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Abstract

A strong super-Alfvénic drift of energetic particles (or cosmic rays) in a magnetized plasma can amplify the
magnetic field significantly through nonresonant streaming instability (NRSI). While the traditional analysis is
done for an ion current, here we use kinetic particle-in-cell simulations to study how the NRSI behaves when it is
driven by electrons or by a mixture of electrons and positrons. In particular, we characterize the growth rate,
spectrum, and helicity of the unstable modes, as well the level of the magnetic field at saturation. Our results are
potentially relevant for several space/astrophysical environments (e.g., electron strahl in the solar wind, at oblique
nonrelativistic shocks, around pulsar wind nebulae), and also in laboratory experiments.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Plasma physics (2089); Cosmic rays (329);
Magnetic fields (994); Shocks (2086)

1. Introduction

Interactions between energetic charged particles and a thermal
background plasma generate a wide variety of instabilities,
ultimately fueled by the anisotropy of the nonthermal particles
relative to the background plasma. They are generally known as
streaming instabilities (for reviews see, e.g., Bykov et al. 2013;
Zweibel 2013) and may produce large amplitude modes over a
broad range of scales, from the ion skin depth (∼100 km in the
interstellar medium) to the parsec scale of the gyroradius of the
highest energy Galactic cosmic rays (CRs). These instabilities
are crucial for the generation of magnetic fields, the acceleration
and propagation of nonthermal particles, and for the heating of
space and astrophysical plasmas. Finally, modern laser facilities
are unlocking the possibility of also studying streaming
instabilities in the laboratory, even in the collisionless regime
(e.g., Jao et al. 2019).

In the context of the interactions between CRs and a thermal
background plasma, there are two main regimes of interest: the
resonant and nonresonant streaming instabilities (hereafter RSI
and NRSI, respectively), with the latter dominant for strong CR
currents (Bell 2004; Amato & Blasi 2009).

The NRSI is characterized by the fastest-growing mode with
wavelength λfast≈ c B0/Jcr, where Jcr is the CR current density
in the direction of the mean magnetic field B0 and c is the speed
of light. The instability is dubbed nonresonant because the
wavelength of the fastest-growing modes is much shorter than
the CR gyroradius (RL), i.e., λ= RL and the unstable modes
have right-handed (RH) circular polarization (so the fastest-
growing mode of magnetic field does not rotate in the same
direction as current-carrying CR ions).

While a magnetized plasma is typically considered for the
NRSI, it is worth mentioning that this instability can be
triggered even in the absence of an initial magnetic field due to
the results of other interactions such as the Weibel instability
(Weibel 1959), which can provide the seed magnetic field (see,
e.g., Peterson et al. 2021).

Although the idea was already present in the derivations of
Achterberg (1983) and Winske & Leroy (1984), nonresonant
modes were recognized as crucial for CR scattering by Bell
(2004), after it has been shown that CR-driven instabilities may

strongly amplify the initial magnetic field to nonlinear values of
δB/B0? 1 (Bell & Lucek 2001).

1.1. Lepton-driven NRSI

The NRSI (also called nonresonant hybrid, or simply Bell,
instability) has been studied extensively with analytical, MHD,
and kinetic approaches (e.g., Niemiec et al. 2008; Zirakashvili
& Ptuskin 2008; Amato & Blasi 2009; Bret 2009; Riquelme &
Spitkovsky 2009; Gargaté et al. 2010; Reville & Bell 2013;
Matthews et al. 2017; Haggerty et al. 2019; Weidl et al. 2019;
Zacharegkas et al. 2019; Marret et al. 2021), always under the
assumption that the current is carried by protons. The
motivation for this choice is that the electron/ion ratio in CR
fluxes at Earth is rather small,10−2−10−3, as it is in sources
such as supernova remnants (e.g., Berezhko & Völk 2004;
Morlino & Caprioli 2012).
Nevertheless, there are several instances in which a strong

current driven by nonthermal leptons may arise. For instance, in
quasi-perpendicular shocks (where the pre-shock magnetic field
makes an angle  60° with the shock normal) the injection of
thermal ions is suppressed (Caprioli et al. 2015) but electrons
can still be injected and undergo shock acceleration (e.g., Guo
et al. 2014a, 2014b; Bohdan et al. 2019; Xu et al. 2020). Another
environment where strong lepton currents can be generated are
pulsar wind nebulae (PWNe), which are leptonic sources that
can accelerate electrons and positrons up to petaelectronvolt
energies. Recently, γ-ray halos have been discovered around
nearby PWNe (Abeysekara et al. 2017; Schroer et al. 2021),
attesting to the fact that escaping leptons can strongly modify the
interstellar magnetic fields, leading to particle self-confinement.
Note that, even if the seeds for PWN relativistic particles are
likely magnetospheric pairs, the highest energy leptons are found
to be of a given sign, depending on the relative orientation of the
pulsar magnetic and rotation axes (e.g., Cerutti et al. 2015;
Philippov 2017; Philippov & Spitkovsky 2018).
There are also plasma systems closer to Earth where

nonthermal electrons are important, such as the strahl in the
solar wind or planetary bow shocks (e.g., Masters et al. 2013;
Wilson et al. 2016; Masters et al. 2017; Malaspina et al. 2020).
Within 30 Re of the Sun, the momentum flux of the electron
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strahl is within an order of magnitude of reaching the nonresonant
threshold that will be discussed in this work (Kasper et al. 2019;
Halekas et al. 2020, as determined from recent in situ measure-
ments reported from the first few perihelion passes of Parker Solar
Probe). The nearest to the instability threshold suggests that the
electron-driven NRSI may be occurring closer to the Sun where
the momentum flux of nonthermal electrons is expected to be
larger, and that this instability can be responsible for the scattering
of the strahl.

Electron-driven NRSI may finally be of interest for laboratory
plasma experiments (Bret et al. 2010). With very powerful
lasers, it is possible to reproduce the collisionless conditions
typical of astrophysical systems. While experiments have not
been able to recreate the condition to drive the NRSI with ions,
to our knowledge, a few works have attempted to do so with
electrons (e.g., Jao et al. 2019). Therefore, it is important to put
forward a theory of lepton-driven NRSI and validate it via
kinetic simulations, which is the scope of this work.

Bell’s derivation of the NRSI (Bell 2004) highlights how, as
long as the CRs are infinitely rigid, the maximally unstable
mode and its associated growth rate depend on the compensat-
ing current induced in the background plasma. At the first order
in the small parameter ncr/n, i.e., the ratio in CR to thermal
number density, the NRSI growth rate is independent of the
composition of the CR distribution and only depends on the net
induced return current (also see Amato & Blasi 2009; Weidl
et al. 2019); however, it is nontrivial that the return current,
which is supported by the light thermal electrons, behaves the
same for negatively charged CRs, or for CR distributions with
both positive and negative charges.

