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ABSTRACT

This paper studies methods that identify plausibly near-optimal solutions based on simulation results
obtained from only a small subset of feasible solutions. We do so by making use of both noisy estimates
of performance and their gradients. Under a convexity assumption on the performance function, these
inference methods involve checking only a system of inequalities. We find that these methods can yield
more powerful inference at less computational expense compared to methodological predecessors that do
not leverage stochastic gradient estimators.

1 INTRODUCTION

Consider a stochastic simulation model of a system parameterized by a real-valued vector. We refer to
a specific setting of input parameters as a solution and assume it is one of many (possibly infinite) in a
space of solutions under consideration. The performance of a solution is unknown but can be estimated
by averaging noisy observations produced by running independent replications of the simulation with the
corresponding inputs. In simulation optimization, our goal is to determine which of the feasible solutions
result in optimal (or near-optimal) performance using these noisy observations.

Some simulation models, such as structured queueing systems (Plambeck et al. 1996) and stochastic
activity networks (Fu 2015), give rise to convex performance functions over continuous solution spaces.
While some simulation-optimization algorithms have theoretical guarantees (e.g., convergence rates) when
the performance function is convex, many do not directly exploit this property to improve empirical
performance. Plumlee and Nelson (2018) and Eckman et al. (2021) laid the groundwork for plausible
screening (PS), a framework in which known or assumed functional properties can be incorporated to screen
out unacceptable solutions based on sampling at only a small subset of solutions. These methods borrow
ideas from constrained statistical inference (Silvapulle and Sen 2005) to trade simulation for optimization,
screening solutions by solving linear or quadratic programs.

In the absence of information about the performance function, the PS approach reduces to traditional
subset selection (Eckman et al. 2020). When equipped with functional information, PS offers significant
advantages over other subset-selection approaches, namely, one can deliver statistical guarantees on the
quality of solutions without having to simulate them. However, existing deployments of PS have their
limitations. These methods are designed with large, but not continuous, solution spaces in mind, because
optimization is required to determine plausibility. Moreover, existing PS methods assume that estimators
of only the performance are available, not estimators of any other functional (Eckman et al. 2021). The
goal of this paper is to enhance current PS methodology when stochastic gradient estimators are available.
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We consider continuous solution spaces with simulation models that admit stochastic gradient estimators
of the performance function. The approach of discretizing a continuous solution space and screening a
subset of solutions becomes computationally onerous, especially in higher dimensions. In this setting, a
simulation-optimization algorithm can instead use PS methods to check the plausible acceptability of some
candidate solutions before simulating them. When available, a stochastic gradient estimator provides a
first-order approximation of the performance function within a neighborhood of a simulated solution. Direct
gradient estimators—those obtained by simulating only the solution in question—are especially appealing
since the solution is already being simulated to estimate its performance. Also desirable are estimators
with low variance, as is typically the case with those resulting from infinitesimal perturbation analysis.

Stochastic gradient estimators have been exploited in different settings to enhance simulation-optimization
algorithms or output analysis. Gradients from deterministic computer experiments have been used to build
Gaussian-process-based metamodels of the performance function for either prediction (Morris et al. 1993)
or optimization (Forrester and Keane 2009). These approaches directly model the gradients with another
Gaussian process. Chen et al. (2013) similarly exploit gradient estimators for prediction in the context of
stochastic simulation experiments (i.e., stochastic kriging) and study the effects of different correlations
between performance and gradient estimators and their relative variability. Qu and Fu (2014) take a different
approach to incorporating gradients in stochastic kriging, effectively adding solutions to the experimental set
by extrapolating their performances using the gradient from a nearby solution. Placing a Gaussian process
prior on the performance function and its gradients is also common practice in Bayesian optimization. In
this area, stochastic gradient estimators have been incorporated to direct sequential sampling (Wu et al.
2017). In arelated vein of research, Jian and Henderson (2020) propose a sequential sampling procedure that
assesses the posterior probability that there exists a convex function interpolating the unknown performance
function at a finite set of simulated solutions. Their methods, however, are not designed to incorporate
stochastic gradient estimators.

This paper describes simple approaches that find plausibly near-optimal solutions of convex performance
functions by checking systems of inequalities featuring performance and gradient estimators. These
approaches have desirable statistical properties of confidence and consistency. The remainder of the paper
is organized as follows. We introduce the experimental setup in Section 2, explaining how performances
and gradients at solutions are estimated and describing the statistical guarantees sought by PS methods.
Section 3 adopts the PS approach of incorporating known or assumed properties and presents a mathematical
formulation of near-optimal solutions of convex performance functions that forms the basis for our methods.
Sections 4 and 5 propose two subsets of solutions defined by inequalities where the second features only
gradients of the performance function, and in Section 6 we establish the consistency of the methods. We
state a number of theorems, with proofs omitted, that formalize our discussion. In Section 7, we illustrate
our new methods on an artificial two-dimensional example, comparing them to the original PS, which does
not make use of gradient estimators. We lay out future research directions in Section 8.

2 SETTING AND GOALS
Much of the setup and notation follows from Eckman et al. (2021).

2.1 Stochastic Simulation with Direct Gradient Estimators

Consider a continuous space of candidate solutions 2~ C RY, where a solution is represented by a vector
of parameters x € 2 that fully specifies a simulated system. Each solution x has an associated scalar
performance, p(x), that is a key performance indicator of interest to a decision-maker, e.g., the expected
cost or expected throughput of the system. The performance p(x) is unknown, but can be estimated by
obtaining replications from the simulation model described by x. We assume that the performance—when
viewed as a function pu: 2" — R—is differentiable at all x € 27, and we let the column vector Vu(x) € R?
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denote the gradient of the performance function at x. Throughout the paper, it will be notationally convenient
to concatenate the performance and gradient of a solution x, hence we define ¢ (x) = (u(x), Vu(x)") 7.

