1910.03960v5 [math.DS] 27 Jan 2022

.
.

arxiv

LOGGEE TRANSACTIONS ON AUTOMATIC CONTROL

Input-output equations and identifiability of linear ODE
models

Alexey Ovchinnikov, Gleb Pogudin, and Peter Thompson

Abstract— Structural identifiability is a property of a differen-
tial model with parameters that allows for the parameters to be
determined from the model equations in the absence of noise.
The method of input-output equations is one method for verifying
structural identifiability. This method stands out in its importance
because the additional insights it provides can be used to analyze
and improve models. However, its complete theoretical grounds
and applicability are still to be established. A subtlety and key for
this method to work correctly is knowing whether the coefficients
of these equations are identifiable.

In this paper, to address this, we prove identifiability of the
coefficients of input-output equations for types of differential
models that often appear in practice, such as linear models with
one output and linear compartment models in which, from each
compartment, one can reach either a leak or an input. This shows
that checking identifiability via input-output equations for these
models is legitimate and, as we prove, that the field of identifiable
functions is generated by the coefficients of the input-output
equations. Finally, we exploit a connection between input-output
equations and the transfer function matrix to show that, for a
linear compartment model with an input and strongly connected
graph, the field of all identifiable functions is generated by the
coefficients of the transfer function matrix even if the initial con-
ditions are generic.

Index Terms—identifiable functions, input-output equations,
linear compartment models, structural parameter identifiability

|. INTRODUCTION
A. Background

Structural global identifiability (in what follows, we will
say just “identifiability” for simplicity) is a property of a
differential model with parameters that allows for the param-
eters to be uniquely determined from the model equations,
noiseless data and sufficiently exciting inputs (also known as
the persistence of excitation, see [1]-[3]). Performing identi-
fiablity analysis is an important first step in evaluating and, if
needed, adjusting the model. There are different approaches
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to assessing identifiability (see [4]-[6] for descriptions of
methods). If structural identifiability is established, one can
assess practical identifiability before doing reliable parameter
identification [7], [8].

There is a relaxed version of identifiability, namely, lo-
cal identifiability. It refers to the possibility of determining
finitely many feasible parameter values. There are efficient
algorithms [9], [10] for checking whether a given function
of parameters is locally identifiable. To the best of our
knowledge, there are no complete and efficient algorithms for
finding all locally identifiable functions of parameters (see [11,
page 7] for a partial algorithm), a key to efficient model
reparametrization for improving the model.

1) How the errors that we prevent occur in existing methods: One
of the approaches, which is widely used, is based on input-
output equations [12]-[23], and has appeared in software
packages such as COMBOS, DAISY, and their successors. An
existing challenge is to understand the a priori applicability of
the method, as the above software packages make incorrect
identifiability conclusions for some models. We address this
challenge in the present paper.

We will now discuss this in more detail. Roughly speaking,
input-output equations are “minimal” equations that depend
only on the input and output variables and parameters (see [24]
for applications other than identifiability). We will describe a
typical algorithm based on this approach using the following
linear compartment model as a running example:

x| = —(ao1 + ax)xi + ainx +u,
Xy = az1 X — d1x2, M
y=x2.

In the above system,

e x1 and x, are the state variables;
« y is the output observed in the experiment;
e u is the input (control) function to be chosen by the
experimenter;
e ao1,a12,az) are unknown scalar parameters.
The question is whether the values of the parameters
ao1,ar2,az; can be determined from y and u. A typical
algorithm operates as follows:
(1) Find input-output equations, writing them as (differential)
polynomials in the input and output variables. For (1), a
calculation shows that the input-output equation is

Y'+ (ao1 +ain+ax)y +agany —au=0. (2
(2) Use the following Assumption (A):
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a function of parameters is identifiable if and only
if it can be expressed as a rational function of the
coefficients of the input-output equations.
In our example, this amounts to assuming that a function
of parameters is identifiable if and only if it can be
expressed as a rational function of ag; + a2 + az1, ap1ai2,
and any.
One possible rationale behind this assumption is the
“solvability” condition from [13, Remark 3]: due to the
“minimality” of the input-output equations, one would
expect that there exist N and ?1,...,fy € R such that the
linear system

Y'(t1) + ey (1) +cay(t) +cau(t;) =0
: (3)
V'(tn) + ey (tn) + cay(tn) + cau(ty) =0

in cj,c2,c3 has a unique solution in terms of
y(@),Y @),y (t;),u(t;), 1 <i< N, so the coefficients of (2)
are identifiable. However, the assumption is not always
satisfied and, consequently, such N and #q,...,4y might
not exist at all. This is a reason, e.g., why DAISY may
miss the non-identifiability of some of the parameters in
those systems. An example is given in Section [V-A.1 (see
also [5, Example 2.14] and [25, Sections 5.2 and 5.3]).
(3) Set up a system of polynomial equations in the parameters
setting the coefficients of (2) equal to new variables,

apr +app+ax =c
ap1aiz =c2 “4)
—az| =3,

and verify if (4) as a system in the a’s with coefficients
in the field C(cy,c2,c3) has a unique solution. This can
be done, e.g., using Grobner bases. Alternatively, for (4),
one can see that a;; = —c3 can be uniquely recovered, but
the values of ap; and aj, are known only up to exchange
due to the symmetry of (4) with respect to ag; and aj;.
2) Importance of the I0-equation method: finds all identifiable com-
binations and helps with reparametrization: Even though there are
complete algorithms (that is, not relying on any assumption
like Assumption (A) above) for assessing structural identi-
fiability (see, e.g., [26]), establishing when the input-output
equation method is valid is important because:

o This method can produce all identifiable functions (also
referred to as “true parameters” in [24, Remark 2]), not just
assess identifiability of specific parameters. More precisely,
[27, Corollary 5.8] shows that the field generated by the
coefficients of the input-output equations contains all of
the identifiable functions.

In example (1), the field of identifiable functions is gener-
ated by the coefficients of (2), so it is equal to

C(ao1 +ain+azi, aoraiz, az1) = Clagi +ai2, apiaiz, az).

Generators of the field of identifiable functions can be used
to reparametrize the model [12], [28], [29].

o This method can be used for proving general theorems
about classes of models [14], [15].

o For a large class of linear compartment models, there
are efficient methods for computing their input-output
equations [14], [15], [22].