In this work, we derive the NRSI for CRs with arbitrary mass
and charge and in particular to address the following questions:

1. What are the necessary conditions for having lepton-
driven NRSI?

2. What are the properties of the fastest-growing modes
(polarization, wavelength, and growth rate)?

3. Can CRs with a mixed (e.g., electrons and positrons)
composition produce NRSI?

4. Is the saturation of the amplified magnetic field the same
as in the ion-driven case?

We begin by outlining the analytical linear theory for the
NRSI driven by CRs of arbitrary mass and charge in Section 2.
In Section 3, we introduce self-consistent particle-in-cell (PIC)
simulations used to test both ion- and electron-driven NRSI
(henceforth, CR-I and CR-E), which are compared and
discussed in Section 4. The implications of this study for
different plasma backgrounds (e.g., electron-positron) and
mixed compositions of CRs are also discussed in Section 4.
We conclude in Section 5.

2. Linear Theory

The theory of NRSI driven by energetic CRs propagating
along magnetic field lines has been studied in both the fluid and
kinetic limits (Bell 2004; Amato & Blasi 2009; Riquelme &
Spitkovsky 2009; Zweibel & Everett 2010); here, we present a
simple derivation that explicitly assumes that resonant interac-
tions between CRs and growing waves are negligible (see
Section 2.3), for an arbitrary mass and charge of CRs.
The bulk motion of CRs produces a strong current in the

plasma, which needs to be compensated by the drift of thermal
background electrons. Such a drift velocity can be found by
balancing the currents of the CRs and the background, i.e.,

v vs
n

n
. 1e

e
dcr

cr= ( )

Here, vd is the CR drift velocity with respect to the thermal ions
(the analysis is done in the ion rest frame), and ncr and ne are
the number density of CRs and background electrons,
respectively. We pose v xvd d= ˆ, so that the return current
electrons drift along the positive/negative x-axis, depending on
the sign of the charge of the CRs (scr=±1), as sketched in
Figure 1. Quasi-neutrality requires that the number density of
ions, electrons, and CRs must balance, i.e., ne= ni+ scr ncr. In
typical astrophysical applications, the CR number density is

Figure 1. Schematic diagram showing the structure of the amplified magnetic field for CR-I (left) and CR-E (right). CRs are drifting parallel to an initial magnetic field
B x0 ˆ, which produces a current denoted by a black arrow. Blue circles represent the plasma electrons, where the arrows indicate the drift velocity (in the plasma frame)
that compensates the CR current. This system is unstable and produces transverse (y, z directions) waves. The expected phase difference between the transverse
(growing) components of the magnetic field (By,z) is shown in the box. Considering the transverse components B j kxexpy,z y,zfµ +[ ( )], for a given k, if
Δf = fy − fz > 0 then the transverse B field, y zB By z+ˆ ˆ, rotates clockwise as one moves along the positive x-axis. We refer this as an RH mode and opposite to it as
a left-handed (LH) mode. The figure shows that in the CR-I (CR-E) case, the waves are RH (LH) with respect to the direction of the initial magnetic field (B0).
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much smaller than the density of the background plasma
(ncr= ni≈ ne≡ n0), so that ve= vd.

The motion of any particle in the species α is given by the
Lorentz force:

v
E

v
Bm

d

dt
q

c
, 2= + ´a

a
a

a⎡
⎣

⎤
⎦

( )

where vα is the velocity of a particle of mass mα and charge qα
(representing ions, electrons, hereafter α= i, e), E and B are the
electric and magnetic field. We consider a system with no initial
electric field (E= 0) and a uniform magnetic field B xB0= ˆ.
Assuming that the background population is sufficiently cold, so
that initially vi≈ 0 and ve is given by Equation (1), we can
linearize Equation (2) along with Maxwell equations (for details
see Appendix A) by considering small plane-wave perturbations

j kx texp wµ -[ ( )] (Krall & Trivelpiece 1973; Achterberg 1983;
Choudhuri 1998), where k and ω are the usual (parallel)
wavenumber and the angular frequency of the plasma modes.
With an additional assumption that |ω|=ωci, i.e., that both the
instability growth rate (the imaginary part of ω) and the phase
speed (the real part of ω) of the modes are much smaller than the
ion cyclotron frequency, ωci, we obtain the following dispersion
relations for LH and RH modes:4
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Here, v B m n4A i0 0 0
1 2pº ( ) is the Alfvén speed and we have

introduced the critical wavenumber
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This makes it evident that, for a given CR charge scr, one
branch of modes becomes unstable for k< ku and for small k,
the growth rate is suppressed ∝k1/2. The phase difference
between transverse components of the perturbed magnetic field
is (see Equations (A5) and (A9)):

2
. 5y zf f f

p
D º - =  ( )

Therefore, the helicity of the transverse magnetic field is
determined by the upper/lower sign of the dispersion relation
(Equation (3)), with the positive and negative sign corresp-
onding to the RH and LH modes, respectively. Figure 1
sketches the expected helicity of the resulting modes for the
CR-I and CR-E driven cases and Figure 2 summarizes the
different regimes of Equation (3) as a function of k/ku.

2.1. Regime I: k> ku

This regime (gray-shaded region in Figure 2) corresponds to
oscillatory modes with wavelength smaller than the ion inertial
length c/ωpi, where ωpi is the ion plasma frequency.

