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One fundamental problem in symbolic computation is zero testing of expressions that
involve special functions. Several such zero tests have been designed for the case when
such special functions satisfy algebraic differential equations or linear difference equa-
tions. In this paper, we present an algorithm for the case of power series solutions
to certain non-linear difference equations.

KEYWORDS: 7-algebraic power series, algorithm, zero test
A.M.S. SUBJECT CLASSIFICATION: 68W30, 34A09, 34A12

1. INTRODUCTION

How far can we push exact computations with symbolic mathematical expressions?
Starting from polynomial arithmetic, efficient algorithms have been developed for com-
puting with expressions that involve increasingly elaborate algebraic and transcendental
functions. The central problem for such computations is to decide whether two expres-
sions represent the same mathematical function or constant. This problem in turn reduces
to testing whether a given expression represents zero.

One popular traditional approach for zero testing is based on “structure theorems”.
For instance, given a function f that is built up using algebraic functions, exponentia-
tion, and logarithm, we may test whether f =0 using the Risch structure theorem [10].
Zeilberger's holonomic systems approach [12] is another popular tool for proving equal-
ities, in the restricted setting of solutions to linear differential and difference equations.
A powerful theoretical approach for computations with power series solutions to non-
linear differential equations was proposed by Denef and Lipshitz in [2, 3]. Several more
practical alternative algorithms have also been developed for that purpose [11, 9, 4, 6].

In this paper, we study the zero testing problem for solutions of non-linear difference
equations. For such equations there are two prominent solution spaces: power series
and sequences. In the latter case, there exists a zero-test for a large class of non-linear
algebraic difference equations [8]. We will consider the power series case.
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2 A ZERO TEST FOR ¢-ALGEBRAIC POWER SERIES

In order to state our main result, we need to introduce a few notions. A power series
domain is a K-algebra A C K[[z]] with A 3z and such that A is closed under division
whenever defined. We say that A is a o-difference power series domain if it is also closed
under the difference operator ¢: f — f og for some fixed g =z + O(z?) € A. Note that the
standard shift operator z —z+ 1 is of this form if one considers the power series expan-
sion at infinity (see Example 1). Finally, A is said to be effective if all these operations
can be carried out through algorithms. Now assume that we are given a power series
solution f € K[[z]] to the equation

P(f,of,...,c"f) = 0. (1)

for some non-trivial polynomial P A[F,...,c" F]. Such a power series f is said to be
o-algebraic over A. Our main result (see section 5) is a zero-test for elementsin A[ f,cf,...]
under assumption %( f) #0 (note that this assumption can be forced by differenti-
ating P a finite number of times). In particular, this implies that A(f,cf,...) N K[[z]]
is again an effective o-difference power series domain.

A similar type of zero-test was designed in [4, 6] for the case when difference oper-
ator o is replaced by differentiation with respect to z. We show that this approach can
indeed be transposed, but there are a few subtleties. The algorithm in the differential
case exploits the fact that a prime univariate differential ideal is defined by a single dif-
ferential equation. In the present setting, the main difficulty is that this is not longer the
case in difference algebra, so we have to work with a system of compatible difference
equations (called a coherent autoreduced chain). One of the key ingredients of our algo-
rithm, Proposition 5, is an existence result for a power series solution to such a system of
difference equations.

Another feature of our algorithm is that it integrates an optimization of [6] over [4]:
in order to test whether Q(f,...,0°f) =0 for some Q € A[F, ..., c° F], the number of
coefficients of f that we need to evaluate only depends on s and deg Q, but not on the
individual coefficients of Q.

A proof-of-concept implementation of the algorithm in Julia based on the OSCAR
computer algebra system is available at https://github.com/pogudingleb/
DifferenceZeroTest.

2. REMINDERS FROM DIFFERENCE ALGEBRA

2.1. Ritt reduction

Let us start with some notions from difference algebra. Let K be a field of characteristic
zero. A K-difference algebra is a K-algebra A together with an injective morphism ¢: A — A
of K-algebras. In what follows, we will always assume that A is also an integral domain.

Given an indeterminate F, we denote by A{F}:=A[F,cF, o?F,...] the difference ring of
difference polynomials in F and by A(F):=A(F,cF, o?F,...) its fraction field. The algebraic
variables F,oF,0?F,... are naturally ordered by o FX 0/Fesig j.

