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A B S T R A C T   

A multi-phase and multi-component numerical simulator assessed the removal efficiencies of light non-aqueous 
phase liquid (LNAPL) consisting of benzene, toluene, ethylbenzene, and xylene-p. Scenarios of the LNAPL- 
spilling, natural distribution, and remediation stages were designed in the full-physics numerical modeling. 
For LNAPLs remediation, a multi-phase extraction (MPE) and a steam injection technique were employed. The 
removal efficiencies of LNAPLs were computed by systematically varying 6 factors that determine the configu
ration of the remediation wells. Then, surrogate polynomial chaos expansion (PCE) models mathematically 
predicting the removal efficiencies were developed through 600 training datasets representing 4 scenario cases; 
different permeability and the location of SI well were considered in the scenario cases. The PCE models were 
utilized for Sobol global sensitivity analysis and stochastic Monte Carlo prediction. As a result, the depth of the 
MPE well was identified as the most significant factor in determining the removal efficiency of the LNAPLs. The 
removal efficiency was maximized when the MPE well was positioned 1.5 m below the groundwater table. 
Additionally, the contributions of influencing factors were significantly changed by the field permeability. This 
study proposed a general framework that efficiently predicts LNAPLs remediation efficiency and identifies key 
influencing factors by combining advanced numerical modeling, PCE-based surrogate modeling, and sensitivity 
analyses.   

1. Introduction 

Light non-aqueous phase liquids (LNAPLs) are typical contaminants 
that originate from various anthropogenic sources such as oil storage 
tanks, gas stations, transportation, and military camps (Essaid et al., 
2015; Huntley and Beckett, 2002; Oostrom et al., 2006). LNAPLs lighter 
than water float above the groundwater table and extensively contam
inate both soil and groundwater zones, when they spill into the sub
surface. LNAPLs contain deleterious components including benzene, 
toluene, ethylbenzene, and xylene-p (BTEX). These components can be 
volatilized into the unsaturated zone and concurrently dissolved into the 
groundwater while LNAPLs drifting above the groundwater table. 
Therefore, the thermodynamic properties of LNAPLs that elucidate 
comprehensive phase transfer (i.e., volatilization, condensation, and 
dissolution) should properly be assessed. However, the assessment is 
challenging due to discrepancies in thermodynamical behaviors of 

multiple components (BTEX) within LNAPLs (Adenekan et al., 1993). 
Additionally, migration of LNAPLs reflects multi-phase transport within 
porous media, representing the coexistence of LNAPLs, air, and water. In 
this complex transport system, both relative permeability and capillary 
pressure must be evaluated (Brennen and Brennen, 2005; Oliveira and 
Demond, 2003). 

The complex dynamics of LNAPLs transport in the subsurface can be 
elucidated by conducting numerical simulations. Over the past two de
cades, many studies have attempted to predict the migration of spilled 
LNAPLs via numerical simulations (Gupta et al., 2019, Kim and Cor
apcioglu, 2003; Qi et al., 2020, Schroth et al., 1998, Wipfler et al., 2004). 
Although such studies successfully investigated the multi-phase 
behavior of LNAPLs, their approach limited LNAPLs as a single 
component while LNAPLs are generally observed as a mixture of several 
components (Essaid et al., 2015). Recently, Yang et al. (2017) simulated 
multi-component LNAPLs transport to evaluate the removal ratio of 

* Corresponding author. 
E-mail address: hanw@yonsei.ac.kr (W.S. Han).  

Contents lists available at ScienceDirect 

Advances in Water Resources 

journal homepage: www.elsevier.com/locate/advwatres 

https://doi.org/10.1016/j.advwatres.2022.104179 
Received 1 December 2021; Received in revised form 3 March 2022; Accepted 23 March 2022   

mailto:hanw@yonsei.ac.kr
www.sciencedirect.com/science/journal/03091708
https://www.elsevier.com/locate/advwatres
https://doi.org/10.1016/j.advwatres.2022.104179
https://doi.org/10.1016/j.advwatres.2022.104179
https://doi.org/10.1016/j.advwatres.2022.104179
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2022.104179&domain=pdf


Advances in Water Resources 163 (2022) 104179

2

BTEX through soil vapor extraction. The multi-phase multi-component 
LNAPLs simulation could be further enhanced by accounting for hys
teresis effects and 3-D heterogeneity in permeability (Sookhak Lari et al., 
2018). The results aided in simulating LNAPL transport realistically and 
improved the assessment of LNAPLs removal efficiency. However, those 
full-physics numerical modelings and subsequent analyses are not al
ways viable; such complex numerical analyses require enormous CPU 
time and memory spaces suited to supercomputing systems, which may 
not be available to all users. 

Data-driven surrogate modeling techniques have been suggested as 
alternative options, to compensate for the difficulties caused by 
complexity in numerical models and to manage consecutive post- 
analyses with heavy iterative computations (Asher et al., 2015; 
Razavi et al., 2012). The surrogate modeling technique generates an 
empirical formula from several pairs of given input and output datasets 
predicted from complex numerical models. The application of the for
mula is limited to the designed model domain (or site-specific) repre
sented by the chosen numerical simulator. Furthermore, complex 
numerical models, which is a basis of surrogate models, may not provide 
a perfect description of physics as well as subsurface heterogeneity. 
Despite limitations addressed above, the surrogate modeling technique 
has been in the limelight as decision support in the field of hydrogeology 
due to its ability to represent the dominant features in the subsurface 
with cheaper computational costs (Asher et al., 2015). Since the verified 
surrogate models allow for the prediction of the outputs without 
requiring heavy numerical simulations, the demanding time for the 
computation is significantly reduced. A key advantage from the reduc
tion in the computational time is the availability of post-analyses using 
stochastic methods. In recent years, the stochastic post-analyses based 
on the surrogate model have been used to analyze seawater intrusion 
(Rajabi et al., 2015), geologic CO2 sequestration (Guyant et al., 2016; 
Jia et al., 2016; Piao et al., 2020), and shallow groundwater contami
nation (Ciriello and de Barros, 2020; Xing et al., 2019; Zhao et al., 2020). 
As seen, although the applications for the surrogate modeling techniques 
have expanded, limited surrogate modeling and post-analyses have been 

attempted in the field of LNAPL transport and its remediation. 
In this study, a state-of-the-art technique of surrogate modeling, the 

polynomial chaos expansion (PCE), was employed to link between the 
full-physics numerical LNAPL model and stochastic post-analyses. After 
developing the surrogate PCE model, Sobol global sensitivity analysis 
was conducted to rank important factors that affect multi-phase and 
multi-component LNAPL remediation. In addition, Monte Carlo analysis 
was conducted to comprehensively investigate the effects of each factor 
on remediation efficiency. Eventually, this study proposes an efficient 
framework that quantitatively investigates the influencing factors, and 
can be easily extended for optimizing various LNAPLs remediation 
scenarios. 