2.2. Regime II: k< ku

In this regime (white region in Figure 2), ω has both real and
imaginary parts. Depending on the CR charge, either RH or LH
modes will be amplified: for CR-I/CR-E (i.e., scr=+1/−1)
waves grow when the upper/lower sign of Equation (3) is

chosen, corresponding to the RH and LH modes, respectively.
While Equation (3) accurately captures the growth rate of the
most unstable branch in the limit vd? vA, the present
derivation does not extend to the weak-current limit, in which
the resonant modes grow with much smaller rate; the RSI
solution appear only in a kinetic calculation done in the proper
wave frame (Zweibel 1979; Achterberg 1983; Bell 2004;
Amato & Blasi 2009).
From Equation (3) we also see that the phase speed of the

growing modes (RH/LH in the CR-I/CR-E case) is
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consistent with Riquelme & Spitkovsky (2009). Since we have
taken vA0= vd, the phase velocity (dashed curve in Figure 2)
and group velocity are much smaller than the drift velocity of
plasma electrons, i.e., nonresonant modes are almost stationary
in the plasma frame as k→ ku. Whereas the phase speed of the
other branch (dashed–dotted curve in Figure 2) is typically
larger than vA0; for a smaller k/ku, close to resonant scales, vph
of both LH and RH branches is larger than vA0. This can be
important in determining the speed of the CR scattering centers
in shock environments, where they contribute to shaping the
shock dynamics and the CR spectra (e.g., Caprioli et al. 2020;
Haggerty & Caprioli 2020).
It is straightforward to show that (Appendix A), irrespective

of the composition of CRs, the fastest-growing mode is at
kfast= ku/2:

k
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v
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2

1
, 7e

A i e

d

A i
fast

0

cr
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º = ( )

Figure 2. Phase speed and the growing/damping part of the angular frequency
(the second term in the right side of Equation (3): 2

L,w ) as a function of k for
CR-I (using scr = −1 in Equation (3)). The figure shows 02

L,w < when
κ < ku (Regime II). In this regime, although the phase speed of the LH modes
(dashed curve) are smaller than both the CR drift velocity (vd = 10 vA0) and the
Alfvén speed (in the limit k→ ku), the waves gain energy. This is the
nonresonant mode (Bell 2004).

4 The convention is illustrated in Figure 1.
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where di= c/ωpi= vA0/ωci is the ion skin depth, and the
corresponding growth rate is

k v
n

n

v

v

1

2
. 8A

e

d

A
fast fast 0

cr

0
cig wº = ( )

2.3. Regime III: k= ku

The above derivation is oblivious to any resonant interaction
between CRs and growing modes, and hence holds as long as
kRL? 1, where RL= pcrc/eB0 is the gyroradius of a CR with
momentum pcr; such an assumption must break for sufficiently
small k (blue-shaded region III in Figure 2). Fully kinetic
calculations show that in this regime the NRSI becomes
comparable to, or even less important than, the RSI (Amato &
Blasi 2009; Haggerty et al. 2019). Although the exact transition
from NRSI to RSI depends on the shape of the CR distribution
function, in general the NRSI dominates when kfastRL? 1,
which corresponds to:
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where PB0 is the magnetic pressure and Pcr is the CR
momentum flux (anisotropic pressure) along x. In general, the
NRSI can be triggered if a charged species has an anisotropic
pressure that exceeds the magnetic one (see, e.g., Figure 9 in
Appendix B); to some extent, it could be thought of as a
firehose instability driven by charged particles (e.g., Shapiro
et al. 1998, and references therein).

Note that ξ in Equation (9) depends on the momentum of CR
particles divided by the ion mass, which means that for
relativistic electrons to satisfy the condition ξ? 1, their
Lorentz factor γe has to be a factor of mi/me∼ 2000 larger
than for the canonical CR-I.

When leptons with large Lorentz factors are involved, it is
worth checking the condition that the NRSI growth rate is larger
than the synchrotron loss rate (Rybicki & Lightman 1986).
Losses are negligible5 as long as the electron Lorentz factor γe
satisfies:
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In astrophysical environments, e.g., for shocks in the
interstellar medium, one has ncr/n0∼ 10−7, and B0∼ 3 μG,
vd/vA0∼ 10, for which Equation (10) returns an upper limit of
γe∼ 1012, i.e., the effect of synchrotron losses are negligible.
However, in laboratory experiments the above condition must
be reckoned with, since B0∼ 103 G, n0 is large, which are
needed for satisfying γfast< ωci (Jao et al. 2019).

Combining Equations (8) and (9), and the condition
γfast< ωci, we find that the necessary momentum to drive the
NRSI by an arbitrary mass of CRs is

p m v . 11i Acr 0
ci

fast

w
g

( )

In the following sections we test these expectations with self-
consistent kinetic simulations using CR beams with species of
different mass and charges.

3. Numerical Setup

We perform simulations using the massively parallel
electromagnetic PIC code Tristan-MP (Spitkovsky 2005). We
consider Cartesian geometry, including all three components of
the particle velocities and of the electromagnetic fields. The
parameters used in our simulations are listed in Table 1 and
outlined below.

3.1. Simulation Box and Magnetic Field

Most of the simulations are performed in a quasi-1D
geometry, with five cells along y and Nx cells along x; the
physical length of the box is chosen to be at least≈6 λfast to
ensure that the domain spans several wavelengths of the fastest-
growing mode. We use five cells per de and a time step is set by
the speed of light and grid space, such that t 0.04 ;pe

1wD = - we
checked the convergence of our results with such resolutions.
Simulations are initialized with a uniform magnetic field along

the x direction, whose strength is parameterized via the magnetiza-
tion ce p

2s w wº ( ) , where m m1 ;e ip pe
1 2w w= +( ) for our

benchmark runs we set σ= 10−2, which corresponds to an Alfvén
speed of v c m m 10A e i0

1 2 2s= = -( ) .
Although By,z= 0 at t= 0, the thermal motion of the plasma

electrons and ions develops a nonzero B⊥ after a few time
steps, which acts as a seed field for the instability. The seed
field can be reduced by initializing a smaller plasma
temperature at t= 0; however, we have checked that the final
result is unaffected by this choice for relatively cold plasmas
(see, e.g., Reville et al. 2008; Zweibel & Everett 2010, for
warm-plasma corrections).

3.2. Background Plasma

Each computational cell is initialized with 50 macroparticles, half
representing ions and half electrons. An artificial ion to electron
mass ratio, mi/me= 100, is used to keep the simulations
computationally tractable. Both ion and electron distributions are
initialized as Maxwellians with temperature Ti= Te= 6.4×
10−3 mec

2/kB, where kB is the Boltzmann constant.