For a difference polynomial P € A{F} \ A, the leader {p of P is the largest variable " F
that occurs in P, and we set ord P:=r. We write P =Py fl’g + .-+ +Pywith Py,..., P, e
A[F,...,c" ' F] and P;#0 and define:

e [p:=Py, the initial of P;
e Sp:=9dP/9{p, the separant of P;
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o [p:= Eg, the extended leader of P;
e rank P:= (fp,d), the Ritt rank of P.

It is convenient to further extend the definition of Ritt rank by setting rank P:= (—co0,—c0)
for polynomials P € A. We finally define a total ordering < and a partial ordering < on
Ritt ranks by

(p,dp) < (fg,dg) = (Up<lgV (Ip=LoNdp<dg))
(bp,dp) < (g, dg) = UploNdp<dp).
A list of difference polynomials Qj,...,Q; such that rank Q; < --- <rank Qy is called a chain.
Given P € A{F} \ A, we say that P is {-reducible with respect to a chain Qy,...,Q; if

there exists an i with rank Q; < rank P. For P, Q € A{F} such that Q & A, we define the {-
remainder of P with respect to Q denoted by P rem Q as follows:

1. If P is not {-reducible with respect to Q, we set Prem Q:=P;

2. Let P’ be the remainder of the Euclidean pseudo-division of P by ¢°"4P=0rdQ() a5
univariate polynomials in fp. We set Prem Q:=P’ rem Q.

For a chain Q1,...,Q;€ A{F}\ A, we define

Prem (Qy,...,Qp) = (((Prem Q) rem Q;_1) ---) rem Q1.

If Prem (Qy,...,Q;) =0, we say that P is {-reduced to zero with respect to Qy,...,Q;.

Let us now consider P, Q € A{F} \ A such that rank P and rank Q are incomparable
for <. So either {p< g and dp>dg, or lp>{gand dp<dq. If fp= c'F< lo= o/ F, then we
define the A-polynomial of P and Q by

Apg = (0 Ip) €0 Q 190/ P.

If ¢p > {o, then we define Ap o:=—-Ag p.

We say that the chain Qy, ..., Q; is f-autoreduced if Q; is {-reduced with respect to Qy, ...,
Qi-1,Qj,...,Q for each i. We say that Qy,...,Q; is coherent if AQ,.,Q], rem (Q1,...,Q;) =0 for
all i # j such that rank Q; and rank Q; are incomparable for <.

2.2. Differential polynomials with power series coefficients

Consider a power series g=z +g,z"+g,11z""! + - -+ with g,#0 and x>2. Then we may
define an injective homomorphism ¢: K[[z]] — K[[z]] of K-algebras by

o(f(2) = f(g®),

so K[[z]] is a difference K-algebra with respect to the mapping ¢. From now on, we will
assume that A is a difference subalgebra A CK[[z]]. In addition, we assume that fz‘1 eA
whenever f €z A. This allows us to define a second operator

-1

0 := ZK—]

on A and we note that any operator in A[c] can be rewritten as an operator in A[J] by
substituting 1 +2z*14 for 0.

Example 1. For an infinitely large variable x, the shift operator ¢: ¢(x) — @(x+1) can
be regarded as an injective homomorphism of K[[x!]] into itself. Setting z=x"!, this
operator corresponds to the operator f(z) — f (1%) on K[[z]].
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Given f =Y.\ fiz' €A, we will denote by v(f) € N U {co} its valuation in z. We
extend this valuation to difference polynomials in A{F} so that v(P) is the minimum of
the valuation of the non-zero coefficients of P if P+ 0 and oo otherwise. The advantage
of using the operator ¢ instead of ¢ is that v(6f) =v(f) for all f €zA. More generally,
assume that P=Pjg)F+--- +P;,16" FEAF + --- + A" F is a linear difference polynomial
of order r. Then we define

Jp(n) := Z (Prinopy (g,cn)i.
i=1
For any f €K[[z]], we have

o(P(f)) = v(P)+0o(f) ()
P(Howy+ocry = Tp(@(f)) foch) 3)

We will denote by Zp the largest root of Jp in N, while taking Zp =-1 if no such root
exists.