The decision-maker initially selects a set of k solutions to simulate, denoted by X = {xj,x2,...,x},
which we refer to as the experimental set. The experimental set may consist of solutions chosen to fill the
space 2, for instance. Let p(X) = (u(x1),1(x2),...,1(x))" denote the restriction of the performance
function u to X and let Vu(X) = (Vi (x1) ", Vu(x2)T,...,Vu(x) T) T likewise denote the restriction of the
gradient Vu, when viewed as a vector-valued function. Concatenating the performances and gradients for
each solution in X, we define

£ = (27 60 ) T) = (o), Vi) o), Vi) (), V() )

A single generic replication at a solution x; yields a stochastic output, Y (x;) € R, which is assumed to
be unbiased, i.e., E[Y (x;)] = u(x;) for i=1,2,...,k. A replication at x; simultaneously yields a stochastic
estimator of the gradient, G(x;) € R?, which is also assumed to be unbiased, i.e., E[G(x;)] = Vu(x;).
We correspondingly define Z(x;) = (Y (x;),G(x;) ") ", thus E[Z(x;)] = & (x;). Examples of direct gradient
estimators include the likelihood ratio (LR) or score function (SF) estimator (Glynn 1987; Rubinstein 1989)
and the infinitesimal perturbation analysis (IPA) estimator (Glasserman 1991). Assuming certain technical
conditions are met, the LR/SF and IPA estimators are both unbiased (Fu 2015).

For any solution x; € X, the performance estimator Y (x;) and gradient estimator G(x;) are almost certainly
dependent, as they come from the same replication. Let ¥(x;) be the real-valued joint variance-covariance
matrix of Y (x;) and G(x;), i.e., the variance-covariance matrix of Z(x;):

W(x) = B [Z00)Z(6) ] - £ ()

which is assumed to be positive definite.
Obtaining a single replication at each solution in the experimental set yields a noisy estimate Z(X) =
(Z(x1)",Z(x2)T,...,Z(x;) ") T, and we let ¥(X) be the variance-covariance matrix of Z(X), i.e.,

P(X) =E [ Z()Z(X)T| = £00¢(X) "

We assume that solutions in the experimental set are simulated independently, thus ¥ (X) has a block-diagonal
structure with ¥(X) = diag(¥(x1 ), ¥(x2), ..., ¥(xx)). The more general case when solutions are simulated
dependently can be developed, but we do not do so here. For a basic treatment of plausible screening with
dependent sampling, see Eckman et al. (2021). In our finite-sample results, we will additionally assume
that the performance and gradient estimators are jointly normally distributed, meaning

Z(x;) = <ZE’;§> ~ N <<V““(?x))> ,‘P(xi)> = N (E(x),®(x)) fori=12,... k. 1)

At each solution x; € X, we run n; replications and obtain independent and identically distributed (i.i.d.)
observations Z; (x;), Za(x;), . - ., Zn,(x;), which consist of i.i.d. performance estimators Y; (x;), Y2 (x;), . . ., ¥;,, (x7)
and i.i.d. gradient estimators G (x;), G2(x;),...,Gy,(x;). The sample means

N 1 n; o~ 1 1l
= — Z YZ(XZ') and V,ul =— Z Gé(xl')
ni (= i =

are unbiased estimators of p(x;) and V(x;), respectively. Furthermore,

fi=, Yot = (.907)
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~ ~T ~ ~T\ T
is an unbiased estimator for {(x;). Let { = (C 15605, C k) denote the resulting estimator of ¢(X)
from simulating all solutions in the experimental set with sample sizes described by n = (ny,...,n;).
When sampling independently across solutions, the variance-covariance matrix ¥(X) can be estimated by

Y = diag(¥;,¥2,...W;), where W; is the sample variance-covariance matrix from the replications taken
at solution x;:

1 &
ni— 15

(Zg(xi) —Z,.) (Zg(xi) —E,.)T fori=1,2,....k.

2.2 Acceptable Solutions

At the most basic level, the decision-maker seeks to determine whether the performance of an arbitrary
solution xy € 2 is acceptable. Eckman et al. (2021) provide several definitions of acceptability that
reflect different objectives, e.g., optimal, feasible, better than a control, and equal to a target. In all of
these cases, the acceptability of a solution xj is expressed in terms of its performance, p(xp), and possibly
its relationship to the performances of other solutions. To ground our presentation, we focus on the case
where a solution is deemed acceptable if its performance is near optimal. Specifically, we define the set
of acceptable solutions as &7 = {xp € Z : u(xp) <infye w(x)+ 0}, where & > 0 is some user-specified
tolerance and the choice of minimization is without loss of generality. Enlarging the set of solutions
treated as “good enough” affords the decision-maker an opportunity to make a final selection from among
high-quality solutions based on secondary performance measures.

2.3 Confidence and Consistency

We refer to the operation of determining whether a solution’s performance is acceptable as screening. Our
methods can screen unsimulated solutions by using replications obtained from solutions in the experimental
set and any other available information about the performance function or its gradient.

An important quality of a screening procedure is its ability to make correct screening decisions. We
desire that a screening procedure be able to—with high probability—retain a solution with acceptable
performance and screen out (i.e., remove from consideration) a solution with unacceptable (5-suboptimal)
performance. We describe properties of a screening procedure in terms of how it would perform if applied
to all solutions in Z". We denote the resulting set of retained solutions by ., C £  and note that it is
random, since it depends on the estimated performances and gradients at solutions in the experimental set.
For continuous solution spaces, constructing .#, is likely impossible; a screening procedure could instead
screen a large finite set of solutions or a sequence of solutions identified by a simulation-optimization
algorithm.

The following definitions, which are reproduced from Eckman et al. (2021), presume that the performance
function p belongs to some function space .#, which we make more precise in Section 3.

Definition 1 (Finite-sample confidence) A subset .#, achieves finite-sample confidence 1 — o for 1 — a €
(1/2,1) if for sufficiently large min;—; __xn; and any pu € 4, P(xo € 7,) > 1 —a for all xp € 7.
Definition 2 (Asymptotic confidence) A subset.”, achieves asymprotic confidence 1 —aforl —a € (1/2,1)
if forany p € 4, P(xo € %) 2 1 — ot as min;—; g n; — oo for all xg € 7.
Definition 3 (Consistency) A subset .7, achieves consistency if for any u € 4, P(xo € %) — 0 as
min;—; __gn; — oo for all xo ¢ <.
In Definition 2, the notation P(xp € .#,) 2 1 — a means that for any € > 0, there exists a minimum
sample size n(€,xp) such that P(xyg € /) > 1 —a — ¢ for all n for which min;—; __xn; > n(€,xp).
Confidence and consistency describe a procedure’s ability to retain acceptable solutions and screen out
unacceptable solutlons respectlvely Delivering finite-sample confidence requires knowing the family of
distributions for C 1,(,‘ 2 ,C w as in (1). We achieve asymptotic confidence by designing procedures for
normally distributed performance and gradient outputs, since the multivariate form of the Central Limit
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Theorem implies that even if Ei is not normally distributed,
\/IZ(ZZ.— C(xi)> b N (0401, (xi)) as nj o0 fori=1,2,... k,

where % denotes convergence in distribution and 0, is a column vector of g+ 1 zeros; see Theorem
3.4.3 of Anderson (1984). Consistency, on the other hand, is generally unattainable, since only a subset of
solutions has been simulated. In Section 6, we introduce a relaxed version of consistency that represents
a reasonable goal for a procedure’s screening power as sample sizes increase to infinity.

