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A multi-phase and multi-component numerical simulator assessed the removal efficiencies of light non-aqueous
phase liquid (LNAPL) consisting of benzene, toluene, ethylbenzene, and xylene-p. Scenarios of the LNAPL-
spilling, natural distribution, and remediation stages were designed in the full-physics numerical modeling.
For LNAPLs remediation, a multi-phase extraction (MPE) and a steam injection technique were employed. The
removal efficiencies of LNAPLs were computed by systematically varying 6 factors that determine the configu-
ration of the remediation wells. Then, surrogate polynomial chaos expansion (PCE) models mathematically
predicting the removal efficiencies were developed through 600 training datasets representing 4 scenario cases;
different permeability and the location of SI well were considered in the scenario cases. The PCE models were
utilized for Sobol global sensitivity analysis and stochastic Monte Carlo prediction. As a result, the depth of the
MPE well was identified as the most significant factor in determining the removal efficiency of the LNAPLs. The
removal efficiency was maximized when the MPE well was positioned 1.5 m below the groundwater table.
Additionally, the contributions of influencing factors were significantly changed by the field permeability. This
study proposed a general framework that efficiently predicts LNAPLs remediation efficiency and identifies key
influencing factors by combining advanced numerical modeling, PCE-based surrogate modeling, and sensitivity
analyses.

1. Introduction multiple components (BTEX) within LNAPLs (Adenekan et al., 1993).

Additionally, migration of LNAPLs reflects multi-phase transport within

Light non-aqueous phase liquids (LNAPLs) are typical contaminants
that originate from various anthropogenic sources such as oil storage
tanks, gas stations, transportation, and military camps (Essaid et al.,
2015; Huntley and Beckett, 2002; Oostrom et al., 2006). LNAPLs lighter
than water float above the groundwater table and extensively contam-
inate both soil and groundwater zones, when they spill into the sub-
surface. LNAPLs contain deleterious components including benzene,
toluene, ethylbenzene, and xylene-p (BTEX). These components can be
volatilized into the unsaturated zone and concurrently dissolved into the
groundwater while LNAPLs drifting above the groundwater table.
Therefore, the thermodynamic properties of LNAPLs that elucidate
comprehensive phase transfer (i.e., volatilization, condensation, and
dissolution) should properly be assessed. However, the assessment is
challenging due to discrepancies in thermodynamical behaviors of
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porous media, representing the coexistence of LNAPLs, air, and water. In
this complex transport system, both relative permeability and capillary
pressure must be evaluated (Brennen and Brennen, 2005; Oliveira and
Demond, 2003).

The complex dynamics of LNAPLs transport in the subsurface can be
elucidated by conducting numerical simulations. Over the past two de-
cades, many studies have attempted to predict the migration of spilled
LNAPLs via numerical simulations (Gupta et al., 2019, Kim and Cor-
apcioglu, 2003; Qi et al., 2020, Schroth et al., 1998, Wipfler et al., 2004).
Although such studies successfully investigated the multi-phase
behavior of LNAPLs, their approach limited LNAPLs as a single
component while LNAPLs are generally observed as a mixture of several
components (Essaid et al., 2015). Recently, Yang et al. (2017) simulated
multi-component LNAPLs transport to evaluate the removal ratio of
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BTEX through soil vapor extraction. The multi-phase multi-component
LNAPLs simulation could be further enhanced by accounting for hys-
teresis effects and 3-D heterogeneity in permeability (Sookhak Lari et al.,
2018). The results aided in simulating LNAPL transport realistically and
improved the assessment of LNAPLs removal efficiency. However, those
full-physics numerical modelings and subsequent analyses are not al-
ways viable; such complex numerical analyses require enormous CPU
time and memory spaces suited to supercomputing systems, which may
not be available to all users.

Data-driven surrogate modeling techniques have been suggested as
alternative options, to compensate for the difficulties caused by
complexity in numerical models and to manage consecutive post-
analyses with heavy iterative computations (Asher et al., 2015;
Razavi et al., 2012). The surrogate modeling technique generates an
empirical formula from several pairs of given input and output datasets
predicted from complex numerical models. The application of the for-
mula is limited to the designed model domain (or site-specific) repre-
sented by the chosen numerical simulator. Furthermore, complex
numerical models, which is a basis of surrogate models, may not provide
a perfect description of physics as well as subsurface heterogeneity.
Despite limitations addressed above, the surrogate modeling technique
has been in the limelight as decision support in the field of hydrogeology
due to its ability to represent the dominant features in the subsurface
with cheaper computational costs (Asher et al., 2015). Since the verified
surrogate models allow for the prediction of the outputs without
requiring heavy numerical simulations, the demanding time for the
computation is significantly reduced. A key advantage from the reduc-
tion in the computational time is the availability of post-analyses using
stochastic methods. In recent years, the stochastic post-analyses based
on the surrogate model have been used to analyze seawater intrusion
(Rajabi et al., 2015), geologic CO4 sequestration (Guyant et al., 2016;
Jia et al., 2016; Piao et al., 2020), and shallow groundwater contami-
nation (Ciriello and de Barros, 2020; Xing et al., 2019; Zhao et al., 2020).
As seen, although the applications for the surrogate modeling techniques
have expanded, limited surrogate modeling and post-analyses have been
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attempted in the field of LNAPL transport and its remediation.

In this study, a state-of-the-art technique of surrogate modeling, the
polynomial chaos expansion (PCE), was employed to link between the
full-physics numerical LNAPL model and stochastic post-analyses. After
developing the surrogate PCE model, Sobol global sensitivity analysis
was conducted to rank important factors that affect multi-phase and
multi-component LNAPL remediation. In addition, Monte Carlo analysis
was conducted to comprehensively investigate the effects of each factor
on remediation efficiency. Eventually, this study proposes an efficient
framework that quantitatively investigates the influencing factors, and
can be easily extended for optimizing various LNAPLs remediation
scenarios.

