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Abstract. Let G be a Lie group, let I' C G be a discrete subgroup, let X = G/I'" and
let f be an affine map from X to itself. We give conditions on a submanifold Z of X
that guarantee that the set of points x € X with f-trajectories avoiding Z is hyperplane
absolute winning (a property which implies full Hausdorff dimension and is stable under
countable intersections). A similar result is proved for one-parameter actions on X. This
has applications in constructing exceptional geodesics on locally symmetric spaces and in
non-density of the set of values of certain functions at integer points.
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1. Introduction

1.1. Non-dense orbits in homogeneous dynamics. Let X be a metric space and let F be
a set of self-maps X — X. For a non-empty subset Z of X, define

E(F,Z):={xeX:FxNZ=w).
When f is a single transformation of X, we will slightly abuse notation and define

Ef,Z)=E({f":n>0L,2)=xeX: {fix:n>0NZ=0)

o
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Those sets carry important information about the dynamical system (X, F') and have
been extensively studied. Clearly, one has w(E(f, Z)) = 0 whenever u is an f-ergodic
measure on X with full support. On the other hand, for certain classes of dynamical
systems and subsets Z of X, sets of those exceptional points can be shown to be quite
substantial — in particular, they are thick. Here and hereafter, we say that E C X is thick if
dim(U N E) = dim(U) for any open subset U of X, where dim stands for the Hausdorff
dimension. See, e.g., [13, 19, 20, 34] for some work done in this direction in the 1990s.

In this paper, we restrict ourselves to the study of the special case when X is a
homogeneous space of a Lie group G. Around 25 years ago, the third-named author
considered the case when F is either a one-parameter or a cyclic semigroup of G acting on
X by left translations. To state this result, we need to define the expanding horospherical
subgroup G ¢ corresponding to f € G: that s,

Gyi= {g €G: lim fgf" = 1G}.
n— 00

Another way of defining G  is as follows: its Lie algebra is the subalgebra of Lie(G) whose
complexification is the direct sum of generalized eigenspaces of Ad f corresponding to
eigenvalues of modulus greater than one (see §2.3 for a discussion). If F = {g; : t € R}isa
one-parameter subgroup of G, we will denote F™ :={g; : t > 0} and F~ := {g; : t <0},
and we define the expanding horospherical subgroup G p+ corresponding to F* as

Gre =Gy, = {g €G: lim genggun = 16}. (11)

When Z C X is a smooth submanifold, it turns out that a condition sufficient for
abundance of orbits avoiding Z can be phrased in the language of transversality. Let G
be a Lie group, let D C G be a closed subgroup (not necessarily discrete), let X = G/D
and let H, F be Lie subgroups of G. According to the terminology introduced in [19, 23],
a C! submanifold Z of X is said to be:

e H-transversal if T,(Hz) ¢ T,Z for every z € Z;

o (F, H)-transversal if T,(Fz) ¢ T,Z for every z € Z (thatis, Z is F-transversal) and
also T,(Hz) ¢ T,Z @ T,(Fz) forevery z € Z.

The following theorem was proved in [19].

THEOREM 1.1. Let G be a Lie group, let " C G be a discrete subgroup andlet X = G/ T.

(1) Let f € G. Then, for any compact G ¢-transversal C U submanifold Z C X, the set
E(f, Z) is thick.

(2) Let F C G be a one-parameter subgroup. Then, for any compact (F, G p+)-
transversal C1 submanifold Z C X, the set E(F™, Z) is thick.

We note that the above theorem is meaningful only if Ad f (respectively, Ad g1) has at
least one eigenvalue of modulus > 1; otherwise, the groups G (respectively, G p+) are
trivial and the above transversality conditions are never satisfied.

The abundance of points with non-dense orbits has also been established when
f € GL,(R) N"M,,x,,(Z) is an endomorphism of the n-dimensional torus. Indeed, gener-
alizing a result of Dani [12], Broderick, Fishman and Kleinbock [3] proved the following
theorem.

https://doi.org/10.1017/etds.2021.4 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.4

Non-dense orbits on homogeneous spaces and applications 1329

THEOREM 1.2. Let X = T", and let f € GL,(R) N M,,x,(Z) be an endomorphism of X
with at least one eigenvalue of modulus bigger than one. Then for any countable subset
Z C X, the set E(f, Z) is thick.

In fact, both in [12] and in [3], a stronger property of those sets was established:
namely, they were shown to be winning in the sense of Schmidt. Later this property was
upgraded by Broderick, Fishman and Simmons [5] to an even stronger hyperplane absolute
winning (HAW) property. See [4, 23], as well as §2.1, for definitions and discussion, and
[1, 2, 14, 16, 18, 22, 33, 36, 37] for other recent results involving winning properties of
exceptional sets in dynamical systems. We point out that one of the important advantages of
this strengthening is the fact that a countable intersection of winning (respectively, HAW)
sets is also winning (respectively, HAW).

Our first main theorem (Theorem A1 below) gives a unified treatment of Theorem 1.2
and part (1) of Theorem 1.1. To include both left translations on homogeneous spaces
and toral endomorphisms, we establish our result for affine maps. Let G be a Lie group
(not necessarily connected) with Lie algebra g, let I' C G be a discrete subgroup and let
X = G/T.Let Aut(G, I') denote the set of automorphisms of G sending I" into I"'. A map
f X — X issaid to be affine if there exist g € G and o € Aut(G, I') such that

f(hT) = go(W)I" forallh € G. (1.2)
Let oy be the automorphism of G given by
op(h) =go(h)g™" forallh € G, (1.3)

and let do s be the induced automorphism of g. (It will be shown that do s is uniquely
determined by f; see Lemma 2.4.) In §2, for an affine map f, we, similarly to (1.1), define
the expanding horospherical subgroup Gy of G relative to f, and we also introduce a
subgroup G'7** C G y, which we call the maximally expanding horospherical subgroup of
G relative to f. Roughly speaking, the latter subgroup corresponds to directions in g in
which doy exhibits the maximal rate of expansion. For example, if do s is diagonalizable
with at least one eigenvalue of modulus bigger than one, then the Lie algebra of G‘}“‘x is
the sum of eigenspaces corresponding to eigenvalues of do ¢ with maximal absolute value.
See §2.2 for a formal approach, and §2.3 for a precise definition. This subgroup replaces
G 7 in the transversality conditions of Theorem 1.1, which makes it possible to upgrade its
conclusion to the winning property of E(f, Z), as follows.