B. The problem

As was described above, the approach to assessing iden-
tifiability via input-output equations has been used much in
the last three decades and has its own distinctive features.
However, it heavily relies on Assumption (A), which is not
always true (see [5, Example 2.14] and [25, Section 5.2]).
It can be verified by an algorithm [30, Section 4.1] and [31,
Section 3.4] but is not verified in any implementation we have
seen (including [17], [20]). The general problem studied in
this paper is:

to determine classes of ODE models that satisfy
Assumption (A) a priori; consequently, the approach
via input-output equations gives correct result for
these models.

Discrepancy between different notions of identifiability is not
unusual given the wide range of experimental setups and
mathematical tools involved. We refer the reader to a recent
review [32] (see also [3]) presenting a number of notions
of identifiability together with some known (in)equivalences
between them. Our work clarifies this big picture by giving
explicit and easy to check (unlike [27]) conditions for equiv-
alence of different ways to assess identifiability.

C. Our results

The first part of our results shows that Assumption (A) is
a priori satisfied for the following classes of models often
appearing in practice [7], [20], [33]-[38]:
o linear models with one output (Main Result 1);
« linear compartment models such that, from every vertex
of the graph of the model, at least one leak or input is
reachable (Main Result 2).

Checking whether the model is of one of these types can be
done just by visual inspection. For instance, as we will see in
Example 1, each of these theorems is applicable to model (1).
Main Result | cannot be strengthened to more than one output
if all linear models are allowed, see Section IV-A.1 and, for
non-linear systems, see [39, Lemma 5.1].

The second part is devoted to relaxing the “minimality” con-
dition on the input-output equations. For linear compartment
models, elegant relations involving only parameters, inputs,
and outputs were proposed in [14, Theorem 2] based on
Cramer’s rule (see also [15, Proposition 2.3]). In general, using
these equations instead of the “minimal” relations in the algo-
rithm above would give incorrect results [15, Remark 3.11].

However, in Main Result 3, we show that, for linear com-
partment models with an input and whose graph is strongly
connected, one can use these equations as the input-output
equations and obtain the full field of identifiable functions.

Furthermore, we apply Main Result 3 to the transfer func-
tion method [40, page 444]. It is known that, in case of
multiple outputs, using only the coefficients of the transfer
function matrix (as opposed to the full output transforms) may
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lead to incorrect identifiability conclusions [40, Example 10.6].
As a corollary of our results (Corollary 3), we show that this
is not the case for such linear compartment models.

We state the consequences of our results for algorithms for
computing identifiable functions in Section II-C and illustrate
the conditions in our main results in Section IV.

D. Structure of the paper

Basic notions and notation from differential algebra, iden-
tifiability, and linear compartment models are given in Sec-
tion 1. The main results in a brief form are stated in Section I1I
and then stated and proved in Section V. In Section IV, we
illustrate our main results with examples, e.g., showing how
existing identifiability approaches could fail. The appendix has
results we use relating the notions used in the paper for linear
models to the corresponding notions for nonlinear systems.

Il. PRELIMINARIES

In this section, we recall the notation/notions found in the
literature and introduce our own notation/notions to state our
main results in Section III. All fields have characteristic zero.

A. Identifiability of linear models
Fix positive integers A, n, m, and « for the remainder of the
paper. Let = (up,...,10), X= (X1, %), Y= V15, Ym)s

and u = (u,...,ux). Consider a system of ODEs
X = f(X,[.l,u),
I=qy=gxpmu), )
x(0) =x*,

where f = (fi,...,f,) and g = (g1,...,8m) are tuples of
polynomials in x,u over C(u) of degree at most one.

For a rational function h(u) € C(u), we will define two
notions of identifiability: identifiability and 10-identifiability.
The former is meaningful from the modeling standpoint; the
latter is what the algorithm outlined in the introduction checks.

1) Identifiability: We fix notation to give rigorous definitions:

Notation 1 (Auxiliary analytic notation):

(a) Let C=(0) denote the set of all functions that are complex
analytic in some neighborhood of = 0.

(b) Let Q C C* be the complement to the set where at least
one of the denominators of the coefficients of (5) in C(u)
vanishes.

(c) For every h € C(u), we set

Q:=C"x {pe Q| h(fr) well-defined} x (C=(0))*.

(d) For (%*,f,0) such that g € Q, let X (%", 4,4) and
Y (%*,f1,0) denote the unique solution over C*(0) of the
instance of ¥ with x* =X*, y=jf1, and u =1 (see [41,
Theorem 2.2.2]).

(e) For any positive integer s, a subset U C C* is called
Zariski open if there exists a polynomial P on C*® such
that U is the complement to the zero set of P.

(f) For any positive integer s, a subset U C (C*(0))* is called
Zariski open if there exists a polynomial P in zj,...,2
and their derivatives such that

U={2€(C7(0))" | P(2)l=0 # 0}.

(g) For any positive integer s and X = C* or (C=(0))*, the
set of all nonempty Zariski open subsets of X will be
denoted by t(X).

Definition 1 (Identifiability, see [5, Definition 2.5]): We
say that h(u) € C(u) is identifiable if

30 € 1(C" x CY) U e 1((C=(0))¥)
VR, p0) € (OxU)NQy,  [Sy(X5 )| =1,
where S, (%", f,0): = {h(@) |3 (X", 4,0) € Q,
such that Y (X", f,0) =Y (X", ,0)}.

The field {h € C(u) | h is identifiable} will be called the field

of identifiable functions.

2) Input-output identifiability: The notion of I0-identifiability
can be defined for systems with rational right-hand side (see
Section A from the Appendix). Here we give a specialization
of the general definition to the linear case (the equivalence
of Definition 3 and Definition 7 restricted to the linear case
is established in Proposition 1). For this, we will first recall
several standard notions from differential algebra:

Notation 2 (Differential rings and ideals):

(a) A differential ring (R,8) is a commutative ring with a

derivation ' : R — R, that is, a map such that, for all a,b €

R, (a+b) =d +V and (ab) =ad'b+ab'.

The ring of differential polynomials in the variables

X1,...,X, over a field K is the ring K[xy) i>0,1<;j<n]

with a derivation defined on the ring by (x@)' = xE.lH).

This differential ring is denoted by K{xi,...,x,}.

For a differential polynomial P € K{xj,...,x,} and 1 <

i < n, the order of P with respect to x; is the order of the

highest derivative of x; appearing in P (—oo if x; does not

appear in P). It is denoted by ord,, P.

An ideal I of a differential ring (R, d) is called a differen-

tial ideal if, for all a € I, 8(a) € I. For F C R, the smallest

differential ideal containing set F is denoted by [F].