2. Conceptual model

A 2D full-physics numerical model was developed to investigate the
dynamics of LNAPLs in unsaturated and saturated zones. As shown in
Fig. 1a, it was assumed that the LNAPLs, a mixture of BTEX, were spilled
from a designated point source. The spilled LNAPL plume migrated
downward through the unsaturated zone until reaching the ground-
water table. Due to buoyancy force, the LNAPLs floated above the
groundwater table. In the capillary fringe zone where LNAPLs, air, and
groundwater coexist, LNAPL dynamics were governed by gravity and
capillary pressure (Bear et al., 1996; Mayer, 2005) (Fig. 1b). Here,
LNAPLs contemporaneously volatilized to the unsaturated zone as
highly volatile components; hence BTEX components are also referred to
as volatile organic compounds (VOCs) (Fig. 1¢) (Kim and Corapcioglu,
2003; Russell, 1995). The amounts and rates of volatilized BTEX com-
ponents are determined based on the partitioning coefficient and satu-
rated vapor pressures (Mendoza and Frind, 1990). In addition, at the
bottom of the LNAPL plume where the groundwater is contacted, some
of the LNAPLs dissolve into groundwater (Fig. 1d); the amounts of
partially dissolved LNAPLs are determined by the solubilities of each
BTEX component. Such addressed interactions, including chemical
dissolution and thermophysical phase transfer, affect the fate of LNAPL

LNAPLSs
phase

(b)

Grain
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Fig. 1. (a) A conceptual model delineating LNAPLs leakage and transport through both unsaturated and saturated zones. (b) The capillary fringe zone where gas
phase (air and VOCs), water phase (residually trapped water), and LNAPLs phase coexisted. (c) In the unsaturated zone, the gas phase primarily existed while both
residually trapped water and vaporized LNAPLs are trapped within pores. (d) In the saturated zone, groundwater exists only with dissolved LNAPLs.
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migration in the subsurface (Kim and Corapcioglu, 2003). In this study,
three different fluids were accounted for, including gas phase (air, water
vapor, and VOCs), LNAPL phase, and aqueous phase (residually trapped
water in soil and water dissolved in LNAPLs and air). Because air is a
dominant component in the unsaturated zone, the gas phase in the un-
saturated zone is referred to the air phase. In addition, the aqueous
phase in the saturated zone is referred to the water phase.

2.1. Model domain, initial, boundary conditions, and sources

A base-case LNAPLs spill and remediation scenario which can be
realized with four modeling stages was considered. The 1st stage is for
the development of a sloping groundwater flow, the 2nd stage is the spill
of LNAPLs, 3rd stage is the migration of LNAPLs under the ambient
condition, and the 4th stage is the active remediation of the LNAPLs.

2.1.1. Groundwater flow (1st stage model)

The model domain shown in Fig. 2a represents the dimensions of
100 m by 50 m, consisting of horizontally discretized 66 grid-blocks per
each of 50 layers (Az=1 m) from the surface to the bedrock. Porosity and
permeability (k,) were uniformly assigned to 0.3 and 4.0 x 107** m? to
the model domain, respectively; the anisotropy (k./ky) was assigned to
0.25, assuming horizontal arrangement of soil deposits in the sedimen-
tary layers (Nielsen et al., 1986; Scholes et al., 2007).

The groundwater flow model was developed in two stages. In the 1st
stage model, a sloping groundwater table was developed, which was the
initial condition of the 2nd stage model simulating LNAPL migration. In
the 1st stage model, the constant atmospheric temperature and pressure
(25 °C and 1.01 x 10° Pa) conditions were assigned to the top boundary
(Fig. 2a). Immediately below the top boundary grid-blocks, an infiltra-
tion rate of 4.64 x 107 kg/s was assigned to represent infiltrating
precipitation; the assigned infiltration rate was estimated from the
annual average precipitation in the Republic of Korea. Both lateral
boundaries were assigned to the constant pressure boundary with
pressure gradients (left boundary: 1.01 x 10° Pa (top) to 3.72 x 10° Pa
(bottom) and right boundary: 1.01 x 10° Pa (top) to 3.52 x 10° Pa

(a) 1* Stage: Initial Condition

Grid blocks: 66
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(bottom)). The pressure difference between left and right boundaries is
attributed to the groundwater flow. The bottom boundary was set to no-
flow owing to the presence of low-permeability base rock. Initially, the
flat groundwater table was at a depth of 21 m by setting water saturation
of 0.2 and 0.99 at unsaturated and saturated zones, respectively. After
simulating the 1st stage model, the equilibrated sloping groundwater
table was achieved, and the resulting average groundwater velocity was
0.022 m/day.

2.1.2. LNAPLs spilling and remediation (2nd, 3rd, and 4th stage models)

In the 2nd stage model (LNAPL-spilling stage), the LNAPLs composed
of BTEX spilled for 5 years from the point source, located 37.5 m away
from the left boundary and 4.5 m below the ground surface (Fig. 2b).
The spilling constantly occurred at a rate of 1.65 x 107> kg/s per each
BTEX component. The primary direction of the LNAPL plume migration
is the gravitational direction at this stage, while its migration is gov-
erned by the relative saturation of air and LNAPLs in the unsaturated
zone. At the end of the 2nd stage, the LNAPL-spilling ceased. During the
3rd stage (natural redistribution stage) that lasted for 2 years, the spilled
LNAPLs were naturally redistributed in the capillary fringe, primarily
spreading above the sloping groundwater table (Fig. 2c). Finally, in the
4th stage (remediation stage) that lasted for 0.5 years, both the steam
injection (SI) and the multi-phase extraction (MPE) wells were installed
to remediate the LNAPLs (Fig. 2d). The SI well was installed below the
LNAPL source at a depth between 20 m and 22.5 m, where 100 °C steam
was injected at a rate of 6 x 10~% kg/s to aid phase transfer from high-
viscosity liquid LNAPLs to low-viscosity vapor LNAPLs. In addition, the
MPE well was installed horizontally 5 m away from the LNAPL source at
a depth between 16 m and 20 m to extract both vapor and liquid phases
of LNAPLs. At the MPE well, a constant bottom-hole pressure (BHP) of 8
x 10* Pa was assigned, which was approximately equivalent to the rate
of —5.7 x 1072 kg/s. Finally, four modeling stages representing
groundwater flow, LNAPL-spilling, natural redistribution, and remedi-
ation were simulated using TOUGH2-TMVOC (Pruess and Battistelli,
2002).

(b) 2" Stage: LNAPLs-spilling Stage (5 yrs)
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Fig. 2. (a) 1st stage: the initial condition simulating for sloped groundwater table and infiltration, (b) 2nd stage: LNAPLs-spilling stage, (c) 3rd stage: natural

distribution, and (d) 4th stage: remediation stage.
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2.2. Parameters for 3-Phase flow systems and thermodynamic properties
of LNAPLs

Two of the major aspects governing the dynamic behaviors of
LNAPLs are capillary pressure and relative permeability; these are pa-
rameters characterizing multi-phase fluid systems in porous media. Such
multi-phase effects spatiotemporally vary depending on the saturation
of the individual fluid phase and the characteristics of porous media
(Lenhard and Parker, 1987; Miller et al., 1998).

