the lemma follows.

	 Mahmoud Abo-Khamis et al. / Procedia Computer Science 195 (2021) 135–144� 139
134 Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000

Therefore, Welltris can estimate the join size quickly for instances in which there is a modestly-sized certificate
bounding the join size, and in which the number of dimensions is small, even if the join size is large. As one simple
example where our bounds for Welltris improve the bound for Tetris, consider the cross product join of two one
column tables with m = n. In this case |C| = O(1). The running time of Tetris is Ω(m2), whereas the running time of
Welltris is O(1

ε
· log(1/δ) · log4(m)).

Welltris can be modified to sample q points uniformly from the joined table J in time Õ(Cd/2+1 + qC), or more
precisely,

O
(
Cd/2+1 · log(q) · 2d2/2+d · logd2/2+d(n) · logd2/2(m) + q ·C · d42d · log2d+1(n)

)
.

Given a universe box S , it is W[1]-hard with respect to d to decide if a collection of boxes covers the whole space
of S [4]. That is, it is W[1]-hard to decide whether z = 0 or whether z > 0. Thus a running time that did not have
exponential dependence on d would imply W[1] = FPT, which is considered unlikely. For this reason, we believe
Welltris has roughly optimal efficiency for join size estimation with this type of certificate.

2. Formal Definitions

In this section we state the formal definitions of the terms used in the rest of the paper. A table/relation Ti with
di columns/dimensions is a collection of points in a di dimensional space such that each dimension has an associated
positive integer that we refer to as the attribute of the column. No attribute can be associated with more than one
dimension in the table. Different tables may share attributes. The natural inner join of T1, . . . ,Tt denoted by T1 � · · · �
Tt is a table J such that the set of attributes of J is the union of the attributes of T1, . . . ,Tt and a point x is in J if and only
if for all Ti the projection of x onto the subspace formed by the columns of Ti exists in Ti. In this paper we use the term
join instead of natural inner join since it is the most common type of join. We use t to denote the number of tables in
our join query, d to denote the total number of columns in J, m to be the maximum number of rows in any of the input
tables, and n to be the size of the domain of each dimension (the maximum number of unique values in that dimension).
Therefore, we can assume all the values in the input tables are integers in [1, n], and are represented by fixed-length
binary strings. Note that if we assume that the tables involved in the join are the only tables in the database, then n ≤ tm.

Given a set of points in d dimensional space, a gap box is a d dimensional box that does not contain any of the
points. We denote the set of all gap boxes by B. A box b ∈ B is a maximal gap box if and only if there is no other box
in B that covers b entirely and is not equal to b. Given a set of boxes B′, we call C(B′) a certificate for B′ if and only
if it is a set of minimum number of boxes needed to cover the union of B′. It is easy to observe that if B′ is the set of
maximal boxes in B then |C(B)| = |C(B′)|. If B is the collection of all the gap boxes of the tables T1, . . . ,Tt, then C(B)
is the optimal certificate of the join query T1 � T2 � · · · � Tt. Based on the definition of the join, a point is in J if
and only if it is not covered by any of the gap boxes.

Recall that a dyadic gap box is a gap box such that its size in each dimension is a power of 2 and the ith coordinate
of each vertex is an integer multiple of the size of the box in that dimension. We denote the set of maximal dyadic
gap boxes by BD. A dyadic gap box is maximal if no other dyadic gap box contains it. In our setting, every point is a
unit size box, and it can be represented using a d dimensional vector specifying its location. Then a dyadic box can
be represented by a d dimensional vector, and in each dimension its value can be seen as the binary prefix of a set of
points; then such a dyadic box covers all the points that this box is a prefix of in all dimensions. Note that the binary
prefix can be empty in a dimension (denoted by λ) and in that case that dyadic box spans that dimension entirely. Note
that each point is also a dyadic box of size 1. For d = 3 and n = 8, a dyadic box can be (λ, 1, 101) which means its
size in the first dimension is 8, in the second one 4, and in the third dimension is 1. In this case, (111, 100, 101) is a
point covered by this dyadic box and (111, 000, 101) is an uncovered point.

Lemma 2.1 ([8]). Each dyadic box can be fully contained in at most logd(n) other dyadic boxes.

