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Abstract. Quadratization is a transform of a system of ODEs with
polynomial right-hand side into a system of ODEs with at most quadratic
right-hand side via the introduction of new variables. Quadratization
problem is, given a system of ODEs with polynomial right-hand side,
transform the system to a system with quadratic right-hand side by
introducing new variables. Such transformations have been used, for ex-
ample, as a preprocessing step by model order reduction methods and
for transforming chemical reaction networks.
We present an algorithm that, given a system of polynomial ODEs, finds
a transformation into a quadratic ODE system by introducing new vari-
ables which are monomials in the original variables. The algorithm is
guaranteed to produce an optimal transformation of this form (that is,
the number of new variables is as small as possible), and it is the first
algorithm with such a guarantee we are aware of. Its performance com-
pares favorably with the existing software, and it is capable to tackle
problems that were out of reach before.

Keywords: differential equations · branch-and-bound · quadratization.

1 Introduction

The quadratization problem considered in this paper is, given a system of ordi-
nary differential equations (ODEs) with polynomial right-hand side, transform
it into a system with quadratic right-hand side (see Definition 1). We illustrate
the problem on a simple example of a scalar ODE:

x′ = x5. (1)
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The right-hand side has degree larger than two but if we introduce a new variable
y := x4, then we can write:

x′ = xy, and y′ = 4x3x′ = 4x4y = 4y2. (2)

The right-hand sides of (2) are of degree at most two, and every solution of (1)
is the x-component of some solution of (2).

A problem of finding such a transformation (quadratization) for an ODE
system has appeared recently in several contexts:

– One of the recent approaches to model order reduction [11] uses quadratiza-
tion as follows. For the ODE systems with quadratic right-hand side, there
are dedicated model order reduction methods which can produce a better
reduction than the general ones. Therefore, it can be beneficial to perform a
quadratization first and then use the dedicated methods. For further details
and examples of applications, we refer to [11,15,16,20].

– Quadratization has been used as a preprocessing step for solving differential
equations numerically [6,12,14].

– Applied to chemical reaction networks, quadratization allows one to trans-
form a given chemical reaction network into a bimolecular one [13].

It is known (e.g. [11, Theorem 3]) that it is always possible to perform quadra-
tization with new variables being monomials in the original variables (like x4 in
the example above). We will call such quadratization monomial (see Defini-
tion 2). An algorithm for finding some monomial quadratization has been de-
scribed in [11, Section G.]. In [13], the authors have shown that the problem of
finding an optimal (i.e. of the smallest possible dimension) monomial quadrati-
zation is NP-hard. They also designed and implemented an algorithm for finding
a monomial quadratization which is practical and yields an optimal monomial
quadratization in many cases (but not always, see Section 3).

In this paper, we present an algorithm that computes an optimal monomial
quadratization for a given system of ODEs. To the best of our knowledge, this
is the first practical algorithm with the optimality guarantee. In terms of ef-
ficiency, our implementation compares favorably to the existing software [13]
(see Table 3). The implementation is publicly available at https://github.com/
AndreyBychkov/QBee/. Our algorithm follows the classical Branch-and-Bound
approach [17] together with problem-specific search and branching strategies and
pruning rules (with one using the extremal graph theory, see Section 5.2).

Note that, according to [2], one may be able to find a quadratization of
lower dimension by allowing the new variables to be arbitrary polynomials, not
just monomials. We restrict ourselves to the monomial case because it is already
challenging (e.g., includes an APX-hard [2]-sumset cover problem, see Remark 6)
and monomial transformations are relevant for some application areas [13].