The capillary pressure caused by the relative difference in wettability
and interfacial tension between two immiscible fluids is one of the major
factors governing LNAPL migration in unsaturated zones (Anderson,
1987; Hassanizadeh and Gray, 1993). LNAPLs are the intermediate
wetting phases among the three phases (air, water, and LNAPLs).
Therefore, when the LNAPLs come into contact with air, the LNAPLs and
air are treated as wetting and non-wetting fluids, respectively. Whereas,
at the LNAPLs contacting with water, the LNAPLs and water are treated
as non-wetting and wetting fluids, respectively. In the present study, the
3-phase capillary pressures were calculated from Parker’s 3-phase
function, which was derived to solve multi-phase organic contaminant
transport in the unsaturated zone (Kaluarachchi and Parker, 1990; Wu
and Forsyth, 2001). The capillary pressures were calculated at the in-
terfaces between the air-LNAPLs (P, 4;1), LNAPLs-water (P.w), and the
water-air (P;wa). The mathematical function for 3-phase capillary
pressures are presented in Table 1, where py is the water density
dependent on subsurface pressure and temperature (Pruess and Battis-
telli, 2002), and g is the gravitational acceleration (9.81 m/s%). The auy,
arw, and n are empirically determined parameters, and Sy, is the residual
wetting phase (water) saturation. Finally, Sy and S represent the
saturation of water and LNAPLs, respectively.

While groundwater, LNAPLs, and air concurrently migrate through
porous media, their movements are restricted according to variability in
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obtained from Erning et al. (2009), Juanes (2003), and Pruess (2003),
respectively. Finally, n is an adjustable fitting parameter.

In addition to both capillary pressure and relative permeability, ac-
curate prediction of LNAPL migration in the subsurface requires the
computation of thermophysical properties in individual BTEX compo-
nent and their mixtures. Hence, phase transfers (volatilization,
condensation, and dissolution of BTEX), which are dependent on vapor
pressure, water solubility, and Henry’s constant, were accounted for at
the designated temperature, pressure, and chemical compositions
(Table 2). Corresponding computations are referred to Pruess and Bat-
tistelli (2002), and Reid et al. (1987).

3. Workflow

The workflow followed the 4 steps: (1) sampling, (2) development of
full-physics numerical model-based surrogate model, (3) global sensi-
tivity analysis, and (4) Monte Carlo prediction.

3.1. Sampling and development of surrogate polynomial chaos expansion
model

Latin Hypercube (LH) sampling is a common space-filling method that
enables uniform sampling with reasonable computational costs (Viana,
2013). In multi-dimensions, the sampling method searches the sampling
points (p) within orthogonal grids where each non-overlapped set of
rows and columns satisfied the space-filling property. The sampled
combination of n number of input factors (x = [x1,X2,..., X;]) and cor-
responding response (Y) computed from the full-physics numerical

Table 2
Calculated Thermodynamic Properties of BTEX Components.

relative permeability; consequently, the average velocities of the three Properties Benzene Toluene Ethlybenzene  Xylene-p
competing ﬂ1.11ds decrease (Alizadeh and. Piri, 2014; .E‘Tr.adford et al., Density (g/cm’ 20°C) 0.8 0.87 0.87 0.86
1997). In this study, the 3-phase relative permeabilities (k) were Molecular weight (g/ 78.114 92.141 106.168 106.168
calculated from the Stone I model, which is commonly used for mol)
water-wet porous media (Baker, 1988; Blunt, 2000; Stone, 1970). In the Boiling Point ( °C) 80.0 110.6 136.1 138.3
. 1ses . Saturated Vapor 12,523.50 3788.51 1277.48 1169.47
Stone I model, the relative permeabilities of air (k%), water (k') and Pressure (PZ 25°C)
LNAPLs (kL) are functions of the relative saturation of each fluid phase, Water Solubility (g/L) 0.411 0.101 0.026 0.030
as shown in Table 1. Here, Su, Sw, and Sy, are the saturation of air, water, Henry Constant 5.55 x 6.64 x 7.88 x 10°° 5.18 x
. Py . 3 -3 -3 -3
and LNAPLs, respectively. In addition, Sa,, Swr, and S, representing (atmm*®/mole) 10 10 10
. . . . Viscosity (cP, 25 °C) 0.61 0.55 0.64 0.61
residual saturations of air, water, and LNAPLs, respectively, were
Table 1
Two Empirical Functions for Multi-phase Flow System.
Model Functions and constant parameters
Capillary pressure (Lenhard and Parker, 1987) Functions
1 1
P aL = — lg[(gu‘q)?m - 1}n
AL
1 1
— P85, m_1|n
Pew = (ILW[(SW) m 1}
Pewa =Perw — Pear
5 _SwtSi-5n
Liq — 71 — sm
= Sw — Sm 1
= sm=1--
Sw=75,0m n
Parameters
n=1.84 Sm=0.2 aw= 10 ®ar =11
Relative permeability (Stone, 1970) Functions
(Sa— Sar"
¥ = [ a]
Sw — Swr|"
K= {1 -s ]
Wr
o [1 —Sa—Sw—Su][1—Swr —er] [(1 —Sa = Swr = Su)(1 = Sw)]"
' 1-S84—Swr—Sur) |1 —Sw—Sir (1 —Swr)
Parameters
n=30 Swr=0.2 Sar=0.01 Sir = 0.05
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LNAPL model composes the training dataset used to build a surrogate
model. From x and Y, the surrogate polynomial chaos expansion (PCE)
model can be established following Blatman and Sudret (2008):

Y =M(x) = ) AWa(x) @

aeN"

where 1 is the deterministic chaos expansion coefficient, and ¥,(x) is
the multivariate orthonormal basis polynomial. Assuming the indepen-
dence between the input factors in x, the ¥,(x) is established by the
multiplication of univariate polynomials of each input factor (x;),

‘P(,(X) = H Yo, (xi) 2
i1

where each v, is the univariate polynomial of degree «; with respect to
the ih input factor. The type of the y,, is selected based on the type of
probability density function (PDF) of x;. Considering the uniform and
Gaussian PDFs, the v, (x;) are selected to normalized Legendre and
Hermitian polynomials, respectively (Xiu, 2010). Because the input
factors employed in this study were all assumed to be uniform distri-
bution, the type of the univariate polynomial (y,, (x;)) was regarded as
the Legendre polynomial.

For the practical computation of the targeted PCE from the Legendre
polynomials of x, which was linearly transformed into [ — 1, 11", M(x)
would be truncated up to the total degree of the ¥y(x), :

M(x) = Mr(x) = D 2%a(x), x ~u([~1,1]") &)

AEA®

where the truncated PCE, Mr(x), is then remained as the finite terms
corresponding to subsets of A™ “, which refers to the truncation set,
satisfying |a|= >°I ;a4 < w. To compute the designated number of
Legendre polynomials (¥4(x)) and the corresponding chaos expansion
coefficients (1) in A™®, the cardinality of A™” should be determined to
be P (= (n + o)!/n!w!). Here, n and o represent the number of input
factors and the total degree of the ¥,(x), respectively. After determining
multivariate basis polynomials (¥,(x)), Ay can be calculated through
either intrusive or non-intrusive schemes (Song et al., 2019). In the
present study, least-squares minimization (LSM) in the non-intrusive
scheme is utilized to calculate A, Here, to achieve the A, accurately,
the number of sampling points (p) from the LH sampling should be
greater than P (Blatman and Sudret, 2008, 2010Db).