2. Conceptual model 

A 2D full-physics numerical model was developed to investigate the 
dynamics of LNAPLs in unsaturated and saturated zones. As shown in 
Fig. 1a, it was assumed that the LNAPLs, a mixture of BTEX, were spilled 
from a designated point source. The spilled LNAPL plume migrated 
downward through the unsaturated zone until reaching the ground
water table. Due to buoyancy force, the LNAPLs floated above the 
groundwater table. In the capillary fringe zone where LNAPLs, air, and 
groundwater coexist, LNAPL dynamics were governed by gravity and 
capillary pressure (Bear et al., 1996; Mayer, 2005) (Fig. 1b). Here, 
LNAPLs contemporaneously volatilized to the unsaturated zone as 
highly volatile components; hence BTEX components are also referred to 
as volatile organic compounds (VOCs) (Fig. 1c) (Kim and Corapcioglu, 
2003; Russell, 1995). The amounts and rates of volatilized BTEX com
ponents are determined based on the partitioning coefficient and satu
rated vapor pressures (Mendoza and Frind, 1990). In addition, at the 
bottom of the LNAPL plume where the groundwater is contacted, some 
of the LNAPLs dissolve into groundwater (Fig. 1d); the amounts of 
partially dissolved LNAPLs are determined by the solubilities of each 
BTEX component. Such addressed interactions, including chemical 
dissolution and thermophysical phase transfer, affect the fate of LNAPL 

Fig. 1. (a) A conceptual model delineating LNAPLs leakage and transport through both unsaturated and saturated zones. (b) The capillary fringe zone where gas 
phase (air and VOCs), water phase (residually trapped water), and LNAPLs phase coexisted. (c) In the unsaturated zone, the gas phase primarily existed while both 
residually trapped water and vaporized LNAPLs are trapped within pores. (d) In the saturated zone, groundwater exists only with dissolved LNAPLs. 
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migration in the subsurface (Kim and Corapcioglu, 2003). In this study, 
three different fluids were accounted for, including gas phase (air, water 
vapor, and VOCs), LNAPL phase, and aqueous phase (residually trapped 
water in soil and water dissolved in LNAPLs and air). Because air is a 
dominant component in the unsaturated zone, the gas phase in the un
saturated zone is referred to the air phase. In addition, the aqueous 
phase in the saturated zone is referred to the water phase. 

2.1. Model domain, initial, boundary conditions, and sources 

A base-case LNAPLs spill and remediation scenario which can be 
realized with four modeling stages was considered. The 1st stage is for 
the development of a sloping groundwater flow, the 2nd stage is the spill 
of LNAPLs, 3rd stage is the migration of LNAPLs under the ambient 
condition, and the 4th stage is the active remediation of the LNAPLs. 

2.1.1. Groundwater flow (1st stage model) 
The model domain shown in Fig. 2a represents the dimensions of 

100 m by 50 m, consisting of horizontally discretized 66 grid-blocks per 
each of 50 layers (Δz=1 m) from the surface to the bedrock. Porosity and 
permeability (kx) were uniformly assigned to 0.3 and 4.0 × 10−13 m2 to 
the model domain, respectively; the anisotropy (kz/kx) was assigned to 
0.25, assuming horizontal arrangement of soil deposits in the sedimen
tary layers (Nielsen et al., 1986; Scholes et al., 2007). 

The groundwater flow model was developed in two stages. In the 1st 
stage model, a sloping groundwater table was developed, which was the 
initial condition of the 2nd stage model simulating LNAPL migration. In 
the 1st stage model, the constant atmospheric temperature and pressure 
(25 ◦C and 1.01 × 105 Pa) conditions were assigned to the top boundary 
(Fig. 2a). Immediately below the top boundary grid-blocks, an infiltra
tion rate of 4.64 × 10−6 kg/s was assigned to represent infiltrating 
precipitation; the assigned infiltration rate was estimated from the 
annual average precipitation in the Republic of Korea. Both lateral 
boundaries were assigned to the constant pressure boundary with 
pressure gradients (left boundary: 1.01 × 105 Pa (top) to 3.72 × 105 Pa 
(bottom) and right boundary: 1.01 × 105 Pa (top) to 3.52 × 105 Pa 

(bottom)). The pressure difference between left and right boundaries is 
attributed to the groundwater flow. The bottom boundary was set to no- 
flow owing to the presence of low-permeability base rock. Initially, the 
flat groundwater table was at a depth of 21 m by setting water saturation 
of 0.2 and 0.99 at unsaturated and saturated zones, respectively. After 
simulating the 1st stage model, the equilibrated sloping groundwater 
table was achieved, and the resulting average groundwater velocity was 
0.022 m/day. 

2.1.2. LNAPLs spilling and remediation (2nd, 3rd, and 4th stage models) 
In the 2nd stage model (LNAPL-spilling stage), the LNAPLs composed 

of BTEX spilled for 5 years from the point source, located 37.5 m away 
from the left boundary and 4.5 m below the ground surface (Fig. 2b). 
The spilling constantly occurred at a rate of 1.65 × 10−5 kg/s per each 
BTEX component. The primary direction of the LNAPL plume migration 
is the gravitational direction at this stage, while its migration is gov
erned by the relative saturation of air and LNAPLs in the unsaturated 
zone. At the end of the 2nd stage, the LNAPL-spilling ceased. During the 
3rd stage (natural redistribution stage) that lasted for 2 years, the spilled 
LNAPLs were naturally redistributed in the capillary fringe, primarily 
spreading above the sloping groundwater table (Fig. 2c). Finally, in the 
4th stage (remediation stage) that lasted for 0.5 years, both the steam 
injection (SI) and the multi-phase extraction (MPE) wells were installed 
to remediate the LNAPLs (Fig. 2d). The SI well was installed below the 
LNAPL source at a depth between 20 m and 22.5 m, where 100 ◦C steam 
was injected at a rate of 6 × 10−4 kg/s to aid phase transfer from high- 
viscosity liquid LNAPLs to low-viscosity vapor LNAPLs. In addition, the 
MPE well was installed horizontally 5 m away from the LNAPL source at 
a depth between 16 m and 20 m to extract both vapor and liquid phases 
of LNAPLs. At the MPE well, a constant bottom-hole pressure (BHP) of 8 
× 104 Pa was assigned, which was approximately equivalent to the rate 
of −5.7 × 10−3 kg/s. Finally, four modeling stages representing 
groundwater flow, LNAPL-spilling, natural redistribution, and remedi
ation were simulated using TOUGH2-TMVOC (Pruess and Battistelli, 
2002). 

Fig. 2. (a) 1st stage: the initial condition simulating for sloped groundwater table and infiltration, (b) 2nd stage: LNAPLs-spilling stage, (c) 3rd stage: natural 
distribution, and (d) 4th stage: remediation stage. 
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2.2. Parameters for 3-Phase flow systems and thermodynamic properties 
of LNAPLs 

Two of the major aspects governing the dynamic behaviors of 
LNAPLs are capillary pressure and relative permeability; these are pa
rameters characterizing multi-phase fluid systems in porous media. Such 
multi-phase effects spatiotemporally vary depending on the saturation 
of the individual fluid phase and the characteristics of porous media 
(Lenhard and Parker, 1987; Miller et al., 1998). 