Given a general difference polynomial P € A{F} and a “point” f € A, the unique dif-
ference polynomial P, f € A{F} such that

Pis(g) = P(f+8)

for all g€ A is called the additive conjugate of P by f.

For every difference polynomial P € A{F} and i € N, we define P; to be the homoge-
neous component of degree i in F,§F,.... If P has total degree d, then P=Py+ --- + Py is
the decomposition of P into homogeneous parts.

2.3. Logarithmic power series

In order to ensure the existence of solutions to certain difference equations, it is conve-
nient to also consider logarithmic power series f € K[log z][[z]]. Such series can still
be considered as power series f = fo+ fiz+ - -- in z and we will still denote by v(f) the
valuation of f in z. The coefficients f; are polynomials in K[log z], and we will write
fi= fideg s, (log 2)4%8fi4 ... 4 f, 0. Note that, for every peK[t] and i€ N, we have

5(p(logz)z') =gi(p’ (log z) +ip(log z)) z' + O(z'*1).

This allows us to generalize (3) to the case when f € K[log z][[z]] and P€K[logz][[z]]{F}
is a homogeneous linear differential polynomial:

P(fowy+ocr) =Ip@(f) + 1) foir, 4)

where @ is the differential operator on K[log z] with ¢(logz) =1.

3. 0-ALGEBRAIC POWER SERIES

3.1. Univariate o-algebraic power series

Let K be a field of characteristic zero. Let A CK[[z]] be a o-difference K-subalgebra of
K[[z]] with corresponding shift operator 6. Assume furthermore that, for all f €A and
g€ AN\ {0} such that f /g€ K[[z]], we have f/g€A. We call such an algebra A a o-differ-
ence power series domain. A series f € K[[z]] is said to be o-algebraic over A if it satisfies
a non-trivial difference equation P(f) =0 with P A{F} \ A.
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Assume now that A is an effective power series domain. The most obvious way to
effectively represent a -algebraic power series in A8 §s to represent it by a pair (f,P)
where f is a computable series and P € A{F} \ A a non-trivial annihilator with P(f) =0.
We say that the annihilator P is non-degenerate if Sp(f) #0.

3.2. Root separation bounds

Let f € K[[z]] be o-algebraic over A with annihilator P € A{F} \ A. Assume that there
exists anumberse N suchthatforannyK[[z]] \N{f} withv(f—f) >s,wehave P(f) +0.
Then we define sp s to be the smallest such number s and call it the root separation of P
at f. It corresponds to the number of initial conditions that should be known in order
to determine f in a unique way as a root of P.

PROPOSITION 2. Assume that f is o-algebraic over A with a non-degenerate annihilator
Pe A{F}\ A. Then the following root separation bound holds:

sp,f<max (v(Pyf1),Zp,;,) +1. (5)
I~’roof. Since Sp does not vanish at f, we have P, 170 Let p:=v(Py51) Z20(Py5). Given
f=f+e€K[[z]] with n=1v(¢) < o, we have

[Pif1(&)psn = Jp (1) €n (6)
Now assume that n>max (y,Zp, )+ 1. Then
0(Pyf>1(8)) 2 2n>pu+n,
whence
[P Jpsn = Jpysy(n)€n.

Sincen>Z P,y WE also get Jp, () # 0, which entails P( f ) #0. O

What we will really need is a stronger version of Proposition 2 that also takes care of
logarithmic power series solutions. Assume that there exists a number s € N such that
for any fEK[logz] [[z]]\{f} with v(f—f) >s, we have P(f) #0. Then we define siS,f to
be the smallest such number s and call it the strong root separation of P at f.

PROPOSITION 3. Assume that f is o-algebraic over A with non-degenerate annihilator
Pe A{F}\ A. Then the following strong root separation bound holds:

sﬁ,meax(U(P+f,1),Zp+f’l) +1. )

Proof. The proof is similar to the proof of Proposition 2 with the following change.
Writing e, =¢€,,x (log k44 en 0 with €, x #0, we now have

[Pif1(&))uen = Jp,;, (1) eni log 2)* + O((log 2)F1) (8)
instead of (6), and where O((log 2)k1y stands for a polynomial of degree at most k—1
in K[log z]. O

3.3. Existence of logarithmic power series solutions

The following proposition also provides us with a partial converse of Proposition 3.