3.2. Global sensitivity analysis

The Sobol global sensitivity analysis is a type of variance-based
sensitivity analysis, which is applicable when the input variables are
independent. The Sobol scheme practically results in quantified sensi-
tivity indicators, Sobol indices, from the Monte Carlo simulation. Blat-
man and Sudret (2010a) and Sudret (2008) provided a method for the
straightforward computation of Sobol indices from the PCE. This
approach significantly reduces the computational cost to calculate the
Sobol indices, requiring 2 to 3 orders of magnitude fewer simulations
than the Monte Carlo simulation.

For the PCE of the multivariate Legendre polynomials, Eq. (3) can be
expressed as:

—1
Y=f(X) = Mr(X) = AY(X), X ~u([-1,1]"]). )
=

The mean and variance of the PCE were computed based on the
orthogonality of the basis polynomial as follows:

Y =E[f(X)] = 4, %)

Advances in Water Resources 163 (2022) 104179

P-1

=S 2E[¥)] 6)

=0

P—1
Vpeg = Var {Zg,q{,-(x)

J=0

Eq. (4) can be expanded by Sobol decomposition after derivation
(Sudret, 2008), as shown below:

fX) = Mr(x)
=4

+ Z > AaWa(xi)

i=1 ach;

+ Z Z j'orlI,(Jr(xfl 7xi2) (7)

1<i) <ip<nach; i

+eee Z Z ialyu(xi|7~"axis)+“'

1<y < <is<naehyy by.....s

+ Z Aalya(xlv ---7xr1)~

aeh,-l Jdp.n

achiy ... is
produced by x;,, ..., x;, and h;, __; is the set in a, which indicates that
only thex;, ..., X; are involved in the summand. As a result of squaring
both the left and right sides of Eq. (7), the Sobol indices combined with
the PCE (SI;,, ... i) for any h;, . ; can be obtained as the proportion of the
partial variance to the total variance:

N Z RE[¥Y] / Vece (8)

achiy,..., is

Typically, two types of Sobol indices are used: the Sobol 1st-order

indices (SIiISt = Y 22E[¥?)/ VPCE> capable of showing the only influ-
achiy

ence of each independent variable on output and the Sobol total-order

indices (SI] = > 8L i) considering additional effects by the
iyC(iy, ..., is)

interactions of the independent variables.

15 s

4. Results
4.1. Full-physics numerical LNAPLs transport model: base-case

4.1.1. Spatiotemporal distribution of air, LNAPLs, and water

Simulation results for phase saturation (S;, Sa, and Sw) at the end of
2nd (t=5 years), 3rd (t=7 years), and 4th (t=7.5 years) stages are shown
in Fig. 3. The sources for spilling LNAPLs are marked as a red circle, and
the white line represents the groundwater table.

During the 2nd stage (LNAPL-spilling stage), LNAPLs migrated
downward through the unsaturated zone until they reached the capillary
fringe above the groundwater table (Fig. 3a). The LNAPL plume in the
unsaturated zone expanded symmetrically, owing to the homogeneous
permeability and dispersion; the average Sy in the unsaturated zone was
0.11. The corresponding S4 and Sy, were concurrently changed to 0.65
and 0.24, respectively (Fig. 3b and 3c). Since S4 and Sy, were 0.75 and
0.25 before LNAPLs spill, changes in Sy during the 2nd stage indicated
that the spilled LNAPLs primarily displaced the low-viscosity air in the
pore space. Immediately above the groundwater table, the LNAPLs
accumulated in the capillary fringe; the capillary fringe served as a
primary flow path that allowed the LNAPLs to spread horizontally
(Mayer, 2005). In the model, before the LNAPLs spill, the thickness of
the capillary fringe was approximately 3 m with associated S4 and Sy of
0.45 and 0.55, respectively (Fig. 3b and 3c). Once the LNAPL plume
reached the capillary fringe, it primarily displaced low-viscosity air; the
Sy increased from 0 to 0.45 (Fig. 3a) while S, decreased from 0.45 to
almost 0.0 (Fig. 3b). Additionally, due to the difference in both density
and wettability between LNAPLs and groundwater, the downward
movement of LNAPLs below the groundwater table was hindered.
Instead, the LNAPLs migrated approximately 9 m along the sloping
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Fig. 3. (a) S, (b) S4, and (c) Sw at the end of the 2nd stage (5 years). (d) Sy, () Sa, and (f) Sy at the end of the 3rd stage (7 years). (g) Si, (h) Sa, and (i) Sy at the end

of the 4th stage (7.5 years). The white lines indicate the groundwater table.

groundwater table. Finally, owing to the counter buoyancy force acting
on the LNAPL plume, the groundwater table was suppressed approxi-
mately 1.5 m, and consequently, the capillary fringe was thickened.

During the 3rd stage (natural redistribution stage), Sy in the unsat-
urated zone uniformly dropped to 0.052 close to the assigned S;,(=0.05)
(Table 1). The corresponding k- calculated from the Stone I model was
almost 0, indicating that most LNAPLs remained as the residually trap-
ped phase in the unsaturated zone (Fig. 3d). Above the groundwater
table, the mobile LNAPLs continuously accumulated, while the LNAPL
plume spread horizontally above the sloping groundwater table. At the
end of the 3rd stage, the maximum Sj, of the floating LNAPL plume
increased to 0.462. In addition, Sy in the unsaturated zone nearly
returned to the initial saturation because the air re-filled pore spaces
where movable LNAPLs were left (Fig. 3e).

Finally, the S;, Sa, and Sy are depicted at the end of the 4th stage
(remediation stage) where the remediation scheme was implemented
(Fig. 3g, 3h, and 3i). As mentioned in Section 2.1.2, two remediation
wells including steam injection (SI) and multi-phase extraction (MPE)
wells, were operated; the screen depths of each well are highlighted in
red and blue boxes, respectively. At the end of the remediation stage, the
Sy, of the floating LNAPL plume rapidly decreased to 0.22, mainly due to
extraction of the movable LNAPLs and phase transfer from liquid
LNAPLs to volatilized LNAPLs by high-temperature steam injection

(Fig. 3g). The pressure gradient induced by the MPE well aided to extract
low-viscosity volatilized LNAPLs. Additionally, the pressure gradient
induced by the two remediation wells distorted the capillary fringe. For
instance, adjacent to the SI well, a hole, where Sy was increased to 0.69
due to both volatilized LNAPLs and injected steam, was developed
(Fig. 3h). In the unsaturated zone, the simultaneous operation of the two
remediation wells was able to remove trapped LNAPLs; S; was decreased
to below 0.05 (Fig. 3g). At the bottom of the MPE well, both S; and Sw
increased, indicating that both LNAPLs and groundwater were effec-
tively extracted by the MPE well (Fig. 3g and 3i).