The capillary pressure caused by the relative difference in wettability 
and interfacial tension between two immiscible fluids is one of the major 
factors governing LNAPL migration in unsaturated zones (Anderson, 
1987; Hassanizadeh and Gray, 1993). LNAPLs are the intermediate 
wetting phases among the three phases (air, water, and LNAPLs). 
Therefore, when the LNAPLs come into contact with air, the LNAPLs and 
air are treated as wetting and non-wetting fluids, respectively. Whereas, 
at the LNAPLs contacting with water, the LNAPLs and water are treated 
as non-wetting and wetting fluids, respectively. In the present study, the 
3-phase capillary pressures were calculated from Parker’s 3-phase 
function, which was derived to solve multi-phase organic contaminant 
transport in the unsaturated zone (Kaluarachchi and Parker, 1990; Wu 
and Forsyth, 2001). The capillary pressures were calculated at the in
terfaces between the air-LNAPLs (Pc,AL), LNAPLs-water (Pc,LW), and the 
water-air (Pc,WA). The mathematical function for 3-phase capillary 
pressures are presented in Table 1, where ρW is the water density 
dependent on subsurface pressure and temperature (Pruess and Battis
telli, 2002), and g is the gravitational acceleration (9.81 m/s2). The αAL, 
αLW, and n are empirically determined parameters, and Sm is the residual 
wetting phase (water) saturation. Finally, SW and SL represent the 
saturation of water and LNAPLs, respectively. 

While groundwater, LNAPLs, and air concurrently migrate through 
porous media, their movements are restricted according to variability in 
relative permeability; consequently, the average velocities of the three 
competing fluids decrease (Alizadeh and Piri, 2014; Bradford et al., 
1997). In this study, the 3-phase relative permeabilities (kr) were 
calculated from the Stone I model, which is commonly used for 
water-wet porous media (Baker, 1988; Blunt, 2000; Stone, 1970). In the 
Stone I model, the relative permeabilities of air (kA

r ), water (kW
r ) and 

LNAPLs (kL
r ) are functions of the relative saturation of each fluid phase, 

as shown in Table 1. Here, SA, SW, and SL are the saturation of air, water, 
and LNAPLs, respectively. In addition, SAr, SWr, and SLr representing 
residual saturations of air, water, and LNAPLs, respectively, were 

obtained from Erning et al. (2009), Juanes (2003), and Pruess (2003), 
respectively. Finally, n is an adjustable fitting parameter. 

In addition to both capillary pressure and relative permeability, ac
curate prediction of LNAPL migration in the subsurface requires the 
computation of thermophysical properties in individual BTEX compo
nent and their mixtures. Hence, phase transfers (volatilization, 
condensation, and dissolution of BTEX), which are dependent on vapor 
pressure, water solubility, and Henry’s constant, were accounted for at 
the designated temperature, pressure, and chemical compositions 
(Table 2). Corresponding computations are referred to Pruess and Bat
tistelli (2002), and Reid et al. (1987). 

3. Workflow 

The workflow followed the 4 steps: (1) sampling, (2) development of 
full-physics numerical model-based surrogate model, (3) global sensi
tivity analysis, and (4) Monte Carlo prediction. 

3.1. Sampling and development of surrogate polynomial chaos expansion 
model 

Latin Hypercube (LH) sampling is a common space-filling method that 
enables uniform sampling with reasonable computational costs (Viana, 
2013). In multi-dimensions, the sampling method searches the sampling 
points (p) within orthogonal grids where each non-overlapped set of 
rows and columns satisfied the space-filling property. The sampled 
combination of n number of input factors (x = [x1,x2,…, xn]) and cor
responding response (Y) computed from the full-physics numerical 

Table 1 
Two Empirical Functions for Multi-phase Flow System.  

Model Functions and constant parameters 

Capillary pressure (Lenhard and Parker, 1987) Functions 

Pc, AL = −
ρWg
αAL

[
(SLiq)

−
1
m − 1

]
1
n 

Pc, LW = −
ρWg
αLW

[
(SW)

−
1
m − 1

]1
n 

Pc,WA = Pc,LW − Pc,AL 

SLiq =
SW + SL − Sm

1 − Sm 

SW =
SW − Sm

1 − Sm
; m = 1 −

1
n 

Parameters 
n = 1.84 Sm= 0.2 αLW= 10 αAL = 11 

Relative permeability (Stone, 1970) Functions 

kA
r =

[SA − SAr

1 − SWr

]n 

kW
r =

[SW − SWr

1 − SWr

]n 

kL
r =

[ 1 − SA − SW − SLr

1 − SA − SWr − SLr

][
1 − SWr − SLr

1 − SW − SLr

][
(1 − SA − SWr − SLr)(1 − SW)

(1 − SWr)

]n 

Parameters 
n = 3.0 SWr = 0.2 SAr = 0.01 SLr = 0.05  

Table 2 
Calculated Thermodynamic Properties of BTEX Components.  

Properties Benzene Toluene Ethlybenzene Xylene-p 

Density (g/cm3, 20 ◦C) 0.88 0.87 0.87 0.86 
Molecular weight (g/ 

mol) 
78.114 92.141 106.168 106.168 

Boiling Point ( ◦C) 80.0 110.6 136.1 138.3 
Saturated Vapor 

Pressure (Pa, 25 ◦C) 
12,523.50 3788.51 1277.48 1169.47 

Water Solubility (g/L) 0.411 0.101 0.026 0.030 
Henry Constant 

(atmm3/mole) 
5.55 ×
10−3 

6.64 ×
10−3 

7.88 × 10−3 5.18 ×
10−3 

Viscosity (cP, 25 ◦C) 0.61 0.55 0.64 0.61  
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LNAPL model composes the training dataset used to build a surrogate 
model. From x and Y, the surrogate polynomial chaos expansion (PCE) 
model can be established following Blatman and Sudret (2008): 

Y = M(x) =
∑

α∈Nn

λαΨα(x) (1)  

where λα is the deterministic chaos expansion coefficient, and Ψα(x) is 
the multivariate orthonormal basis polynomial. Assuming the indepen
dence between the input factors in x, the Ψα(x) is established by the 
multiplication of univariate polynomials of each input factor (xi), 

Ψα(x) =
∏n

i=1
ψαi

(xi) (2)  

where each ψαi 
is the univariate polynomial of degree αi with respect to 

the ith input factor. The type of the ψαi 
is selected based on the type of 

probability density function (PDF) of xi. Considering the uniform and 
Gaussian PDFs, the ψαi

(xi) are selected to normalized Legendre and 
Hermitian polynomials, respectively (Xiu, 2010). Because the input 
factors employed in this study were all assumed to be uniform distri
bution, the type of the univariate polynomial (ψαi

(xi)) was regarded as 
the Legendre polynomial. 

For the practical computation of the targeted PCE from the Legendre 
polynomials of x, which was linearly transformed into [ − 1, 1]n, M(x)

would be truncated up to the total degree of the Ψα(x), ω: 

M(x) ≅ MT(x) =
∑

α∈An,ω
λαΨα(x), x ∼ u([−1, 1]

n
) (3)  

where the truncated PCE, MT(x), is then remained as the finite terms 
corresponding to subsets of An, ω, which refers to the truncation set, 
satisfying |α|=

∑n
i=1αi ≤ ω. To compute the designated number of 

Legendre polynomials (Ψα(x)) and the corresponding chaos expansion 
coefficients (λα) in An,ω, the cardinality of An,ω should be determined to 
be P (= (n + ω)!/n!ω!). Here, n and ω represent the number of input 
factors and the total degree of the Ψα(x), respectively. After determining 
multivariate basis polynomials (Ψα(x)), λα can be calculated through 
either intrusive or non-intrusive schemes (Song et al., 2019). In the 
present study, least-squares minimization (LSM) in the non-intrusive 
scheme is utilized to calculate λα. Here, to achieve the λα accurately, 
the number of sampling points (p) from the LH sampling should be 
greater than P (Blatman and Sudret, 2008, 2010b). 