THEOREM Al. Let G be a Lie group, let I' C G be a discrete subgroup, let X = G/ T’
and let f be an affine map on X. Then, for any Gr}lax-transversal C! submanifold Z C X,
the set E(f, Z) is HAW.

We remark that if f is an affine map and the assumption of G‘}’ax—transversality of Z is
replaced by a weaker assumption of G ¢-transversality, it is possible to use the methods of
[19] to show that the set E(f, Z) is thick. However, in order to prove the HAW property
(or even regular winning, in the sense of Schmidt), G -transversality does not seem to be

enough, and one has to require transversality with respect to G‘;}a".
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Inthecase G =R",I" = Z" and f € GL,,(R) N M, x,(Z), we note that do s coincides
with f, and Theorem Al implies the following strengthening of Theorem 1.2 and the
subsequent work in [5].

COROLLARY 1.3. Let X =T", and let f € GL,,(R) N M, x,(Z) be an endomorphism of
X. Then, for any Gr;-lax—transversal C! submanifold Z C T", the set E(f, Z) is HAW.

As an example: if f is uniformly expanding, such as x +— mx for a non-zero m € Z,
then G‘}’a" = R”", and thus E(f, Z) is HAW for any proper C! submanifold Z c T".

The case o = Id of Theorem Al (that is, when f is a left translation by an element g
of G) can be used to derive a continuous version of the above theorem, that is, a statement
similar to part (2) of Theorem 1.1. Here we will denote by G'7¢* the maximally expanding
horospherical subgroup G¢i** of G relative to gi.

THEOREM A2. Let G, I and X be as in Theorem Al. Let F ={g; :t € R} be a
one-parameter subgroup of G, and let Z be an (F, G7i*)-transversal C U submanifold

of X. Then the set E(F™, Z) is HAW.

Note that, in view of intersection properties of winning sets, the conclusion of the two
theorems above will hold if Z is replaced by a countable union of sets satisfying the above
assumptions. Note also that the groups Gr}‘ax (respectively, G'2¥*) are non-trivial if and only
if doy (respectively, Ad g1) has at least one eigenvalue of modulus > 1. In the latter case,
the transversality conditions in Theorems Al and A2 are definitely satisfied if Z consists

of a single point, and hence the conclusion of the two theorems holds for countable sets Z.

1.2. Non-dense geodesics on locally symmetric spaces. Theorems Al and A2 will be
derived from their more general technical versions, Theorems 2.6 and 2.8, where we study
the HAW property of the intersections of the sets E(f, Z) and E(F*, Z) with orbits of
certain subgroups H C G. The advantage of such a general set-up is that some important
applications can be deduced from it. In particular, when G is semisimple and H is taken
to be the maximal compact subgroup of G, Theorem 2.8 has interesting applications to
geodesic flows on locally symmetric spaces.

Let Y be a locally symmetric space of non-compact type and let S(¥) denote its unit
tangent bundle, whose fiber S, (Y) over a point y € Y is the unit sphere in 7)Y centered at
the origin. For £ € S(Y), let ¥ (&) denote the geodesic line through the base point of £ in
the direction £. We will use Theorem 2.8 to prove the following result.

THEOREM B1. Let Y be a locally symmetric space of non-compact type, y € Y, and let Z
be a countable subset of Y ~\ {y}. Then the set

[EeSY) :yE)NZ=0)
is thick in Sy (Y).

Theorem B 1, together with Marstrand’s slicing theorem, implies that, for any countable
subset Z C Y, theset {§ € S(Y) : y(§) N Z = @} is thick in S(Y). For locally symmetric
spaces of constant negative curvature (which corresponds to the case G = SO(n, 1)),
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the latter result for finite Z is given in [19, Corollary 4.4.4]; see also a related work by
Dolgopyat [13].

Note that if ¥ has rank one and has finite volume, the geodesic flow on S(Y) is ergodic.
However, it is never ergodic if the rank of Y is greater than one. Mautner [27] showed
that S(Y) can be naturally partitioned into closed submanifolds that are invariant under
the geodesic flow (see also [21]). If Y has finite volume, the geodesic flow is ergodic on a
generic submanifold. We refer to a submanifold in this partition as an ergodic submanifold
(see §5 for the definition). We will also prove the following theorem.

THEOREM B2. Let Y be a locally symmetric space of non-compact type, let E C S(Y) be
an ergodic submanifold and let E C & be a finite subset. Then there exists a closed subset
of € that is invariant under the geodesic flow, does not intersect & and projects onto Y.

Theorem B2 is motivated by the unpublished work of Burns and Pollicott [6] and
subsequent papers [7, 8, 30, 32], where hyperbolic manifolds and more general manifolds
of non-positive curvature are considered. However, in all the aforementioned papers, the
set E consisted of a single point. Theorem B2 seems to be new even in the case when Y has
rank one (in which case, one has € = S(Y)). See also [35] for a related work concerning
CAT(-1) spaces.

1.3. Gaps between values of functions at integer points. For the special case
G/T =SLy(R)/ SLy(Z), Theorem A2 was established in [23] by the third-named author
and Weiss. That paper was, in fact, motivated by studying binary indefinite quadratic forms
with non-dense set of values at integer points, and it contains the following result.

THEOREM 1.4. The set of indefinite binary quadratic forms whose set of values at non-zero
integer points misses a given countable set is thick in the space of all binary indefinite
quadratic forms.

More generally, given ¢ € C(R"), one can consider the SL,, (R)-orbit of ¢: that is,

O@) :={pog:geSL,(R)} (1.4)

Then the stabilizer Aut(¢) of ¢ is a closed subgroup of SL,(R), and hence the orbit
O(¢) = Aut(¢)\ SL, (R) has a natural smooth manifold structure. Theorem 1.4 dealt with
the case n = 2 and ¢ (x1, x2) = x1x2. See §6 for more background on this problem.
Using Theorem A2, we are able to prove a substantial generalization of Theorem 1.4.
Let n > 2, and fix a norm ||-|| on R"”. We say that a continuous function ¢ : R” — R
is a generalized indefinite binary form GIBF if there exists a non-trivial decomposition
R" = U @ W such that the following three conditions hold.
(IB-1) ¢ is invariant under the one-parameter transformation group

F=1{g :t R}, where g =¢'/? idy ®e "/ idy, p =dim U, g = dim W.
(1.5)
(IB-2) ¢ (0) =0, and there is a continuous function N : R — [0, co) with N(0) =0
such that
N@pum+w)) > ||u||’|w|? forallu e U, we W.
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(IB-3) For any a # 0, the set ¢~ (a) is contained in a countable union of F-invariant
C! submanifolds of R” that are both U-transversal and W-transversal+.