(e) For X as in (5), let Iy = [x' —f,y — g] € C(u){x,y,u} be
the differential ideal of X. Informally, I is the ideal of all
relations among components of a generic solution of X.

Definition 2 (a full set of input-output equations): For
Y as in (5), a tuple (pi1,...,pm) of differential polynomials
from C(u){y,u} is called a full set of input-output equations
if there is an ordering of the output variables, which we will
assume to be y; <y» <... <y, to simplify notation, such that
(1) pj is the linear differential polynomial in y; and u in /5, of

the smallest possible order in y; such that the coefficient
of the highest derivative of y; is one.

(2) For every ¢ > 1, py is the linear differential polynomial in
¥1,-..,¥¢ and u in Iy such that

(b)

()

(d)

o ordy; py < ordy, p; for every 1 < j </,
« the coefficient of the highest derivative of y, in py is 1;
o ordy, py is the smallest possible.

Definition 3 (I0-identifiable function): For a system X,
consider a full set £ of input-output equations. Then the
subfield k of C(u) generated by the coefficients of E over C
is called the field of input-output identifiable (10-identifiable)
Sfunctions. We call h € C(u) 10-identifiable if h € k.

Remark 1: Proposition | establishes the equivalence of this
definition to Definition 7, which is applicable to a general
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rational ODE systems. Proposition | also implies that the field
of input-output identifiable functions does not depend on the
choice of a full set of input-output equations.

For examples of input-output equations and IO-identifiable
functions, see Section IV.

3) Comparison of identifiability and I0-identifiability:

Remark 2 (Meaning of 10-identifiability): One can see that
the field of 10-identifiable functions is exactly what will be
computed by the first two steps of the algorithm outlined in the
introduction (see also Algorithm II.1). The general problem
as stated in Section I-B can be restated as:

Determine classes of ODE models for which
identifiable <> 10-identifiable.
[27, Theorem 4.2] together with [5, Example 2.14] (see
also Section I'V-A.1 and [25, Sections 5.2 and 5.3] with non-
constant dynamics and outputs) imply that:

| Identifiable | C | 10-identifiable | (6)

B. Linear compartment models

In this section, we discuss linear compartment models [42].
Such a model consists of a set of compartments in which
material is transferred from some compartments to other com-
partments. We also allow for leakage of material from some
compartments out of the system, and for input of material into
some compartments from outside the system.

We use the notation of [14, Section 2] but our construction
will be slightly more general (allowing scaling for inputs and
outputs). Let G be a simple directed graph with n vertices
V and edges E. Let In, Out, and Leak be subsets of V. The
coefficients of material transfer are

{aj,‘|j<—i€E} and {a0i|i€Leak},

and there may be some additional parameters, we will denote
all the parameters by u as before. For i = 1,...,n, let x; be the
quantity of material in compartment i. If i € In, let b;(u)u; be
the rate at which the experimenter inputs material into the i-th
compartment, where b; € C(u) \ {0}. If i € Out, let y; = ¢;(u)x;,
where ¢; € C(u) \ {0}. Without loss of generality, we assume

Out={l1,...,m}.

Now the system of equations governing the dynamics of
X1,...,X, is given by

'=A(G
s X (G)x+u, ‘ o
vi = ci(u)x;, for every i € Out,
where x = (x1,...,x,)7, wis the n x 1 matrix whose i-th entry

is bi(u)u; if i € In and O otherwise, and A(G) is the matrix
(generalizing the Laplacian of the graph) defined by

—ap; — Z i, 1=J,i € Leak
ki—keE
— Y ay, i=j,i¢Leak
AG)ij =19 kidkeE ®)
aij, j—ieE

0, otherwise.

In the notation of (19), we have

x={x,...,x%}, Y={1,--,ym}, u={u;|i€lIn}.

Definition 4: A system X is called a linear compartment
model if there exists a simple directed graph G with edges E
and vertices V, subsets In, Out, and Leak of V, and functions
bi,cj € C(u)\ {0} such that X has the form of (7).

It was observed in [14, Theorem 2] that, for a linear
compartment model, one can obtain relations among inputs,
outputs, and parameters as follows. Let d be the differentiation
operator. Let M;;(G) be the submatrix of d/ —A(G) obtained
by deleting the j-th row and i-th column. Then [14, Theo-
rem 2] yields that system (7) implies that for every i € Out,

det(dI —A) (1) — o Y (—1)T det(M ) (b; () = 0. (9)
Jj€In
[15, Theorem 3.8] gives a refined version of (9) coinciding
with (9) for the cases we consider in our main results.

Definition 5 (Reachability): We say vertex v is reachable
from vertex w or one can reach vertex v from vertex w if there
exists a directed path from w to v. For example, in the graph
1 — 2, vertex 2 is reachable from vertex 1. We say a leak
(resp. input) is reachable from w if there exists a vertex v in
Leak (resp. In) such that v is reachable from w.

Example 1: Consider the graph

\@ 2

Here G is the graph given by
Vv={1,2} and E={1—>2,2—1}.

The arrow leaving compartment 1 indicates that Leak = {1},
the arrow entering compartment 1 indicates that In = {1},
and the other decoration to compartment 2 indicates that
Out = {2}. Note that the input and leak arrows, as well as the
output decoration, are not considered part of the graph. One
can see that the corresponding system of differential equations
coincides with (1) and can be written as
ap

() = (e ) () + 6 v

One can see that this system satisfies the conditions of
Theorems 1, 2, and 3. A direct computation shows that the
input-output equation (2) is a special case of (9).

C. Existing algorithms used in practice yet to be justified

In this section, we will present and justify (rephrasing our
Main Results 1, 2, and 3) the correctness of two versions
(Algorithms II.1 and II.2) of the algorithm outlines in Sec-
tion [-A that were not previously fully justified. Algorithm II.1
is one of the key components of, e.g., DAISY [17], and
Algorithm 1.2 summarizes the approach from [15, Defini-
tion 3.9]. Our justifications are based on the assumptions stated
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in Corollaries | and 2. Omitting some of the assumptions could
lead to incorrect conclusions, as we show in Section [V-A.

Algorithm II.1 Computing identifiable functions
Input System ¥ as in (19)
Output Generators of the field of identifiable functions of X
(see Corollary 1)
(Step 1) Compute a full set C of input-output equations of X.
(Step 2) Return the coefficients of C considered as differential
polynomials in y and u.