3.2. Global sensitivity analysis 

The Sobol global sensitivity analysis is a type of variance-based 
sensitivity analysis, which is applicable when the input variables are 
independent. The Sobol scheme practically results in quantified sensi
tivity indicators, Sobol indices, from the Monte Carlo simulation. Blat
man and Sudret (2010a) and Sudret (2008) provided a method for the 
straightforward computation of Sobol indices from the PCE. This 
approach significantly reduces the computational cost to calculate the 
Sobol indices, requiring 2 to 3 orders of magnitude fewer simulations 
than the Monte Carlo simulation. 

For the PCE of the multivariate Legendre polynomials, Eq. (3) can be 
expressed as: 

Y = f (X) ≅ MT (X) =
∑P−1

j=0
λjΨj(X), X ∼ u([−1, 1]

n
]). (4) 

The mean and variance of the PCE were computed based on the 
orthogonality of the basis polynomial as follows: 

Y = E[f (X)] = λo (5)  

VPCE = Var

[
∑P−1

j=0
λjΨj(X)

]

=
∑P−1

j=0
λ2

j E
[
Ψ2

j (X)
]

(6) 

Eq. (4) can be expanded by Sobol decomposition after derivation 
(Sudret, 2008), as shown below: 

f (X) ≅ MT (x)

= λ0

+
∑n

i=1

∑

α∈hi

λαΨα(xi)

+
∑

1≤i1<i2≤n

∑

α∈hi1 ,i2

λαΨα(xi1 , xi2 )

+⋯
∑

1≤i1<⋯<iS≤n

∑

α∈hi1 ,i2 ,…,is

λαΨα(xi1 , …, xiS ) + ⋯

+
∑

α∈hi1 ,i2…,n
λαΨα(x1, …, xn).

(7)  

where each summand 
∑

α∈hi1 ,…,iS
λαΨα(xi1 ,…,xiS ) are orthogonal polynomials 

produced by xi1 , …, xis , and hi1 ,…,is is the set in α, which indicates that 
only the xi1 , …, xis are involved in the summand. As a result of squaring 
both the left and right sides of Eq. (7), the Sobol indices combined with 
the PCE (SIi1 , …, is ) for any hi1 ,…,is can be obtained as the proportion of the 
partial variance to the total variance: 

SIi1 ,…,iS =
∑

α∈hi1 ,…,iS

λ2
αE

[
Ψ2

α
] /

VPCE (8) 

Typically, two types of Sobol indices are used: the Sobol 1st-order 

indices 

(

SI1St

i1 =
∑

α∈hi1
λ2

αE[Ψ2
α] /VPCE

)

capable of showing the only influ

ence of each independent variable on output and the Sobol total-order 
indices (SIT

i1 =
∑

i1⊂(i1 , …, is)

SIi1 , …, is ) considering additional effects by the 

interactions of the independent variables. 

4. Results 

4.1. Full-physics numerical LNAPLs transport model: base-case 

4.1.1. Spatiotemporal distribution of air, LNAPLs, and water 
Simulation results for phase saturation (SL, SA, and SW) at the end of 

2nd (t=5 years), 3rd (t=7 years), and 4th (t=7.5 years) stages are shown 
in Fig. 3. The sources for spilling LNAPLs are marked as a red circle, and 
the white line represents the groundwater table. 

During the 2nd stage (LNAPL-spilling stage), LNAPLs migrated 
downward through the unsaturated zone until they reached the capillary 
fringe above the groundwater table (Fig. 3a). The LNAPL plume in the 
unsaturated zone expanded symmetrically, owing to the homogeneous 
permeability and dispersion; the average SL in the unsaturated zone was 
0.11. The corresponding SA and SW were concurrently changed to 0.65 
and 0.24, respectively (Fig. 3b and 3c). Since SA and SW were 0.75 and 
0.25 before LNAPLs spill, changes in SA during the 2nd stage indicated 
that the spilled LNAPLs primarily displaced the low-viscosity air in the 
pore space. Immediately above the groundwater table, the LNAPLs 
accumulated in the capillary fringe; the capillary fringe served as a 
primary flow path that allowed the LNAPLs to spread horizontally 
(Mayer, 2005). In the model, before the LNAPLs spill, the thickness of 
the capillary fringe was approximately 3 m with associated SA and SW of 
0.45 and 0.55, respectively (Fig. 3b and 3c). Once the LNAPL plume 
reached the capillary fringe, it primarily displaced low-viscosity air; the 
SL increased from 0 to 0.45 (Fig. 3a) while SA decreased from 0.45 to 
almost 0.0 (Fig. 3b). Additionally, due to the difference in both density 
and wettability between LNAPLs and groundwater, the downward 
movement of LNAPLs below the groundwater table was hindered. 
Instead, the LNAPLs migrated approximately 9 m along the sloping 
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groundwater table. Finally, owing to the counter buoyancy force acting 
on the LNAPL plume, the groundwater table was suppressed approxi
mately 1.5 m, and consequently, the capillary fringe was thickened. 

During the 3rd stage (natural redistribution stage), SL in the unsat
urated zone uniformly dropped to 0.052 close to the assigned SLr(=0.05) 
(Table 1). The corresponding kL

r calculated from the Stone I model was 
almost 0, indicating that most LNAPLs remained as the residually trap
ped phase in the unsaturated zone (Fig. 3d). Above the groundwater 
table, the mobile LNAPLs continuously accumulated, while the LNAPL 
plume spread horizontally above the sloping groundwater table. At the 
end of the 3rd stage, the maximum SL of the floating LNAPL plume 
increased to 0.462. In addition, SA in the unsaturated zone nearly 
returned to the initial saturation because the air re-filled pore spaces 
where movable LNAPLs were left (Fig. 3e). 

Finally, the SL, SA, and SW are depicted at the end of the 4th stage 
(remediation stage) where the remediation scheme was implemented 
(Fig. 3g, 3h, and 3i). As mentioned in Section 2.1.2, two remediation 
wells including steam injection (SI) and multi-phase extraction (MPE) 
wells, were operated; the screen depths of each well are highlighted in 
red and blue boxes, respectively. At the end of the remediation stage, the 
SL of the floating LNAPL plume rapidly decreased to 0.22, mainly due to 
extraction of the movable LNAPLs and phase transfer from liquid 
LNAPLs to volatilized LNAPLs by high-temperature steam injection 

(Fig. 3g). The pressure gradient induced by the MPE well aided to extract 
low-viscosity volatilized LNAPLs. Additionally, the pressure gradient 
induced by the two remediation wells distorted the capillary fringe. For 
instance, adjacent to the SI well, a hole, where SA was increased to 0.69 
due to both volatilized LNAPLs and injected steam, was developed 
(Fig. 3h). In the unsaturated zone, the simultaneous operation of the two 
remediation wells was able to remove trapped LNAPLs; SL was decreased 
to below 0.05 (Fig. 3g). At the bottom of the MPE well, both SL and SW 
increased, indicating that both LNAPLs and groundwater were effec
tively extracted by the MPE well (Fig. 3g and 3i). 