3.3. CRs

To be in the NRSI regime, ncr= n0 is needed so, to boost the
CR counting statistics, we use 25 CR particles per cell with
weights tuned to set the ratio ncr/n0 as described in Table 1
(see, e.g., Riquelme & Spitkovsky 2009); to retain the quasi-
neutrality, the weights of the background electrons are either
increased or decreased depending on the sign of the CRs. This
means that in the CR-I (CR-E) case, the thermal plasma
contains a slightly larger number of electrons (ions). For all
three species (ion, electrons, and CRs), the initial spatial
distribution of macroparticles in a computational cell is the
same, which ensures a zero electric field at t= 0.
In the reference frame in which CR are isotropic, they have

momentum p m vcr cr cr crg¢ = ¢ (where vcr¢ is the isotopic velocity;
assuming a mono-energetic CR distribution); for a meaningful
comparison between the CR-I and CR-E cases, we use the same
CR momentum for both species (see Equation (9)).
The isotropic CR distribution is boosted with velocity vbst

with respect to the background thermal ions, which are initially
at rest; thermal electrons have a drift velocity defined by
Equation (1). Due to the Lorentz transformation, the effective
drift velocity between CRs and thermal plasma along the x-axis

5 Technically, for large values of ξ, when δB? B0 is expected, losses may
affect the NRSI saturation for smaller values of γe.
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Note that the boost velocity is not identical to the drift
velocity. When comparing with the analytic predictions, we use
the drift velocity, which depends on the boost speed and the CR
distribution. In the simulation frame, the average momentum
per particle is also modified to
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where E m ccr cr cr
2g¢ = , v c1 1bst bst

2 1 2g = -[ ( ) ] . For our
fiducial parameters: vbst= 0.8c, p m c10 icr

¢ =∣ ∣ , we find vd;
0.635c and pcr,x; 13.4mi c, which yield ξ≈ 340
(Equation (9)). For t> 0, all species are allowed to evolve
self-consistently under periodic boundary conditions.

4. Results

4.1. Maximally Unstable Modes

The magnetic field profiles for our benchmark parameters (Run
A in Table 1) are shown in Figure 3, which are taken at
t 7.4 ;fast

1g- where both times and lengths are normalized to the
prediction for the fastest-growing mode ( fast

1g- and λfast≡ 2π/kfast,
see Equations (7) and (8)). Black, red, and blue lines correspond to
the x, y, and z components of B normalized to B0. While Bx cannot

6

change in a quasi-1D setup, the perpendicular components
show a dominant mode with a wavelength of≈λfast consistent
with Equation (7). Comparing the CR-I and CR-E driven runs
(top and bottom panels of Figure 3, respectively), we see that
the magnitude and wavelength of the dominant mode are very
similar. However, in the top panel, Bz (blue) leads By (red),
while in the bottom panel it trails By; this is associated with the
helicity of the growing modes, consistent with Equation (5).

The helicity of each mode with wavenumber k can be formally
expressed by the phase difference of the perpendicular magnetic
fields, Δf(k) (Equation (5)), written as a function of the Stokes
parameters (Q, U, V; see Equation (A14) in Appendix A):

k
V k

Q k U k
tan , 141

2 2 1 2
fD = -

+
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⎣⎢
⎤
⎦⎥

( ) ( )
( ( ) ( ))

( )

For a given k, the helicity depends on the sign of Δf; a mode is
RH if Δf(k)> 0 and LH if Δf< 0 and the polarization is
exactly circular if |Δf|= π/2.
The phase difference Δf(k) is shown in Figure 4 as a

function of time for the CR-I (upper panel) and CR-E (lower
panel) cases. For k ku (left of the vertical dotted line), we
have that Δf→±π/2 for the CR-I and CR-E cases, consistent
with expectations of the RH and LH modes, respectively. For
k> ku, modes do not have a fixed mode of polarization, in that
both branches have a comparable amplitude and do not grow in
the linear stage compared to other modes (see Section 4.2).
By looking at the time evolution of Δf (vertical axis in

Figure 4), we find that after t 9 fast
1g» - , the red/blue regions

deviate from the linear prediction (vertical dashed–dotted line).

Table 1
Simulation Parameters for Different Runs

Run Nx Ny

de

xD
m

m
i

e

v

c
A0 v

c
bst n

n
cr

0

p

m ci

cr¢ v

c
d

ξ
k

d1 e

fast fast

pe

g
w

×10−2 ×10−3 ×10−2 ×10−4

A. EI-S-ξ340 ★ 3 × 104 5 5 100 1 0.8 4 10 0.635 340 1.27 1.27
B. EI-S-ξ56 3 × 104 5 5 100 1 0.8 4 1 0.740 56 1.48 1.48
C. EI-S-ξ53 5 × 104 5 5 100 4 0.8 10 10 0.635 53 0.79 3.2
D. EI-S-ξ11 10 × 104 5 5 100 1 0.2 4 10 0.135 11 0.27 0.27

E. EI-M-ξ170 3 × 104 5 5 100 1 0.8 6, 4 10, 10 0.635 170 0.635 0.635
F. EI-M-ξ68 6 × 104 5 5 100 1 0.8 4.8, 4 10, 10 0.635 68 0.254 0.254
G. EI-M-ξ0 500 500 5 100 1 0.8 4, 4 10, 10 0.635 0 K K

H. EP-S-ξ42 3 × 104 5 5 1 1 0.8 1 10 0.635 42 2.25 1.59
I. EP-M-ξ0 4000 250 5 1 0.32 0.8 1, 1 10, 10 0.635 0 K K

Note. Columns indicate the number of cells along the x and y directions, number of cells per electron skin depth, mass ratio, Alfvén speed, boost speed, CR density
and momentum in their rest frame, effective drift speed (see Equation (12)), and parameter ξ (Equation (9); for estimating the value of ξ, see the example given after
Equation (13)), and the expected k-mode and growth rate for the most unstable mode (Equations (7) and (8)). The nomenclature “EI-S-ξ53” represents a run where the
background is made of electron-ion (EI) plasma, CR beam contains a single (S) charged species, and ξ ≈ 53. Runs E–G: CRs contain a mixed (M) population of
positive and negative charges where miγi = meγe = 10 (pair beam in an EI plasma). Runs H and I are similar to the previous case, except that here mi = me (pair beam
in pair plasma). The symbol “★” marks the benchmark simulation.

Figure 3. Snapshot of the magnetic field component at t 7.4 fast
1g- as a

function of x, in units of λfast ; 494.7 de, for the benchmark run A. EI-S-ξ340
(Table 1). Top and bottom panels display the CR-I and CR-E cases,
respectively. For both cases, a typical mode of wavelength ≈λfast is evident.

6 This is also due to the use of smoothing filters in the PIC simulations to
reduce the numerical noise in the current density, which finally goes into the
Ampère–Maxwell equation and produces almost identical fields along the y-
axis in our quasi-1D setup.
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This is due to the CR backreaction: the thermal plasma is set in
motion (see, e.g., Equation (A16) in Appendix A.2) and vd is
reduced, and modifies the upper limit, ku. At t 9 fast

1g» - , the
resonant branch also starts to grow very rapidly (Figure 5) and
the helicity is no longer sharp. When t 12 fast

1g- , the system
becomes nonlinear.