The rest of the paper is organized as follows. In Section 2, we state the prob-
lem precisely. In Section 3, we review the prior approaches, most notably [13].
Sections 4 and 5 describe our algorithm. Its performance is demonstrated and
compared to [13] in Section 6. Sections 7 and 8 contain remarks on the complex-
ity and conclusions/open problems, respectively.

https://github.com/AndreyBychkov/QBee/
https://github.com/AndreyBychkov/QBee/
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2 Problem Statement

Definition 1. Consider a system of ODEs

x′1 = f1(x̄), . . . , x′n = fn(x̄), (3)

where x̄ = (x1, . . . , xn) and f1, . . . , fn ∈ C[x]. Then a list of new variables

y1 = g1(x̄), . . . , ym = gm(x̄), (4)

is said to be a quadratization of (3) if there exist polynomials h1, . . . , hm+n ∈
C[x̄, ȳ] of degree at most two such that

– x′i = hi(x̄, ȳ) for every 1 6 i 6 n;

– y′j = hj+n(x̄, ȳ) for every 1 6 j 6 m.

The number m will be called the order of quadratization. A quadratization of
the smallest possible order will be called an optimal quadratization.

Definition 2. If all the polynomials g1, . . . , gm are monomials, the quadrati-
zation is called a monomial quadratization. If a monomial quadratization of a
system has the smallest possible order among all the monomial quadratizations
of the system, it is called an optimal monomial quadratization.

Now we are ready to precisely state the main problem we tackle:

Input A system of ODEs of the form (3).

Output An optimal monomial quadratization of the system.

Example 1. Consider a single scalar ODE x′ = x5 from (1), that is f1(x) = x5.
As has been show in (2), y = x4 is a quadratization of the ODE with g(x) = x4,
h1(x, y) = xy, and h2(x, y) = 4y2. Moreover, this is a monomial quadratization.

Since the original ODE is not quadratic, the quadratization is optimal, so it
is also an optimal monomial quadratization.

Example 2. The Rabinovich-Fabrikant system [19, Eq. (2)] is defined as follows:

x′ = y(z − 1 + x2) + ax, y′ = x(3z + 1− x2) + ay, z′ = −2z(b + xy).

Our algorithm finds an optimal monomial quadratization of order three: z1 =
x2, z2 = xy, z3 = y2. The resulting quadratic system is:

x′ = y(z1 + z − 1) + ax, z′1 = 2z1(a + z2) + 2z2(z − 1),

y′ = x(3z + 1− z1) + ay, z′2 = 2az2 + z1(3z + 1− z1 + z3) + z3(z − 1)

z′ = −2z(b + z2), z′3 = 2az3 + 2z2(3z + 1− z1).
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3 Discussion of prior approaches

To the best of our knowledge, the existing algorithms for quadratization are [11,
Algotirhm 2] and [13, Algorithm 2]. The former has not been implemented and is
not aimed at producing an optimal quadratization: it simply adds new variables
until the system is quadratized, and its termination is based on [11, Theorem 2].

It has been shown [13, Theorem 2] that finding an optimal quadratization
is NP-hard. The authors designed and implemented an algorithm for finding a
small (but not necessarily optimal) monomial quadratization which proceeds as
follows. For an n-dimensional system x̄′ = f̄(x̄), define, for every 1 6 i 6 n,

Di := max
16j6n

degxi
fj .

Then consider the set

M := {xd1
1 . . . xdn

n | 0 6 d1 6 D1, . . . , 0 6 dn 6 Dn}. (5)

[4, Proof of Theorem 1] implies that there always exists a monomial quadra-
tization with the new variables from M . The idea behind [13, Algorithm 2] is
to search for an optimal quadratization inside M . This is done by an elegant
encoding into a MAX-SAT problem.

However, it turns out that the set M does not necessarily contain an optimal
monomial quadratization. As our algorithm shows, this happens, for example, for
some of the benchmark problems from [13] (Hard and Monom series, see Table 3).
Below we show a simpler example illustrating this phenomenon.