4.1.2. BTEX in air, LNAPLs, and water phases 
The distributions of BTEX (benzene, toluene, ethylbenzene, and 

xylene-p) at the end of the 3rd stage were delineated to elucidate the 
different behaviors of the spilled BTEX in the subsurface, based on their 
thermophysical properties (Fig. 4). XL, XA, and XW represent the mole 
fraction of BTEX existing in LNAPLs, air, and water, respectively. 

In the LNAPL phase, the BTEX components were evenly distributed, 
although their average XL values were different due to the difference in 
molar mass (Fig. 4a). The XL of BTEX were 0.3 0.25, 0.22, and 0.22, 
respectively. The mole fractions of BTEX in the air phase are delineated 
in Fig. 4b, which reveals a clear difference depending on the volatili
zation of BTEX. The degree of BTEX volatilization was related to the 

Fig. 3. (a) SL, (b) SA, and (c) SW at the end of the 2nd stage (5 years). (d) SL, (e) SA, and (f) SW at the end of the 3rd stage (7 years). (g) SL, (h) SA, and (i) SW at the end 
of the 4th stage (7.5 years). The white lines indicate the groundwater table. 
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saturated vapor pressure (Table 2). Benzene characterizing the largest 
saturated vapor pressure (12,523.50 Pa) showed the maximum XA 
(0.0372) which was 8.5 times greater than that of xylene-p (0.00436) 
having the lowest saturated vapor pressure (1169.47 Pa). Additionally, 
benzene, which had the largest solubility (0.411 g/L) among the BTEX, 
showed the maximum XW of 1.24 × 10−4 (Fig. 4c). In summary, among 
BTEX, Benzene was the dominant contaminant due to its high saturated 
vapor pressure and water solubility. 

4.1.3. Removal efficiency of LNAPLs 
The BTEX distribution at the end of the 4th stage (remediation stage) 

after 7.5 years is shown in Fig. 5. At the end of the remediation stage, the 
XL of benzene was the lowest (0.301) among the BTEX components, 
indicating that the largest amount of removed components was benzene 
(Fig. 5a). The largest removal of benzene was due to effective phase 
transfer of benzene from liquid LNAPLs to volatilized LNAPLs, 

responding to steam injection by the SI well. The temperature of the 
injected steam was approximately 100 ◦C and the boiling temperature of 
benzene was 80 ◦C, whereas those for other components were over 
100 ◦C (Table 2). The results of such active volatilization in benzene 
were shown as the largest XA among the BTEX components (Fig. 5b); the 
maximum XA of benzene after the remediation was 0.31, while the 
average XA of other components remained at low quantities (T: 0.11; E: 
0.08 and X: 0.08) (Fig. 5b). The increased XA of benzene accelerated the 
benzene transport to the MPE well, by reducing the viscosity and 
increasing the relative permeability. In contrast to XA of benzene, XW of 
benzene was not significantly reduced by the remediation (Fig. 5c). This 
was due to the relatively small viscosity and small relative permeability 
of water. At the unsaturated zone, water was residually trapped in the 
pores, and BTEX components dissolved in such residual water could not 
be extracted by the MPE well. 

To evaluate the removal efficiency (RE), a mass of component Z in 

Fig. 4. Distribution of BTEX mole fractions existing in (a) LNAPLs phase (XL), (b) air phase (XA), and (c) water phase (XW) at the end of the 3rd stage (7 years).  

Fig. 5. Distribution of BTEX mole fractions existing in (a) LNAPLs phase (XL), (b) air phase (XA), and (c) water phase (XW) at the end of the 4th stage (7.5 years).  
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phase P (Z
PM) before and after remediation (at the end of the 3rd and 4th 

stage) was calculated. The RE (Z
PRE = 1 − Z

PM4th
/Z

PM3nd ) was then defined, 
and the REs of individual components (B, T, E, and X) in LNAPLs, air, 
and water phases were calculated (bar graph in Fig. 6). Additionally, the 
REs (Z

TRE = 1 − Z
TM4th

/Z
TM3nd ) of individual components (B, T, E, and X) 

in the total (LNAPLs+air+water) phase were delineated (red circle in 
Fig. 6). 

The REs of BTEX components between the LNAPL (B
L RE, T

L RE, E
LRE, 

and X
L RE) and total (B

TRE, T
TRE, E

TRE, and X
TRE) phases were nearly the 

same, with values of approximately 0.23, 0.13, 0.06, and 0.06, respec
tively (Fig. 6a). This indicated that the BTEX primarily existed as the 
LNAPL phase, although phase transfer to air and water had occurred. 
The removed masses of BTEX in the LNAPL phase are proportional to 
their volatilities (Table 2); here, benzene showed the largest volatility. 
As more benzene changed to the air phase, the mobility of benzene in the 
air phase was enhanced. Then, the MPE well accelerated the removal 
rate of benzene in the air phase. Consequently, the BARE (0.4) exceeded 
B
TRE (0.23). Nevertheless, T

ARE (−0.08), E
ARE (−0.84), and X

ARE (−0.97) 
showed negative values, indicating that lower volatile components were 
not efficiently removed by the MPE well after they had been volatilized. 
(Fig. 6b). The removal efficiencies of benzene, toluene, ethylbenzene, 
and xylene-p in the water phase (B

WRE, T
WRE, E

WRE, and X
WRE) showed 

the smallest deviation from 0 (Fig. 6c). Benzene and toluene with high 
solubility specifically showed positive B

WRE (0.14) and T
WRE (0.01), 

respectively but ethylbenzene and xylene-p with low solubility showed 
negative EWRE (−0.14) and XWRE (−0.17), respectively. In summary, the 
components showing effective phase change represented high removal 
efficiency. 

4.2. Surrogate polynomial chaos expansion LNAPLs models 

4.2.1. 4 cases: permeability and the location of steam injection wells 
Including base-case (Case I), three additional cases were designed to 

evaluate the effect of permeability (k) and the location of the steam 
injection (SI) well (Table 3). In Case II, kx(=4.0 × 10−13 m2) and kz 
(=1.0 × 10−13 m2) was equal to Case I, but the location of the SI well was 
shifted to the right of the MPE well (Fig. 7a and 7b). At both Case I and II 
represented by high k, LNAPL plumes spread widely above the 
groundwater table while residually trapped LNAPLs remained in the 
unsaturated zone. The REs of total phase BTEX (B

TRE, T
TRE, E

TRE,

and X
TRE) for Case I were similar to those for Case II, indicating that the 

relative location of SI to the MPE well did not influence a degree of 
remediation efficiency much (Fig. 7e and 7f); the BTRE (0.25 and 0.20), 
T
TRE (0.13 and 0.10), ETRE (0.04 and 0.04), and XTRE (0.04 and 0.04) were 
predicted at Case I and II, respectively. 

For Case III and IV, both kx and kz decreased 10 times to 4.0 × 10−14 

m2 and 1.0 × 10−14 while relative locations of the SI well were equal to 
one for Case I and II, respectively (Fig. 7c and 7d). A decrease in k caused 
local accumulation of the LNAPL plume with preventing horizontal 
expansion. The small and concentrated LNAPL plume caused less con
tact with the surrounding air, and thus, the amount of volatilized 
LNAPLs decreased. Additionally, decreased mobility of LNAPLs due to 
low k let more LNAPLs remain in the unsaturated zone and impeded 
LNAPL migration to the MPE well, causing a decrease in BTRE, T

TRE (Case 
III and IV in Fig. 7g and 7h). 