4.2. Growth Rate

To compare the growth rate in the CR-I and CR-E cases, in
Figure 5 we show the time evolution of the RH and LH modes
(B B jByR zº +˜ ˜ , circles, and B B jBL y zº -˜ ˜ , stars, where
B ky,z˜ ( ) are the Fourier transform of By,z(x) along the x-axis)
for different values of k. Again, we see that in the CR-I case
(top panel) RH modes with k k d0.0254u e

1= - grow faster
than their LH counterparts until t 9 ;fast

1g» - the opposite is true
for the CR-E case (bottom panel). A comparison between the
blue solid line (showing the expected evolution of the fastest-
growing mode) and purple colored circles (upper panel) or stars
(lower panel) for k d0.0127 efast

1= - indicates that the growth
rate of the fastest-growing mode is the same for both cases,
consistent with Equation (8). Note that as long as the modes
remain quasi-linear ( t 9 fast

1g- ), modes with k> ku (red/
brown circles/stars) in the non-unstable branch just oscillate, as
suggested in Section 2.2. For t 9 fast

1g- , both the RH
and LH modes evolve similarly, likely because of a power
transfer between modes of different helicities (e.g., Chin &
Wentzel 1972), when the system has entered its nonlinear
regime (also see Figure 4).

In summary, the CR-E case produces a result similar to that
of the CR-I case when γe in the CR beam≈mi/meγi. Next, we

use this result to explore NRSI in other environments where the
NRSI can be potentially important.

4.3. NRSI in Different Environments

In previous sections, we have presented the cases where the CR
populations are comprised entirely of either ions or electrons.
However, in some astrophysical environments, energetic particles
consist of both energetic positrons and electrons and the thermal
background can be a pair plasma. If there is a difference in
acceleration efficiency between these two species (e.g., Cerutti
et al. 2015; Philippov & Spitkovsky 2018), then they can generate
a current, which may drive the NRSI. When such relativistic
electrons are liberated into the interstellar medium (an EI plasma),
they may excite the NRSI and amplify the magnetic field that may
be crucial for the self-confinement of CRs near their sources, as
revealed, e.g., by the γ-ray halos detected around PWNe (e.g.,
Abeysekara et al. 2017).
Denoting the number density of positive and negative

charges by n+ and n− respectively, the linear theory predicts
that the growth of the NRSI depends on the effective CR
current density, Jcr≡ (n+− n−)e vd, which physically corre-
sponds to the return current in the background plasma.
However, since the helicity of waves excited by positrons
and electrons are opposite, PIC simulations are necessary to
assess the extent to which a pair beam can be viewed as a linear
superposition of their opposite currents. To cover different
scenarios, we now investigate the NRSI driven by CRs of
both charges on top of two different thermal backgrounds:
ion-electron (Section 4.3.1) and electron-positron plasmas
(Section 4.3.2).

Figure 4. Time evolution of the phase difference Δf (a proxy for helicity, see
Equation (14)) for our benchmark run. Top and bottom panels display the CR-I
and CR-E cases. The two vertical lines, dashed and dotted, denote
k d1.27 10 efast

2 1= ´ - - and ku = 2kfast. For k > ku (Regime I in Figure 2)
waves do not have a fixed helicity, whereas for k < ku (Regime II), Δf is
either ≈+π/2 or −π/2, corresponding to the RH (CR-I case) or LH (CR-E
case) modes. Deviation from the linear theory is observed for t 10 fast

1g- .

Figure 5. Time evolution of the LH (BL, stars) and RH (BR, circles)modes for five
different wavenumbers k. In the CR-I case, the RH modes grow the fastest,
whereas in the CR-E case the magnetic field is dominated by growing LH modes.
In both cases, the value of k for the fastest-growing mode is d0.0127 e

1» - (lilac).
The simulation shows a good agreement with the analytic prediction for k = kfast
(blue solid line) until t 9 fast

1g» - , after which the evolution becomes nonlinear.
Note that when t 12 fast

1g- , the amplitude of the fastest-growing mode becomes
subdominant and longer wavelength modes take over.
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4.3.1. Pair Beam in an Ion-electron Plasma

We first consider an ion-electron background plasma with
mi/me= 100 (as in previous sections), and CRs with the Lorentz
factors γimi= γeme= 10. We allow n+ and n− to be different,
since positrons and electrons can be accelerated in different
regions with different net electric charges. For instance, in the
equatorial region of a pulsar magnetosphere the reconnecting
current sheet produces more energetic positrons than electrons
for an aligned rotator7 (Cerutti et al. 2015; Philippov &
Spitkovsky 2018). Even if the ultimate mechanism responsible
for the acceleration of the bulk leptons that shine in a PWNe is
still under debate, it is arguable that such magnetospheric
particles play a crucial role, likely acting at least as seeds for
further acceleration, possibly at the wind termination shock.
Therefore, pair beams in and around PWNe may be either
neutral or present an excess of particles of one sign.

Let us first consider the regime n+ > n−, and more precisely,
two cases in which there are 50% and 20% more positively
charged particles (labeled by case 1 and case 2 in Figure 6,
respectively; the corresponding parameters are detailed in runs
E and F of Table 1). The snapshots of the B field for these two
cases are shown in the top- and middle-left panels of Figure 6.
We find that the wavelength and growth rate of the fastest-
growing mode agree well with the linear theory when an
effective number density of CRs ncr= n+− n− is used. This is
shown by the gray dashed–dotted and dotted lines in the right
panel in the same figure, which displays the evolution of B in
time for both cases. Note that for lower effective currents (20%
excess, green curve) the growth rate is smaller and also the
saturation of the NRSI occurs at smaller values, still B⊥/B0 1
for our parameters.

The third case considers the scenario n+ = n−, where we
observe that the NRSI is quenched, as expected from the linear
theory for a null CR current. This can be seen in the lower-left
panels of Figure 6 (Run G in Table 1) and also from the right

panel of the same figure (magenta curves). Note that the system
still has free energy because of the CR anisotropy, and in fact,
we observe evidence of small-scale fluctuations and a marginal
amplification of the magnetic field, possibly associated with the
gyro-resonant instability discussed by Lebiga et al. (2018).
This situation may be more similar to the case of the relativistic

beams of pairs produced by the interaction of blazar teraelectron-
volt photons with the extragalactic background light, though in a
significantly more magnetized background plasma (the electro-
static oblique instability, see, e.g., Sironi & Giannios 2014;
Shalaby et al. 2017, and references therein). A more detailed
investigation of this regime is left to a further work, but here we
stress that even a relatively small excess of one charge with
respect to the other, as naturally expected from pulsars, is likely
sufficient to put the system in the Bell (or resonant) regime.