3 CONVEX SIMULATION OPTIMIZATION WITH GRADIENTS

The plausible screening framework assumes that the decision-maker possesses known or assumed properties
of the unknown performance function. Examples include convexity of y and Lipschitz continuity of u
or Vu. Eckman et al. (2021) provide examples of simulation models for which some of these properties
are verifiable and point to sample-path arguments and stochastic orders as tools that can help to establish
them. Knowledge of properties of the performance function restricts the space of functions .# to which
U can belong and thereby facilitates sharper inferences regarding a solution’s acceptability. In this paper,
we focus on the case where u is convex over 2~ and everywhere differentiable.

As an illustration of the power of gradient information, consider the simple case where replications
are obtained at a single solution x and produce estimators [i(x) and 6;1 (x). If only fi(x) were available, it
would be impossible to conclude with high confidence that any given solution xg is d-suboptimal—there
are simply no means of inferring the performance of any other solution relative to f(x). On the other hand,
if 6[,( (x) were available, controlling its associated error could allow some solutions located in (estimated)

directions of ascent from x to be screened out. To be precise, 1(x) + (xo —x)Tg/.L (x) is a noisy estimate
of the hyperplane with respect to xq that passes through p(x) at x and supports (i.e., lies below) u. Were
it known, the true hyperplane p(x) -+ (xo —x) 'V (x) could be manipulated to describe a halfspace of
solutions that are all §-suboptimal, namely those solutions xy for which (xo —x) "V (x) > 8. We show
in Section 5 that an estimate of the gradient alone at a given solution x allows a cone of solutions to be
screened out. However, if the estimated hyperplane is too flat, i.e, if ||§;,L(x)|| is too small, no solutions
can be screened out, since no directions of ascent can be determined with high confidence.

We next formalize our mathematical framework for screening. Let .# be the space of functions that
are convex over 2 and everywhere differentiable. When screening a given solution xy, we focus on the
subset of functions in .# for which xp is acceptable, denoted by .#(xo) = {m € 4 : xo € </ (m)}, where
m is a generic function and <7 (m) indicates the set of acceptable solutions given m. Thus, .#(xy) is the
space of differentiable convex functions for which solution x is §-optimal.

Rather than work with an abstract space like .#Z(xg), we project .#(xo) to a finite-dimensional space
described by the performances and gradients at the solutions in the experimental set:

{m € RF g € R*: there exists m € .#(xo) such that m(X) =m and Vm(X) = g} , ()

where m = (my,ma,...,m;), g = (g?,g;,...,gg)T, and g; € RY for i = 1,2,...,k. In words, (2) is the set
of k performances and k gradients that admit a convex function that interpolates them at the corresponding
solutions in X and for which x( is d-optimal. We can derive an outer approximation to (2) described by a
finite system of linear inequalities:

Z(xo) = {m € R¥ g € R*: there exists mo € R such that
m; —mg + (xo—xi)Tg,- <Oforalli=1,2,...,k

—m,~+m0§5forallizl,z,...,k}. 3)
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The first set of inequalities asserts that the performance of solution xo—represented by the term mgy—
lies above each of the hyperplanes described by the gradients and performances at each solution in X.
The second set of inequalities asserts that solution x( is §-optimal relative to the other solutions in X.
We could also include constraints of the form m; —m; + (x; —x,-)Tg,- <0 for all i,j=1,2,...,k, which
collectively assert that the performance function is convex over xi,x2,...,X;. In experiments we observed
insignificant benefit when including these constraints as they provide little information for determining the
near-optimality of solution xp; we therefore restricted our attention to constraints pertaining to xp. It is
possible that these additional constraints might be critical for inferring other aspects of the function, such
as if the performance function is convex.

Projecting out mo from (3) makes it evident that Z(x) is a polyhedron in terms of m and g:

Z(xo) = {m ERF,g R : mi—m;+ (xo—x) g < 8 forall i, j = 1,2,...,k}. (4)

This observation will be helpful in the next section when we use the machinery of mathematical programming
to design new screening methods.

4 PLAUSIBLE SCREENING WITH GRADIENTS

We develop a computationally cheap screening method that involves checking whether Z belongs to a
relaxation of Z(xp). The amount by which Z(xg), or more precisely, the right-hand-side vector of (4), is
relaxed is chosen to compensate for the error associated with using 2 as an estimator for £ (X). The following
sequence of ideas incorporates stochastic gradient estimators into the relaxed PS approach proposed in
Eckman et al. (2021). When referencing the original and adapted methods, we drop the “relaxed” prefix.

Consider a generic vector z = (my,g| ,m2,g, ,...,m,c,g,;r)T representing a concatenation of perfor-
mances and gradients associated with solutions in the experimental set, X. As shown in (4), Z(xo) can be
expressed as a polyhedron in terms of z:

Z(xp) = {z e R A(xg)z < b},

for some matrix A(xo) € R¥*K@+1) and vector b € RF, where A(xo) depends on xo (and X). We relax
Z(xp) by inflating its right-hand-side vector, defining

b} =b+ max {a,T (E—z) 1 d (2,C,9) < D} foralll=1,... k%,
z€Rk(g+1)
where a; is the [/th row of A, expressed as a column vector, d,, (Z,Z,(I\J) is a measure of the agreement
between the vector z and the estimator Z, and D is a cutoff value suitably chosen to deliver the confidence
guarantees.
The term d, (z,¢,P) is referred to as the standardized discrepancy, and larger values of d, (z,¢,¥)
indicate less agreement between z and /C\ We consider the specific example of

d,(2.0.9) = ax n; (Zi—2i>Tq’f1 (Zi_zz) .

i=1

This standardized discrepancy builds upon the metric Eckman et al. (2021) proposed for dependent sampling,
but in this case, the dependence comes from the performance and gradient estimators at a given solution,
as opposed to performance estimators obtained at different solutions in X.