It is clear that the above property is preserved by linear changes of coordinates, and thus,

if ¢ is a GIBF, its orbit (1.4) consists entirely of GIBFs. The binary form x;x, mentioned

above is clearly a GIBF, and thus the same is true for all indefinite binary forms. The

polynomials listed below are also GIBFs.

x4+ xTh, nodd; (1.6)
02+ 24 27D, neven (1.7)
24 +x5/2)(x(2n/2)+1 +.--42x2), neven; (1.8)
xlx% + x13x36, n=23. (1.9)

For the verification of the above claim and for more examples of GIBFs, see §7.2. As a
non-polynomial example, if the norm ||-|| is C' on R” ~. (U U W), then the function

du+w) = ul|’|w]?, uelU, weW

is a GIBF (see Example 7.4).
Now we are ready to generalize Theorem 1.4 to the set-up of gaps between values of
these functions at non-zero integer points.

THEOREM C. Letn > 2, and let ¢ be a GIBF. Then, for any countable subset A of R, the
set

(Y e O@) : v (Z"~{0)NA =02}
is HAW.

1.4. Organization of the paper. In §2, we state our main technical results, Theorem 2.6
and Theorem 2.8, and deduce the latter from the former. §3 is devoted to the study of
the behavior of certain hyperplanes under linear transformations, which is utilized in the
subsequent section for the proof of Theorem 2.6. There we use the hyperplane percentage
game, a modification of the hyperplane absolute game introduced in [5] (see §4.1), a careful
analysis of the local behavior of the multiplication on G (§4.2) and an approximation
of pieces of submanifolds Z by neighborhoods of hyperplanes (§4.3). In §5, we apply
Theorem 2.8 to geodesic flows on locally symmetric spaces, proving Theorems B1 and
B2. Then, in §6, we discuss another application, in which we put X = SL,,(R)/ SL,(Z)
and establish a general result (Theorem 6.3) concerning functions whose values at integer
points are not dense. Theorem C is derived from Theorem 6.3 in §7, and then we describe
a number of examples of generalized indefinite binary forms.

2. Statement of the main theorems
2.1. HAW subsets of a manifold. Our main theorems are stated in terms of the notion
of HAW subsets of smooth manifolds, introduced in [23]. Before defining this game, for

1 Here the transversality is understood in the sense of the action of U and W on R” by translations.
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comparison, let us recall Schmidt’s («, §)-game [31]. It involves two parameters «, B €
(0, 1) and is played by two players Alice and Bob on a Euclidean space V with a target set
S C V. Bob starts the game by choosing a closed ball By in V with center x( and radius rg.
After Bob chooses a closed ball B; = B(x;, r;), Alice chooses A; = B(x], r/)C B; with
r/ = ar;, and then Bob chooses B;y| = B(xijy1,ri+1)C A; with r;11 = Br] etc. Alice
wins the game if the unique point of intersection

o
A = ﬂ B;
i=0

belongs to S, and Bob wins otherwise. The set S is («, 8)-winning if Alice has a winning
strategy, it is «-winning if it is (¢, §)-winning for any 8 € (0, 1), and is winning if it is
a-winning for some «. Schmidt [31] proved that winning sets are thick and that a countable
intersection of o-winning sets is again o-winning.

A more recent development of the theory started with a paper of McMullen [28]
who introduced the notion of absolute winning sets. These were generalized in [4] to
k-dimensionally absolute winning for any 0 < k < dim V. In particular, the hyperplane
absolute game (the case k = dim V — 1) is played on an open subset U of V, as follows.
Again, there are two players called Alice and Bob and a target set S C U. Let § € (0, %);
Bob starts the game by choosing a closed Euclidean ball By contained in U of radius ry.
For an affine hyperplane L C V and r > 0, we denote the r-neighborhood of L by

ID):

i=0

L") :={v eV :dist(v, L) < r}.

After Bob chooses a closed Euclidean ball B; C U of radius r;, Alice chooses a hyperplane

neighborhood Lﬁr" ) with r/ < Br;, and then Bob chooses a closed ball B; 1 C B; L;r")
of radius r;+1 > Br;. Alice wins the game if

o
(1BiNS#@.

i=0

The set S is B-hyperplane absolute winning on U, abbreviated as S-HAW, if Alice has
a winning strategy, and it is HAW on U if it is B-HAW for any S € (0, %). It is easy to
see that HAW sets are winning in the sense of Schmidt. Moreover, it is proved in [4] that
the property of being HAW is invariant under C! diffeomorphisms: if ¢ : U — V isa C!
diffeomorphism onto an open subset ¢(U) of V, then S is HAW on U if and only if ¢(S)
is HAW on ¢(U). In particular, the class of HAW sets is independent of the inner product
onV.

The aforementioned property, as shown in [23], can be used to define the notion of HAW
sets for subsets of C'! manifolds. Namely, let M be a C! manifold, and let {(Uy, ¢o)} be a
C! atlas, that is, {U,} is an open cover of M, and each ¢, is a C 1 diffeomorphism from
U, onto the open subset ¢, (U,) of a Euclidean space V. A subset S C M is said to be
HAW fif, for each «, ¢, (S N Uy) is HAW on ¢y (Uy). The C ! invariance implies that the
definition is independent of the choice of the atlas. Moreover, we can summarize the above
discussion as follows.
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HAW subsets of a C! manifold are thick.

A countable intersection of HAW subsets of a C! manifold is again HAW.

Let g : M — N be a diffeomorphism between C' manifolds. Then S C M is HAW if
and only if ¢(S) is HAW.

For the proof of Theorems B1 and C, we will also need the following lemma.

LEMMA 2.1. Let ¢ : M — N be a surjective C' submersion of C' manifolds. If S ¢ M
is HAW, then so is ¢(S) C N.

Note that this lemma is complementary to [17, Proposition 6.1], where preimages of
HAW sets under surjective C! maps are considered. We postpone the proof of Lemma 2.1
until Appendix A.

2.2. A polynomial associated with a linear transformation. ~Let V be a finite-dimensional
real vector space, regarded as a real subspace of its complexification
Ve := V ®g C. For a linear transformation 7 on V, let T¢ denote the complex linear
extension on V. Let Sp(T') be the set of eigenvalues of T¢, and let

p=p(T)=_max [\
reSp(T)

be the spectral radius of T'. Let
ro@ =[] -n®
reSp(T)

be the minimal polynomial of 7', and define

s =s85(T) = max s(N).
eSp(T),IM|=p

The polynomial p(x) given in the following lemma will play an important role.