4.2.2. Input factors and responses for assessing removal efficiency of 
LNAPLs 

For each of the 4 cases, the 6 input factors governing the effective
ness of the remediation wells were selected (Table 3): the screen depths 
of both the MPE and SI wells (x1 and x2), the lateral distance between the 
MPE and SI wells (x3), the BHP of the MPE well (x4), and the injection 
rate (x5), and the temperature of the SI well (x6). The 6 input factors 
were acknowledged as influencing factors governing the removal effi
ciency of LNAPLs (McCray and Falta, 1997; Robin and Gillham, 1987; 
Rogers and Ong, 2000). These input factors were assumed to have a 
uniform distribution, with minimum and maximum limits (Table 3). 
Within these ranges, the sampling points representing the different 
combinations of input factors were selected through LH sampling. For 
example, the x1 and x2 were selected within the vertical sky-blue and red 

Fig. 6. Bar graphs indicate removal efficiencies of BTEX existing in (a) LNAPLs, (b) air, and (c) water phase, respectively. The red symbols denote the total removal 
efficiency for BTEX. 

Table 3 
Four Cases and Six Input Factors.  

Case Permeability 
(m2) 

Lateral 
distance from 
Source to SI 
well (m) 

Input factors Min Max 

Case I 
(Base 
case) 

4 × 10−13 0 x1: Screen depth 
of MPE well (m) 

16 24 

x2: Screen depth 
of SI well (m) 

18 27 

Case II 4 × 10−13 10 x3: Distance of 
MPE well from SI 
well (m) 

0 10 

Case III 4 × 10−14 0 x4: Bottom-hole 
pressure of MPE 
well (Pa) 

7 ×
104 

9 ×
104 

x5: Steam 
injection rate 
from SI well (kg/ 
s) 

2 ×
10−4 

1 ×
10−3 

Case IV 4 × 10−14 10 x6: Steam 
temperature ( ◦C) 

100 150  
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scale lines represented in Fig. 7, respectively. Finally, a single sampling 
point determined a single configuration of wells. In each case, a total of 
150 points were sampled (600 points in 4 cases). Based on LH sampling 
points, a total of 600 full-physics numerical LNAPL transport models 
were conducted to obtain responses. The responses were the removal 
efficiencies of the total sum of BTEX (BTEX

T RE = 1 − BTEX
T M4th 

/BTEX
T M3nd ) 

calculated at the end of 4th stage (7.5 years). Then, both input factors 
and responses served as the training dataset in developing the surrogate 
polynomial chaos expansion (PCE) models of 4 cases. 

4.2.3. Development of surrogate pce model, validation, and test 
PCE models predicting BTEX

T RE were developed using the following 
procedure. With a given training dataset (e.g. a combination of the 6 
input factors and the responses), multi-variate basis functions (Ψα) for 
the PCE models were developed. Preliminary PCE models were then 
developed by evaluating the determination of the coefficients (λα) which 
were calculated from the least square minimization (LSM) method. 
However, the preliminary PCE models based on LSM may preserve un
necessary complexities and overfitting problems (Blatman and Sudret, 
2010b). To overcome these problems, the preliminary PCE models were 
improved through the validation process; both an adaptive-sparse al
gorithm with the least angle regression and a leave-one-out (LOO) 
cross-validation algorithm were used for the validation. 

The adaptive-sparse algorithm is a step-wise procedure that reduces 
the complexity of the PCE model by eliminating the insignificant Ψα 
among the total P number of Ψα (Blatman and Sudret, 2011); the total P 
(P = (n + ω)!/n!ω!) number of Ψα was 210 (n=6 and ω=4), 210 (n=6 and 
ω=4), 210 (n=6 and ω=4), and 84 (n=6 and ω=3) in Case I, II, III, and 
IV, respectively. After applying the advanced adaptive-sparse method 
with the least angle regression, the total P number of Ψα in preliminary 
PCE models decreased to 29, 30, 53, and 14 in Case I, II, III, and IV. Once 
the PCE models were streamlined, the deterministic chaos expansion 
coefficients (λα) were subsequently modified to solve the overfitting 
problem, by minimizing the LOO error (εLOO) (Blatman, 2009): 

εLOO =

∑N
i=1

(
M

(
x(i)

)
− MPC\i(x(i)

))2

∑N
i=1(M(x(i)) − μ̂Y )

2 (9)  

where N is the number of the training dataset (N=150), M(x(i)) is the ith 

response calculated from a sparse PCE model developed by N training 
data, MPC\i(x(i)) is the ith response of a sparse PCE model, but the model 
derived from N − 1 training data by excluding the ith training data, and 
μ̂Y is the mean of the N responses. Finally, the optimal εLOO values of the 
sparse PCE models were calculated to be 0.036, 0.044, 0.029, and 0.066 
in Case I, II, III, and IV, respectively. Once the optimal εLOOwas calcu
lated, the corresponding λα values were selected to determine validated 
PCE models. 

In Fig. 8, the BTEX
T RE calculated from both the validated PCE models 

and the full-physics numerical LNAPLs transport models are plotted for 
Cases I, II, III, and IV; here, 150 yellow circles and 50 green triangles 
indicate the training and test data, respectively. In each case, the vali
dated PCE models developed using 150 training data were tested with 
50 test data, which were randomly chosen by the LH sampling. Using 50 
test data, the determination coefficient (R2) and normalized root mean 
squared error (NRMSE) were calculated to investigate the predictability 
of the validated PCE models. The predictability of the validated PCE 
models was the highest in Case IV (Fig. 8d); R2

Test and NRMSEtest were 
0.930 and 0.067, respectively. Even for Case II showing the lowest 
predictability (Fig. 8b), the predictability was still acceptable (R2

Test: 
0.889 and NRMSEtest: 0.11), ensuring that the validated PCE models 
were capable of substituting the responses of the full-physics numerical 
LNAPLs transport models. 

Interestingly, both training and test datasets were distributed 
differently depending on the magnitude of permeability (k), indicating 
that even small differences in k significantly influenced BTEX

T RE. At high k 
values (Cases I and II), both training and test datasets were widely 
distributed between 0 and 0.55 (Fig. 8a and b), and the widely distrib
uted BTEX

T RE indicates that the BTEX
T RE was sensitive to remediation 

conditions represented by 6 input factors. Dependent on suitable com
binations of 6 input factors, the BTEX

T RE could be maximized. In contrast, 

Fig. 7. The SL distribution of the representative model of (a) Case I, (b) Case II, (c) Case III, and (d) Case IV. Case I and II representing high permeability (k = 4 ×
10−13 m2) showed the thin and wide spread of the LNAPLs plume above the groundwater table (white line). Case III and Case IV representing low k (k = 4 × 10−14 

m2) showed concentrated distribution beneath the LNAPLs source (white circle). The shaded area represents the possible horizontal location of the MPE well, 
determining the x3. Corresponding removal efficiency for total phase BTEX was plotted in (e) Case I, (f) Case II, (g) Case III, and (h) Case IV. 
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at low k (Cases III and IV), most of the training and test data were leaned 
to the 0 (small BTEX