4.3.2. Beams in Pair Plasmas

Let us now consider the development of the NRSI in a pair
plasma (runs H and I in Table 1). At first we investigate the
effect of a background pair plasma on the standard NRSI; we
take the current to be made of only positively charged particles,
i.e., positrons, and therefore expect results similar to the CR-E
cases. While estimating the growth rate, one has to recall that
posing mi=me reduces kfast and γfast by a factor of 21/2 and 2
compared to the standard (mi?me) prediction (Equations (7)
and (8), respectively). These factors are due to the fact that vA0
in Equation (7) is practically v v m m1A e iA0i 0

1 2= +( ) , and
 in Equation (A13) is 2 instead of 1 (for details, see
Appendix A). The simulations that we performed in this regime
confirm such theoretical estimates and easily produce
B⊥/B0 1 as expected, so we do not show them here.
For a pair background, it is possible to envision a scenario (e.g.,

in relativistic shocks, see Sironi & Spitkovsky 2009), in which
both electrons and positrons are accelerated in the same way and
the effective current in CRs is zero. This case (Run I in Table 1) is
illustrated in Figure 7, which displays the three components of the
magnetic field (left panels) and their time evolution (right panel).

Figure 6. NRSI driven by pair beams in a ion-electron background (Runs E–G in Table 1). Left panels: snapshots of the B field for three cases with different ratio
n+/n−. Right panel: time evolution of the B field for the corresponding cases; the exponential phase is well described by the linear theory outlined here, except for the
zero-current case 3 (Run G).

7 The opposite would be true for an anti-aligned rotator, where the angle
between magnetic and rotation axes is ∼π instead of 0.
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We point out that there are substantial differences between the EI
(Figure 6) and pair (Figure 7) backgrounds. Unlike in the EI case,
the out-of-plane component Bz does not saturate at δB=B0 but
grows over the whole simulation; By grows at a similar rate, too,
but it is smaller by a factor of a few, likely a consequence of the
reduced dimensionality of the simulation. This is consistent with
the PIC simulations of relativistic shocks in pair plasmas
performed by Sironi & Spitkovsky (2009), where electrons and
positrons are equally accelerated and produce nonlinear fluctua-
tions in the shock precursor. We also note that, while fluctuations
in Bz have very small wavelengths, of the order of the inertial
length in both the longitudinal and transverse directions (similar to
the case in Figure 6), there is a clear evidence of a long-
wavelength longitudinal mode in By.

The possibility of developing large-scale (i.e., much larger
than de) nonlinear fluctuations even for a case with zero-current
is indeed intriguing and may have astrophysical implications
for the self-confinement of energetic pairs. In any case, this
instability is quite different from the NRSI in many aspects,
and the anisotropy that we report is likely an artifact of the
reduced dimensionality of the presented simulations. A
dedicated investigation of this regime with 3D runs is in order
but beyond the goals of this paper.

4.4. Saturation

The NRSI is believed to be important for the overall
amplification of an initial magnetic field, and the exact
mechanism for its saturation is not completely understood.
Bell (2004) and Blasi et al. (2015) provided two different
heuristic arguments for deriving the expected strength of the
amplified magnetic field, which converge in suggesting that at
saturation

B v

c
U

8

1

2
, 15d

2

cr
d
p

» ( )

where Ucr represents the CR energy density. This condition8 is
similar to posing ξ≈ 1 in Equation (9), since Pcr≈ vdUcr/c,
which is also equivalent to stating that when the RSI and the
NRSI grow at the same rate, the CR current is disrupted and
perturbations cannot grow linearly. On the other hand, kinetic

simulations (e.g., Riquelme & Spitkovsky 2009; Gargaté et al.
2010; Caprioli & Spitkovsky 2014; Weidl et al. 2019) have
suggested that saturation may be achieved when modes that can
scatter the CRs have grown sufficiently, a statement that is hard
to quantify in the nonlinear stage; therefore, the question arises
as to whether CR-I and CR-E NRSI evolve and saturate in a
similar way.
To investigate the saturation of the magnetic field, we

explore different plasma and CR parameters such as vA0, ncr/ne,
vd, and pcr (see Table 1) and display the evolution of the
transverse magnetic field in Figure 8. All the simulations have
ξ? 1 and in fact are conducive to B⊥/B> 1. By comparing
the red and blue curves (representing the CR-I and CR-E
cases), we conclude that the time evolution and the saturation
of magnetic field amplification depends only on the dynamic
mass of CR particles, and not on the charge of the CR current.
Although we have used the mono-energetic CR distribution

throughout this work, we expect that different CR distributions
will produce similar results because the linear growth depends
on the net current density in the CR beam, which is dominated
by the CR number density (see, e.g., Haggerty et al. 2019).
This is also valid for the power-law CR distribution. In such
cases, to compare with our predictions, the effective current,
drift velocity, and the anisotropic CR pressure need to be
calculated by integrating the CR distribution (see, e.g.,
Equation (12)). The saturation may slightly depend on the
highest energy particles because they have a larger Larmor
radius and can be nonresonant (RL? λfast) with the amplified
modes. Even in this scenario, we expect the saturation to occur
within our theoretical prediction, which is based on the
momentum conservation as illustrated below.
For a qualitative estimate of the saturated magnetic field in

our simulations, we extend our linear analysis by using a
semiclassical approach (Appendix A.2), which is compared
with simulations and displayed in the right panel of Figure 8.
The top of the cyan lines represents the upper limit of the final
B⊥/B0, which matches Equation (15); also see Section 2.3 in
Gupta et al. (2021). Note that saturation may be slightly
different if CRs were continuously replenished, rather than
obeying periodic boundary conditions as in the present setup.
Although Figure 8 shows a reasonable agreement with
theoretical prediction, we want to draw attention to the cases
where the mixed composition of CRs are shown (in particular
Run F—green triangle). The saturated B⊥/B0 for these runs is

Figure 7. NRSI in pair plasma for a zero beam current case (Run I in Table 1). Left panels: components of B at t 24 104
pe

1w= ´ - , showing filaments of size ∼ de.
Right panel: time evolution of corresponding components; the growth of the instability is very different from the standard theory of NRSI.

8 For a shock, v cA d
2x » ( ) , where A is the Alfvén Mach number, vd is

the speed of the shock in upstream frame, and U v 0.1dcr
2r= ~( ) is CR

acceleration efficiency (e.g., Caprioli & Spitkovsky 2014).
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appreciably smaller than the prediction, as mentioned above.
This is probably because in the mixed beam compositions, the
growing fields can also resonantly interact with beam particles,
causing the saturation to occur at a smaller value than that
expected from a pure nonresonant calculation. An important
result is that the NRSI, whether driven by a mixed CR
composition or in a different background plasma, typically
results in B⊥/B0 1.