LEMMA 2.2. There exists a unique real polynomial p(x) = pr(x) with deg p(x) <
deg po(x) such that, for every \ € Sp(T),

{u—xw* if M = pands(h) =s,

px) = mod (x — )™,

otherwise,

Proof. The existence and uniqueness of a complex polynomial p(x) satisfying the
required properties follow directly from the Chinese remainder theorem. Since the minimal
polynomial pg(x) is real, we have s(n) = s(n) for every N € Sp(T'). Thus the complex
conjugate of p(x) also satisfies the requirement, and hence the uniqueness implies that
p(x) is indeed real. O

We will need to consider the transformation p (7). To understand it, let us consider the
Jordan normal form of 7¢. Let

B = {en, €150, €2, 6, emr} (2.1)
be an ordered basis of V¢ such that the matrix [T¢]g of T¢ relative to B is a Jordan matrix

[T(C]'B = dlag(‘]()\h Sl)a AR ] J()\'V» SV))7 (22)
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where J(;, s;) is the Jordan block with eigenvalue \; and size s;. Then s = maxy;|—p ;.
By reordering the vectors in B, we may assume that there is rg € {1, . . ., r} such that

1<i<rg = |Ni|=pands; =s,

i 2.3)
ro<i<r =— ceither|\;j| <pors; <s.
Then it is straightforward to verify that
n times
——
[p(T)clp = diag(E1s, . . ., E15,0,...,0), (24

where Ep; is the s x s matrix with 1 in the (1, s)-entry and O elsewhere. In turn, this
implies that

rooosi

Ker(p(T))c = {Z Z xijej:xij €Coxpy = = X5 = 0}, (2.5)
i=1 j=1
ro

Im(p(T))c = {Z Xi1€i1 1 Xi] € (C}. (2.6)

i=1

It also follows from (2.4) that if T is R-diagonalizable, and if V5 C V is the eigenspace
corresponding to A € Sp(T), then

p(T) is the projection onto @ V,. along @ Vi..
reSp(T), IM=p MeSp(T), M <p

Let us also observe the following fact.

LEMMA 2.3. Assume that V is a Lie algebra and that T is an automorphism of V with
o = p(T) > 1. Then Im(p(T)) is an abelian subalgebra of V.

Proof. 1t follows from (2.6) that the restriction of T¢ onto Im(p(7T))c is diagonalizable,
and all eigenvalues of the restriction have modulus p. Therefore, it suffices to show that
if N1, N2 € Sp(T), IN1| = |\2] = p and vy, v2 € V¢ are such that Tcv; = \jv; (@ = 1, 2),
then [vy, va] = 0. Suppose not. In view of

Ic([vi, v2]) = [Tcvr, Teva] = M hafvg, v2],

it follows that ;> € Sp(T). But [\ 2| = p> > p, which is a contradiction. L]

2.3. Expanding and maximally expanding horospherical subgroups. Let G be a Lie
group with Lie algebra g, let I' C G be a discrete subgroup and X = G/ I'. Recall that
amap f : X — X is affine if it is of the form (1.2) for some g € G and o € Aut(G, I).
In this case, we also denote f = f, ,. Note that f is always surjective and is injective if
and only if o(I") =I'. Let oy be the automorphism of G given by (1.3), and let do s be
the tangent map of oy at 1, which is an automorphism of g. Let us observe the following
simple facts.
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LEMMA 2.4. Let f = f,, be an affine map on X.

(1) Let g’ € G and o' € Aut(G, ') be such that fo o = f, and let G° be the identity
component of G. Then there exists y € I such that

¢ =gy, o W)=y o)y forallhe G 2.7

(2) The restriction of oy to G°, and hence doy, is independent of the choices of g and o
that define f.
(3) Foreveryn >0,

fMhx) = o (h) f"(x) forallh € G, x € X. 2.8)

Proof. (1) The condition implies that o (h)~'g~'g’c’(h) € T for all h € G. By taking
h = 1¢, we see that g~ g’ = y for some y € I'. It follows that o (h) "'y o’ (h) € T for all
h € G. Since T is discrete,

o) ye'(h)y =c(g) 'yo'(lg) =y forallh € G°.

This proves (2.7).

(2) In view of (1), it suffices to verify that if g, g/, o, o’ and y are such that (2.7) holds,
then go (h)g~' = g'o’(h)g'~" for all h € G°. This is straightforward.

(3) If n = 0, there is nothing to prove. Forn = 1,if h € G and x = h'T’ € X, then

fhx) = f(h'T) = go (hh)T = (go(h)g~ ) (go (W)T) = o f(h) f (x).

This shows that (2.8) holds for n = 1. Assume that n > 2 and that (2.8) holds if n is
replacedby 1,...,n — 1. Then, forh € G and x € X,

[ (hx) = f1N(f(hx)) = 1 o () f ()
= o} oy f"(f () = oF (W) " (x).

This completes the proof. O

With the above lemma in mind, one can easily generalize the notion of the expanding
horospherical subgroup G ¢ to the case when f is an affine map: the Lie algebra of G is
the subalgebra of g whose complexification is the direct sum of generalized eigenspaces
of doy corresponding to eigenvalues of modulus greater than one. Clearly, it agrees with
(1.1) when f € G.

Furthermore, let us now define the subgroup G‘}“”‘ mentioned in the introduction.
Applying Lemma 2.2 to V =g and T =doy, we get a polynomial p(x) = pgo,(x). If
p(doy) <1, put g‘}‘ax = {0}. Otherwise, denote

g™ = Im(p(day)), (2.9)

which is an abelian subalgebra of g by Lemma 2.3. After that, we can define G‘}“‘X to be
the connected Lie subgroup of G with Lie algebra gr}‘a".

From the preceding discussion, it follows that another way of defining g‘}‘ax is as follows.
We can decompose the complexification gc of g as a direct sum €;_; g; of do f-invariant

subspaces such that the matrix of the restriction of do s onto each g;, relative to a certain
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basis of g;, is a Jordan block with eigenvalue X;. Then, reordering the g;, we may assume

that there is ro € {1,...,r} such that |\{| =---=|\,| and dim g; = - - - = dim g,,,
and, if i > rg, then either |\;| < |\1] or |N;| =|N\1| and dim g; < dim g;. Finally, we
define gm‘”‘ as the intersection of g with the subspace of gc spanned by the eigenvectors of

do ¢ contained in @ro | 8i- It follows from (2.9) that g‘;‘ax thus defined does not depend on
the decomposition of gc. Note that, if do s is diagonalizable over R, then gmaX is the sum
of (real) eigenspaces corresponding to eigenvalues of do s with maximum modulus.