T RE), denoting that BTEX
T RE cannot be improved 

significantly by the choice of the 6 input factors. In Fig. 7, the distri
bution of the LNAPL plume at both high k and low k is shown. At high k, 
the LNAPL plume spread widely over the groundwater table and even 
migrated far from both MPE and SI well (Fig. 7a and b). Nevertheless, 
BTEX
T RE could be maximized dependent on the choice of 6 input factors 
(Fig. 8a and b). This is because the LNAPLs can be more easily mobilized 
by remediation wells when k is high. At low k, however, although the 
LNAPL plume was located close to both the MPE and SI well (Fig. 7c and 
d), the overall BTEX

T RE was still small because the high pumping rate of 
the MPE well did not improve the mobility of the LNAPLs (Fig. 8c and d). 
Such a difference in BTEX

T RE implies that the influence of k on the 
remediation of the LNAPL plume presumably prevails over any 6 input 
factors. Therefore, at contamination sites with extremely small k (e.g., 
clay-dominant or fractured rock sites), changes in 6 input factors may 
not be able to improve BTEX

T RE, significantly. 

4.3. Analysis using surrogate pce models 

4.3.1. Sobol global sensitivity analysis 
Using the validated PCE models, the influence of the input factors 

(x1, x2, x3, x4, x5, and x6) on the BTEX
T RE were assessed through Sobol 

global sensitivity analysis (Case I in Fig. 9a, Case II in Fig. 9b, Case III in 
Fig. 9c, and Case IV in Fig. 9d). For each case, the Sobol total (T)- and 
first (1st)-order indices were calculated with 150 realizations of the PCE 
model, whereas they would be yielded by more than 104 realizations 
with a common Monte Carlo simulation (Sudret, 2008). Sobol T indices 
(blue bar), which include the effect of intercorrelation between the input 
factors, are always greater than Sobol 1st indices (purple bar). 

Similar to Fig. 8, the Sobol sensitivity analyses revealed differences 
primarily dependent on k. At high k, Sobol T and 1st indices for x1 were 
dominant, indicating that the BTEX

T RE was largely influenced by the x1 
(Fig. 9a and b); the Sobol T and 1st indices were 0.84 and 0.80 for Case I 
and 0.86 and 0.81 for Case II, respectively. The thickness of the LNAPL 
plume is thin and widely spread over the groundwater table at high k; 
thus, BTEX

T RE was highly influenced by the choice of screen depth in the 

Fig. 8. The removal efficiency calculated from surrogate PCE model (x-axis) and numerical full-physics (FP) numerical model (y-axis) were plotted in 1:1 graph for 
(a) Case I, (b) Case II, (c) Case III, and (d) Case IV. Orange-dotted lines indicate 95% confidence intervals. 
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MPE well. The 2nd influential factor was x4; the Sobol T and 1st indices 
were 0.14 and 0.11 for Case I, and 0.14 and 0.10 for Case II, respectively. 
Even though the values for x4 are significantly smaller than those for x1, 
their influences are still superior to the other input factors. This indicates 
that sufficient pressure gradient generated by the MPE well effectively 
enhances the BTEX

T RE at high k. Finally, the Sobol indices of the other 
input factors (x2, x3, x5, x6) related to the SI well were nearly zero. 

At low k, the most sensitive factor was x1 identical to high k, 
although the influence of x1 was decreased compared to Cases I and II. 
The Sobol T and 1st indices of the x1 were 0.54 and 0.40 for Case III, and 
0.63 and 0.44 for Case IV, respectively (Fig. 9c and d). The difference 
between the Sobol T and 1st indices increased, indicating that the 
interaction between x1 and the other factors (e.g. steam injection rate) 
became more important at low k. The 2nd influential factor was x3. The 
Sobol T and 1st indices of the x3 were 0.38 and 0.25 for Case III, and 0.45 
and 0.25 for Case IV, respectively. At low k, the spreading of the LNAPL 
plume was constrained, and consequently, the horizontal location and 
vertical depth of the MPE well became influential. Additionally, the 
influence of other input factors (x2 and x5) related to the SI wells 
increased. These results suggest that steam injection would be more 
effective for LNAPL remediation at the low k site. Finally, the change in 
x6 within the designated range (i.e., 100–150 ◦C) did not affect the 

BTEX
T RE, indicating that steam temperature above 100 ◦C is not cost- 
effective for remediating the BTEX. 

4.3.2. Predicting LNAPLs remediation efficiency 
The influences of 6 input factors on BTEX

T RE was comprehensively 
quantified using the validated PCE models. A randomly generated 6 
input factors determined a single prediction of BTEX

T RE through the PCE 
model, and 105 Monte Carlo implementations revealed density plots of 6 
input factors relating to empirical probability density functions of 
BTEX
T RE (Fig. 10). The 6 density plots showing the correlation between 6 
input factors (along the x-axis) and BTEX

T RE (on the y-axis) are depicted 
for the 4 cases. The solid lines represent the linear fitting curves. 
Additionally, histograms and box-whisker diagrams were plotted to 
show the statistical distribution of BTEX

T RE. 
Similar to Sobol global sensitivity, the PCE-based Monte Carlo pre

diction also differed significantly depending on the magnitude of k 
(Cases I and II vs. Cases III and IV). At high k (Cases I and II), the slopes of 
the fitting curves for the screen depth of the MPE well (x1) were the 
steepest, confirming that x1 had a strong effect on BTEX

T RE (Fig. 10a and 
b). Interestingly, the bimodal distribution for x1, which is distinguished 
by the depth of the groundwater table, was shown. When the MPE well 

Fig. 9. Sobol total- and 1st-order indices for (a) Case I, (b) Case II, (c) Case III, and (d) Case IV.  
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was installed above the groundwater table (21.5 m), the average BTEX
T RE 

was approximately 0.15. However, the BTEX
T RE dramatically increased to 

over 0.4 when x1 was slightly below the groundwater table; the BTEX
T RE 

was maximized approximately 1.5 m below the groundwater table. This 
is attributed to the characteristic of LNAPLs floating above the 
groundwater table. When the MPE well was installed in the unsaturated 
zone, gaseous LNAPLs volatilized by steam injection were only removed. 
However, when the MPE well was located below the groundwater table, 
both liquid LNAPLs and LNAPLs dissolved in groundwater were 
removed effectively (Qi et al., 2020). In addition, the hydraulic head 
gradient developed by remediation wells accelerated the migration of 
the LNAPLs to the MPE well (Simon et al., 1999). Different from x1, the 
screen depth of the SI well (x2) did not influence BTEX

T RE significantly; the 
BTEX
T RE slightly improved as x2 was shallow. The distance between the 
MPE well and SI well (x3) showed opposite slopes in Cases I and II 
because of the opposite direction of the LNAPL source (Fig. 7a and b); 
the BTEX

T RE increased as x3 was close to the LNAPL source. The 2nd 
largest input factor was the BHP of the MPE well (x4). As x4 approached 
the low limit (7 × 104 Pa), the average BTEX

T RE increased. The effect of 
both the steam injection rate (x5) and steam temperature (x6) was 
insignificant for LNAPL removal. Finally, the histogram of BTEX

T RE 
featured two peaks (high BTEX

T RE and low BTEX
T RE), primarily split by the 

depth of the groundwater table. 
At low k, the influence of x1 was weaker than that of high k (Fig. 10c 

and d), but its influence was still the largest among the 6 input factors. 
Similar to high k, BTEX

T RE increased when x1 was located below the 
groundwater table. The x3 was the 2nd important input factor; as x3 was 
far from the LNAPLs source, the BTEX

T RE approached zero. This indicates 
that the distance between the LNAPL source and remediation wells is 
critical at the low k field where LNAPLs migration is hindered. While the 
influence of x3 became significant, the effect of x4 decreased at low k. 
The effect of both x5 and x6 was small, similar to that for high k. Overall, 
at low k, the BTEX

T RE were significantly smaller than high k, which is also 
reflected in the histograms and the box-whisker plots. This implies that 
the optimum choice of 6 input factors is more important for the high k. 