PROPOSITION 4. Let Pe A{F}\ A and f EK[[z]]. Assume that Sp(f) #0 and tlzat v(P(f))>
2s, with s 2v(P,5,1) + 1. Then there exists a root f € K[log z][[z]] of P with v(f - f) >s.
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Proof. Sp(f)#0implies that P, r1#0. Let u=v(P, f,1) <s. We have to show the existence
of a unique series ¢ € K[log z][[z]] with v(¢) >s and P, f(¢) =0. We may decompose

P,y = H-A,
H = (P+f,1)yzy'
Extracting the coefficient of z" *" in the relation H(e) =A(¢e) now yields (similarly to (4))
Ju(n+9) e, = A(£);¢+n' )

For all n> o, the right hand side A(¢),, 1, only depends on ¢q,...,€,,-1, and Jy(n + ) € K[ 8]
is a non-zero differential operator with #(log z) =1. Then [6, Proposition 1] implies that
the equation Jy(n+ @) £, =g has a solution in K[log z] for any ¢ € K[log z]. Therefore,
there exists a solution ¢ to the equation P(f +¢) =0. O

4. EXISTENCE OF SOLUTIONS FOR COHERENT AUTOREDUCED SETS

PROPOSITION 5. Let Q1,Qy,...,Qy be a coherent {-autoreduced chain in K{F}. For every 1<i<n,
denote r;:=ord Q; and d; := deggQi Qj, and assume 11 <t < ---<ry. Let f €K[logz][[z]] be a
logarithmic power series and let s € N be such that

o Qi1(f)=0;
o v(Qi(f))>s, fori=2,...,n;
e s>max ((di1—di+1) oo, (f)) +0(Sq,,(f))).

2<isn

Then Qa(f) =+ = Qu(f) =0.

Proof. Let us prove by induction that Q;(f) =0 fori=1,...,n. The base case i=1 is already
given. Assume thati>1. Since Qy,...,Q, is f-autoreduced, the {-reduction of Ag, o, , with
respect to Qy,...,Q, vanishes. Since the leader of Ag, g, , is at most X :=¢"' F, the polyno-
mial Ag, o, , also f-reduces to zero with respect to Qy,...,Q;. Setting k:=degxAg, 0, , <di-1,
the {-reduction of Ag, o, , with respect to Q; therefore yields a relation

I(S:dH—l AQhQi—l = AQi+B,

where degx B <d; and the {-reduction of B with respect to Q1,...,Q;_1 is zero. Since
degx B<d; and d; >d; for all j <i, we actually must have degx B=0. Writing R:=
o7 Q; 4, so that

IgR = AQilQi-1+‘Tri_ri_l(IQi—1>Xdi_l_diQi-
we have
Iéii—l—di+1R — Igii—l—diAQi,Qj_l + Iéii—l_dia-i’i—fi—l(IQi_l) Xdi—l—din,
— (Igii—l—(k+l)A + Iéii—l—dia,ri—riq (IQi—1> Xdi—l—di) Qi +Iéii—1—(k+l) B.

This yields a new relation of the form

IG5 R = CQi+D, (10)
where degx D =0. Differentiating this relation with respect to X yields

gt g s, ) = C'Qi+CSg.

Now we evaluate this relation at f and compute the valuations of both sides. This yields

s>0(I5 () Sg () =v(C'(f) Qi f) +C(f) Sai(f))
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Since v(Q;(f)) >s, we deduce C(f) Sq,(f) #0, whence C(f) #0. Since the ¢-reduction
of B with respect to Qy,...,Q;-1 vanishes and IQ/.(f) #0 for all j<i, we have B(f) =0 and
D(f)=0. Evaluating (10) at f, we conclude that C(f) Q;(f)=0and therefore Q;(f)=0. O

5. AN EFFECTIVE ZERO TEST

We say that K is effective if its elements can be represented effectively and if all field
operations can be carried out by algorithms. We call K an effective diophantine field if all
positive integer roots of polynomials over K can be determined by an algorithm. In par-
ticular, this means that K has an effective zero test, i.e. there exists an algorithm which
takes an element x of K on input and which returns true if x =0 and false otherwise.