Proof. Based on the definition of a dyadic box, a dyadic box A = (a1, . . . , ad) contains all the points x = (x1, . . . , xd)
such that ai is a prefix of xi for all i. Therefore, a dyadic box A = (a1, . . . , ad) contains a dyadic box B = (b1, . . . , bd)
if and only if ai is a prefix of bi for all i. Since each dimension has at most log(n) prefixes, the lemma follows.

Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000 135

3. Preprocessing

3.1. Gap box construction

The preprocessing step for our algorithm constructs a collection of dyadic gap boxes for each table, including all
maximal dyadic boxes, using an algorithm from [3]. As in [8], we will also show that any certificate can be replaced
by a certificate that is a subset of maximal dyadic gap boxes without a substantial increase in the size of the certificate.
For completeness, we explain the algorithm and analysis from [3, 8].

Algorithm 1 Algorithm for dyadic gap box construction [3]

1: procedure Construct Gap Boxes(Ti)
2: Input: An input table Ti.
3: Output: A set of dyadic gap boxes including all maximal dyadic gap boxes for Ti.
4: D ← ∅
5: D′ ← ∅
6: if Ti is empty then
7: return the dyadic gap box that covers the whole space.
8: for x ∈ Ti do
9: for all dyadic boxes b such that x ∈ b do
10: D ← D ∪ {b}
11: for all attributes a such that ba � λ do
12: b′ ← b
13: Flip the last bit of b′a
14: D′ ← D′ ∪ {b′}
15: return D′ \ D.

The algorithm picks an input table Ti and constructs a set of dyadic gap boxes that include all the maximal dyadic
gap boxes in them. We assume that all attributes have a specified domain and they have been mapped to an integer in
[1, n]. The algorithm initializes two sets D and D′ to be empty. Then for all tuples x ∈ Ti and for any dyadic box b
which contains x, the algorithm adds b to D. This step can be performed by enumerating all dyadic gap boxes whose
elements in different dimensions are prefixes of the ones in x. Furthermore, for every box b that is added to D and
every dimension a of b that does not span the whole space (is not λ), it creates a dyadic box by flipping the last bit
of a in b and adds it to D′. For example, if b = (10, λ, 111), then the algorithm adds the dyadic boxes (11, λ, 111) and
(10, λ, 110) to D′. At the end, the algorithm returns D′ \ D. Algorithm 1 shows a pseudocode of the preprocessing
step. Algorithm 1 outputs at most d(log(m) + 1)d dyadic gap boxes which include all the maximal dyadic gap boxes.

Theorem 3.1. Let Bi
D be the output of Algorithm 1 for table Ti and let BD =

⋃
i Bi

D. Furthermore, let B
i be the set of

all the gap boxes for table Ti and B =
⋃

i Bi. Then,

1. |C(BD)| = O(2d logd(n))|C(B)|;
2. |BD| = O(dt logd(n)m).

Note that, in the above theorem, C(B) is the smallest possible certificate over any set of gap boxes. Therefore,
Theorem 3.1 intuitively says that Algorithm 1 produces a collection of dyadic gap boxes that admit a nearly optimal
certificate. Moreover, note that we have defined C(B) over gap boxes that are defined on the subspace formed by the
columns of J; however, for each input table Ti, Algorithm 1 returns a set of boxes that are initially defined only in the
subspace formed by the columns of Ti. This mismatch of dimensions can be fixed by the implicit assumption that the
boxes in Bi extend to cover the whole space in all the dimensions not presented in Ti.

140	 Mahmoud Abo-Khamis et al. / Procedia Computer Science 195 (2021) 135–144
136 Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000

(a) (b)

Fig. 2: Illustrating the simplification step of Algorithm 2 on an example. The red box in 2a spans all the dimensions except for one, and it is removed
in 2b

3.2. Dyadic Trie Data Structure

For our algorithm, we need a data structure to efficiently store a set of dyadic boxes and search if a given dyadic
box is included in the set or not. To store the dyadic boxes, first we consider each dyadic box as a string from the
alphabet {0, 1, λ, , } (the last element of the alphabet is a comma). For example, a dyadic box of the form (00, λ, 1) can
be represented as the string “00, λ, 1”. Then we use a Trie (prefix tree) to store and search the strings representing the
dyadic boxes. Since there is a one-to-one relation between the dyadic boxes and their string representations, the trie
correctly stores the dyadic boxes and searches for any query box.