More generally, if H is a closed subgroup of G with Lie algebra b, denote

bmax L {0} if,O(de)S I,
| p@op®) if pdoy) > 1.

Since h7** C g™, it is also an abelian subalgebra. Let fonax denote the connected Lie
subgroup of G w1th Lie algebra f)max Note that H rfnax is not necessarily contained in H.

Similarly, one can define expandmg and maximally expanding horospherical subgroups
for one-parameter subsemigroups. Let G be as above, and let F = {g; : t € R} be a
one-parameter subgroup of G. If f(x) := g;x, then we clearly have o (h) = g/hg,, and
hence doy = Ad g;. Then define

Grs =Gy, e = Ggmff
Also, if H C G is a closed subgroup with Lie algebra h, we will denote h7%* := b and
max . Hde
FE T Mgy
Example 2.5. Let G = SL,(R), take p, g € Nwithn = p + ¢, and let
F={g :t€R} where g; = diag(e’/plp, e_’/"lq), (2.10)

a subgroup of G whose action on the quotient of G by SL, (Z) is useful for Diophantine
applications, as we shall see in §7. Then both Ad g; and Ad g_; have a unique eigenvalue
of absolute value > 1, and hence, in this case, there is no difference between expanding
and maximally expanding horospherical subgroups. Indeed,

A
gf};ixz{<g O):AeMpxq(R)}, gf;;a_xz{(g 8):BquXp(R)}. @.11)

Note that any F of the form (1.5) is conjugate to (2.10).

2.4. Non-dense orbits of affine maps. Theorem Al is a special case of the following
theorem.

THEOREM 2.6. Let G be a Lie group, let I' C G be a discrete subgroup, let X = G/ T,
H C G be a closed subgroup and let f be an affine map on X. Let Z be a C' submanifold
of X satisfying one of the following conditions.
(i) Either:
dim(T,Z N T,( maxz)) < dim H}nax forallz € Z; (2.12)
>ii) or

#{\ € Sp(doy) : N = p(doy), s(N) =s(doyp)) =1
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and
TZ(H}“aXz) ¢ T,Z forallzeZ (2.13)

(that is, Z is H;Pax—transversal).

Assume also that
TZ((T';(H)Z) ¢ T,Z forallzeZ, n>0. (2.14)
Then, for every x € X, the set {h € H : hx € E(f, Z)} is HAW.

Remark 2.7.

(1) If p(doy) < 1, the group H}nax is trivial, and thus neither (2.12) nor (2.13) can be
satisfied. Thus, without loss of generality, one can assume that p(dos) > 1.

(2) When H = G, both (2.12) and (2.13) are equivalent to the condition that Z is
G’}“‘x-transversal, and (2.14) is always satisfied as long as dim Z < dim X. Therefore
Theorem 2.6 implies Theorem Al.

(3) If Z is a point, then (2.14) always holds, and both (2.12) and (2.13) are equivalent to
dim H}nax > 0, which happens if and only if p(doy) > 1 and h ¢ Ker(p(doy)).

(4) One can also take H to be a one-parameter subgroup. In this case, condition (2.12)
is stronger than (2.13).

(5) Condition (2.14) is imposed to exclude the case where Z contains an open subset of
f"(Hx) for some x € X and n > 0. If condition (2.14) is dropped, it can be shown
that, for every x € X, the set {h € H : w(hx) N Z = &}, where

w(hx) :={y € X : there exists ny — o0 such that f**hx — y}
is the w-limit set of hx, is HAW on H (see Remark 4.7).

2.5. Non-dense orbits of continuous flows. We are now ready to state a continuous
analogue of Theorem 2.6.

THEOREM 2.8. Let G be a Lie group, let I' C G be a discrete subgroup, let X = G/ T’
and let H C G be a closed subgroup. Let F = {g; : t € R} be a one-parameter subgroup
of G. Let Z be an F-transversal C' submanifold of X. Assume that either:
®
dim((T.Z & T.(Fz)) N T.(Gp¥2)) < dim HZ* forall z € Z; (2.15)
or
(i) F is Ad-diagonalizable over R and

T,(HP™z) ¢ T,Z @ T,(F7) forallz € Z (2.16)
(thatis, Z is (F, H{™)-transversal).
Assume also that
T.(gHg '2) ¢ TLZ® T,(Fz) forallz e Z, t >0. (2.17)

Then, for every x € X, the set
{(he H:hx € E(FT, 2)} (2.18)
is HAW.
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Remark 2.9.

(1) Similarly to Theorem 2.6, neither (2.15) nor (2.16) can hold if p(Ad g1) < 1. Thus,
without loss of generality, one can assume that p(Ad g;) > 1.

(2) As in the case of Theorem 2.6, the H = G case of Theorem 2.8 implies Theorem
A2. In fact, in this situation, in view of the assumption of F-transversality of Z, both
(2.15) and (2.16) are equivalent to the condition that Z is (F, G'zi*)-transversal, and
(2.17) is always satisfied.

(3) Assume that Z is a point. Then it is F-transversal. Since the intersection of f
and gp?" is always trivial, both (2.15) and (2.16) are equivalent to dim H* > 0,
which happens if and only if p(Ad g;) > 1 and h ¢ Ker(p(Ad g1)). Note also
that (2.17) means that h ¢ f, which automatically holds if (2.15) or (2.16) is
satisfied.

(4) Condition (2.17) is imposed to exclude the case where F~ Z contains an open subset
of Hx for some x € X. If condition (2.17) is dropped, it can be shown that, for every
x € X,theset{h € H: w(hx)NZ = &}is HAW on H, where

w(hx) :={y € X : there exists ty — 400, g, hx — y}

is the w-limit set of ~x (see Remark 4.7).