5. Summary

We have investigated the NRSI for different charge, mass,
and mixed compositions of CRs in different backgrounds. We
performed a linear analysis in Section 2 and confirmed the
analytic predictions using self-consistent PIC simulations. Our
results are summarized in the following.

1. Regardless of the nature of the current-carrying species,
the main requirement for driving NRSI, and hence
nonlinear field amplification, is that the CR momentum
flux must be much larger than the magnetic pressure in
the background plasma (Equation (9)).

2. The growth rate in the CR-I and CR-E cases are comparable
at a fixed current, but the helicity of the unstable modes is
opposite in the CR-I and CR-E-driven cases (Figure 4); this
is a consequence of the opposite sign of the return current
in thermal electrons that compensates the CR current
(Figure 1).

3. A beam encompassing both positive and negative charges
can drive the NRSI and lead to nonlinear field amplification,
as long as it has a net current, which determines the actual
growth rate (Figure 6).

4. For a given CR current made of one species only, the
magnetic field at saturation (δB/B0> 1) depends on the
initial anisotropic momentum flux, and not on its charge
(Figure 8). This point suggests that laboratory experiments,

with sufficiently powerful lasers (e.g., Jao et al. 2019), may
be able to test the Bell instability even with electron beams.

5. For CR distributions with the same momentum flux, but
encompassing different charges, less magnetic field is
found at saturation (Figure 6). This is a promising path
for explaining the origin of the teraelectronvolt halos
detected around PWNe (Abeysekara et al. 2017), which
are likely produced by escaping energetic leptons. The
extent of such halos is consistent with a suppression of
the Galactic diffusion coefficient of a factor of ∼100,
which may be achieved even with linear field amplifica-
tion, δB/B0 1.

6. The NRSI driven by a net current behaves in a similar
way in ion-electron and in pair plasmas, which is
nontrivial due to the different nature of the return current
in the background plasma (Figures 6 and 7). One notable
difference is found for the case of a pair beam in a pair
plasma, which exhibits more magnetic field amplification
than its counterpart in an EI background (Figure 7).

In summary, we have provided a theory/simulation cookbook
for the properties of the NRSI (Bell) instability for beams and
background made of different species, covering a region of the
parameter space that—to our knowledge—had never been tested
via kinetic plasma simulations. Applications to given space/astro/
laboratory environments will be presented in future works.

We thank the anonymous referee for the valuable suggestions
on our manuscript. Simulations were performed on computational
resources provided by the University of Chicago Research
Computing Center, the NASA High-End Computing Program
through the NASA Advanced Supercomputing Division at Ames
Research Center, and XSEDE TACC (TG-AST180008). D.C.
was partially supported by NASA (grants 80NSSC18K1218,
80NSSC20K1273, and 80NSSC18K1726) and by the NSF
(grants AST-1714658, AST-2009326, AST-1909778, PHY-
1748958, and PHY-2010240).
Software: Tristan-MP (Spitkovsky 2005).

Figure 8. Left panel: time evolution of the box-averaged transverse field B⊥/B0 for all runs (except the zero beam current runs G and I) listed in Table 1. The gray line
shows the expected linear growth. Comparing the gray lines with our simulations, we find that for the CR-E (blue dashed curves) and CR-I (red solid curves) cases, B
evolves similarly and saturates at the same level. Right panel: B⊥/B0 at saturation (t 16 fast

1g~ - ) as a function of the ξ parameter, a proxy for NRSI prominence over
RSI (see Equation (9) and Table 1). The cyan lines show the expectations from Appendix A.2 (see, e.g., Equation (A21)).
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Appendix A
Details of the Analytic Calculations

At first let us recall the Ampère–Maxwell equation: ´
B J E

c c t

4 1= +p ¶
¶

and the Maxwell–Faraday equation: ´

E B
c t

1= - ¶
¶

. In the absence of current source (denoted by J),
these equations determine propagation of the electromagnetic
(EM) waves. Here, we will show that a nonzero J that comes from
unbalanced perturbed current in the plasma generates waves can
grow/damp/oscillate depending on the modes.

Initially, the bulk speed (ve) of background electrons
(Equation (1)) is such that it balances the CR current, i.e., the
total J= 0. Suppose plane-wave perturbations are imposed on
the background electromagnetic fields, which result in density
and velocity fluctuations in the background ions and electrons.
Denoting the first-order perturbations with the subscript 1, the
total current density at t> 0, in the CR + plasma composite
system is

J v v
v v

v v v v
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Velocity and density perturbations introduced in Equation (A1)
are obtained as follows. As the perturbations on the EM field
are modulated with j k x texp w-[ ( )] (where k xk= ˆ is the
propagation vector and ω is the angular frequency), lineariza-
tion of the Lorentz force equation (Equation (2)) gives

v
jq

m
E A2x x1 1

w
=a

a

a
( )

v
jq

m

v k
E j E

1

1
A3y y z1

0

c
2 1

c
1

w
w

w w
w
w

=
-
-

+a
a

a a

a⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( )

( )

v
jq

m

v k
j E E

1

1
, A4z y z1

0

c
2

c
1 1

w
w

w w
w
w

=
-
-

- +a
a

a a

a⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( )

( )

where we have used the linearized Maxwell–Faraday equation
(given below) to substitute the B field:

B
k c
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w w
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In Equations (A3) and (A4), ωcα= qαB0/mαc is the cyclotron
frequency and v0= scrve≠ 0 only for electrons (ve= |ve;
Equation (1)). The density fluctuations can be obtained from
the ion and electron mass continuity equations, which give
n1i= nik v1xi/ω and n1e= nek v1xe/(ω− k vescr), respectively.
Substituting Equations (A2)–(A4) in Equation (A1) and
neglecting higher order terms of ω/ωci and ω/ωce (as our
regime of interest ω= ωci), we obtain
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Here, we have taken B m n4 i0 0
1 2p( ) as the Alfvén speed vA0

(since mi?me, we can take v v m m1A e iA0i 0
1 2= +( ) 

vA0). ωci,e= |eB0/mi,ec| is the cyclotron frequency, pi,ew =
n e m4 0

2
i,e

1 2p( ) is the plasma frequency for ions/electrons.
Equations (A6)–(A8) show that perturbed current density is
nonzero, which act as a source in the Ampère–Maxwell equation.
Since we assume ncr= ne, the transverse components of the
current are simplified to J J k s B s B c, ,y z y z1 1

2
cr 1 cr 1w» -( )( )

v4 A0
2p( ), indicating a direct dependency on the transverse

magnetic fields, i.e., a tiny perturbation in the magnetic field
can increase the current, which further amplifies the magnetic field
and so on.