Example 3. Consider a system

x′1 = x4
2, x′2 = x2

1. (6)

Our algorithm shows that it has a unique optimal monomial quadratization

z1 = x1x
2
2, z2 = x3

2, z3 = x3
1 (7)

yielding the following quadratic ODE system:

x′1 = x2z2, z′1 = x6
2 + 2x3

1x2 = z22 + 2x2z3, z′3 = 3x2
1x

4
2 = 3z21 ,

x′2 = x2
1, z′2 = 3x2

1x
2
2 = 3x1z1.

The degree of (7) with respect to x1 is larger than the x1-degree of the original
system (6), so such a quadratization will not be found by the algorithm [13].

It would be interesting to find an analogue of the set M from (5) always con-
taining an optimal monomial quadratization as this would allow using powerful
SAT-solvers. For all the examples we have considered, the following set worked

M̃ := {xd1
1 . . . xdn

n | 0 6 d1, . . . , dn 6 D}, where D := max
16i6n

Di.
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4 Outline of the algorithm

Our algorithm follows the general Branch-and-Bound (B&B) paradigm [17]. We
will describe our algorithm using the standard B&B terminology (see, e.g., [17,
Section 2.1]).

Definition 3 (B&B formulation for the quadratization problem).

– The search space is a set of all monomial quadratizations of the input system
x̄′ = f̄(x̄).

– The objective function to be minimized is the number of new variables in-
troduced by a quadratization.

– Each subproblem is defined by a set of new monomial variables z1(x̄), . . . , z`(x̄)
and the corresponding subset of the search space is the set of all quadratiza-
tions including the variables z1(x̄), . . . , z`(x̄).

Definition 4 (Properties of a subproblem). To each subproblem (see Def-
inition 3) defined by new variables z1(x̄), . . . , z`(x̄), we assign:

1. the set of generalized variables, denoted by V , consisting of the polynomials
1, x1, . . . , xn, z1(x̄), . . . , z`(x̄);

2. the set of nonsquares, denoted by NS, consisting of all the monomials in the
derivatives of the generalized variables which do not belong to V 2 := {v1v2 |
v1, v2 ∈ V }. In particular, a subproblem is a quadratization iff NS = ∅.

Example 4. We will illustrate the notation introduced in Definition 4 on a system
x′ = x4 + x3 and a new variable z1(x) = x3. We have z′1 = 3x2x′ = 3x6 + 3x5.
Therefore, for this subproblem, we have:

V = {1, x, x3}, V 2 = {1, x, x2, x3, x4, x6}, NS = {x5}.

In order to organize a B&B search in the search space defined above, we
define several subroutines/strategies answering the following questions:

– How to set the original bound? [4, Theorem 1] implies that the set M from (5)
gives a quadratization of the original system, so it can be used as the starting
incumbent solution.

– How to explore the search space? There are two subquestions:

• What are the child subproblems of a given subproblem (branching strat-
egy)? This is described in Section 4.1.

• In what order we traverse the tree of the subproblems? We use DFS (to
make new incumbents appear earlier) guided by a heuristic as described
in Algorithm 1.

– How to prune the search tree (pruning strategy)? We use two algorithms for
computing a lower bound for the objective function in a given subtree, they
are described and justified in Section 5.
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4.1 Branching strategy

Let x̄′ = f̄(x̄) be the input system. Consider a subproblem defined by new
monomial variables z1(x̄), . . . , z`(x̄). The child subproblems will be constructed
as follows:

1. among the nonsquares (NS, see Definition 4), choose any monomial m =
xd1
1 . . . xdn

n with the value
∏n

i=1(di + 1) the smallest possible;

2. for every decomposition m = m1m2 as a product of two monomials, define a
new subproblem by adding the elements of {m1,m2} \ V (see Definition 4)
as new variables. Since m ∈ NS, at least one new variable will be added.

The score function
∏n

i=1(di + 1) is twice the number of representations m =
m1m2, so this way we reduce the branching factor of the algorithm.

Lemma 1. Any optimal subproblem z1(x̄), . . . , z`(x̄) is a solution of at least one
of the children subproblems generated by the procedure above.