2.6. Proof of Theorem 2.8 from Theorem 2.6. We now deduce Theorem 2.8 from
Theorem 2.6. Assume that the conditions of Theorem 2.8 hold. Since any C! submanifold
of X is the union of countably many compact C' submanifolds (possibly with boundaries),
we may assume, without loss of generality, that Z is compact. In this case, it follows from
the F-transversality of Z that the set

Zo,7) = U &z
1

tel0,t

is a C! submanifold of X for some v > 0, and we have T.Zjo =T, Z® T,(Fz)
for every z € Z. Moreover, shrinking 7 if necessary, condition (2.15) (respectively,
(2.16), (2.17)) implies that (2.12) (respectively, (2.13), (2.14)) holds with f(x) = g.x
and Z replaced by Zjor] (see [19, Lemma 4.1.2] or [23, Lemma 4.1] for details).
Note also that paqg, (Ad g;) = padg (Ad g1). Therefore, Theorem 2.6 implies that
the set

{he H:{guwhx:n>0}NZp =9} (2.19)

is HAW on H. On the other hand, the set (2.19) is contained in the set (2.18). In fact, if
h € H isnotin (2.18), then there exist #x > 0 such that g, hx — z € Z. Letn; > 0be such
that nyt — #; € [0, 7). By passing to a subsequence, we may assume that nyt — ty — t €
[0, t]. It follows that

gnkrhx = gnkr—tk(gtkhx) — g1z € Z[O,‘[]-

Thus 4 is not in (2.19). This shows that the set (2.18) contains (2.19), and hence is HAW
on H. O]
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3. Hyperplanes in a subspace

Let V be a Euclidean space with inner product (-, -), and let £(V') denote the vector space
of linear transformations on V. Both the Euclidean norm on V and the operator norm on
L(V) are denoted by ||-||. For 0 < d < dim V, let Gry (V) denote the Grassmann manifold
of d-dimensional subspaces of V. Our primary goal in this section is to prove the following
result concerning hyperplanes in a subspace U of V.

PROPOSITION 3.1. Let T € GL(V), let U be a non-zero subspace of V, let 0 <d <
dim V — 1, let W be a closed subset of Gry(V) and let p(x) be the polynomial given
by Lemma 2.2. Suppose that either:

()
dim(W NIm p(T)) < dim(p(T)U) forall W € W,
or
(ii)
#HN e Sp(T) : [N = p(T), s(\) =s(T)} =1,

and p(TYU ¢ W for every W € W.
Suppose also that

T"(U) ¢ W forall W e W,n > 0. (3.1)

Then there exists a constant ¢ = ¢(T, U, W) > 0 satisfying the following property. For
any W € W and n > O, there exists a linear hyperplane L ,, in U such that

dist(T"a, W) > c||T"| dist(u, Lw ) forallue U. (3.2)

Let us remark that if W1 denotes the 1-neighborhood of W in V, then inequality (3.2)
means that 7" (W) N U is contained in the (c||T"||)~"-neighborhood of Lw,inU.

We first prove some auxiliary lemmas. The first one is probably well known, but we
could not find an appropriate reference. We give its simple proof for completeness.

LEMMA 3.2. Suppose that T € L(V) is not nilpotent, and let p = p(T), s = s(T). Then
there exists C > 1 such that

C'n " < I < Cn*~'p"  foralln > 0.

Proof. By replacing T with T'/p, we may assume that p = 1. Let B be an ordered basis
of V¢ such that the matrix [T¢]g is the Jordan normal form (2.2), and let ||-|| be the
norm on £(V) given by ||S||3 = [[[Sc]B |lcc, Where ||-||co denotes the largest modulus of
the matrix entries. Then

IT" |3 = Ildiag(J (M, 50", .o T, 5) D)oo = [max 1T Ny 80)" lloo-
=I=<r
It is straightforward to verify that, for 1 < j <k <,

the (j, k)-entry of J (;, s;)" is equal to (kﬁj)x’?‘("‘”. (3.3)

]
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Since |;| <1, this implies that |J (N, 5:)"[loo = (") IN[" T whenever n > 2s;.
Thus, there exists ng > 0 such that

17715 = 1o, (x,-ril)p‘i'n_(si_l) = (sfl) forall n > no.

Now the lemma follows from the fact that any two norms on £(V') are equivalent. O

Let S(V) be the unit sphere in V, that is,
S(V)y={veV:|v|=1}.

Then every T € £(V) induces a map

Tv

(T : S(V)NKerT — S(V), vi> —.
ITvll
The next lemma explains the role of the polynomial p(x).

LEMMA 3.3. Let T € GL(V), let p(x) be the polynomial given by Lemma 2.2 and let K
be a compact subset of S(V) ~\ Ker p(T). Then

Tn
17"l 3.4)
veK.n=0 ||T"||
and
lim sup|(T")v — (T" ' p(T))v|| = 0. (3.5)
n——+o00 vek

Proof. As in the proof of Lemma 3.2, we may assume that p(7') = 1. Let B be an ordered
basis of V¢ of the form (2.1) such that [T¢]g is the matrix (2.2) and satisfies (2.3). In this
proof, we always write a vector v € V as

r Si
V= E E Xij€ij.

i=1 j=1
It then follows from (3.3) that

r

Thv=2) 2 ( 2’: (kﬁj)x?_(k_j)xik>eij- (3-6)

i=1 j=1 “k=j

©

Let ¢y > 0 be such that, for any v € V,

IVl = co max |x;1]. (3.7
1<i<rg

In view of (2.5) and the conditions on K, we may also assume that if v € K, then

max |x;s] > co and max |x;] < co_l. (3.8)
1<i<rgy I<i<r,1<j<s;
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It follows that, for n > ny := [2s2(1 + caz)J andv e K,

(3.6), (3.7) s

-1 -1 —(k—1
()T = e max ]; () I G It
s—1 '
o €0 lrfniz);o <|xis| - ]; (sfl) (kﬁl)|xik|>
(.8) _
= a0 6= (n) ()

2 2
5 (s—1 o
= f——>—. 3.9
O n—s+272 (3-9)
This, together with Lemma 3.2, shows that infycg ~pn, (17" VI[/IIT"]]) > 0. Clearly, we
also have infyex, 0<n<n, (IIT"V|I/IT"|]) > 0. This proves (3.4).