Note that the length of every string representing a dyadic box is at most O(d log(n)). Thus, the time needed to
construct the trie in the most straight-forward manner is O(kd log(n)), where k is the number of dyadic boxes, and the
time to search for a dyadic box is O(d log(n)).

3.3. Chan’s Algorithm for Klee’s Measure Problem

In this section we explain the general outline of Chan’s algorithm [5]. Given a set B of boxes in d dimensional
space, Chan’s algorithm returns the volume of the union of the boxes in time O(|B|d/2). We later use this algorithm to
sample an uncovered point uniformly at random. You may find the general description of the algorithm in Algorithm
2. The input of the algorithm is a set of boxes B and a boundary box S that represents the whole space. The output is
the volume of the union of B intersecting with S .

Algorithm 2 Chan’s algorithm [5]

1: procedure measure(B, S)
2: Input: A set of boxes B and a universe box S .
3: Output: The volume of the intersection of S with the union of boxes in B.
4: if |B| is below a constant then
5: return the answer directly
6: Simplify B
7: Cut S into two sub-cells S 1 and S 2.
8: B1 ← boxes in B that have intersection with S 1
9: B2 ← boxes in B that have intersection with S 2
10: return measure(B1, S 1) +measure(B2, S 2)

The reason that the algorithm has a good time complexity lies in steps 6 and 7. The simplification step removes any
box in B that is equivalent to slabs spanning in all dimensions except for one when restricted to S . When removing
these boxes, the algorithm changes S and all the boxes in B that have intersection with the slabs and removes the
intersection from them. Note that this step does not increase the number of boxes in B. Figure 2 illustrates this step on
some example.

After removing the slabs and simplifying the boxes, the algorithm cuts S into two disjoint sub-cells S 1 and S 2 and
recursively calls the same function on those subproblems. The cut is done in a way that balances the total weights of

	 Mahmoud Abo-Khamis et al. / Procedia Computer Science 195 (2021) 135–144� 141
136 Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000

(a) (b)

Fig. 2: Illustrating the simplification step of Algorithm 2 on an example. The red box in 2a spans all the dimensions except for one, and it is removed
in 2b

3.2. Dyadic Trie Data Structure

For our algorithm, we need a data structure to efficiently store a set of dyadic boxes and search if a given dyadic
box is included in the set or not. To store the dyadic boxes, first we consider each dyadic box as a string from the
alphabet {0, 1, λ, , } (the last element of the alphabet is a comma). For example, a dyadic box of the form (00, λ, 1) can
be represented as the string “00, λ, 1”. Then we use a Trie (prefix tree) to store and search the strings representing the
dyadic boxes. Since there is a one-to-one relation between the dyadic boxes and their string representations, the trie
correctly stores the dyadic boxes and searches for any query box.

Note that the length of every string representing a dyadic box is at most O(d log(n)). Thus, the time needed to
construct the trie in the most straight-forward manner is O(kd log(n)), where k is the number of dyadic boxes, and the
time to search for a dyadic box is O(d log(n)).

3.3. Chan’s Algorithm for Klee’s Measure Problem

In this section we explain the general outline of Chan’s algorithm [5]. Given a set B of boxes in d dimensional
space, Chan’s algorithm returns the volume of the union of the boxes in time O(|B|d/2). We later use this algorithm to
sample an uncovered point uniformly at random. You may find the general description of the algorithm in Algorithm
2. The input of the algorithm is a set of boxes B and a boundary box S that represents the whole space. The output is
the volume of the union of B intersecting with S .

Algorithm 2 Chan’s algorithm [5]

1: procedure measure(B, S)
2: Input: A set of boxes B and a universe box S .
3: Output: The volume of the intersection of S with the union of boxes in B.
4: if |B| is below a constant then
5: return the answer directly
6: Simplify B
7: Cut S into two sub-cells S 1 and S 2.
8: B1 ← boxes in B that have intersection with S 1
9: B2 ← boxes in B that have intersection with S 2
10: return measure(B1, S 1) +measure(B2, S 2)

The reason that the algorithm has a good time complexity lies in steps 6 and 7. The simplification step removes any
box in B that is equivalent to slabs spanning in all dimensions except for one when restricted to S . When removing
these boxes, the algorithm changes S and all the boxes in B that have intersection with the slabs and removes the
intersection from them. Note that this step does not increase the number of boxes in B. Figure 2 illustrates this step on
some example.