Corollary 1: Assume that ¥ satisfies one of the following:
(1) X is as in (5) and has exactly one output;
(2) X is a linear compartment model such that one can reach
a leak or an input from every vertex.
Then Algorithm II.1 will produce a correct result for X.
Proof: Algorithm II.1 will compute generators of the
field of I10-identifiable functions. Main Results | and 2 imply
that, for ¥ that we consider, the field of IO-identifiable
functions coincides with the field of identifiable functions. W

Algorithm II.2 Computing identifiable functions

Input System X as in (19) corresponding to a linear compart-
ment model with graph G

Output Generators of the field of identifiable functions of X
(see Corollary 2)

(Step 1) For every i € Out, compute an input-output equation
pi as in (9) (or a refined version from [15, Theorem 3.8]).
(Step 2) Return the coefficients of {p; | i € Out} considered

as differential polynomials in y and u.

Corollary 2: In the notation of Algorithm II.2, if graph
G is strongly connected and has at least one input, then
Algorithm I1.2 will produce a correct result.

Proof: Follows from Main Result 3. [ |

II1. MAIN RESULTS

In this section, we will state our main results in a condensed
form. For the detailed statements, see the corresponding
theorems in Section V. In Section II-C, we show how our
main results apply to justifying an algorithm computing all
identifiable functions of an ODE model. In Section IV, we
present examples (both of applied and of purely mathematical
nature) illustrating the importance and use of the conditions
in the statements of our main results. Note that, while the first
result is restricted to MISO systems, the second and third are
applicable to MIMO systems as well.

Main Result 1 (see Theorem 1): If system X as in (5) has
exactly one output, then IO-identifiable functions coincide
with identifiable functions.

Main Result 2 (see Theorem 2): If the graph of a linear
compartment model is such that one can reach a leak or
an input from every vertex, then IO-identifiable functions
coincide with identifiable functions.

Problem 1: Will Main Result 2 remain true if the condition
on the graph is removed or relaxed?

In other words, Main Results | and 2 provide classes of
models for which the approach via input-output equations
outlined in the introduction gives the correct result.

Main Result 3 (see Theorem 3): For a linear compartment
model with at least one input and whose graph is strongly
connected, the field of all identifiable functions is generated
by the coefficients of equations (9).

This theorem combined with Lemma 5 yields:

Corollary 3: For a linear compartment model satisfying the
assumptions of Main Result 3, the field of all identifiable
functions is generated by the coefficients of the entries of the
transfer function matrix (see Section C in Appendix).

IV. EXAMPLES
A. How identifiability methods could make mistakes

In this section, we will consider several examples to illus-
trate how the methods based on 10-equations, formula (17),
and transfer functions may lead to incorrect conclusions about
identifiability. This is to make the reader more aware of the
conditions in our main results.

1) Failure to detect non-identifiability with multiple outputs using 10-
equations: We will discuss a simple example of a linear system
such that the classical method of 10-equations will not be able
to decide on the (non-)identifiability of 2 of the 3 parameters.
The example will also show that the condition of having only
one output cannot be removed from our Main Result 1.

We begin with an ODE for radioactive decay x' = —ax, with
a being an unknown decay rate. Suppose now that we have an
unknown constant inflow b, and so x’ = —ax+ b. Consider the
following output (e.g., the radiation level): y = cx, in which the
unknown parameter c¢ represents the properties of the medium
between the observer and the radioactive species.

Suppose now that there is a known fixed outflow w (e.g.,
through a hole of fixed size), and so the ODE model becomes

X =—ax+b—w
w =0 (10)
yr=cx, y2=w
We then have
Yy =cx' = —cax+cb—cw=—ay, +cb—cy, an

Yo =w'=0,

which can be shown to be a full set of input-output equations.
To check the solvability condition, consider system (3):

Yi(t1) = —ayi(t1) +cb —cya(tr)
Yi(t2) = —ayi(t2) + cb — cya(12)
Y (13) = —ay1(13) +cb — cya(13),

which we consider as a linear system in a, cb, and c. The
matrix of the system is

12)

—yi(t) 1 —y(n1)
A= |-yi() 1 —m)
i) 1 —y(5)

Since y; is a constant, the second and third columns of the
matrix are proportional. Therefore, system (12) has infinitely
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many solutions for the corresponding coefficients of the input-
output equations, cb and b. Hence, the matrix is rank-deficient
and the solvability condition is not satisfied. Therefore, pro-
ceeding further with trying to check the identifiability of b and
¢ based just on (12) could (and will for this example, as we
will see) cause an incorrect conclusion as the validity of this
method is currently guaranteed under the solvability condition.

For example, the software DAISY (which is based on input-
output equations) applied to this model concludes that all of
a, b, and c are globally identifiable. However, neither b, nor ¢
is even locally identifiable. This can be seen, e.g., by noticing
that the following is an output-preserving transformation of
system (10) for all non-zero k:

x—kx, c— %, b— kb+w—kw.

Therefore, Assumption (A) is not satisfied. For an analogous
example without constant states, see [5, Remark 2.15].

2) The transfer function method and generic initial conditions (see
also [40, Example 10.6]): Consider the linear compartment model

asi asy
in which an input function u is applied to compartment 1, the
quantity in compartment 1 is measured, and material flows
from compartment 1 to compartment 3 and from compartment
2 to compartment 3. The corresponding system is

X1 ! —da3s] 0 0 X1 u

x| = 0 —az 0 x|+10

X3 asi ap 0/ \x3 0 a3)
y1 =X

Since the system satisfies the hypothesis of Theorem 1, we
can find the field of identifiable functions, C(a3;), by looking
at the input-output equation:

y’l + a3y —u=0.

The transfer function (see Section C in Appendix) for the
system is ﬁ, so the transfer function method gives the same
correct result although the initial conditions are not zero but
generic and the assumptions of Theorem 3 are not satisfied.
However, using transfer function will lead to erroneous results
for this model if we move the output to compartment 3 (that is,
replace y; = x; with y; = x3). In this case, the transfer function
is S(S’f(;Sl), indicating that a3y is not identifiable. However,
it actually is identifiable. This can be shown again by using
Algorithm 1 (as the assumption of Theorem 1 is still satisfied),

that is, considering the following input-output equation:

V' + (a31 + az)y| +aziazy) — azjazu —azd.

Thus, the hypotheses of Corollary 3 cannot be omitted. Note
that Algorithm I1.2 will give a correct result for this case even
though the assumptions of Theorem 3 are not satisfied.

B. Positive examples for applying our theory

Below we give examples from the literature satisfying at
least one of the sufficient conditions from our main results.