Proof. Let z1(x̄), . . . , zn(x̄) be any solution of the subproblem. Since m must
be either of the form zizj or zj , it will be a solution of the child subproblem
corresponding to the decomposition m = zizj or m = 1 · zj , respectively.

Example 5. Figure 1 below show the graph representation of system x′ = x4+x3

from Example 4. The starting vertex is ∅. The underlined vertices correspond
to optimal quadratizations, so the algorithm will return one of them. On the
first step, the algorithm chooses the monomial x3 which has two decompositions
x3 = x · x2 and x3 = 1 · x3 yielding the left and the right children of the root,
respectively. The subproblem {x3} was described in more details in Example 4.

The score function
∏n

i=1(di + 1) for the decompositions x3 = x · x2 and
x3 = 1 · x3 takes values 6 and 4, respectively. Hence the algorithm will first
explore the branch on the right.

∅

{x2} {x3}

{x2, x3}{x2, x4} {x2, x5} {x3, x4} {x3, x5}

Fig. 1. Graph illustration for equation x′ = x4 + x3
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4.2 Recursive step of the algorithm

The recursive step of our algorithm can be described as follows.

Algorithm 1: Branch and Bound recursive step

Input
– polynomial ODE system x̄′ = f̄(x̄);
– set of new variables z1(x̄), . . . , z`(x̄);
– an optimal quadratization found so far (incumbent) with N new variables.

Output the algorithm replaces the incumbent with a more optimal quadratization
containing z1(x̄), . . . , z`(x̄) if such quadratization exists.

(Step 1) if z1(x̄), . . . , z`(x̄) is a quadratization
(a) if ` < N , replace the incumbent with z1(x̄), . . . , z`(x̄);
(b) return;

(Step 2) if any of the pruning rules (Algorithm 2 or 3) applied to z1(x̄), . . . , z`(x̄)
and N return True, return;

(Step 3) generate set C of child subproblems as described in Section 4.1
(Step 4) sort C in increasing order w.r.t. S + n|V |, where S is the sum of the degrees

of the elements in V (V is different for different subproblems as defined in
Definition 4);

(Step 5) for each element of C, call Algorithm 1 on it.

5 Pruning rules

In this section, we present two pruning rules yielding a substantial speedup of the
algorithm: based on a quadratic upper bound and based on squarefree graphs.

Property 1. Each pruning rule has the following input-output specification:

Input:

– the original ODE system x̄′ = f̄(x̄);

– already added new variables z1(x̄), . . . , z`(x̄) which are monomials in x̄;

– positive integer N .

Output: True if it is guaranteed that the set of new variables z1(x̄), . . . , zs(x̄)
cannot be extended to a monomial quadratization of x̄′ = f̄(x̄) of order less
then N . False otherwise.

Note that, if False is returned, it does not imply that the set of new variables
can be extended.

Remark 1. Both pruning rules presented here actually check a stronger condi-
tion: whether the set of new variables can be extended by at most N−s variables
so that all the monomials NS in the current subproblem can be written as a prod-
uct of two generalized variables. It would be very interesting to strengthen these
rules by taking into account the derivatives of the extra new variables.
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5.1 Rule based on quadratic upper bound

Remark 2 (Intuition behind the rule). Consider a subproblem with the gener-
alized variables V and set of nonsquares NS (see Definition 4). Assume that
it can be quadratized by adding a set W of variables. This would imply that
NS ⊆ (V ∪W )2. This yields a bound

|NS | 6 (|V |+ |W |)(|V |+ |W |+ 1)

2
. (8)

The general ideal of the rule is: since |V | and |NS | are known, (8) can be used
to find a lower bound for |W |. However, a straightforward application of (8)
does not lead to noticeable performance improvements. We found that one can
do much better by first estimating the number of elements of NS∩(V ·W ) and
then applying an argument as in (8) to NS \(V ·W ) and W .