A power series f € K[[z]] is said to be computable, if there exists an algorithm for
computing f, as a function of n € N. The power series domain A is said to be effective, if
its elements are all effective power series and if the difference K-algebra operations can
be carried out by algorithms. We notice that the difference K-algebra K[[z]]“™ of all
computable series is effective, although it does not have an effective zero test.

Assume now that we are given an effective power series domain A with an effective
zero test over an effective diophantine field K. Assume also that we are given an effective
o-algebraic power series f € K[[z]] and an annihilator P& A{F} \ A for f. Assume finally
that the annihilator P is non-degenerate, that is, Sp(f) # 0. In this case, P, f1#0, so we
may compute v(P,1) and Zp, ., by expanding the power series coefficients of P,y1. In
other words, the bound (5) from Proposition 2 provides us with an effective upper bound
for sp ¢. Proposition 3 also yields an upper bound for sp ;.

Given difference polynomials Qy, ..., Q, € A{F}, we will now give an algorithm
ZeroTest for testing whether Qy, ..., Q, simultaneously vanish at f. In particular, this
will show that the A-algebra A(f) NK[[z]] is again an effective power series domain.

Algorithm ZeroTest(Qy,..., Q)
INPUT: Q4,...,Q,, € A{F}\{0}
OUTPUT: true if Q1(f) =---=Q,(f) =0 and false otherwise

1 If{Qy,...,Qu} NA+#D, then return false
2 Let Ry,...,R, be an f-autoreduced chain of elements of minimal Ritt rank in
{Q1,...,Qu}, and take this chain to be of maximal length
Fori=1,...,r and S&€{Ig, Sg,;}:
S:=Srem (Ry,...,R;)
If S+0, then
If ZeroTest(S,Q;,...,Q,), then return true
Expand S(f),Q1(f),...,Qu(f) until a non-zero coefficient is found
If this coefficient comes from one of the Q;, then return false
For Qe{Q1,...,Qu, P}:
10 If T:=Qrem (Ry,...,R,) #0, then return ZeroTest(T,Q1,...,Q,)
11 For2<igr:
12 If T:=Ag, , g, rem (Ry,...,R;) #0, then return ZeroTest(T,Q1,...,Qn)
13 Let sg:=max ((degy,_, Ri-1—degy Ri+1)v(Ig,(f)) +v(Sr,,(f)))

2<igr

14 Let s:=max (so,0(P1f,1),Zp,;,, 0(R1f1)) +1, where R:=R;
15 Return the result of the test min (v(R1(f)),...,v(R.(f))) >2s

O 0 N O U1 = W
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Remark 6. Obviously, the last test in step 15 requires the computation of at most 25+ 1
coefficients of the series R1(f),...,R.(f). Such power series expansion can be done effi-
ciently using relaxed power series arithmetic [5].

THEOREM 7. The algorithm ZeroTest is correct and terminates.

Proof. Let us first prove that the algorithm always terminates. To each input Qy,...,Q,, we
assign the tuple with the Ritt ranks of Ry, ..., R,. We order such tuples lexicographically,
and this ordering is well-founded. Then the assigned tuple strictly decreases for this
ordering during any recursive call. This shows that our algorithm always terminates.

In step 1, note that we assumed that Q;#0 as an element of A{F} foralli. Soif Q;,€ A,
then we indeed have Q;(f) =Q;#0. The correctness of the algorithm is also clear if we
return during one of the steps 6, 8, 10, or 12.

Assume now that we reach step 15. By construction, this means that Ir,(f) Sg,(f) #0
for every 1<i<rand Qrem (Ry,...,R,) =0 for every Q&{Qjy, ..., Qu P}. Furthermore,
since we passed step 11, the chain Ry, ..., R, is both coherent and f-autoreduced.

Applying Proposition 4, we obtain a unique logarithmic power series f € K[log z][[2]]
with Rl(f) =0and v(f—f) >s. Since s > s, Proposition 5 implies thatRz(f) :R3(f) ==
Rr(f) =0. Since each of Qy,...,Qy, P is ¢-reducible to zero with respect to Ry, ..., R,

and none of the initials of Ry,...,R, vanishes at f, we deduce that Ql(f) =...= Qn(f) =
P(f)=0. Proposition 3 applied to P and its roots f and f implies that f = f whenever
the test succeeds, so the returned result is correct. O

Remark 8. One interesting aspect of the improved zero test is that it still works if Q
depends on parameters Ay,...,A; in K (when using the technique of dynamic evaluation [1]
for examining the finite number of branches that can occur depending on algebraic con-
ditions on the parameters). The original equation P may also depend on parameters, as
long as we have a uniform bound for Zp_ .