Our method, which we refer to as plausible screening with gradients (PSG), retains those solutions x

for which Z belongs to the aforementioned relaxation of Z(xp), i.e.,

ynPSG = {xo c2: A(X())Z < b’},
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where b’ = (b),b), ... ,b;{z)T. It can be shown that

1,...,k i

P56 — {xo € 2" max {[./IiJr(xox,-)T%u,- \/3(1,(x0xi)T)@i(1,(xox,-)T)T}

. ~ DA
< _mlnk{uj—i— w‘PjJ]}‘i‘S

J

zna?k{(xo —xi) Vi — \/ 2 (0, (v — ) ) 1 (0, (x0 —xN)T} < 6}7 (5)

n;

where ‘/I\’j,ll is the upper-left element of ‘f’j, i.e., the sample variance of Y; (x;),Y2(x;), ..., ¥, (x;).

From (5), we see that screening a solution with PSG entails checking two inequalities. The first states
that the maximum lower confidence bound for the k supporting hyperplanes, evaluated at xo, must be less
than the minimum upper confidence bound for the performances of the solutions in X, plus a tolerance
of 8. The second states that the maximum lower confidence bound for the difference in performances
between each simulated solution and that of x( is no more than 8. Given the relative ease of checking the
two inequalities in (5), PSG offers a substantial computational advantage over PS, which requires solving
a linear program whose size grows with both k and q.

Theorem 1 Let D satisfy

2(n; —1
IP’< max 2% Vg w2 < D> —l-a, (6)
i=1,..k nj—2 ’
where F> ,—2,F2 p,-2, ..., F2 5,2 are k independent F'-distributed random variables with 2 numerator degrees

of freedom and n; —2 denominator degrees of freedom. For this choice of D and min,—; _xn; > 3, the set
#PSG achieves finite-sample confidence under (1) and asymptotic confidence.

The cutoff specified in (6) is notably independent of the dimension gq.

5 PLAUSIBLE SCREENING WITH ONLY GRADIENTS

For convex performance functions, performance and gradient estimators together provide global lower
bounds in the form of supporting hyperplanes. For some simulation models, however, estimators of the
performance can be much more variable than those for the gradient, resulting in less reliable functional
constraints. This observation motivates us to explore an alternative to PSG that ignores performance
estimators and therefore does not pay for them with a larger cutoff D.

With this objective in mind, we consider a different projection of .#(xp) which features only the
gradients at solutions in the experimental set:

{g € R there exists m € .#(xy) such that Vim(X) = g} . (7)
We obtain an outer approximation of (7) by adding together pairs of constraints describing Z(xp) in (3):
mi—mo+(xp—x) g <0 and —mi+my<d = (x0—x) g<é

for all i =1,2,...,k. This operation cancels the performance terms mg,m;,my, ..., m; and yields the set

Z(xo) = {g ERM: (xg—x;) " g < & forall i = 1,2,...,k}.

We then apply the same technique as before to offset the right-hand-side vector of Z(xg), in this case
to compensate only for our uncertainty regarding V(X). The resulting method, referred to as plausible
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screening with only gradients (PSOG), retains the set of solutions

PSOG _ {XO c 'Pllaxk{(xo ) V- \/,[1) (0, (x0 —x;) T) ¥; (0, (xo —xi)T)T} < 5}~ ®)

The constraint in (8) is exactly the second constraint in (5). Decomposing the maximum in (8) shows
that each solution x; € X effectively screens out a second-order cone of solutions, namely, those solutions
xo for which

~ D ~
T T
(%0 —x;) Vi — \/ (0, (x0 —x;) ") Wi (0, (x0 —x;)T) " > 6.
l
To account for the tolerance term, 8, the vertex of the cone is offset some distance from x;, in the direction
of the estimated gradient V ;.
To determine a suitable choice of cutoff D, we rearrange terms in (8), giving

e

)V —

PG _ L€ 27 max (x0 — x;) AIJI 0 <VD}. 9)
i=1,.k \/n% (0, (xo —x1) )P, (0, (xo —x1)T) "

For an acceptable solution xo, (xo —x;) T Vi (x;) < 8, hence the numerator terms on the left-hand side of (9)
are all normally distributed with means less than zero and variances (O7 (xo0 —x[)T) P, (O7 (xo0 —x[)T)T. As

for the denominators, ‘f’,- has a Wishart distribution with dimension ¢+ 1 and degrees of freedom n; — 1,
for i=1,2,...,k. Therefore the quadratic term

(O, (xo0 —xi)T> P, (0, (xo —xi)T> T4 (O, (xo0 —x,-)T) ¥, (0, (xo0 —x,')T) Tx,i_l,

where x2 denotes a y>-distributed random variables with v degrees of freedom (Rao 2002). Putting these
results together, we have that each term in the maximum in (9) is stochastically dominated by a z-distributed
random variable with n; — 1 degrees of freedom.

Theorem 2 Let D satisty
P <.max Tpo1 < ﬁ) =1-a, (10)

i=1,...
where Ty, —1,T,,1,...,T,,—1 are k independent z-distributed random variables with n; — 1 degrees of freedom.
For this choice of D and min,—; _n; > 2, the set ff SOG achieves finite-sample confidence under (1) and
asymptotic confidence.

The choice of cutoff in (10) is also independent of the dimension gq.

6 CONSISTENCY

Like previous PS methods, PSG and PSOG do not achieve consistency when only a strict subset of solutions,
X C Z, is simulated. We introduce a relaxed version of consistency featuring a generic subset S(X) that
contains all acceptable solutions, where the notation reflects the dependence of this set on X.

Definition 4 (S(X) Consistency) A subset .7, achieves S(X) consistency for a subset S(X) 2 < if for any
ue M, Pxge S)—0as min—;_gn; — oo for all xy ¢ S(X).

S(X) consistency states that for any solution xp ¢ S(X), the probability we screen it out goes to one as
the sampling effort goes to infinity. We proceed to give instances of S(X) based on the behavior of each
screening procedure in the simplifying setting where solutions in X are evaluated without estimation error.
That is, the decision-maker observes the true performances p(X) and true gradients Vu(X).
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In this case, the set of solutions that are possibly acceptable (6-optimal) is
Se(X) = {xo ez nllaxk{u(xi) + (xo —xi)TVu(xi)} < ,nllink,u(xj) —1—5} :
= J=5

From its construction, the set S®(X) is a polyhedron containing all acceptable solutions, i.e., &7 C S¢(X).
The set SG(X) can be interpreted as those solutions xo for which there is a nonnegative gap between the
highest of the k supporting hyperplanes, evaluated at x(, and the performance of the best solution in X plus
0. In other words, the condition compares a lower bound for pt(xp) due to convexity (the maximum term)
to an upper bound on p(xp) for xo to be d-optimal (the minimum term plus §).