Algorithm 2: Pruning rule: based on a quadratic upper bound

(Step 1) Compute the following multiset of monomials in x̄

D := {m/v | m ∈ NS, v ∈ V, v | m}.

(Step 2) Let mult be the list of multiplicities of the elements of D sorted in the
descending order.

(Step 3) Find the smallest integer k such that

|NS | 6
k∑

i=1

mult[i] +
k(k + 1)

2
. (9)

(We use 1-based indexing and set mult[i] = 0 for i > |mult |)
(Step 4) If k + ` > N , return True. Otherwise, return False.

Lemma 2. Algorithm 2 satisfied the specification described in Property 1.

Proof. Assume that Algorithm 2 has returned True. Consider any quadratization
z1, . . . , z`+r of x̄′ = f̄(x̄) extending z1, . . . , z`. We define Ṽ , a superset of V , as

{1, x1, . . . , xn, z1, . . . , z`+r}. By the definition of quadratization, NS ⊆ Ṽ 2. We

split NS into two subsets NS0 := NS∩(V · Ṽ ) and NS1 := NS \NS0. For every
1 6 i 6 r, the cardinality of NS∩(z`+i · V ) does not exceed the multiplicity of

z`+i in the multiset D constructed at (Step 1). Therefore, |NS0 | 6
r∑

i=1

mult[i].

The number of products of the form z`+iz`+j with 1 6 i 6 j 6 r does not exceed
r(r+1)

2 . Therefore, we have

|NS | = |NS0 |+ |NS1 | 6
r∑

i=1

mult[i] +
r(r + 1)

2
,

so r satisfies (9). The minimality of k implies r > k. Thus, r+` > N , so z1, . . . , z`
cannot be extended to a quadratization of order less than N .
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5.2 Rule based on squarefree graphs

Remark 3 (Intuition behind the rule). We will illustrate the idea behind the rule
in a simple example. Assume that we have five monomials m1, . . . ,m5 such that
none of them is a square. Assume also that there is a set V of monomial new
variables such that |V | = 4 and mi ∈ V 2 for every i. Since none of mi’s is
a square, it can be written as mi = zi,1zi,2 for distinct zi,1, zi,2 ∈ V . We can
therefore think about a graph with vertices being elements of V and edges given
by m1, . . . ,m5. One can check that every graph with four vertices and five edges
must contain a four-cycle. Let the cycle consist of edges m1,m2,m3,m4 in this
order. Then, for some numbering of elements in V , we have:

m1 = z1z2, m2 = z2z3, m3 = z3z4, m4 = z4z1 =⇒ m1m3 = m2m4.

Thus, by checking that all pairwise product of m1, . . . ,m5 are distinct, we can
verify that m1, . . . ,m5 ∈ V 2 implies that |V | > 4.

In order to take into account the monomials which are squares, we consider
not just graphs but pseudographs. We also employ the separation strategy NS =
(NS∩(V ·W )) ∪ (NS \(V ·W )) as described in Remark 2.

Definition 5. A pseudograph G (i.e., a graph with loops and multiple edges
allowed) is called C4∗-free if there is no cycle of length four in G with every two
adjacent edges being distinct (repetition of edges and/or vertices is allowed).

Example 6. A C4∗-free pseudograph cannot contain:
– A vertex with two loops. If the loops are `1 and `2 then the cycle `1, `2, `1, `2

will violate C4∗-freeness.
– Multiple edges. If e1 and e2 are edges with the same endpoints, then e1, e2, e1, e2

will violate C4∗-freeness.
– Two vertices with loops connected by an edge. If the loops are `1 and `2 and

the edge is e, then `1, e, `2, e will violate C4∗-freeness.

Definition 6. By C(n,m) we denote the largest possible number of edges in a
C4∗-free pseudograph G with n vertices and at most m loops.

Remark 4. Note that the example above implies that C(n, n + k) = C(n, n) for
every positive integer k because a C4∗-free pseudograph cannot contain more
than n loops.