1) Kinetics of lead in humans and our results for one output.: The
following system of equations is used in [42, Section 4A] to
model the kinetics of lead in the human body:

x| = kixi + koxo + kaxs + kg
x/z = ksx1 +kgxp

x/3 = k7x1 — k3X3

y1=X1

A full set of input-output equations is unique in this case and
consists of a single differential polynomial:

¥’ = (k1 +k3+ke)y{ + (—kiks + kike — kaks — kske — k3k7)y}
+ (kikske — koksks + kskek7)y1 + k3kake.
By Corollary 1 (condition (1)), the field of identifiable func-
tions is generated by
ki +ks+ke, —kiks+kike — kpks — k3kg — kzk7,
k3 (kike — koks + kek7), kskake.
In other words, these parameter combinations are identifiable,
and moreover any other identifiable combination of parameters
can be written as a rational combination of these.
2) Hepatobiliary kinetics of bromosulfophthalein: The following
linear compartment model is taken from [43, Section 6.3]:
x| = —k31x1 +ki3x3 +u
xh = —kapxp + koaxs
Xy = k31x1 — (ko3 + ki3 + ka3 )x3
x)y = kapxy + kazxz — (koa + koa)xs
Y1 =X,
y2 = Xx2.

A full set of IO-equations is too large to display here but their
coefficients are

ki3, k31, koakas, koakas, koz+kaz, kos+koa+kap. (14)

Hence, by Corollary 1, the field of identifiable functions is
generated by (14). This refines the analysis performed in [44,
Example 3], where it was shown that (14) generate the field of
[0-identifiable functions (as we have seen, for some examples,
there are IO-identifiable functions that are not identifiable).
3) Cyclic model: The following model can be obtained from
[35, Model M] by adding extra leaks and an output for a better
illustration of the computation in connection to our results:

X} = a13x3 — az1x1 — agixi

xh = axx) —aznxy —apxy +u
x5 = azx —aizx;

Y1=X1, Y2=X2

Using the coefficients of a full set of 10-equations or of the
transfer function matrix, we obtain by Corollaries | and 3 that
the field of identifiable functions is generated by:

azt, (ao1+azi)a1s, aoi+aiz, apzaz, dap+az.
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V. PROOFS

“Identifiability <= 10-identifiability” for linear systems with
one output (proof of Theorem 1)

In this section, we prove one of the main results, Theorem I,
which shows that, for a linear system with one output, 10-
identifiability and identifiability are equivalent. We begin with
showing a preliminary result.

Lemma 1: Let K be a field. Consider
« the differential polynomial ring K{y,u} with derivation 9

satisfying 0(K) =0,

o P € K{y,u} of the form P=Dp(y)+ Up, where Dp € K[0] is

a linear differential operator over K with leading coefficient

1 and Up € K{u}.

Let W be the Wronskian of all the monomials of P except for
the one of the highest order with respect to y. Then W ¢ [P].

Proof: Since the coefficients of P and W are in K, the
membership W € [P] would be the same considered over K
or its algebraic closure. Hence, replacing K with its algebraic
closure if necessary, we assume that K is algebraically closed.

Consider a lexicographic monomial ordering induced by an
ordering of the variables such that YD > y(i) for every i >
0 and y is greater than any derivative of u. Since for all r
PP,...,P") is a Grobner basis for

[P] ﬁK[.V?y’?"' 7y(r)’u7u/7"'7u(r>]7

it follows from [45, Lemma 1.5] that P,P’,... form a Grdbner
basis of [P] with respect to this ordering as defined by [45,
Definition 1.4].

Since the leading terms of a Grobner basis are linear, [P] is
a prime ideal. Thus, we can introduce L := Frac(K{y,u}/[P]).
Denote the field of constants of L by C(L) and the images of y
and u in L by y and @, respectively. Since none of derivatives
of u appear in the leading terms of the Grobner basis, @ and
their derivatives are algebraically independent over K.

Assume that the statement of the lemma is not true. Due
to [46, Theorem 3.7, p. 21], this implies that the images in L
of the monomials of P except for the one of the highest order
in y are linearly dependent over C(L). Therefore, there exists
a nonzero polynomial

Q =Dg(y) + Uy,

where Dg € C(L)[d] is monic and Up € C(L){u}, such that
Q(¥,u) =0 and ordDg < ordDp. Let Dy be the gcd of Dp
and D¢ with the leading coefficient 1. Then ord Dy < ord Dp.

If F is an algebraically closed field, p € F[X], and p is
divisible by a ¢ € E[X] with the leading coefficient 1, where
E is an extension of F, then g € F[X]. Hence, as Dy divides Dp
and K is algebraically closed, Dy € K[d] and there is D € K[0]
such that Dp = D Dg. There also are A,B € C(L)[d] such that

Do =ADp+BDy.

Consider R := A(P) + B(Q) = Do(y) + Ugr, where Up =
A(Up)+B(Up). Then R(y,u) = 0. Since P—D;(R) € C(L){u}
vanishes on u and u is differentially independent over C(L),
it follows that P = D;(R).

Considering a basis of C(L) over K, we can write

Up=Uy+e U +...+enUy,

where Uy, ..., Uy € K{u} and 1,ej,e2,...,ex € C(L) are lin-
early independent over K. Since D1 (Ug) = Up and D, € K[d],
Uy,...,Uy €kerD;, where we consider D; as a function from
C(L){y,u} to C(L){y,u}. There are two cases:

 D; is not divisible by d. Then kerD; = {0}. Hence,
U=...=Uy=0.

o D) is divisible by d. Then kerD| = C(L). Thus, Uj,...,Uy €
K. However, since Up = D(Ug), Up does not contain a
term in K. Hence, Uy does not contain a term in C(L) and,
consequently, Ug does not contain a term in C(L). Thus,

U=...=Uy=0.

In both cases, we have shown that Ug € K{u}. Thus, R €
K{y,u} and R € [P]. But this is impossible because P,P’", P, ...
is a Grobner basis of [P] with respect to the monomial ordering
introduced in the beginning of the proof, and ord Dy < ord Dp,
so R is not reducible with respect to this basis. [ ]

Theorem 1 (Main Result 1): For every ¥ as in (5) with m =
1 (that is, single output), for all # € C(u),

h is identifiable <= h is IO-identifiable.