4.1.2. BTEX in air, LNAPLs, and water phases

The distributions of BTEX (benzene, toluene, ethylbenzene, and
xylene-p) at the end of the 3rd stage were delineated to elucidate the
different behaviors of the spilled BTEX in the subsurface, based on their
thermophysical properties (Fig. 4). X, Xa, and Xy represent the mole
fraction of BTEX existing in LNAPLs, air, and water, respectively.

In the LNAPL phase, the BTEX components were evenly distributed,
although their average X}, values were different due to the difference in
molar mass (Fig. 4a). The X; of BTEX were 0.3 0.25, 0.22, and 0.22,
respectively. The mole fractions of BTEX in the air phase are delineated
in Fig. 4b, which reveals a clear difference depending on the volatili-
zation of BTEX. The degree of BTEX volatilization was related to the
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Fig. 4. Distribution of BTEX mole fractions existing in (a) LNAPLs phase (X;), (b) air phase (X4), and (c) water phase (Xy) at the end of the 3rd stage (7 years).

saturated vapor pressure (Table 2). Benzene characterizing the largest
saturated vapor pressure (12,523.50 Pa) showed the maximum X4

responding to steam injection by the SI well. The temperature of the
injected steam was approximately 100 °C and the boiling temperature of

(0.0372) which was 8.5 times greater than that of xylene-p (0.00436)
having the lowest saturated vapor pressure (1169.47 Pa). Additionally,
benzene, which had the largest solubility (0.411 g/L) among the BTEX,
showed the maximum Xy of 1.24 x 10~* (Fig. 4c). In summary, among
BTEX, Benzene was the dominant contaminant due to its high saturated
vapor pressure and water solubility.

4.1.3. Removal efficiency of LNAPLs

The BTEX distribution at the end of the 4th stage (remediation stage)
after 7.5 years is shown in Fig. 5. At the end of the remediation stage, the
X; of benzene was the lowest (0.301) among the BTEX components,
indicating that the largest amount of removed components was benzene
(Fig. 5a). The largest removal of benzene was due to effective phase
transfer of benzene from liquid LNAPLs to volatilized LNAPLs,

benzene was 80 °C, whereas those for other components were over
100 °C (Table 2). The results of such active volatilization in benzene
were shown as the largest X4 among the BTEX components (Fig. 5b); the
maximum X4 of benzene after the remediation was 0.31, while the
average X, of other components remained at low quantities (T: 0.11; E:
0.08 and X: 0.08) (Fig. 5b). The increased X4 of benzene accelerated the
benzene transport to the MPE well, by reducing the viscosity and
increasing the relative permeability. In contrast to X4 of benzene, Xy, of
benzene was not significantly reduced by the remediation (Fig. 5¢). This
was due to the relatively small viscosity and small relative permeability
of water. At the unsaturated zone, water was residually trapped in the
pores, and BTEX components dissolved in such residual water could not
be extracted by the MPE well.

To evaluate the removal efficiency (RE), a mass of component Z in
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Fig. 5. Distribution of BTEX mole fractions existing in (a) LNAPLs phase (X;), (b) air phase (X4), and (c) water phase (Xy,) at the end of the 4th stage (7.5 years).
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phase P (4M) before and after remediation (at the end of the 3rd and 4th
stage) was calculated. The RE (4RE =1 — }Z,M“m /§M3"d) was then defined,
and the REs of individual components (B, T, E, and X) in LNAPLs, air,
and water phases were calculated (bar graph in Fig. 6). Additionally, the
REs 4RE =1— %M“m /%Me‘"d) of individual components (B, T, E, and X)
in the total (LNAPLs+air+water) phase were delineated (red circle in
Fig. 6).

The REs of BTEX components between the LNAPL (RE, TRE, IRE,
and ¥RE) and total (BRE, IRE, ERE, and ¥RE) phases were nearly the
same, with values of approximately 0.23, 0.13, 0.06, and 0.06, respec-
tively (Fig. 6a). This indicated that the BTEX primarily existed as the
LNAPL phase, although phase transfer to air and water had occurred.
The removed masses of BTEX in the LNAPL phase are proportional to
their volatilities (Table 2); here, benzene showed the largest volatility.
As more benzene changed to the air phase, the mobility of benzene in the
air phase was enhanced. Then, the MPE well accelerated the removal
rate of benzene in the air phase. Consequently, the ERE (0.4) exceeded
BRE (0.23). Nevertheless, TRE (—0.08), ZRE (—0.84), and XRE (—0.97)
showed negative values, indicating that lower volatile components were
not efficiently removed by the MPE well after they had been volatilized.
(Fig. 6b). The removal efficiencies of benzene, toluene, ethylbenzene,
and xylene-p in the water phase (5,RE, .RE, % RE, and ¥,RE) showed
the smallest deviation from O (Fig. 6¢). Benzene and toluene with high
solubility specifically showed positive &RE (0.14) and I,RE (0.01),
respectively but ethylbenzene and xylene-p with low solubility showed
negative & RE (—0.14) and £ RE (—0.17), respectively. In summary, the
components showing effective phase change represented high removal
efficiency.

4.2. Surrogate polynomial chaos expansion LNAPLs models

4.2.1. 4 cases: permeability and the location of steam injection wells

Including base-case (Case I), three additional cases were designed to
evaluate the effect of permeability (k) and the location of the steam
injection (SI) well (Table 3). In Case II, ky(=4.0 x 107 m?) and k,
(=1.0 x 10" ¥ m?) was equal to Case I, but the location of the SI well was
shifted to the right of the MPE well (Fig. 7a and 7b). At both Case I and II
represented by high k, LNAPL plumes spread widely above the
groundwater table while residually trapped LNAPLs remained in the
unsaturated zone. The REs of total phase BTEX (BRE, IRE, ERE,
and ’T‘RE) for Case I were similar to those for Case I, indicating that the
relative location of SI to the MPE well did not influence a degree of
remediation efficiency much (Fig. 7e and 7f); the ’iRE (0.25 and 0.20),
TRE (0.13 and 0.10), £RE (0.04 and 0.04), and ¥RE (0.04 and 0.04) were
predicted at Case I and II, respectively.