The number C(n, 0) is the maximal number of edges in a C4-free graph and
has been extensively studied (e.g. [1,5,7,9]). Values for n 6 31 are available as a
sequence A006855 in OEIS [18].

In Algorithm 3, we use the exact values for C(n,m) found by an exhaustive
search and collected in Table 1 for n 6 7. The script for the search is available
at https://github.com/AndreyBychkov/QBee/blob/0.5.0/qbee/no C4 count.py.
For n > 7, we use the following bound

C(n,m) 6 C(n, 0) + m 6
n

2
(1 +

√
4n− 3) + m,

https://github.com/AndreyBychkov/QBee/blob/0.5.0/qbee/no_C4_count.py
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m

n 0 1 2 3 4 5 6 7

1 0 1

2 1 2 2

3 3 3 4 4

4 4 5 5 6 6

5 6 6 7 7 8 8

6 7 8 9 9 9 10 10

7 9 10 11 12 12 12 12 12

Table 1. Exact values for C(n,m) (see Definition 6).

where the bound for C(n, 0) is due to [10, Chapter 23, Theorem 1.3.3].

Algorithm 3: Pruning rule: based on squarefree graphs

(Step 1) Compute a subset E = {m1, . . . ,me} ⊆ NS such that all the products
mimj for 1 6 i 6 j 6 e are distinct.
(done by traversing NS in a descending order w.r.t. the total degree and
appending each monomial if it does not violate the property)

(Step 2) Compute the following multiset of monomials in x

D := {m/v | m ∈ E, v ∈ V, v | m}.

(Step 3) Let mult be the list of multiplicities of the elements of D sorted in
descending order.

(Step 4) Let c be the number of elements in E with all the degrees being even.
(Step 5) Find the smallest integer k such that

|E| 6
k∑

i=1

mult[i] + C(k, c). (10)

(We use 1-based indexing and set mult[i] = 0 for i > |mult |)
(Step 6) If k + ` > N , return True. Otherwise, return False.

Lemma 3. Algorithm 3 satisfied the specification described in Property 1.

Proof. Assume that Algorithm 2 has returned True. Consider any quadratization
z1, . . . , z`+r of x̄′ = f̄(x̄) extending z1, . . . , z`. We define Ṽ , a superset of V , as

{1, x1, . . . , xn, z1, . . . , z`+r}. By the definition of quadratization, E ⊆ NS ⊆ Ṽ 2.
Similarly to the proof of Lemma 2, we split E into two subsets

E0 := E ∩ (V · Ṽ ) and E1 := E \ E0.

For every 1 6 i 6 r, the cardinality of E ∩ (z`+i · V ) does not exceed the multi-

plicity of z`+i in the multiset D from (Step 2). Therefore, |E0| 6
r∑

i=1

mult[i].
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Consider a pseudograph G with r vertices numbered from 1 to r correspond-
ing to z`+1, . . . , z`+r, respectively. For every element m ∈ E1, we fix a represen-
tation m = z`+iz`+j , and add an edge connecting vertices i and j in G (this
will be a loop of i = j). We claim that pseudograph G will be C4∗-free. In-
deed, if there is a cycle formed by edges m1,m2,m3,m4 ∈ E0, then we will have
m1 ·m3 = m2 ·m4. Moreover, {m1,m3}∩ {m2,m4} = ∅, so such a relation con-
tradicts the condition on E imposed by (Step 1). Finally, a monomial m ∈ E
can correspond to a loop in G only if it is a square, that is, all the degrees in m
are even. Hence E1, the total number of edges in G, does not exceed C(r, c)

In total, we have

|E| = |E0|+ |E1| 6
r∑

i=1

mult[i] + C(r, c),

so r satisfies (10). The minimality of k implies that r > k. Thus, r + ` > N , so
z1, . . . , z` cannot be extended to a quadratization of order less than N .