After removing the slabs and simplifying the boxes, the algorithm cuts S into two disjoint sub-cells S 1 and S 2 and
recursively calls the same function on those subproblems. The cut is done in a way that balances the total weights of

Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000 137

the faces of the boxes in B that are present in S 1 and S 2 and it gives different weights to different faces based on the
dimensions they are spanning.

The main properties of Chan’s algorithm that are useful for us in order to uniformly sample a point are the follow-
ing: (1) S 1 and S 2 are disjoint, and (2) there is a one-to-one relation between the uncovered points in S 1 and S 2 and
the uncovered points in S .

Using the above properties, it is very easy to sample uniformly at random k points which are not covered by a
given set of gap boxes B. We initialize S to be the cross product of the domains of the attributes (having all possible
tuples). Then the sampling algorithm runs Chan’s algorithm on (B, S) to measure the number of uncovered points in
S . Then the algorithm generates a list L containing k random positive integers smaller than or equal to the number of
uncovered points and runs the Retrieving algorithm which is a modification of Chan’s algorithm in which the input
of the algorithm also has L in a sorted array and an integer V that indicates the volume of visited uncovered points
in the previous recursions of the Retrieving algorithm (initially 0). The recursion in Retrieving algorithm is similar
to the ones in Chan’s algorithm. The leaves of the recursive calls in Retrieving algorithm return an uncovered point
uniformly at random for any of the numbers in L that is between the number of uncovered points in the prior leaves
and the number of uncovered points in this leaves and the prior ones combined. Algorithms 3 and 4 describe the
uniform sampling and retrieving process.

Algorithm 3 Sampling algorithm

1: procedure Uniform(B, S , k)
2: Input: A set of boxes B, a universe box S , and an integer k.
3: Output: A set of k uniformly sampled points in S that are not covered by B.
4: V ′ ← Measure(B, S)
5: L ← A sorted list of k uniformly random integers in [1,V ′]
6: return Retrieve(B, S , L, 0)

Algorithm 4 Retrieving Samples Algorithm

1: procedure Retrieve(B, S , L,V)
2: Input: A set of boxes B, a universe box S , a list L of random integers between 1 to size of the points in S that

are uncovered by B, and an auxiliary variable V that is zero in the initial call.
3: Output: A set of points in S that are uncovered by B and are associated with the random numbers in L.
4: if |B| is below a constant then
5: V ′ ← volume of uncovered points in S .
6: k′ ← |{x : x ∈ L and V < x ≤ V + V ′}|
7: P ← k′ uniformly sampled points in S uncovered by B.
8: return (P,V ′)
9: Simplify B and S
10: Cut S into two sub-cells S 1 and S 2.
11: B1 ← boxes in B that have intersection with S 1
12: B2 ← boxes in B that have intersection with S 2
13: (V1, P1) ← Retrieve(B1, S 1, L,V)
14: (V2, P2) ← Retrieve(B1, S 1, L,V + V1)
15: Map coordinates of P1 and P2 according to S before step 9.
16: return (V1 + V2, P1 ∪ P2)

Note that since we simplify and cut S , the coordinates of the points returned by the recursive calls are not the same
as their original coordinate. Therefore, we need to perform step 15 to change their coordinates.

Theorem 3.2. The uniform sampling algorithm returns k uniformly at random selected uncovered points in time
O(log(k)|B|d/2 + kd2 log2(|B|)).

142	 Mahmoud Abo-Khamis et al. / Procedia Computer Science 195 (2021) 135–144
138 Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000

Proof. The only extra operations that Algorithm 4 is performing compared to Chan’s algorithm is the sampling of
the points and mapping the coordinates of the sampled points in the recursion. Step 6 is done in all of the leaves and
it takes O(log(k)). The sampling step happens once per sampled point and it takes O(d). The only remaining step to
analyse is the mapping step. Mapping can be done in O(d log(|B|)) for each sampled point, because all we need to
know for each dimension is the location of the slabs that are removed. The number of times each sampled point goes
through the mapping phase is the depth of the recursion tree. The analysis of Chan’s algorithm shows that the depth of
the recursion is O(log(|B|)d). Therefore, the total time that step 15 takes in all of the recursions is O(k log2(|B|)d2).