(a) (b)
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Table 3
Four Cases and Six Input Factors.
Case Permeability Lateral Input factors Min Max
(m? distance from
Source to SI
well (m)
Case 4x10713 0 x1: Screen depth 16 24
(Base of MPE well (m)
case) X5: Screen depth 18 27
of SI well (m)

Case II 4x10718 10 x3: Distance of 0 10
MPE well from SI
well (m)

Case III 4x107H 0 X4: Bottom-hole 7 x 9 x
pressure of MPE 10* 10*
well (Pa)
Xs: Steam 2 x 1x
injection rate 107* 1072
from SI well (kg/
s)

CaseIV 4 x 1071 10 Xe: Steam 100 150

temperature ( °C)

For Case III and IV, both k, and k, decreased 10 times to 4.0 x 10714
m? and 1.0 x 10~ while relative locations of the SI well were equal to
one for Case I and II, respectively (Fig. 7c and 7d). A decrease in k caused
local accumulation of the LNAPL plume with preventing horizontal
expansion. The small and concentrated LNAPL plume caused less con-
tact with the surrounding air, and thus, the amount of volatilized
LNAPLs decreased. Additionally, decreased mobility of LNAPLs due to
low k let more LNAPLs remain in the unsaturated zone and impeded
LNAPL migration to the MPE well, causing a decrease in 2RE, IRE (Case
III and IV in Fig. 7g and 7h).

4.2.2. Input factors and responses for assessing removal efficiency of
LNAPLs

For each of the 4 cases, the 6 input factors governing the effective-
ness of the remediation wells were selected (Table 3): the screen depths
of both the MPE and SI wells (x; and x»), the lateral distance between the
MPE and SI wells (x3), the BHP of the MPE well (x4), and the injection
rate (xs), and the temperature of the SI well (xg). The 6 input factors
were acknowledged as influencing factors governing the removal effi-
ciency of LNAPLs (McCray and Falta, 1997; Robin and Gillham, 1987;
Rogers and Ong, 2000). These input factors were assumed to have a
uniform distribution, with minimum and maximum limits (Table 3).
Within these ranges, the sampling points representing the different
combinations of input factors were selected through LH sampling. For
example, the x; and x, were selected within the vertical sky-blue and red

0.6 0.6 0.6
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Fig. 6. Bar graphs indicate removal efficiencies of BTEX existing in (a) LNAPLs, (b) air, and (c) water phase, respectively. The red symbols denote the total removal

efficiency for BTEX.
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Fig. 7. The S, distribution of the representative model of (a) Case I, (b) Case II, (c) Case III, and (d) Case IV. Case I and II representing high permeability (k = 4 x
1073 m?) showed the thin and wide spread of the LNAPLs plume above the groundwater table (white line). Case III and Case IV representing low k (k = 4 x 1071*
m?) showed concentrated distribution beneath the LNAPLs source (white circle). The shaded area represents the possible horizontal location of the MPE well,
determining the x3. Corresponding removal efficiency for total phase BTEX was plotted in (e) Case I, (f) Case II, (g) Case III, and (h) Case IV.

scale lines represented in Fig. 7, respectively. Finally, a single sampling
point determined a single configuration of wells. In each case, a total of
150 points were sampled (600 points in 4 cases). Based on LH sampling
points, a total of 600 full-physics numerical LNAPL transport models
were conducted to obtain responses. The responses were the removal
efficiencies of the total sum of BTEX (BTEXRE — 1 — BIEXp+" /BIEX 3™y
calculated at the end of 4th stage (7.5 years). Then, both input factors
and responses served as the training dataset in developing the surrogate
polynomial chaos expansion (PCE) models of 4 cases.

4.2.3. Development of surrogate pce model, validation, and test

PCE models predicting 8™XRE were developed using the following
procedure. With a given training dataset (e.g. a combination of the 6
input factors and the responses), multi-variate basis functions (¥,) for
the PCE models were developed. Preliminary PCE models were then
developed by evaluating the determination of the coefficients (A,) which
were calculated from the least square minimization (LSM) method.
However, the preliminary PCE models based on LSM may preserve un-
necessary complexities and overfitting problems (Blatman and Sudret,
2010b). To overcome these problems, the preliminary PCE models were
improved through the validation process; both an adaptive-sparse al-
gorithm with the least angle regression and a leave-one-out (LOO)
cross-validation algorithm were used for the validation.

The adaptive-sparse algorithm is a step-wise procedure that reduces
the complexity of the PCE model by eliminating the insignificant ¥,
among the total P number of ¥, (Blatman and Sudret, 2011); the total P
(P = (n+ w)!/n'n!) number of ¥, was 210 (n=6 and ®n=4), 210 (n=6 and
®w=4), 210 (n=6 and w=4), and 84 (n=6 and ®=3) in Case I, II, III, and
IV, respectively. After applying the advanced adaptive-sparse method
with the least angle regression, the total P number of ¥, in preliminary
PCE models decreased to 29, 30, 53, and 14 in Case I, II, III, and IV. Once
the PCE models were streamlined, the deterministic chaos expansion
coefficients (A,) were subsequently modified to solve the overfitting
problem, by minimizing the LOO error (e 00) (Blatman, 2009):

S (M) — MY (x0))?
SV (MEO) — 71y

)]

€Lo0 =

where N is the number of the training dataset (N=150), M(x?) is the i
response calculated from a sparse PCE model developed by N training
data, MP\ (xD) is the i response of a sparse PCE model, but the model
derived from N — 1 training data by excluding the i" training data, and
Hy is the mean of the N responses. Finally, the optimal €00 values of the
sparse PCE models were calculated to be 0.036, 0.044, 0.029, and 0.066
in Case I, I, III, and IV, respectively. Once the optimal e powas calcu-
lated, the corresponding )\, values were selected to determine validated
PCE models.

In Fig. 8, the B™XRE calculated from both the validated PCE models
and the full-physics numerical LNAPLs transport models are plotted for
Cases I, II, III, and IV; here, 150 yellow circles and 50 green triangles
indicate the training and test data, respectively. In each case, the vali-
dated PCE models developed using 150 training data were tested with
50 test data, which were randomly chosen by the LH sampling. Using 50
test data, the determination coefficient (R?) and normalized root mean
squared error (NRMSE) were calculated to investigate the predictability
of the validated PCE models. The predictability of the validated PCE
models was the highest in Case IV (Fig. 8d); RZ,,, and NRMSE.s: were
0.930 and 0.067, respectively. Even for Case II showing the lowest
predictability (Fig. 8b), the predictability was still acceptable (R%,:
0.889 and NRMSEes: 0.11), ensuring that the validated PCE models
were capable of substituting the responses of the full-physics numerical
LNAPLs transport models.