5. Implications and limitations of PCE models 

In this study, four surrogate PCE models accounting for LNAPLs 
remediation efficiency were developed for different conceptual cases 
(Case I, II, III, and IV). For each case, the number of training datasets to 
develop the PCE models was 150. However, the application of advanced 
adaptive-sparse PCE algorithm could substantially reduce the required 
number of the dataset by eliminating the non-influential interaction 
terms (Blatman and Sudret, 2011). Such computational advantages by 
reducing the number of training datasets would allow for developing 
surrogate PCE models representing more complex 3D heterogeneity 
numerical models with realistic geostructures and a large number of 
input factors such as hydrogeologic properties (e.g. permeability, 
porosity, water saturation), soil properties (e.g. particle-size distribution 
and capillary pressure), or geochemical properties (e.g. biodegradation 
coefficient, absorption coefficient). Additional to computational bene
fits, the surrogate PCE model can analytically link to the global sensi
tivity analysis and then be easily interconnected with other quantitative 
analyses (Fajraoui et al., 2011). For example, the global sensitivity 
analysis in this study revealed a crucial feature in LNAPLs remediation 
that the installation depth of the MPE well dominantly affected LNAPLs 
remediation efficiency. Subsequent Monte Carlo prediction further 
revealed the optimum depth of the MPE well that also supported the 
results obtained by numerical simulations in other previous studies (Qi 
et al., 2020). 

Despite the aforementioned advantages of surrogate PCE models in 
LNAPLs remediation, researchers should be aware that the surrogate 
PCE model can not be a general or ultimate solution to interpret the 
LNAPLs transport behavior in the subsurface. Firstly, the surrogate PCE 
model developed is valid only in the conceptual model domain repre
sented by numerical simulation. In the study, the numerical model was 
2D and homogeneous. Thus, the surrogate PCE model should be 
reevaluated if researchers wish to investigate heterogeneous subsurface 
systems, 3D LNAPLs transport, or different target contaminants. Sec
ondly, the surrogate PCE model solely depends on the internal compu
tation results of the full-physics numerical LNAPLs transport model. Due 
to this reason, the choice of different numerical simulators may produce 
different PCE results. Accordingly, utilizing a more accurate and 

Fig. 10. The density plots were obtained by 105 implementations of the Monte-Carlo simulation based on the surrogate PCE models for (a) Case I, (b) Case II, (c) Case 
III, and (d) Case IV. In each density plot, predicted probabilistic distribution of the remediation efficiency according to the variation of the input factors were 
delineated. The statistical distributions were also provided as histograms and box-whisker plots at the rightmost of each figure. 
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effective surrogate PCE model should be accompanied by improvement 
of the underlying numerical model; For example, recent studies 
considered more realistic physical properties in simulating LNAPLs 
migration such as hysteresis effect of multi-phase fluids and also verified 
the LNAPLs model from the implementation of LNAPLs tank laboratory 
experiments (Pasha et al., 2014; Sookhak Lari et al., 2016). 

6. Conclusion 

Full-physics numerical simulations that honor multi-phase multi- 
component LNAPL transport and its remediation are challenging, pri
marily because of their extensive memory and CPU requirements. In 
addition to the complexities involved in geologic characterization and 
LNAPL transport, numerical simulations must be repeatedly performed 
to characterize uncertainties involved in input factors or to search for 
the optimum LNAPL removal efficiency. In this study, to overcome the 
challenges addressed in LNAPL transport and remediation, the surrogate 
PCE modeling technique was implemented in conjunction with the 
quantitative Sobol sensitivity analysis and Monte Carlo prediction. 

The proposed workflow involves forward full-physics numerical 
LNAPLs transport modeling that generates a training dataset, develop
ment of a PCE-based surrogate model, global sensitivity analysis, and 
Monte Carlo prediction. For the full-physics numerical modeling, the 
TOUGH2-TMVOC was employed to simulate multi-phase and multi- 
component LNAPL transport. The conceptual model delineated the 
scenarios of the LNAPL-spilling, natural distribution, and remediation 
stages. Here, LNAPLs were assumed to be a mixture of BTEX compo
nents, allowing mass transfer (e.g., vaporization, condensation, and 
dissolution) among individual components. Finally, the removal effi
ciency of LNAPLs was assessed by implementing MPE and SI wells. The 4 
cases, considering different permeabilities and locations of the SI well, 
were designed to develop PCE-based surrogate models. Within 4 cases, 6 
factors related to well configuration were varied to assess the removal 
efficiency of LNAPLs. 

By combining forward numerical modeling, global sensitivity ana
lyses, and Monte Carlo prediction, the governing factors improving the 
efficiency of LNAPL remediation were identified. First, the screen depth 
of the MPE well was the most important among 6 factors associated with 
well configuration regardless of field permeability or location of the SI 
well. Because the LNAPL plume floated within the narrow capillary 
fringe above the groundwater table, the maximum remediation effi
ciency was predicted when the depth of the MPE well was slightly (1.5 
m) below the groundwater table. Second, the permeability of contami
nated sites evidently influenced the remediation conditions. At high k, 
both the screen depth and BHP of the MPE well are important, but the 
influence of the BHP of the MPE well was diminished at low k. Instead, 
the distance between the MPE and SI wells became important. Finally, at 
high k, the MPE well itself was enough to remove the LNAPLs, and thus, 
the configuration of the SI well was not as important. However, at low k 
where the mobility of LNAPLs was small, the SI well improved the 
remediation efficiency by volatilizing liquid LNAPLs to gaseous LNAPLs. 

This study successfully demonstrated the capability of the PCE-based 
surrogate modeling for the quantitative analysis of LNAPL remediation, 
while overcoming the computational burden. In this study, the model 
was limited in 2D and homogeneous matrix to focus on the demon
stration of the proposed research framework. As a future direction, 
however, it is expected that one can easily extend the proposed meth
odology to 3D heterogeneous aquifers with a consideration of various 
input factors. When extending the framework, the following elements 
should be accounted for. Results of the surrogate PCE model are site- 
specific and are subject to the performance of the chosen numerical 
simulator. In addition, it is important to specify proper minimum and 
maximum limits, and probability distribution of input factors based on 
target scenarios, such as target contaminants or hydrogeologic charac
teristics of the area. 

Open research 

The numerical simulation data used for evaluation of LNAPLs 
remediation efficiencies for the base case (Case I) in the study are 
available in Zenodo via https://doi.org/10.5281/zenodo.5374335 
(Kim and Han, 2021) with restricted access conditions. 
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