4. The Welltris Algorithm

Given a join query and the maximal dyadic gap boxes of all relations, we propose the following algorithm for
estimating the row count of a join in time proportional to the optimal certificate size of that join. The proposed
algorithm finds a (1 + ε)-approximation of the join size with probability at least 1 − δ. Consider an input table Ti and
a gap box b of Ti. We say b covers a point p if the projection of p onto the subspace, with the dimensions in Ti, lies
inside b.

Algorithm 5 Welltris algorithm

1: procedure Welltris(BD, S)
2: Input: A set of dyadic gap boxes BD in a Trie data structure and a universe box S .
3: Output: A (1 + ε)-approximation of the volume of the points in S that are uncovered by BD.
4: E ← ∅
5: k ← 4

ε
(log(|BD|) + log(1

δ
))

6: do
7: U ← Uniform(BD, S , k)
8: if a point p in U is covered by any box in BD then
9: add all the dyadic gap boxes in BD that cover p to E.

10: while there is a point in U that is covered by BD
11: return the volume of the points not covered by E as the estimate of the join size.

In the following theorem statement recall that B is the set of all gap boxes of all tables and BD is the set of all
maximal dyadic gap boxes of all tables; see Theorem 3.1.

Theorem 4.1. Let C(B) be the smallest certificate over all choices of gap boxes and C = |C(B)|. Then, given the dyadic
gap boxes constructed in the preprocessing algorithm (Algorithm 1), algorithm Welltris returns a (1 + ε)-estimation
of the join size with probability at least 1 − δ in time O(1

ε
log(1/δ) · log(m) · 2d2/2+d · logd2+d(n) ·Cd/2+1).

Proof. First, we prove the approximation guarantee and then we prove the time complexity. The approximation guar-
antee can be proven by applying a Chernoff bound and a union bound. LetUi be the set of uncovered points at iteration
i and let |J| be the actual join size. For an arbitrary iteration i, using the fact that k points are sampled independently,
we will prove that if |Ui| ≥ (1 + ε)|J| then the probability that our algorithm stops in that iteration and returns |Ui| is at
most δ

|BD| . Then using a union bound over all iterations, whose number is bounded by |C(BD)|, we will show that the
probability that our algorithm stops at any iteration for which |Ui| > (1 + ε)|J| is at most δ.

Fix an iteration i. Let p1, p2, . . . , pk be the points that the algorithm samples at iteration i, and let X1, X2, . . . , Xk be
Bernoulli random variables such that Xj is 1 if and only if p j � J and let X =

∑k
j=1 Xj. Then we have

Pr[Xj = 1] =
|Ui \ J|
|Ui|

≥ ε

1 + ε
≥ ε

2

because |Ui| > (1 + ε)|J|. Note that the algorithm stops if X = 0. Using the fact that {Xj} j∈[k] are independent, we have

Pr[X = 0] =
∏
j∈[k]

Pr[Xj = 0] ≤ (1 − ε

2
)k ≤ exp (−kε

2
).

	 Mahmoud Abo-Khamis et al. / Procedia Computer Science 195 (2021) 135–144� 143
138 Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000

Proof. The only extra operations that Algorithm 4 is performing compared to Chan’s algorithm is the sampling of
the points and mapping the coordinates of the sampled points in the recursion. Step 6 is done in all of the leaves and
it takes O(log(k)). The sampling step happens once per sampled point and it takes O(d). The only remaining step to
analyse is the mapping step. Mapping can be done in O(d log(|B|)) for each sampled point, because all we need to
know for each dimension is the location of the slabs that are removed. The number of times each sampled point goes
through the mapping phase is the depth of the recursion tree. The analysis of Chan’s algorithm shows that the depth of
the recursion is O(log(|B|)d). Therefore, the total time that step 15 takes in all of the recursions is O(k log2(|B|)d2).

4. The Welltris Algorithm

Given a join query and the maximal dyadic gap boxes of all relations, we propose the following algorithm for
estimating the row count of a join in time proportional to the optimal certificate size of that join. The proposed
algorithm finds a (1 + ε)-approximation of the join size with probability at least 1 − δ. Consider an input table Ti and
a gap box b of Ti. We say b covers a point p if the projection of p onto the subspace, with the dimensions in Ti, lies
inside b.