Proof: [27, Theorem 4.2] implies that identifiable func-
tions are always IO-identifiable, so it remains to show the
reverse inclusion. Consider a full set of input-output equa-
tions for X. Since m = 1, it will consist of a single linear
differential polynomial p € C(u){y,u}. Then, Lemma | and
[27, Lemma 4.6] imply that its coefficients are identifiable, so
the reverse inclusion holds as well. [ |

B. Sufficient condition for “identifiability <= [O-identifiability”
for linear compartment models (proof of Theorem 2)

For the notation, see Section II-B.

Lemma 2: Let F = Frac(C(u){x,y,u}/Ix). The field of
constants of F' lies in the subfield of F' generated by C, u
and X.

Proof: Observe that F as a field is generated by pu,
x, and all the derivatives of u, and all these elements are
algebraically independent. Assume that there exists ¢ > 0 and

h e C(u,x, u ., u®) such that &' = 0 and, without loss of
generahty, h # 0. Then we have
n
l+1 / (€+1> a
h+ X =u '——=h+a,
,202 Loah =5
¢ e+1> LD
aE(C(,u,X,u,...,u(),ug syt )
(+1)

0 yields a contradiction since u, ' is transcendental

Now i/ =
over C(u,x,u,. u® oy (Hl), ,ugﬁl)) and a/)h #0. ®

Lemma 3: Consider a graph G such that, from every vertex,
at least one leak can be reached. Then the eigenvalues of A(G)
are distinct and algebraically independent over Q.

Proof: Let H be a directed spanning forest of G con-
structed by a breadth-first search (depth-first search would
work as well) with the set Leak as the source such that,
from every vertex, there is a path to some element of Leak.
Relabeling vertices if necessary, A(H) is upper triangular with
algebraically independent diagonal entries. It is well known
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that a breadth-first search on a graph will construct a spanning
forest containing all vertices reachable from the source set (cf.
[47, Section 22.2]).

We illustrate our procedure with an example. Let G be the
graph shown below, with Leak = {1,6}:

I

® ® ©
The steps of a breadth-first search with source set {1,6} are
the first three upper left, upper right, and lower left graphs

shown below. The fourth lower right graph is a relabeling of
the third as described above.

O) O——=0 I

©® ® ©
O—:0 I O——=0 ®
® ©, © ©)

Taking H to be the fourth graph, we have

© ®

a2
—amz

—aol

ass
—asz4
—ass

—ao3 ass

A(H) =
ase
—ase

Since the diagonal entries are algebraically independent over
Q and algebraic over the field extension of Q generated by
the coefficients of the characteristic polynomial of A(H), it
follows that the coefficients of the characteristic polynomial
of A(H) are algebraically independent over Q.

For all i,j, if the coefficients of the characteristic poly-
nomial of A(G)l4 ;=0 are algebraically independent, then the
coefficients of the characteristic polynomial of A(G) are al-
gebraically independent. Since A(H) can be obtained from
A(G) by setting equal to 0 those a; ; such that H has no edge
from j to i, it follows that the coefficients of the characteristic
polynomial of A(G) are non-zero and algebraically indepen-
dent. Since these n coefficients belong to the field extension
of Q generated by n eigenvalues, the eigenvalues must be
algebraically independent as well. [ |

Theorem 2 (Main Result 2): Let ¥ be a linear compartment
model with graph G such that, from every vertex of G, at least
one leak or input is reachable. Then the fields of identifiable
and IO-identifiable functions coincide.

Proof: Let K := Frac(C(u){x,y,u}/Ix). We will show
that ¥ does not have a rational first integral, that is C(K) =
C(u). Then the theorem will follow from [27, Theorem 4.7].
Consider a model X* with a graph G* obtained from G by
replacing every input with a leak (if there was a vertex with
an input and a leak, we simply remove the input). The theorem
will follow from the following two claims.

Claim: If ¥ has a rational first integral, then X* also does.
Consider a first integral of X, that is, an element of C(K)\
C(u). Lemma 2 implies that there exists R € C(u,x)\C such
that ¢ is the image of R in K. Since

Clu,x/{u}nly=0

due to [5, Lemma 3.1] and the image of R in K is a constant,
the Lie derivative of R with respect to X,

" OR

where fi,...,f, are as in (19), is zero. If there exists i € In
such that x; appears in R, then Lz (R) will be of the form
oR
Ly (R) = s—b;(#)u; + (something not involving u;) # 0.

E)xl-
Thus, R does not involve any x; with i € In. Then, due to
the construction of G*, Lz+(R) = Lz(R) =0, so X* also has a
rational first integral.

Claim: ¥* does not have rational first integrals. Lemma 3
implies that the eigenvalues of A(G*) are algebraically inde-
pendent. Then [48, Theorem 10.1.2, p. 118] implies that X*
does not have rational first integrals. [ ]

C. Using more convenient |0-equations (proof of Theorem 3)

For the notation, see Section II-B.

Lemma 4: Let K be a field. For all a,b,c € K|x| such that
gcd(a,b) = 1, there exists at most one pair (p,q) of elements
of K[x] such that ap + bg = ¢ and degp < degb.

Proof:  Suppose (p,q) and (pi,q)) are distinct pairs
satisfying the two properties above. It follows that

a(p—p1)+blg—q1) =0. (15)

Since (p,q) # (p1,q1), (15) implies that p # p;. Since
deg(p — p1) < degb,

(15) implies ged(a,b) # 1, contradicting our hypothesis. M
Corollary 4: Let K be a field containing C and a,b, ¢ € K[x]
with gcd(a,b) = 1. If there is a pair of polynomials (p,q) with

ap+bg=c and degp <degh,

then the coefficients of p and g belong to the field extension
of C generated by the coefficients of a, b, and c.

Proof: Suppose some coefficient of p or g does not
belong to the field generated by the coefficients of a, b, and c.
By [49, Theorem 9.29, p. 117], there is a field automorphism
o of K that fixes the field extension of C generated by the
coefficients of a, b, and ¢ and moves this coefficient.