Remark 5 (Cycles of even length). One can modify this rule to use graphs not
containing cycles of even length. In this case, the set E from (Step 1) of Al-
gorithm 3 would satisfy the condition that there are no multi-subsets of equal
cardinality and with equal product. However, this approach did not work that
well in practice, in particular, due to the overhead for finding such E.

5.3 Performance of the pruning rules

Table 2 below shows the performance of our algorithm with a different combina-
tion of the pruning rules employed. It shows that the rules substantially speed
up the computation and that Algorithm 3 is particularly successful in higher
dimensions.

ODE system Dimension No pruning Alg. 2 Alg. 3 Alg. 2 & 3

Circular(8) 2 4293± 445 497± 5 526± 8 453± 7

Hill(20) 3 3.4± 0.1 3.0± 0.1 2.4± 0.1 2.4± 0.1

Hard(2) 3 106.3± 1.0 19.6± 1.1 20.1± 0.6 16.7± 0.6

Hard(4) 3 360.1± 5.6 107.5± 2.4 108.8± 2.1 96.6± 1.5

Monom(3) 3 552.9± 10.9 85.7± 4.2 124.7± 5.5 84.2± 3.3

Cubic Cycle(6) 6 187.3± 0.8 43.6± 0.6 20.0± 0.5 20.1± 0.3

Cubic Cycle(7) 7 2002± 6.4 360.7± 1.1 150.2± 1.3 160.9± 5.9

Cubic Bicycle(7) 7 1742± 89 73.2± 0.6 29.8± 0.3 30.5± 0.2

Cubic Bicycle(8) 8 4440+ 175.4± 4.0 64.8± 0.5 68.9± 0.7

Table 2. Comparison of the pruning rules used by our algorithm. Values in the cells
represent an average time with the standard deviation in seconds.
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6 Performance and Results

We have implemented our algorithm in Python, and the implementation is avail-
able at https://github.com/AndreyBychkov/QBee/tree/0.5.0. We compare our
algorithm with the one proposed in [13]. For the comparison, we use the set of
benchmarks from [13] and add a couple of new ones (described in the Appendix).

The results of the comparison are collected in Table 3. All computation times
are given either in milliseconds or in seconds and were obtained on a laptop with
the following parameters: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, WSL
Windows 10 Ubuntu 20.04, CPython 3.8.5. From the table, we see that the only
cases when the algorithm from [13] runs faster are when it does not produce an
optimal quadratization (while we do). Also, cases, when the algorithm from [13]
is not able to terminate, are marked as ”—” symbol.

ODE system Biocham time Biocham order Our time Our order

Circular(3), ms 83.2± 0.1 3 5.1± 0.1 3

Circular(4), ms 106.7± 2.3 4 164.8± 32.3 4

Circular(5), ms 596.2± 10.9 4 20.0± 0.1 4

Circular(6), s 37.6± 0.4 5 4.2± 0.1 5

Circular(8), s — — 453.3± 6.9 6

Hard(3), s 1.09± 0.01 11 8.6± 0.2 9

Hard(4), s 20.2± 0.3 13 96.9± 1.5 10

Hill(5), ms 87.8± 0.9 2 4.6± 0.0 2

Hill(10), ms 409.8± 5.6 4 49.7± 1.3 4

Hill(15), s 64.1± 0.4 5 0.34± 0.1 5

Hill(20),s — — 2.4± 0.1 6

Monom(2), ms 96.4± 1.6 4 15± 0.1 3

Monom(3), s 0.44± 0 13 84.2± 3.3 10

Cubic Cycle(6), s — — 20.1± 0.3 12

Cubic Cycle(7), s — — 160.9± 5.9 14

Cubic Bicycle(7), s — — 30.5± 0.2 14

Cubic Bicycle(8), s — — 68.9± 0.7 16

Table 3. Comparison of our implementation with the algorithm [13] on a set bench-
marks

.