Interestingly, both training and test datasets were distributed
differently depending on the magnitude of permeability (k), indicating
that even small differences in k significantly influenced B™XRE. At high k
values (Cases I and II), both training and test datasets were widely
distributed between 0 and 0.55 (Fig. 8a and b), and the widely distrib-
uted B™XRE indicates that the B™PXRE was sensitive to remediation
conditions represented by 6 input factors. Dependent on suitable com-
binations of 6 input factors, the 2”EXRE could be maximized. In contrast,
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Fig. 8. The removal efficiency calculated from surrogate PCE model (x-axis) and numerical full-physics (FP) numerical model (y-axis) were plotted in 1:1 graph for
(a) Case 1, (b) Case II, (c) Case III, and (d) Case IV. Orange-dotted lines indicate 95% confidence intervals.

at low k (Cases III and IV), most of the training and test data were leaned
to the 0 (small 2™XRE), denoting that 2™*RE cannot be improved
significantly by the choice of the 6 input factors. In Fig. 7, the distri-
bution of the LNAPL plume at both high k and low k is shown. At high k,
the LNAPL plume spread widely over the groundwater table and even
migrated far from both MPE and SI well (Fig. 7a and b). Nevertheless,
BIEXRE could be maximized dependent on the choice of 6 input factors
(Fig. 8a and b). This is because the LNAPLs can be more easily mobilized
by remediation wells when k is high. At low k, however, although the
LNAPL plume was located close to both the MPE and SI well (Fig. 7c and
d), the overall ™XRE was still small because the high pumping rate of
the MPE well did not improve the mobility of the LNAPLs (Fig. 8c and d).
Such a difference in 2™XRE implies that the influence of k on the
remediation of the LNAPL plume presumably prevails over any 6 input
factors. Therefore, at contamination sites with extremely small k (e.g.,
clay-dominant or fractured rock sites), changes in 6 input factors may
not be able to improve B™EXRE, significantly.

10

4.3. Analysis using surrogate pce models

4.3.1. Sobol global sensitivity analysis

Using the validated PCE models, the influence of the input factors
(x1, X2, X3, X4, X5, and xg) on the BTEXRE were assessed through Sobol
global sensitivity analysis (Case I in Fig. 9a, Case Il in Fig. 9b, Case III in
Fig. 9¢, and Case IV in Fig. 9d). For each case, the Sobol total (T)- and
first (1st)-order indices were calculated with 150 realizations of the PCE
model, whereas they would be yielded by more than 10* realizations
with a common Monte Carlo simulation (Sudret, 2008). Sobol T indices
(blue bar), which include the effect of intercorrelation between the input
factors, are always greater than Sobol 1st indices (purple bar).

Similar to Fig. 8, the Sobol sensitivity analyses revealed differences
primarily dependent on k. At high k, Sobol T and 1st indices for x; were
dominant, indicating that the 2™5XRE was largely influenced by the x;
(Fig. 9a and b); the Sobol T and 1st indices were 0.84 and 0.80 for Case I
and 0.86 and 0.81 for Case II, respectively. The thickness of the LNAPL
plume is thin and widely spread over the groundwater table at high k;
thus, B™XRE was highly influenced by the choice of screen depth in the
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MPE well. The 2nd influential factor was x4; the Sobol T and 1st indices
were 0.14 and 0.11 for Case I, and 0.14 and 0.10 for Case II, respectively.
Even though the values for x4 are significantly smaller than those for xj,
their influences are still superior to the other input factors. This indicates
that sufficient pressure gradient generated by the MPE well effectively
enhances the B™EXRE at high k. Finally, the Sobol indices of the other
input factors (xg, x3, X5, Xg) related to the SI well were nearly zero.

At low k, the most sensitive factor was x; identical to high k,
although the influence of x; was decreased compared to Cases I and II.
The Sobol T and 1st indices of the x; were 0.54 and 0.40 for Case III, and
0.63 and 0.44 for Case IV, respectively (Fig. 9c and d). The difference
between the Sobol T and 1st indices increased, indicating that the
interaction between x; and the other factors (e.g. steam injection rate)
became more important at low k. The 2nd influential factor was x3. The
Sobol T and 1st indices of the x3 were 0.38 and 0.25 for Case III, and 0.45
and 0.25 for Case IV, respectively. At low k, the spreading of the LNAPL
plume was constrained, and consequently, the horizontal location and
vertical depth of the MPE well became influential. Additionally, the
influence of other input factors (xz and xs) related to the SI wells
increased. These results suggest that steam injection would be more
effective for LNAPL remediation at the low k site. Finally, the change in
xe within the designated range (i.e., 100-150 °C) did not affect the

11

BIEXRE, indicating that steam temperature above 100 °C is not cost-
effective for remediating the BTEX.

4.3.2. Predicting LNAPLs remediation efficiency

The influences of 6 input factors on 2™XRE was comprehensively
quantified using the validated PCE models. A randomly generated 6
input factors determined a single prediction of 2™XRE through the PCE
model, and 10° Monte Carlo implementations revealed density plots of 6
input factors relating to empirical probability density functions of
BIEXRE (Fig. 10). The 6 density plots showing the correlation between 6
input factors (along the x-axis) and 2™XRE (on the y-axis) are depicted
for the 4 cases. The solid lines represent the linear fitting curves.
Additionally, histograms and box-whisker diagrams were plotted to
show the statistical distribution of 2"¥XRE.

Similar to Sobol global sensitivity, the PCE-based Monte Carlo pre-
diction also differed significantly depending on the magnitude of k
(Cases I and Il vs. Cases IIl and IV). At high k (Cases I and II), the slopes of
the fitting curves for the screen depth of the MPE well (x;) were the
steepest, confirming that x; had a strong effect on 8™¥XRE (Fig. 10a and
b). Interestingly, the bimodal distribution for x;, which is distinguished
by the depth of the groundwater table, was shown. When the MPE well
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Fig. 10. The density plots were obtained by 10° implementations of the Monte-Carlo simulation based on the surrogate PCE models for (a) Case I, (b) Case II, (c) Case
I1I, and (d) Case IV. In each density plot, predicted probabilistic distribution of the remediation efficiency according to the variation of the input factors were
delineated. The statistical distributions were also provided as histograms and box-whisker plots at the rightmost of each figure.

was installed above the groundwater table (21.5 m), the average 8"EXRE
was approximately 0.15. However, the 5"EXRE dramatically increased to
over 0.4 when x; was slightly below the groundwater table; the 2™#XRE
was maximized approximately 1.5 m below the groundwater table. This
is attributed to the characteristic of LNAPLs floating above the
groundwater table. When the MPE well was installed in the unsaturated
zone, gaseous LNAPLs volatilized by steam injection were only removed.
However, when the MPE well was located below the groundwater table,
both liquid LNAPLs and LNAPLs dissolved in groundwater were
removed effectively (Qi et al., 2020). In addition, the hydraulic head
gradient developed by remediation wells accelerated the migration of
the LNAPLs to the MPE well (Simon et al., 1999). Different from x;, the
screen depth of the ST well (x;) did not influence E™EXRE significantly; the
BIEXRE slightly improved as x» was shallow. The distance between the
MPE well and SI well (x3) showed opposite slopes in Cases I and II
because of the opposite direction of the LNAPL source (Fig. 7a and b);
the B™EXRE increased as x3 was close to the LNAPL source. The 2nd
largest input factor was the BHP of the MPE well (x4). As x4 approached
the low limit (7 x 10* Pa), the average BIEXRE increased. The effect of
both the steam injection rate (xs) and steam temperature (xg) was
insignificant for LNAPL removal. Finally, the histogram of 2™XRE
featured two peaks (high 8™XRE and low BTEXRE), primarily split by the
depth of the groundwater table.