We now prove (3.5). Forn > nyandv € K,
KTy — (T p(T))v]

v ()T @y ()T MY s (T

= Tl 17Vl 17Vl 17—+ p(T)v|
AT = ()T (v N ' 7"Vl = ()IT" =+ p(T)v]
17Vl 17Vl

(3.9) _ —1 .
< dey?I(,") T TV = TS (v

Let us write

rooos
()T =T @y =0 Y 1P e

i=1 j=I
It suffices to prove that
lim sup | fl.g.">(v)| =0 (3.10)
€K

n——+o0o v

forany 1 <i <rand1 < j <s;. It follows from (2.4) and (3.6) that

r S Si .
(Sfl)_lT"V — 1" p(Tyv = Z Z ( Z (sfl)_l (k:j))‘z?(k])xik)eij

i=1 j=1 “k=j

1o
n—(s—1)
- Z ¥ Xis€i1.
i=1

Thus, by comparing the coefficients, we deduce that, for 1 <i <rg, j =1, n > 2s and
ve K,

N
P01 =| (30 (207 ) ) =3

k=1
s—1 2
_ n\=Ll( n o\ n—(k=1)_ (s—1)
]; (2 Gl Yik| = con—s+2)
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Hence (3.10) holds for 1 <i <rpand j = 1. Similarly, for 1 <i <rp,2 <j <s,n>2s
andv e K,

N

-1 —(k—j
Z(sfl) (kﬁj))‘? i

k=j

_G—j+De-D
- coln—s5+2)

s

1w =

and hence (3.10) holds for | <i <rgand2 < j <s. Finally, forrg <i <r,1 <j <y,
n>2s;andve K,

Si

-1 —(k—j
Z(xﬁl) (kfj))‘:l( j)xik

k=j

()
£ )] =

(5 — —1
< i)l 0D

Since |\;j| < 1, we also have (3.10) for i and j in these ranges. This completes the proof.
O

We will also need the following result.

LEMMA 3.4. Let T, U, W and p(x) be as in Proposition 3.1, let T* be the adjoint
transformation of T and suppose that one of the conditions (i) or (ii) in the Proposition
holds. Then there exist compact subsets

K C S(V)~Ker p(T*) and KWV cS(V)~U*
such that
(rH" = p@HHNEKNWHNKDY £ forall W eW, n > 0. (3.11)
Proof. (1) Assume that condition (i) holds. Let V(' < Im p(T*) be a subspace such that
Im p(T*) = (U NIm p(T*) & V',

and let KM =SWW)., Then KM c S(V)UL. We first prove that, for every
Wo € W, there exist a neighborhood Nyw, of Wy in W and a compact subset Ky, of
S(V) ~ Ker p(T*) such that

(TH" @) (Kwy, NWHNKD £ 3 forall W e Ny, n > 0. (3.12)
To show this, let Vy C WOL be a subspace such that
Wi = (Ker p(T*) N W) @ Vo,

and choose a neighborhood Ny, of Wy in W and a continuous map Nw, — Grdim v,(V),
W+ Vy with Vy, = Vp such that Vyy C WL forw e Ny, . Shrinking Ny, if necessary,
we may also assume that Vi N Ker p(T*) = {0} for W € Nyy,. Then the set

Kwy= |J svw)

WENWO
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is compact and contained in S(V') ~\ Ker p(T*). For W € Ny, andn > 0,

dim((T*" T p(r* Vg n VD) > dim (T%)" T p(T*) Viy + dim VY — dim Im p(T*)
= dim Vy — (dim Im p(T*) — dim V1)
= dim p(T*)Wy" — dim(U* NIm p(T*))
= dim(Wo N Im p(T)* — dim(p(T)U)* > 0.

Thus (T*)" =T p(T*)(Viw) N VD 5 {0}. Therefore, there exists v € S(Vi) C Kw, N
W such that ((T*)"~5+1 p(T*))v € K. This proves that Nw, and K, satisfy (3.12).

For every Wy € W, let us choose Ny, and Ky, satisfying (3.12). Since W is compact,
there exist Wy, . .., W, € Wsuch that W = (J/Z; Nw,. Then K = (J/L, Kw, satisfy the
requirement of the lemma.

(2) We now assume that condition (ii) holds. We first construct a compact subset
K C S(V) ~ Ker p(T*) such that —K = K, p(T*)K N UL = @ and K N W+ # & for
every W e W. Let Wy € W. It follows from condition (ii) that p(T*)WOJ- ¢ UL, Let
Vo € S(Wd‘) be such that p(T*)vy ¢ U L. Then we can choose a neighborhood Ny, of
Wop in W and a continuous map Ny, — S(V), W — vy such that vy, = vo, vy € wt
and p(T*)vy ¢ UL for W € Nw,. The compact set Kw, = {vw : W € Ny, } satisfies
Kw, NKer p(T*) = @, p(T*)Kw, NUL = @ and Kw, N Wt # & forevery W € Ny,.
Let Wi, ..., Wy, € W be such that W = (J/_, Nw,. Then the set K = | J;_;(Kw, U
(—Kw;,)) satisfies the requirement.

Let KU = (p(T*))K C S(V) ~ U~. Since T* and T have the same minimal polyno-
mial, we have pr=(x) = p(x). It then follows from condition (ii) and Lemma 2.2 that the
restriction of (T*) to S(Im p(T*)) is £1. Therefore, for every W € W and n > 0,

(TH"HpTNE NWHNKD = (pTH)EKNWH) # 2.
This completes the proof. O
We are now prepared to prove the main result of this section.

Proof of Proposition 3.1. Let K and K1 be the compact sets given by Lemma 3.4, and let
K@ be a compact neighborhood of KV in S(V) ~. UL. Since pr+(x) = p(x), applying
Lemma 3.3 to T*, we get

lim_sup [((T*)")v — ((T*)" =+ p(T*))v]| = 0.

n——+00 vek
Therefore, there exists N > 0 such that, forn > N andv € K,
(T pT))ve KD = (T*)")ve KP.

For n > N and W € W, it follows from (3.11) that we can choose vy, € K N w+
such that ((T*)”_”lp(T*))VWJ, e KM, and hence ((T*)") vy, € K® For0<n <N,
using condition (3.1) and arguing as part (2) of the proof of Lemma 3.4 (with p(T*)
replaced by (T*)"), we see that there exists a compact subset K, C S(V) such that
(T*"(K,) NU+ =@ and K, N WL # & for every W € W. In this case, we choose
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Vivn € Ky N WL Let

KO =kPu [ (@&,
0<n<N

which is again a compact subset of S(V) ~. U~. In summary, foreveryn > 0and W € W,
we have chosen a unit vector vy, € W+ with (T*Y"YVwa, € K® . Whenn > N, we also
have vy, € K.