A.1. Dispersion Relation

Substituting Equations (A6)–(A8) in the Ampère–Maxwell
equation, and combining the Maxwell–Faraday equations:
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Equation (A9) gives two distinct solutions:
Solution A: E1 y,z= 0. In this case, if ve= 0, then w »
pi
2

pe
2 1 2w w+( ) , where n e m4pi,e 0

2
i,e

1 2w p= ( ) is the
plasma frequency for ions/electrons. This represents plasma
oscillations.
Solution B: h2=± h3, we find a quadratic equation of ω:

02w w- - =   , which provides the dispersion relation in
the following form:

4

2
, where A12

2 1 2
w =

+ +[ ] ( )   


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where we have introduced a parameter ku= ωpi |ve|/c vA0.
Using ωci= (vA0/c)ωpi, we obtain a simplified expression of :

v k s s s1A u
k

k

m

m

v

v

n

n

v

v0 cr cr cr
u

e

i

e

A i

A

d0

cr 0= + ⎡
⎣

⎤
⎦( ) , which is simpli-

fied to s v k vA u dcr 0
2»  . It can be shown that when

vA0= vd, the term under the square-root in Equation (A12)
mostly depends on 4  , i.e., the square-root term can be a
complex number depending on the ratio k/ku. Using these
assumptions, Equation (3) is obtained. Note that, if these
conditions are not satisfied, then one can still obtain growing
modes; however, the wavelength of the fastest-growing mode and
the growth rate can deviate from Bell’s (2004) prediction, due to
contribution of  to the square-root term of Equation (A12).

Equations (A5) and (A9) suggest that the transverse B field,
B y zB B y j zexp 2y z1 1 p= + µ  +^ ˆ ˆ [ ˆ ( ) ˆ], i.e., Δf=± π/2
(Equation (5)). To find the phase difference between By and Bz

for a given mode, k, from our simulation, we have used
Equation (14), where

Q k B k B k B k B k

U k B k B k B k B k

V k j B k B k B k B k

,

,

A14

y y

y y

y y

z z

z z

z z

= -

= +

= -

* *

* *

* *

( ) [ ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )]

( ) [ ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )]

( ) [ ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )] ( )

Here, B ky,z˜ ( ) are the Fourier transform of By,z(x) along the x-
axis (the superscript “*” denotes the complex conjugate).

A.2. Backreaction and Saturation

The above derivation does not include the backreaction from
the plasma caused by the growing waves. In later times
(t fast

1g- ), the force due to the term, e.g., J×B/c, can affect
the momentum of the CRs and plasma. The unstable waves
cannot grow for an indefinite amount of time and saturate. Below,
we extend our linear analysis to predict the saturation, which is
based on the fundamental fact that the net momentum deposited
by CRs goes into thermal background through the amplified EM
fields. Note that the saturation is a nonlinear process and
numerical simulation can provide a better result and therefore
our prediction should be treated as an approximated solution.

Let us recall a more general form of the momentum equation
of the plasma:

v v J B
t

n m m
c

P P
1

. A15i i e e i e0
¶
¶

+ » ´ -  +[ ( )] ( ) ( ) ( )

Here, Pi,e is ion-electron pressure in the plasma. We shall take
into account two terms in the right-hand side (RHS) of
Equation (A15) one by one as done to obtain an approximated
solution. First assuming that the second term in the RHS is

much smaller than the first term, we obtain the velocity of
plasma ions/electrons:

v
v

v
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B
v v

B

B
, and . A16xi e
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d
y zi e A1 ,

0
2

0

2

1 , 0
0

» »^ ^
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⎛
⎝

⎞
⎠

( )

Since we start with vA0= vd, B⊥= 0, v1xi,e→ 0. With time, the
growing B⊥ results in plasma acceleration. Therefore, the
plasma ions that were initially treated stationary with respect to
the lab frame also start drifting along the x direction. Whereas
the equal raise in transverse velocity components mainly
contributes to increasing the velocity dispersion of the plasma,
and raises the plasma temperature. Assuming the initial thermal
energy per particle in the plasma m a k T2 20

2
B 0» ~ (T0 as

the initial temperature), the final temperature of the plasma is
expected to be

T T
v
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Therefore, a larger magnetic field amplification implies an
intense heating effect. The second term in the RHS of
Equation (A15), which represents the loss in momentum due
to plasma heating, is calculated by using Equation (A17):

dt P P dt
j k

n m a v

dt
k

v
n m a v
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Now considering that the net momentum deposited by CRs
goes into thermal background, the time integration of the x
component of Equation (A15) yields

n p n m
v

v

B

B

dt P P . A19

x
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i e x

cr cr, t 0 0
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LHS: At t= 0, n p n v E cxcr cr, cr bst bst cr
2g= ¢( ) (Equation (13)).

We further assume that in the final stage, the drift velocity of
CRs v vd A»˜ (as observed in the simulation; see, e.g., figure 3
in Gupta et al. (2021)). This gives v vAbst »˜ and 1bstg̃  , i.e.,
n p n v E cx Acr cr, cr cr

2» ¢( ). We finally obtain

B

B
0, A20
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0
+ + - =^ ^ ^
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where 1= , a v2 4i A0 0
2= +[ ( ) ] , 4 n

n
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 . The above equation can be solve
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numerically and the approximated solution is
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If we neglect the heating losses and take ai0= vA (i.e., the term
 is absent and 4 : cold plasma), then Equation (A20)
gives B B0

1 2 1 2x» =^ ( )  , which is identical to
Equation (15). These two possible solutions of B⊥/B0 are
referred as the lower and upper limits of B⊥/B0 and are shown
by the cyan lines in Figure 8.

Appendix B
How Large ξ Should be Chosen

A general assumption in the NRSI is that ξ? 1
(Equation (9)). Here, we explore how large the value of ξ

must be chosen to apply the standard theory of NRSI safely.
From Section 2, we recall that the growing modes in the CR-E
case have negative helicity. Following the results presented in
Section 4.1, we check how Δf(k) changes as a function of ξ by
altering vA0 and ncr (other parameters similar to Run B in
Table 1). Figure 9 indicates that the dominating modes have
Δf≈−π/2 (blue regions) when ξ 4, i.e., below ξ≈ 4, the
NRSI and the RSI blend into each other.
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