Algorithm 5Welltris algorithm

1: procedureWelltris(BD, S)
2: Input: A set of dyadic gap boxes BD in a Trie data structure and a universe box S .
3: Output: A (1 + ε)-approximation of the volume of the points in S that are uncovered by BD.
4: E ← ∅
5: k ← 4

ε
(log(|BD|) + log(1

δ
))

6: do
7: U ← Uniform(BD, S , k)
8: if a point p in U is covered by any box in BD then
9: add all the dyadic gap boxes in BD that cover p to E.
10: while there is a point in U that is covered by BD
11: return the volume of the points not covered by E as the estimate of the join size.

In the following theorem statement recall that B is the set of all gap boxes of all tables and BD is the set of all
maximal dyadic gap boxes of all tables; see Theorem 3.1.

Theorem 4.1. Let C(B) be the smallest certificate over all choices of gap boxes and C = |C(B)|. Then, given the dyadic
gap boxes constructed in the preprocessing algorithm (Algorithm 1), algorithm Welltris returns a (1 + ε)-estimation
of the join size with probability at least 1 − δ in time O(1

ε
log(1/δ) · log(m) · 2d2/2+d · logd2+d(n) ·Cd/2+1).

Proof. First, we prove the approximation guarantee and then we prove the time complexity. The approximation guar-
antee can be proven by applying a Chernoff bound and a union bound. LetUi be the set of uncovered points at iteration
i and let |J| be the actual join size. For an arbitrary iteration i, using the fact that k points are sampled independently,
we will prove that if |Ui| ≥ (1 + ε)|J| then the probability that our algorithm stops in that iteration and returns |Ui| is at
most δ

|BD| . Then using a union bound over all iterations, whose number is bounded by |C(BD)|, we will show that the
probability that our algorithm stops at any iteration for which |Ui| > (1 + ε)|J| is at most δ.

Fix an iteration i. Let p1, p2, . . . , pk be the points that the algorithm samples at iteration i, and let X1, X2, . . . , Xk be
Bernoulli random variables such that Xj is 1 if and only if p j � J and let X =

∑k
j=1 Xj. Then we have

Pr[Xj = 1] =
|Ui \ J|
|Ui|

≥ ε

1 + ε
≥ ε

2

because |Ui| > (1 + ε)|J|. Note that the algorithm stops if X = 0. Using the fact that {Xj} j∈[k] are independent, we have

Pr[X = 0] =
∏
j∈[k]

Pr[Xj = 0] ≤ (1 − ε

2
)k ≤ exp (−kε

2
).

Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000 139

Plugging in k = 4
ε
(log(|BD|) + log(1

δ
)) we have Pr[X = 0] ≤ δ

|BD| .
At each iteration of the algorithm, at least one of the boxes in the certificate of the dyadic boxes C(BD) is added to

E, therefore the maximum number of iterations is |C(BD)| which is smaller than |BD|. Therefore, using a union bound
over all iterations, we can conclude that with probability 1− δ the algorithm stops when |Ui| ≤ (1+ ε)|J| and it returns
a (1 + ε) approximation of the join size.

The time complexity of the algorithm depends on the time needed to sample the points, the time needed to find
the boxes covering the sampled points, and the number of iterations. Let CD denote |C(BD)| and C denote |C(B)|.
Furthermore, let Ei denote the number of boxes in E at iteration i. At each iteration, based on Lemma 2.1, at most
O(logd(n)) boxes are added to E including at least one of the boxes in C(BD); therefore, using Theorem 3.1, the
number of iterations is at most CD, and for all iterations we have Ei = O(logd(n)CD).

Using Theorem 3.2, the sampling of k points in iteration i takes O(log(k)Ed/2
i + kd2 log2(Ei)) which is at most

O(kEd/2
i). Based on Theorem 3.1, |BD| = dtm logd(n). Therefore, we can replace k with the upper bound

k =
4
ε
(log(|BD|) + log(

1
δ
)) = O(

d
ε
log(

1
δ
) log(m)),

and replace Ei with O(logd(n)CD) to derive the following time complexity for the sampling step in each iteration:

O(kEd/2
i) ≤ O(

d
ε
log(

1
δ
) log(m) logd

2/2(n)Cd/2
D).