We extend 6 to K|[x] by 6(x) =x. Applying 6 to both sides
of ap+bq = c gives us ac(p) +bo(q) = c. Using K for K in
Lemma 4, we arrive at a contradiction. |

Theorem 3 (Main Result 3): Let ¥ be a linear compartment
model with a graph G. Let A=A(G) and M ; be the submatrix
of dI — A obtained by deleting the j-th row and the i-th column
of oI —A. Recall that (see (9)), for every solution of X, we have
for every i € Out,

det(dI —A)(v;) =

1 L
Y (=)™ det(M ;i) (bj()uy).
ci(m) j€ln
If G is strongly connected and has at least one input, then the
coefficients of these differential polynomials with respect to
y’s and u’s generate the field of identifiable functions of X.
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Proof: ~ Without loss of generality, assume Out =
{1,...,m}. We set, for i=1,...,m,
hi = det(I —A) (i) = 7y X, (= 1) det(M;i)b;(p)u;. (16)
j€ln
Let also D =det(dl —A) and, for i =1,...,m, let Q; be the
1 X n matrix of operators defined by

{(Q»,,- = G det(Mji)bj(u), jen,

Observe that, fori=1,...,m h; = D(y;) — Q;-u, where u is the
n x 1 matrix defined by u; =u; if j € In and u; = 0 otherwise.
First we show that the coefficients of hy,...,h, are 1O-
identifiable. Fix i. Consider an ordering of the outputs such
that y; is the smallest one. Let py,..., p, be a full set of input-
output equations with respect to this ordering (see Definition 2)
which exists due to Proposition 1. Then p; is of the form

E(yi)+B'u7

a7)

where E is a linear differential operator and B is a 1 X n matrix
of linear differential operators, both with coefficients in C(u).
Since h; € Ix and h; involves only y; and u, the second part of
Proposition | implies that &; € [p1], so there exists a differential
operator Dy € C(u)[d] such that #; = Dop;. Since G is strongly
connected and has an input, by [15, Proposition 3.19],

ged(DU{(Qi); | (Qi); #0}) =1.

Thus Dy has order zero, so h; and p; are proportional.
Therefore, the coefficients of (16) are I0-identifiable.

Next, we show that the field generated by the coefficients of
hi,..., h, contains the field of I0-identifiable functions. Fix
an ordering on the outputs y,, > ... > y;. We will show that
the full set pi,...,p, of input-output equations with respect
to this ordering satisfies:

ordy, p1 =n, ordy,p; =0 for every 2 <i<m. (18)

The fact that ordy, p; = n is implied by the previous paragraph.
From (5), we see that the transcendence degree of

C(#){Xayvu}/l):

over C(u){u} is equal to n, so the transcendence degree of

C(u){y,u}/(IsNC(u){y,u})

over C(u){u} is less than or equal to n. From the form
of p1, we have that yl,y’l,...,y(lnfl) are algebraically in-
dependent over C(u){u}, so for i =2,...,m, the elements

Vi Y1, Ys s yinil) must be algebraically dependent over
C(u){u}. Hence, the equation for y; has order 0 in y;. Thus,

p1=D(y1)—Qi-u
and, for every, 2 < i< m, we can write
pi=yi+Di(y1)+P;-u,

where P; is a 1 X n matrix of linear differential operators and
the order of operator D; is at most n — 1.

We show that the coefficients of p1,..., p, can be written in
terms of the coefficients of Ay, ..., h,. Since h; equals D(y;) —

Q1 - u, this is true for the coefficients of D and Q. It remains
to show this for the coefficients of D,,...,D,, and P»,...,P,,.
Note that for all i and for j ¢ In we have (P;); =0, so we
need only address the coefficients of (P;); for j € In.

Fix i > 1 and let g = y;+ D;(y1) + P;(u). We have that

D(g) —Di(h1) = D(yi) + (DP;+ D;iQ1)(u) € Iy.
It follows that D(y;) + (DP; 4+ D;Q1)(u) = h;, so, for all j,

D(P)j+Di(Q1); = —(Qi),-

By the hypothesis of the theorem, In # @. Fix j € In. We
apply [15, Proposition 3.19] to the model obtained from ¥ by
deleting all the inputs except for j and obtain, using D # 1,
that ged(D,(Q1);) =1 for every j € In. By Corollary 4, the
coefficients of (P;); and D; belong to the field extension of
C generated by the coefficients of D, (Q1);, and (Q;);. We
showed that the field extension of C generated by the coef-
ficients of hy,...,h, is the field of 10-identifiable functions.
By Theorem 2, this is the field of identifiable functions. H

APPENDIX
A. General definition of identifiability

In this section, we will generalize the notions from Sec-
tion II-A to ODE systems with rational right-hand side. Fix
positive integers A, n, m, and K for the remainder of the ap-

pendix. Let p= (ur,..., 1), X= (X1, %), Y= V1, -+, Ym)>

and u= (uj,...,ux). Consider a system of ODEs
o — T pu)
O(x,u,u)
=4 _ gxpu (19)
O(x,p,u)’
x(0) = x*,

where f = (fi,...,f,) and g = (g1,...,8m) are tuples of
elements of Cly,x,u] and Q € Clu,x,u]\{0}.
Notation 3 (Ideal I5):
(a) For an ideal I and element a in a ring R, we denote

I:a”={reR|3:d'rel}.
This set is also an ideal in R.

(b) Given X as in (19), we define the differential ideal of X:
IZ = [QX/ - fu Qy - g] : Q(><J C C(#){X7y7u}'

For the case of a linear system as in (5), this ideal
coincides with the one from Notation 2.
Notation 4 (Auxiliary analytic notation):
(a) For every given h € C(x*,u), let

Q= {(&",i1,8) € C" x C*x (C=(0))* | Q(%", 1,4(0)) # 0}
Q, = QN ({(&*, i) € C"* | h(X*, 1) well-defined}
x (C=(0))%).
(b) For (X*,f1,0) € Q, let X(8*,f1,4) and Y (X*,f1,0@) denote

the unique solution over C(0) of the instance of ¥ with
x*=%*, u=f, and u =1 (see [41, Theorem 2.2.2]).
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Definition 6 (Identifiability, see [5, Definition 2.5]): We
say that h(x*,u) € C(x*,u) is identifiable if

30 € 1(C" x CY U e 1((C=(0))¥)
V(& p0) € (@xU)NQy,  [Sy(X°,,0)] =
where S, (%", f1,0) := {h(X", @) | (X", f1,0) € Q
YR, 1,0) = Y (X, j1,0)}.

In this paper, we are interested in comparing identifiability
and IO-identifiability (Definition 7), and the latter is defined
for functions in g, not in g and x*. Thus, just for the purpose
of comparison, we will restrict ourselves to the field

{h € C(p) | h is identifiable},

which we will call the field of identifiable functions.
Definition 7 (10-identifiability): The smallest field k such
that C C k C C(u) and Ix NC(u){y,u} is generated (as an
ideal or as a differential ideal) by Iy Nk{y,u} is called the
field of 10-identifiable functions.
We call i € C(u) 10-identifiable if h € k.