Theorem 3 For the choice of D in (6), the set .#"SC achieves S®(X) consistency.

We next define the set of solutions that are possibly §-optimal if we observed only the gradients at
solutions in X without estimation error, as is the basis for PSOG:

Ly

It can be seen that SO¢(X) is also a polyhedron containing all acceptable solutions.
Theorem 4 For the choice of D in (10), the set #7590 achieves SO¢(X) consistency.

We also compare with the screening methods of Eckman et al. (2021), which do not make use of
gradient estimators. Their methods were consistent with respect to a different limiting set,

SOX) = {xo € % : there exists &p,...,& € R? such that Erllaxk{u(xi)+ (xo—xi)Téi} < _mink,u(xj)—i—S}.

1:17"'7

The set SO(X) closely resembles S(X), expect that the true gradients Vi (x;), Vi(x), ..., Vi (x;) are
replaced by free variables &;,&,,...,&.
Theorem 5 establishes how the sets S®(X), SO¢(X), and SO(X) are related

Theorem 5 For any solution space 27, any experimental set X, and any performance function u € .#,
S¢(X) € SO¢(X) and S¢(X) C SO(X).

Theorem 5 implies that when taking a very large number of replications at each solution in the
experimental set, using both the performance and gradient estimators screens out the most unacceptable
solutions. We have no guarantee that, in the limit, using only gradients will screen out more solutions than
using only performances, but in many cases we imagine this is true. However, as will be shown in the
next section, we find that for small sample sizes, the situation can be more complicated. In particular, we
observe that some solutions can be screened out when using only gradients (PSOG) but not when using
both performance and gradients together (PSG). The reason is that PSG pays the price for both performance
and gradient estimation with a larger cutoff D.

7 NUMERICAL EXPERIMENTS

We test the proposed methods on a synthetic problem with performance and gradient functions

T A [ B e I [E )

forallx € 2 =[-2,2] x [-2,2] C R?, where 1, = (1,1) . The associated Hessian matrix is positive definite
and thus u is convex with a unique global minimum of 0 at x* = 1,. The set of §-optimal solutions, .7, is an
ellipsoid corresponding to the & sub-level set of i; we set 6 = 0.1. Figure 1a shows the contours of the perfor-
mance function, the optimal solution x*, and the set of §-optimal solutions. The experimental set is taken to be
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(c) PSG (d) PSOG

Figure 1: Results for synthetic example where x = (x(!),x(?)). (a) Contours of the performance function
with the experimental set X, gradients in V(X), acceptable solutions .27, and optimal solution x*. Heat
maps of P(xo € .%,) for (b) PS, (c) PSG, and (d) PSOG showing limiting sets SO (X), S¢(X), and SO¢(X),
respectively. Lighter shading indicates values near 1, while darker shading indicates values near 0.

a Latin hypercube design of k =5 solutions: X = {(—1.6,0),(—0.8,—1.6),(0,1.6),(0.8,—0.8),(1.6,0.8)}.
Figure 1a also shows the gradients in Vu(X).
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A single replication at a solution x; € X produces an estimator

ool (2L o)

where 62(x;) = 0.5+ ||x; — 15|, is a variance term—common to the performance estimator and components
of the gradient estimator—that increases away from the global minimizer, and p = 0.5 is a common
correlation coefficient. We obtain n; = 20 replications from each solution x; € X and the outputs at a given
solution are i.i.d. and independent across solutions.

We compare three methods: (1) (relaxed) plausible screening (PS) from Eckman et al. (2021), (2)
PSG, and (3) PSOG. PS screens solutions by solving linear programs, while PSG and PSOG require no
optimization. We run 100 macroreplications of each method with 1 — a = 0.95, using common random
numbers across methods to ensure that all three methods observe the same performance and gradient
estimates on any given macroreplication. We screen a dense grid of solutions, so as to approximate the sets
of solutions each procedure would retain if applied to all solutions in 2, i.e., an S, an SG. and Yf SOG,
The probabilities each solution is included in .#FS, .#PSG, and .#PSOG are shown in the heat maps of
Figures 1b, lc, and 1d, respectively. Figure 1b shows that PS struggles to screen out many unacceptable
solutions, even those in the lower-left corner that are far from optimal. In Figures 1c and 1d, we see
that many more solutions are screened out by PSG and PSOG. PSG tends to screen out more solutions
than PSOG, but not in a nested way. In particular, we see that PSOG screens out more solutions around
(1.6,0.8), but struggles to screen out solutions around (—1.6,0) and (—0.8, —1.6) because it does not use
the performance estimators that indicate the inferiority of those two solutions.

Figures 1b, 1c, and 1d also depict the limiting sets characterizing the consistency of the three procedures:
SO(X) for PS, S¢(X) for PSG, and SO¢(X) for PSOG. It can be seen that SO(X), S¢(X), and SO¢(X)
satisfy the nested relationships claimed in Theorems 5. Furthermore, S¢(X) and S°C(X) are polyhedra
while SO(X) is highly non-convex. The subset S©(X) is also much larger than the other two subsets, which
illustrates the additional screening power offered by leveraging gradient estimators, at least in the limit as
sample sizes increase. The gap between .50 and S¢(X) also suggests that there is an opportunity for a
tighter cutoff D for PSG.

8 CONCLUSION

We borrowed concepts from plausible screening to identify near-optimal solutions to convex simulation-
optimization problems when unbiased stochastic gradient estimators are available. Aside from the time
required to derive and implement them, gradient estimators are leveraged to enhance screening in a
computationally cheap way. Numerical experiments demonstrate that the methods screen out more solutions
than previous plausible screening methods, which use only performance estimators. We envision IPA gradient
estimators being especially powerful for screening due to the fact that they tend to be less variable compared
to LR/SF gradient estimators.

We presented a standardized discrepancy that handles the possible dependence between the performance
and gradient estimators at a given solution. This new metric could be adapted to simulation applications with
one or more dependent responses or stochastic constraints. Future research directions include extending
definitions of acceptability and incorporating functional properties that include other forms of first-order
information, e.g., identifying first-order stationary solutions for a performance function with Lipschitz
gradients. We also intend to study how screening power is affected by the relative variability of performance
and gradient estimators, as well as by the variability in the true values of these quantities over the experimental
set.
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9 APPENDIX
9.1 Proof that Z(x() is a relaxation of (2).