6. EXAMPLES

6.1. Stirling's series

Consider Stirling's series

logn! = 10gr(7’l+1) = nlogn—n+%log(2ﬁn)+zs_i'
n

k=1
Rewritten in terms of z = %, the rightmost series S(z) :=) kEN S, z* satisfies
z0(S)-zS-z+ (1+3)log(1+2) =0,
where 0: f(z) — f (%Z) The coefficients of this difference equation belong to

A = Qfzlog(1+2)} = Q(zlog(1l+z),log(1 +i),log(1 +L),...),

1+z 2+z

where we note that log(1 +z) is o-transcendental over Q(z). In particular, A comes with
a natural zero test and our algorithm yields a zero test for A{S}.
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One can perform the same computations for functions of the form I'(an + ). Having
a zero test for expressions involving the corresponding Stirling series can be used to
prove identities for the gamma function, for example, to formally establish the Legendre
duplication formula:

TmT(n+z)=2"2" AT (2n).

In order to do this, we inductively construct a zero test for the o-ring

Q{z log(1+2z), 10g<1+1+ /2> 10g(1+ ) S(z), (1_'_22/2),5(%)}

and then test whether the following expression is zero:

Z<S<2) (@)= S<1+z/2>>_10g(1+%) 3

Our implementation allows to do this; the details can be found in the notebook
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/
LegendreDuplication.ipynb.

6.2. Mixing differential and difference extensions

The example from the previous subsection required the incorporation of logarithms in
our base ring A. Such logarithms are usually construed as solutions to differential equa-
tions. In fact, it is possible to alternate the adjunction of solutions to differential equations
to our base ring A with the adjunction solutions to difference equations, while preserving
our ability to do zero testing. Let us briefly explain how this works.

Assume that A3z is an effective power series domain that is closed under both
o: ¢ — ¢ o g and differentiation 0 =9 /9dz. Given a c-algebraic power series f over A,
we have seen that Ag=A(f,cf,...) NK[[z]] is an effective power series domain that
is closed under o. Moreover, there is a polynomial P € A[F,...,c" F] with P(f,...,c" f)=0.
Differentiating this equation, we get

AP o aP .
SES 0D+ by fre 0T H @ @) () = 0,

so df is o-algebraic over Ag. Consequently, A1 =Ao(f’,cf’,...) NK[[z]] is an effective
power series domain that is closed under ¢. By induction, we obtain a sequence (A,),en
of effective power series domains with A, =A,_1(f",cf™,...) N K[[z]] and such that
each A, is closed under o. We conclude that A, =AgUA1U--- 3 f is an effective power
series domain that is closed under both ¢ and 9.

In a similar way, given a d-algebraic power series f over A, and in view of the algo-
rithm from [4], we may construct a sequence (A,),en of effective power series domains
that are closed under 9, with Ag=A(f, f',...)NK[[z]] and A, =A,1(c"f, 0" f',...)N
K[[z]]. Then Axw=AoUA1U---3 f is an effective power series domain that is closed both
under ¢ and 0.

6.3. Barnes G-function and the log-gamma integral
The Barnes G-function is a solution of the difference equation

Gn+1)=T'(n)Gn)
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and the log-gamma integral is defined by

n
A(n):= 4[0 log I'(x) dx.
These functions are related via

_n(l-n) n

An) = 5 + 5

In view of subsection 6.2, such relations can be proved automatically using our algorithm
in combination with the zero test from [4]. Alternatively, we may derive a difference

equation for A:

log (2m) +nlogI'(n)—log G(1 +n).

A(n+1)

1 n
fo log I'(x) dx + fo log'(x+1)dx

fol log '(x) dx + [ (log ¥+ T(x)) dx
= A(n)+nlogn—n+A(1).

After rewriting G and A in terms of z, we may then directly use our new algorithm.
Our implementation allows to do this; the details can be found in the notebook
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/
LoggammalIntegral.ipynb.
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