B. Specialization to the linear case

Proposition 1: For every system X of the form (5):

(1) for every ordering of output variables, there exists a
unique full set of input-output equations with respect to
this ordering;

(2) if p1,...,pm is the full set of input-output equations with
respect to y; < ... <y, then the derivatives of py,...,pnm
form a Grobner basis of Iz NC(u){y,u} with respect to
any lexicographic monomial ordering such that

« any derivative of any of y’s is greater any derivative of

any of u’s_;

. yl(in) N yl(.2/2>

An analogous statement holds for any ordering of outputs.

(3) Definitions 7 and 3 define the same field. In particular,

the field defined in Definition 3 does not depend on the
choice of a full set of input-output equations.

Proof: We fix an ordering y; < ... <y, of outputs.
Assume that there are full sets of input-output equations
Pl,..-,Pm and qi,...,qm with respect to this ordering. Let ¢
be the smallest integer such that p; # gy. By the definition,
ord,, p; = ordy, g;. Then ordy,(p¢ — q¢) < ord,, p; for every
i < ¢; this contradicts the definition of a full set of input-output
equations. To finish the proof of part (1) of the proposition, we
will show the existence of a full set of input-output equations.

Let J := Ir NC(u){y,u}. Consider the set of differential
polynomials

S={x—-fx"—f,...

iff iy > iy or iy =i and j; > js.

y—gy-—g.. ..}

By the definition of I, S generates Ix. Since these generators
are linear, I+ has a linear Grobner basis (see [45, Definition
1.4]) with respect to any monomial ordering. Since J is an
elimination ideal of Iy, it also has a linear Grobner basis with
respect to any monomial ordering. Consider any lexicographic
monomial ordering on C(u){x,y,u} such that

o any derivative of any of y,...

derivative of any of xy,...,x,;

,Ym 1s greater than any

« any derivative of any of xl,
derivative of an of u

.,X, is greater than any
o« fora=ux,y, a 1ff11>12 or iy =iy and j; > jo.
Observe that S is a Grobner basis of Iy with respect to any
such monomial ordering. Therefore, u and their derivatives are
algebraically independent modulo I5, and the transcendence
degree of C(u){x,y,u} over C(u){u} modulo Iy is finite.

Consider the restriction of the ordering described above to
C(u){y,u}. Consider the reduced Grébner basis B of J with
respect to this ordering. As we have shown, it is linear. Since
the transcendence degree of C(u){y,u} over C(u){u} modulo
J is finite, for every 1 < i < m, there is a derivative of y;
among the leading terms of B. Moreover, by differentiating the
corresponding element of B, we see that all higher derivatives
of y; will appear as leading terms of B.

For each 1 <i < m, we set p; to be the element in B with
the leading term being yﬁj ) such that Jj is the smallest possible.
Then the fact that py,..., p,, are a part of the reduced Grobner
basis implies that they form a full set of input-output equations
with respect to the ordering y; < y2 < ... < y;. This finishes
the proof of part (1) of the proposition.

To prove part (2) of the proposition, observe that the deriva-
tives of pi,...,p, form a Grobner basis of [py,...,pn] with
respect to the described ordering. Thus, it remains to show
that [pi,...,pm] =J. Assume that there is ¢ € J\ [p1,..., pm]-
By reducing it with respect to appropriate derivatives of
Pl,---,Pm,» We can assume that ordy,q < ordy, p; for every
1 <i < m. But this would imply that py,..., p,, is not a full set
of input-output equations, proving part (2) of the proposition.

To prove part (3) of the proposition, note that, since a full set
of input-output equations is a part of a reduced Grobner basis
of J, its coefficients are in the field of definition of J. On the
other hand, since the set of all derivatives of p1,..., p, forms
a Grobner basis of J and the coefficients of these derivatives
are the same as the coefficients of py,..., py, the coefficients
of pi,...,pm generate the field of definition of J. [ |

C. Input-output equations based on the Cramer’s rule and the
transfer function matrix

Recall [40, page 444] that the transfer function matrix of a
linear system

X' =A(u)x+B(u)u,
y=C(m)x.
is defined by

H(p,s) := C(u)(sI — A())~'B(n),

where s is a new algebraic variable and [ is the identity matrix.
This matrix relates the Laplace transforms of y and u under the
assumption that the initial conditions are zero [40, page 75].
The formulas (9) and (20) look similar and in fact are related.
We give a connection we are interested in as Lemma 5 below,
and refer for further connection to an upcoming paper [50].

For a rational function f € C(u)(s) in s, by the coefficients
of f, we will understand the union of the coefficients of
the numerator and denominator in the reduced form if the
denominator is taken to be monic.

(20)
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Lemma 5: Consider a linear compartment model with at
least one input and whose graph is strongly connected. Then
the following sets generate the same subfield in C(u)

« coefficients of the input-output equations (9);
« coefficients of the entries of the transfer function matrix.
Proof: Since each of the equations (9) involves only
one output and each row in the matrix (20) corresponds to
an output, proving the lemma for the single-output case will
yield the general case by taking the union of the respective
generators.

We write (9) as p(d)y =q1(d)u; + ...+ ¢,(d)u, for nonzero
p(s),q1(s),...,q,(s) € C(u)[s] such that p(s) is monic. Let
F; be the field generated by the coefficients of p,qi,...,q,.
Since the graph is strongly connected and has an input, [15,
Proposition 3.19] implies that ged(p,q1,...,9-) = 1. A direct
computation shows that H(u) defined by (20) is equal to

— _(a1(s) a2(s) qr(S)>
H(u) := (hi(s),ha(s),...,he(s)) (p(s) o) pl) )
Let F; be the field generated by the coefficients of hy,..., A;.
For all integers ny,...,n,, the coefficients of njhy + ... +nh,
belong to F,. Since gqi,...,qr,p are coprime, there exist
integers ny,...,n, such that njq; +...+n,q, is coprime with
p, so p is the denominator of njhy + ...+ n.h,.. Hence, the
coefficients of p belong to F>. Let g; = ged(p,q;) and p; =
p/gi- By definition, the coefficients of p; are in F, so the
coefficients of g; are in F>. By definition, the coefficients of
qi/gi are in F, so the coefficients of ¢; are in F>. Thus, F; C F>.

To prove F> C Fi, note that the coefficients of the remainder
and quotient of two polynomials belong to the field generated
by the coefficients of the polynomials. Since the numerator and
denominator of A; are equal to g;/ ged(p,q;) and p/ ged(p,qi),
respectively, we have F> C Fy, so F1 = F>. [ |
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