For a given u, let & (1) ={x€ 2 : u(x) <infyc g p(x’)+ 6} and suppose that u is known to be convex over a continuous
domain 2" CRY. A differentiable function m is convex over 2 if for all x,x' € 2, m(x) —m(x') + (¥ —x) T Vm(x) <0. In
terms of our notation,

M= {m: m(x) —m(xX') + (X' —x) " Vm(x) <0 for all x,x' € 3&”}

For a given solution xy € 2, we add the constraint that m(xg) < m(x)+ 6 for all x € 2" to obtain the set of convex functions
for which solution xg is J-optimal,

M (xp) = {m: m(xg) <m(x)+8 and m(x) —m(x')+ (X' —x) " Vm(x) <0 for all x,x' € 3&”}
We show that the projection of .#(xy) onto RF@+D is contained in

Z(xp) :{m € R¥, g € R there exists mg € R such that
m,-fmoJr(xOfx[)Tg[ <Oforalli=1,2,....k

—m; +mgy < 8 for all i:1,2,...,k}.

Fix an arbitrary function m € .#(x() and define m; = m(x;) fori=0,1,... ,kand g; = Vm(x;) fori=1,... k. Since m € .#(x),
m; —mo + (x0 —x;) T & = m(x;) — m(xg) + (x0 —x;) T Vin(x;) <0 for all i=1,2,...,k and —m; +mg = —m(x;) +m(xy) < & for
all i=1,2,...,k. Hence, for this choice of mg, we have that (m,g) € Z(xo). This proves that Z(x() is a relaxation of (2), the
projection of .#(xg) onto R¥4+1),

9.2 Projecting out mg from Z(xo).

We apply Fourier-Motzkin elimination to our representation of Z(xg) to project out my.

Z(xp) :{m € R¥,g € R¥: there exists mg € R such that
mi—mo+ (xo—x;) g <0 forall i=1,2,....k
—m;+my <8 forall i= 1727...7k}
={m € R¥ g € R there exists mg € R such that
mo > m; + (xo —x;) g forall i=1,2,....k
mo <m;+6 for all i = 1,2,...,k}
= {meRk,geRk‘I: m; + (xo —x;) g < m;+ & for all i,j= 1,2,...,k}

:{meRk,gERk‘I: m,'fmj+(xofx,<)Tg[§8 for all i,j=1,2,...,k}.

9.3 Useful Lemmas for PSG

Lemma 1 For any v € Rk(4+1),
T(7 = T | (>
max (Vv (C—z): ni(gi—zi) v (Ci—zi)SD —
zeRka+1)
T

T . .
where v=(v{,vy,...,v] ) with v; e RI! for i=1,2,... k.

-

1
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Proof of Lemma 1. Let 141441 be a (g+1) x (¢4 1) matrix of ones and let A® B denote the Kronecker product of
matrices A and B. Then

o {7 69 En(aew) 0 (5x) <0
- {7 E) (50) (om0t 0) 9 s 2t 00)) (E-2) <0
m{< ) (69" ((VPuseto) 176100 40) @ (VD) P tirg)) (2 <1}
(t-

max

v (E-2): e 25!
z€Rka+1) fdlag( ) l/2®lt]+lq+]) (\/7dlag n)~ 1/“®1q+lq+l))

m

= ||VH(\/Bdiag(n)’]h@lqﬂ.qﬂ)"i’(\/ﬁdiag(n)”“@lq—l;qﬂ)
T ~
\/vT (\Ediag(n)*l/2 ® lq+1,q+1> b Y (\ﬁdiag(n)*l/2 ® lq+1,q+1) v

k A~

Z Ev?Tivi.

i=1 "

Lemma 2 For any v € Rk4+1),

~

- P - T . D
T _ . _ T _ . . . -1 ) < _ 2Ty,
zerﬂggﬁl) {v (C Z) P (2,6,%) < } zerﬂgﬁﬁn {V (C Z> ' iznllf'.).(,knl (C’ Z') ¥i (C’ Z') = D} Z Vi ivis

T . .
where v=(v{,vy,...,v] ) with v; e RI*! for i=1,2,... k.

Proof of Lemma 2.
—~ ~ o~ ~ —~ T ~ —~
T(C—2): <D!= T(t-2): N e —z) <
Zégg{ﬁ]) {v (C z) d.(z,6,¥) < D} zelﬂgf}il) v (C z) i:nll,a.l.).(.,knl (g, z,) ¥, (g, z,) <D
~ ~ T ~ o~
T —1 .
_ —2)ni(Ci—z) 9 (2. —z) < =12,...,
ZEI]E&;(“) {v (C z) n; (Cl z,) ¥ (Cl z,) <D forall i=1,2, ,k}
k ~ ~ T ~
max { Y] <Ci—z,~) Cn; (gi—z,) g (é’i—z,) <D forall i=1,2,....k
z€Rk4+1) i=1
:Z max < v, <Z-—z~> 'n‘(Z—Z)T@TI(E—z) <D
IZER‘I+1 1 1 . 1 1 1 i 1 1 =

k
= —v ‘Pv,
i—1 | T

The last equality comes from applying Lemma 1. O

k

—

9.4 Derivation of .#/"5C

We defined
Z(xp) = {m ER geRM: m;—m;+(xo—x;) g <8 forall i,j= 1,2,...,k},

which can be viewed as a polyhedron
Z(xg) = {z e RMIHD: A(xp)z < b} ,

where A(xo) € RE*ka+1) and b = 81,.
The subset of solutions returned by PSG is defined as

nyGE{xoe%;A(xo)Zgb'}, (11)
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where b’ = (b},b},...,b},)" and

b, =b+ max {a?(Efz):dn(z,Z,‘/I\’)gD} forall [=1,....K%

z€RkKg+1)

We showed in Lemma 2 that

max {alT (Z—z) : dn(z,E,‘i’) < D} = Z nBialTi@,-al,-.