Finding out if a point is covered by any of the dyadic boxes in BD can be done in time O(d log(d+1)(n)) using the
Dyadic Trie data structure by looking for all possible O(logd(n)) dyadic boxes that include the point; See Section 3.2.
Therefore, steps 8 and 9 can be performed in time

O(kd logd+1(n)) = O(
d2

ε
log(

1
δ
) log(m) logd+1(n)).

Multiplying the time complexity of all three steps by the number of iterations gives us the total time complexity of

O(
d
ε
log(

1
δ
) log(m) logd

2/2(n)Cd/2+1
D +

d2

ε
log(

1
δ
) log(m) logd+1(n)CD),

and by replacing CD with 2d logd(n)C we have

O(
d
ε
log(

1
δ
)2d

2/2+d logd
2+d(n) log(m)Cd/2+1 +

d2

ε
log(

1
δ
) log(m)2d log2d+1(n)C)

= O(
1
ε
log(

1
δ
) log(m)2d

2/2+d logd
2+d(n)Cd/2+1).

We now explain how to modify Welltris to return q points sampled uniformly at random from the joined table J.
The number k of points sampled in each iteration is set to be q. Then in step 8, every time that any of the sampled
points is not in any gap box, that point is returned as one of the q sampled points. By rejection sampling, we can
conclude these points are sampled uniformly at random from J.

Corollary 4.2. This modification of Welltris samples q points uniformly at random from a join in time
O
(
log(q)2d

2/2+d logd
2+d(n)Cd/2+1 + qd42d log2d+1(n)C

)
.

Proof. The time complexity of steps 7, 8, 9 in each iteration is O(log(q)Ed/2
i + qd2 log2(Ei) + qd logd+1(n)). Note that

Ei = O(2d log2d(n)C), and we can replace log(Ei) with d log(n) because the maximum size of the certificate is nd. Note
that every time that a sample is rejected, the algorithm adds at least a box from C(BD) to Ei; therefore, multiplying by
the maximum number of iterations CD = O(2d logd(n)C), we derive the claimed worst case time complexity.

144	 Mahmoud Abo-Khamis et al. / Procedia Computer Science 195 (2021) 135–144
140 Abo-Khamis, Im, Moseley, Pruhs, and Samadian / Procedia Computer Science 00 (2021) 000–000

References

[1] Afshani, P., Barbay, J., Chan, T.M., 2017. Instance-optimal geometric algorithms. J. ACM 64, 3:1–3:38.
[2] Alway, K., 2019. Domain Ordering and Box Cover Problems for Beyond Worst-Case Join Processing. Master’s thesis. University of Waterloo.
[3] Alway, K., Blais, E., Salihoglu, S., 2019. Box covers and domain orderings for beyond worst-case join processing. CoRR abs/1909.12102.
[4] Chan, T.M., 2010. A (slightly) faster algorithm for Klee’s measure problem. Computational Geometry 43, 243 – 250.
[5] Chan, T.M., 2013. Klee’s measure problem made easy, in: IEEE Symposium on Foundations of Computer Science, pp. 410–419.
[6] Encyclopedia, W.T.F., . Welltris wikipedia page. URL: https://en.wikipedia.org/wiki/Welltris.
[7] Grohe, M., 2006. The structure of tractable constraint satisfaction problems, in: International Symposium on Mathematical Foundations of

Computer Science, Springer. pp. 58–72.
[8] Khamis, M.A., Ngo, H.Q., Ré, C., Rudra, A., 2016. Joins via geometric resolutions: Worst case and beyond. ACM Transactions on Database

Systems (TODS) 41, 22.
[9] Marx, D., 2013. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM 60, 42.

[10] Roughgarden, T., 2019. Beyond worst-case analysis. Commun. ACM 62, 88–96.
[11] Samadian, A., Pruhs, K., Moseley, B., Im, S., Curtin, R.R., 2020. Unconditional coresets for regularized loss minimization, in: International

Conference on Artificial Intelligence and Statistics, AISTATS, PMLR. pp. 482–492.
[12] Ullman, J., Garcia-Molina, H., Widom, J., 2001. Database Systems: The Complete Book. Prentice Hall PTR.