7 Remarks on the complexity

It has been conjectured in [13, Conjecture 1] that the size of an optimal mono-
mial quadratization may be exponential in the number of monomials of the input
system in the worst case. Interestingly, this is not the case if one allows mono-
mials with negative powers (i.e., Laurent monomials): Proposition 1 shows that

https://github.com/AndreyBychkov/QBee/tree/0.5.0
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there exists a quadratization with the number of new variables being linear in
the number of monomials in the system.

Proposition 1. Let x̄′ = f̄(x̄), where x̄ = (x1, . . . , xn), be a system of ODEs
with polynomial right hand sides. For every 1 6 i 6 n, we denote the monomials
in the right-hand side of the i-th equation by mi,1, . . . ,mi,ki . Then the following
set of new variables (given by Laurent monomials) is a quadratization of the
original system:

zi,j :=
mi,j

xi
for every 1 6 i 6 n, 1 6 j 6 ki.

Proof. Since mi,j = zi,jxi, the original equations can be written as quadratic in
the new variables. Let the coefficient in the original system in front of mi,j be
denoted by ci,j . We consider any 1 6 i 6 n, 1 6 j 6 kj :

z′i,j =
n∑

s=1

fs(x)
∂zi,j
∂xs

=
n∑

s=1

ks∑
r=1

cs,rms,r
∂zi,j
∂xs

.

Since
∂zi,j
∂xs

is proportional to
zi,j
xs

, the monomial ms,r
∂zi,j
∂xs

is proportional to a
quadratic monomial zs,rzi,j , so we are done.

Remark 6 (Relation to the [2]-sumset cover problem). The [2]-sumset cover prob-
lem [3] is, given a finite set S ⊂ Z>0 of positive integers, find a smallest set
X ⊂ Z>0 such that S ⊂ X ∪ {xi + xj | xi, xj ∈ X}. It has been shown in [8,
Proposition 1] that the [2]-sumset cover problem is APX-hard, moreover, the set
S used in the proof contains 1. We will show how to encode this problem into
the optimal monomial quadratization problem thus showing that the latter is
also APX-hard (in the number of monomials, but not necessarily in the size of
the input). For S = {s1, . . . , sn} ⊂ Z>0 with s1 = 1, we define a system

x′1 = 0, x′2 =
n∑

i=1

xsi
1 .

Then a set X = {1, a1, . . . , a`} is a minimal [2]-sumset cover of S iff xa1
1 , . . . , xa`

1

is an optimal monomial quadratization of the system.

8 Conclusions and Open problems

In this paper, we have presented the first practical algorithm for finding an
optimal monomial quadratization. Our implementation compares favorably with
the existing software and allows us to find better quadratizations for already used
benchmark problems. We were able to compute quadratization for ODE systems
which could not be tackled before.

We would like to mention several interesting open problems:
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1. Is it possible to describe a finite set of monomials which must contain an op-
timal quadratization? This would allow using SAT-solving techniques of [13]
as described in Section 3.

2. As has been shown in [2], general polynomial quadratization may be of a
smaller dimension than an optimal monomial quadratization. This poses a
challenge: design an algorithm for finding optimal polynomial quadratization
(or at least a smaller one than an optimal monomial).

3. How to search for optimal monomial quadratizations if negative powers are
allowed (see Section 7)?

4. How to design a faster algorithm for approximate quadratization (that is,
finding a quadratization which is close to the optimal) with guarantees on
the quality of the approximation?
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described in [13]. Here we show additional benchmarks we have introduced:
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x1, . . . , xn by

x′1 = x3
2, x

′
2 = x3

3, . . . , x
′
n = x3

1.

2. Cubic Bicycle(n). For every integer n > 1, we define a system in variables
x1, . . . , xn by

x′1 = x3
n + x3

2, x
′
2 = x3

1 + x3
3, . . . , x

′
n = x3

n−1 + x3
1.
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