ZERKg+1) =

Substituting this result into (11) gives

g 5 D 5 D, L
I3 = {xo €2 i—fj+(xo—x) Vi <8+ \/n (1, (x0—x:) ") ¥ (17(X0—xi)T)T+\/le,11 for all i # j

i nj

1

(xo fx,')T§p,i <&+ \/D (0,(xo—x;)T) Y, (0, (xo fx;)T)T foralli=1,2,... ,k}
n-

1

o s D ~ D~ L.
= {xo IS /.L;/.Lj+(xoxi)TVu[\/n (1,(xofx[)T) ¥, (1,(x07x[)T)T7 \/W‘Pj’u <6 forallisj
J

1

(xo fx,')Tgu[ - \/I’[l) (0,(xo—x;)T) ¥y, (0, (xo fx,')T)T <& foralli=1,2,... ,k}. (12)

N ~ D ~ . "N D~
= {xo ex: i_nllaxk{uiJr(XOXi)TV“i\/n. (1,(0—x)T) ¥ (L(Xoxi)T)T} < 4n1“nk{“f+ L Vin } +6

Affllaxk{(xo —xi) Vi~ \/5 (0, (xo —x)T) ®; (0, (xo _xi)T)T} < 5}-
9.5 Derivation of .7S0G

We defined B
Z(x) = {g €RM: (xg—x;) g < 8 for all i = 1,2,...,k},
which can be viewed as a polyhedron
Z(x) = {z e RMIHD: A(xp)z < b} ,

where A(xg) € RFk(@+1) and b= §1;. Note that these A(xy) and b differ from those in Appendix 9.4 and some columns of
A(xp) are zeroed out.
Applying the same construction method as in PSG, the subset of solutions returned by PSOG is defined as

Yr})SOG = {xo IS A(xo)z < b/}7

where b’ = (b’l,b’z,,.,,b;(z)T and

by =b;+ max {alT (Efz> : dn(z,Z,‘i’) < D} for all [=1,...,k.
z€RKa+1)

The subset of retained solutions is given by

S PSOG — {xo e (xofx;)Tﬁui <6+ \/D

n;

(0,(x07x,<)T)‘i‘,- (0, ()cofxi)T)T for all i = l,2,...,k}

= {xo S i_lllléfk{(xo —x) Vi~ \/5 (0,(xo —x:) ) ®; (0, (xo xi)T)T} < 5} .

1

9.6 Confidence Results

Proof of Theorem 1. Fix arbitrary 1 — o € (1/2,1) and pu € .#. Fix an arbitrary solution xo € <. Since xy € <7, we have
that u € .#(xg) and therefore &(X) € Z(xy) where

Z(xo) = {m ERF g eRM: mi—m;+ (xo—x;) g <8 for all i,j= 1,2,...,k}. (13)
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We can write Z(xg) = {z € RMa+D s A(xg)z < b} for A(xg) € RK*kat1) and b = §1,2. Thus the statement ¢(X) € Z(xo)

implies that alTC(X) <b; forall [=1,2,... k.
For the subset of solutions retained by PSG,

P <x0 e yn"SG> —P (A(xO)Z < b’)

= ( ITESthZGI]gka&”{aZT <Efz) : dn(z,g,‘f’) < D} for all [ = 1,...,k2)
= ( (E-500) +a/ £ )<bz+2£3§+1){a7 (E-2): dn(z.8,%) <D} for auz:l,...,k2>
ZP(GIT (€-¢0) SZE‘?&L){J(E— 2): dy(2,,%) <D} for al 1:1,4.4,k2). (14)

Closer inspection of (13) reveals that A(xp)z = HC(xy) 'z where C(xo) € RK4T1)*2 j5 a block-diagonal matrix defined as

1 0

fori=1,2,...k,
Oq (xofx,-)} !

and H € RF*2k 5 chosen accordingly. For [ =1,2,... k%, let hj = (hx,thz, thk)T € R% denote the Ith row of H, expressed
as a column vector, where h;; € R? for i = 1,2,...,k. Substituting A(xy) = HC(xO)T into (14), we have

P (xo € yr}’SG) >P (thc(xO)T (g, g(X)) < max {thC(xO)T (Efz) L d (2,8, %) < D} for all [ = 17...7k2) (15)

zeRk(g+1)

For all [ = 1,27...7k2, Lemma 2 implies that

o (W Ct) (2-2) ay@E) <0} = max (i c00) (€-2) ¢ max i (G-z) %1 (G-2) <0}

=1,...,

D .
=) \/nthiCi(xo)TlPiCi(xo)hli
i 1

where @ EC(xo)TE e R* and @; ECi(xO)TZi fori=1,2,... k.
Letting w(X) =C(xg) T ¢(X), (15) can be rewritten as

P (xo e y,}’SG) > IP’(h,T (@— o(X))

T(5 =~ T Ty -t 2
< max hl ((J) — W) . max n; ((L),' 7W,’) <C,'(X()) ‘PiCi(XO)> ((1),' — W,') <D, forall l= 1,... 7k
weR* i=1,...k

>P ( Ililann, (@; — Wi)T (Ci(xo)T@iCi(xo)>7l (@; —w;) < D) (16)

Under the normality assumption (1), @; ~ A4 (Ci(x0) " {;,Ci(x0) "WiCi(x9)) for i =1,2,....k. Provided n; >3 for all
i=1,2,...,k, Theorem 5.2.2 of Anderson (1984) implies that

2(n;—1)

e = L d ;
n,-(a)ifw,-)T (C,-(xo)T‘PiC,-(xo)> ((!J,'*W,') = w2 Fz},,’._z for all i = 1,2,...,]{.
i

Therefore the cutoff D is appropriately defined as the 1 — ¢ quantile of

2(n;j—1
max 7(% )Fzﬂ._z7
i=l,.k nj—2 o
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where the random variables I3, 2,/ 4,-2,...,F2 5,2 are independent. Under the normality assumption (1),
~ -1
P < IIilannl' (6, — W,‘)T (Ci(xo)T‘PiCi(xo)> ((Oi — Wl‘) < D) =1-a.
i=1,...,

From (16), this establishes that Yr? SG achieves finite-sample confidence.
By the Central Limit Theorem and the Continuous Mapping Theorem,

_ ~ -1
i (@) (Cilxo) " FiCilx0)) (@1 —wi) S 23,

as n; — oo for i =1,...,k where y2 denotes a chi-squared random variable with v degree of freedom. Our choice of D
converges to the 1 —a quantile of the maximum of k independent xzz random variables. Therefore,

~ ~1
P < max n[(aA),'fw,-)T (C[(XO)T‘PiC[(XQ)> (@ —w;) < D) —1—o as min n;— oo,

i=1,..., i=1,...,

and 5”,}) SG achieves asymptotic confidence. O

Proof of Theorem 2. Fix arbitrary 1—o € (1/2,1) and u € . Fix an arbitrary solution xy € 27 Since x( € o7, we have
that u € .#(xp) and therefore Vi (X) € Z(x), i.e., (xo—x;) " Viu(x;) < 8 for all i =1,2,...,k. Then