At low k, the influence of x; was weaker than that of high k (Fig. 10c
and d), but its influence was still the largest among the 6 input factors.
Similar to high k, ™%*RE increased when x; was located below the
groundwater table. The x5 was the 2nd important input factor; as x3 was
far from the LNAPLSs source, the B™EXRE approached zero. This indicates
that the distance between the LNAPL source and remediation wells is
critical at the low k field where LNAPLs migration is hindered. While the
influence of x3 became significant, the effect of x4 decreased at low k.
The effect of both x5 and xg was small, similar to that for high k. Overall,
at low k, the BTEXRE were significantly smaller than high k, which is also
reflected in the histograms and the box-whisker plots. This implies that
the optimum choice of 6 input factors is more important for the high k.
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5. Implications and limitations of PCE models

In this study, four surrogate PCE models accounting for LNAPLs
remediation efficiency were developed for different conceptual cases
(Case I, II, III, and IV). For each case, the number of training datasets to
develop the PCE models was 150. However, the application of advanced
adaptive-sparse PCE algorithm could substantially reduce the required
number of the dataset by eliminating the non-influential interaction
terms (Blatman and Sudret, 2011). Such computational advantages by
reducing the number of training datasets would allow for developing
surrogate PCE models representing more complex 3D heterogeneity
numerical models with realistic geostructures and a large number of
input factors such as hydrogeologic properties (e.g. permeability,
porosity, water saturation), soil properties (e.g. particle-size distribution
and capillary pressure), or geochemical properties (e.g. biodegradation
coefficient, absorption coefficient). Additional to computational bene-
fits, the surrogate PCE model can analytically link to the global sensi-
tivity analysis and then be easily interconnected with other quantitative
analyses (Fajraoui et al., 2011). For example, the global sensitivity
analysis in this study revealed a crucial feature in LNAPLs remediation
that the installation depth of the MPE well dominantly affected LNAPLs
remediation efficiency. Subsequent Monte Carlo prediction further
revealed the optimum depth of the MPE well that also supported the
results obtained by numerical simulations in other previous studies (Qi
et al., 2020).

Despite the aforementioned advantages of surrogate PCE models in
LNAPLs remediation, researchers should be aware that the surrogate
PCE model can not be a general or ultimate solution to interpret the
LNAPLs transport behavior in the subsurface. Firstly, the surrogate PCE
model developed is valid only in the conceptual model domain repre-
sented by numerical simulation. In the study, the numerical model was
2D and homogeneous. Thus, the surrogate PCE model should be
reevaluated if researchers wish to investigate heterogeneous subsurface
systems, 3D LNAPLs transport, or different target contaminants. Sec-
ondly, the surrogate PCE model solely depends on the internal compu-
tation results of the full-physics numerical LNAPLs transport model. Due
to this reason, the choice of different numerical simulators may produce
different PCE results. Accordingly, utilizing a more accurate and
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effective surrogate PCE model should be accompanied by improvement
of the underlying numerical model; For example, recent studies
considered more realistic physical properties in simulating LNAPLs
migration such as hysteresis effect of multi-phase fluids and also verified
the LNAPLs model from the implementation of LNAPLs tank laboratory
experiments (Pasha et al., 2014; Sookhak Lari et al., 2016).

6. Conclusion

Full-physics numerical simulations that honor multi-phase multi-
component LNAPL transport and its remediation are challenging, pri-
marily because of their extensive memory and CPU requirements. In
addition to the complexities involved in geologic characterization and
LNAPL transport, numerical simulations must be repeatedly performed
to characterize uncertainties involved in input factors or to search for
the optimum LNAPL removal efficiency. In this study, to overcome the
challenges addressed in LNAPL transport and remediation, the surrogate
PCE modeling technique was implemented in conjunction with the
quantitative Sobol sensitivity analysis and Monte Carlo prediction.

The proposed workflow involves forward full-physics numerical
LNAPLs transport modeling that generates a training dataset, develop-
ment of a PCE-based surrogate model, global sensitivity analysis, and
Monte Carlo prediction. For the full-physics numerical modeling, the
TOUGH2-TMVOC was employed to simulate multi-phase and multi-
component LNAPL transport. The conceptual model delineated the
scenarios of the LNAPL-spilling, natural distribution, and remediation
stages. Here, LNAPLs were assumed to be a mixture of BTEX compo-
nents, allowing mass transfer (e.g., vaporization, condensation, and
dissolution) among individual components. Finally, the removal effi-
ciency of LNAPLs was assessed by implementing MPE and SI wells. The 4
cases, considering different permeabilities and locations of the SI well,
were designed to develop PCE-based surrogate models. Within 4 cases, 6
factors related to well configuration were varied to assess the removal
efficiency of LNAPLs.

By combining forward numerical modeling, global sensitivity ana-
lyses, and Monte Carlo prediction, the governing factors improving the
efficiency of LNAPL remediation were identified. First, the screen depth
of the MPE well was the most important among 6 factors associated with
well configuration regardless of field permeability or location of the SI
well. Because the LNAPL plume floated within the narrow capillary
fringe above the groundwater table, the maximum remediation effi-
ciency was predicted when the depth of the MPE well was slightly (1.5
m) below the groundwater table. Second, the permeability of contami-
nated sites evidently influenced the remediation conditions. At high k,
both the screen depth and BHP of the MPE well are important, but the
influence of the BHP of the MPE well was diminished at low k. Instead,
the distance between the MPE and SI wells became important. Finally, at
high k, the MPE well itself was enough to remove the LNAPLs, and thus,
the configuration of the SI well was not as important. However, at low k
where the mobility of LNAPLs was small, the SI well improved the
remediation efficiency by volatilizing liquid LNAPLs to gaseous LNAPLs.

This study successfully demonstrated the capability of the PCE-based
surrogate modeling for the quantitative analysis of LNAPL remediation,
while overcoming the computational burden. In this study, the model
was limited in 2D and homogeneous matrix to focus on the demon-
stration of the proposed research framework. As a future direction,
however, it is expected that one can easily extend the proposed meth-
odology to 3D heterogeneous aquifers with a consideration of various
input factors. When extending the framework, the following elements
should be accounted for. Results of the surrogate PCE model are site-
specific and are subject to the performance of the chosen numerical
simulator. In addition, it is important to specify proper minimum and
maximum limits, and probability distribution of input factors based on
target scenarios, such as target contaminants or hydrogeologic charac-
teristics of the area.
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