_ D -
P (xo € yn*’SOG) =P ((xo —x) Vi <8+ \/ (0,(xo—x)T)%; (0, (xo—x;)T) " for all i= 1,2,...,k>

nj
(xo—x;) "V — 8

\/,,L (0, (xo—x:)T) i (0, (x0 —x1) )
(xo —xi) "V — (x0 —x:) TV (i)
5 T

\/% (0,(xo—xi) ") i (0,(x0 —x;) ")
Under (1), each term on the left-hand side of (17) is a t-distributed random variable with n; — 1 degrees of freedom.
Therefore our choice of D as the squared 1 — o quantile of the maximum of independent random variables T, _1, 7,1, .., Tp,—1
ensures that ]P’(xo S 5’,? SOG) >1— o for all n such that n; > 2 for all i=1,2,...,k. Thus 5/’5 SOG achieves finite-sample

confidence.

For the asymptotic confidence result, the Multivariate Central Limit Theorem and Continuous Mapping Theorem together
imply that each term on the left-hand side of (17) is asymptotically distributed as a standard normal random variable as
n; — oo for all i =1,2,... k. Our choice of cutoff D meanwhile converges to the squared 1 — & quantile of the maximum of k

independent standard normal random variables as min;—
asymptotic confidence. O

=P

= <vD foralli=1,2,....k

>P

<vD foralli=1,2,....k|. 17

9.7 Consistency Results

Proof of Theorem 3. Fix arbitrary 4 € .# and an arbitrary solution xq ¢ S®(X). From the definition of S¢(X), there exists
a pair of indices (i*, j*) such that p(x;-) + (xo —x;+) "V (x;) > p(xjo) +8. If i* = j*, then (xo —xp) ' Vu(x+) > 8. From (12),

i

) o~ = D ~ D -~ L.
P(.X() c JﬂnPSG> —]P)<[J,i—[.l,j+(x0—xi)TV[Ji— \/I’l (1,(x0—xi)T) ‘Pi (1,(xo—xi)T)T - \/n.lyj*ll < 6 for all 17&]
J

~ D ~
(X() 7xi)TV,ui - \/I’l (07 ()CO 7X[)T)lpi (0, ()CQ 7xi)T)T < 6 foralli= 172,. .. ,k) .

1

If i* = j*,
~ D N
P (xo € nyG> <P ((Xo —xp) Vit — \/ (0, (x0—x)T) Wi (0, (xo —x)T)' < 5) . (18)
nj
As minj—y _ pn; — oo, §,u,-« — Vu(xp) as., ‘f’i* — W+ as. and D converges to the 1 — o quantile of the maximum of k

independent 9522 random variables. By the Continuous Mapping Theorem,

S D o a.s.
(x0 —xi+) | Vi — \/n (0, (xo —x:)T) B (0, (xo —x:)T) T %% (o —xiv) "V () > 6.
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Therefore the probability on the right-hand side of (18) goes to zero as min;—y _jn; — oo.
If instead i* # j*,

P (xo € %FSG) <P (ﬁi* — e+ (x0 —xi) Vi — \/;? (1, (0 =) T) e (1, (x0 =) T) T = R@jan < 5) . (19

i njx

As min;_j 1 — oo, s — 1(Xir) as., %,u,'* — Vu(xy) as., P ¥, as., and as nje — oo, ;- — U(xj-) a.s. and ‘i’j* -
a.s. By the Continuous Mapping Theorem,

U - D R N R
B — Hje + (xo —x32) " Ve — \/ (1, (x0—x) ) e (1,(xo —x+)T)  — \/H‘\Pj*,u
i

njx
a.s. T
= M(xi) = plxje) + (xo —xi)  Vie(xi) > 6.
Therefore the probability on the right-hand side of (19) goes to zero as min;—y _n; — oo.

Together, these two cases show that P (xo e.sP SG) — 0 asmin;_; __;n; — o, hence #PSG achieves SC(X) consistency. [

Proof of Theorem 4. Fix arbitrary 4 € .# and an arbitrary solution xo ¢ S9¢(X). Sincexo ¢ SO (X), max;—;__4 {(xo —x;) " Vu(x;)} >
8, thus there exists an index i* € {1,2,...,k} for which (xg —x;) "V (xi) > 8.
From the analysis in the proof of Theorem 2,

~ D .
P (xo IS yrfSOG> =P <(x0 —xi)TVHi <o+ \/n- (0,()6() —xi)T) ¥, (0., (xo —)ci)T)T for all i = 1,2,...,k>

1

(v —x;) Vi — &

=P <vD forali=1,2,....k
\/nl (0, (xo —x:) ) ¥; (0. (x0 —xi)T)T
<P (0 —) "V~ <vD
Vi (0. (0 —) T) % (0,00 —x)T) T
(0 — i) TVptir — (o — ) TV (x) (x0 — i) Va(xir) = 8
=P + <vD|. (0)

\/,% (0, (xo—x)T) Wi (0, (xo —)CZ‘)T)T \/,% (0, (xo—x7)T) Wi (0, (xo —X?)T)T

By the Multivariate Central Limit Theorem and the Continuous Mapping Theorem, the first term on the left-hand side of
(20) is asmpytotically distributed as a standard normal random variable. The second term on the left-hand side has a positive
numerator (from the definition of i*) and its denominator converges in probability to 0 as n; — oo. The choice of cutoff D
converges to a constant: the square of the 1 — « quantile of the maximum of k independent standard normal random variables.
Therefore P (xg € .#F590) — 0 and we have that .#7S0C achieves SO(X) consistency. O

9.8 Limiting Set Results
Proof of Theorem 5. Fix arbitrary 2", X, and u € .. Fix an arbitrary solution xy € S&(X).
For the first result, notice that

. )T . ; . ) T A ; .
Jmax {u(x) + (o —x) Va(u) | < min p() 48 & max () + (o) TVRC0) p - min u(y) <8

= nllgxyk{(xo—x,')TV/.L(xi)} <.

Thus xo € SO6(X) and S&(X) C SO¢(X).
For the second result, set & = Vpu(x;) for i =1,2,...,k. It can be seen from the definition of SO(X) that xy € SO(X).
Thus S¢(X) C SO(X). O
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