Let Py € L(V) be the orthogonal projection onto U, and let

cy = inf ||Pyv| >0,
vekK @

~ , Tl : I(T*)"v][ | G4)
¢ = min inf ————, LA
veK,n=N  |[T"|| ~ves(v),0<n<N || T"||

Then, foranyn > 0and W € W,
1Py (T*)" Vw ull = et l(T*)" Vi ull = cre2llT|.
Since (T*)'vw, ¢ U L the intersection
Lwn = (T"Vw)" NU
is a hyperplane in U. Foru € U,

. [{u, Py (T*)"Vw )l (T"a, vy )l dist(T"ua, W)
dist(u, Ly ») = = : <
| Py (T*) vl | Pu(T*)"Vw ull crea|| T

This completes the proof. O

Remark 3.5. In the proof of Proposition 3.1, condition (3.1) is only used to define the sets
K, for 0 < n < N.If condition (3.1) is dropped, the same argument (for K = K® and
n > N) shows the following weaker statement. There exist N > 0 and ¢ > 0 such that, for
W € Wand n > N, there exists a linear hyperplane Ly , in U such that (3.2) holds.

4. Proof of Theorem 2.6
4.1. Hyperplane percentage game. We will prove the HAW property by demonstrating
the winning property for the hyperplane percentage game introduced in [5]. Being played
on an open subset U of a Euclidean space V, the hyperplane percentage game has the same
winning sets as the hyperplane absolute game.

Let S C U be a target set, and let 8 € (0, 1). The B-hyperplane percentage game
is defined as follows. Bob begins by choosing a closed Euclidean ball By C U. After
Bob chooses a closed ball B; of radius r;, Alice chooses finitely many hyperplane
neighborhoods {LE’V}”‘) : 1 < j < N;}suchthatr; ; < Br;, and then Bob chooses a closed
ball B;y1 C B; of radius r;;; > Br; such that
(ri j)

#l<j<Ni:BimNL. ;" =2} > Ni/2.
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Alice wins the game if

o0

(1BinS#2.

i=0
The set S is B-hyperplane percentage winning (f-HPW) on U if Alice has a winning
strategy. Note that, for large values of B, it is possible for Alice to leave Bob with no
available moves after finitely many turns. However, an elementary argument (see [29,
Lemma 2] or [3, §2]) shows that Bob always has a legal move if 8 is smaller than some
constant Bo(dim V) < 1. For example, we have Bp(1) = 1/5. The set S is hyperplane

percentage winning (HPW) on U if it is B-HPW on U for any 8 € (0, Bp(dim V')). The
significance of this notion lies in the following result.

LEMMA 4.1. [5] Let U be an open subset of a Euclidean space V. A subset S C U is HPW
on U if and only if it is HAW on U.

Let us remark that when proving a set S to be HPW, we may assume that r; — 0. In
fact, if Alice has a winning strategy whenever r; — 0, then S must be dense, and hence
Alice always wins if r; /& 0. Moreover, by letting Alice make dummy moves in the first
few rounds and relabeling B;, we may also assume that r( is smaller than any prescribed
small positive constant.

4.2. Some Lie-theoretic lemmas. Let G be a Lie group with Lie algebra g. We choose
and fix an inner product on g. For an inner product space V and 7 > 0, let By (1)
(respectively, By, (7)) denote the closed ball (respectively, open ball) in V of radius
T centered at 0. Let 71 > 0 be such that the exponential map of G restricts to a
diffeomorphism from Bg(7) onto an open neighborhood of 1¢ in G, and let

log : exp(Bg(t1)) = Bg(t1)
be the inverse of exp | Bg(t1)- Let 7o € (0, 71] be such that
X1, X2, X3 € By(12) = exp(x1) exp(x2) exp(x3) € exp(B(11)).
First, let us prove the following lemma.

LEMMA 4.2. For any & > 0, there exists 13 = 13(¢) € (0, 12] such that if X, y,z € By(13)
satisfy exp(x) exp(y) exp(z) = lg, then

Ix+y+zl < emin{|x], [yl llz]l. Ix +yl. ly +zl. llz + x][}.
Proof. By symmetry, it suffices to prove that
Ix+y+z| < eminf|x]., [ly + z|l}. 4.1)
Consider the map ® : By(72) X Bg(12) — g given by
P (x,y) = log(exp(x) exp(y)) —x —y. (4.2)
Note that
®(x,0) =®(0,y) =0 forall x € By(1). 4.3)
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Thus, if we let (0®/0x) : Bg(12) x Bg(12) — L(g) be the partial derivative of ® with

respect to x, then
o
qD(Xa Y) = / —(tX, Y) dt )x.
0 0x

Note that 9®/9x is continuous, and it follows from (4.3) that (d®/9x)(0, 0) = 0. Thus,
for any ¢ > 0, there exists 13 € (0, 12] such that

< .
T 1+e¢

00
X,y € By(13) = g(x, y)
Therefore,

1
1D,y < (/
0

Suppose that X,y, z € Bg(r3) and exp(x) exp(y) exp(z) = 1g. Then ®(x,y) = —(x+
y + z). It follows that

P
75 % Y)’ dt)IIXII =9 is x| forallx,y € Bg(z3).

Ix+y+z| =IPx y < lIx]l. (4.4)

1+¢
This, in turn, implies that

Ix+y+zl=00+o)lx+y+zl|—ellx+y+z
=elx|| —ellx+y+z|
<elly+zl. 4.5

Now (4.1) follows from (4.4) and (4.5). ]
For the convenience of later reference, let us record the following corollary.

COROLLARY 4.3. For any ¢ > 0, there exists 14 = 14(¢) € (0, 12] such that:
(1) foranyx,y € Bg(ta),
[[log(exp(x) exp(y)|l < (1 +&)lIx +yll;

and
(2) fOr any X, Y7 AS Bg(T4))

[[log(exp(x) exp(y) exp(z)) — y|l < (1 + &) (x| + |Iz).

Proof. Fore > 0,let 13 = 13(¢) € (0, 7] be as in Lemma 4.2, and let 74 € (0, 2] be such
that

X1, X2, X3 € By(14) = log(exp(X1) exp(x2) exp(x3)) € Bg(13).
Then (1) follows by applying Lemma 4.2 to z = —log(exp(x) exp(y)). For (2), let
w = log(exp(x) exp(y) exp(z)), v = log(exp(x) exp(y)).
Then w, v € By(t3). Note that

exp(v) exp(—y) exp(—x) = exp(W) exp(—z) exp(—V) = lg.
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It follows from Lemma 4.2 that

w—=yll=Iv-y—X+W-z—-V)+ x+2)|
Slv—y—xl+lw—z—v|[+[x+z|
<elx|l + ellzll + |Ix + z]|
< (L +&)Ix[l + l1zl)-

This proves (2). [

We will only use the ¢ = 1 case of Corollary 4.3. However, the following result will be
needed for arbitrarily small e.

LEMMA 4.4. Let b be a subalgebra of g. Then there exist 15 € (0, 72] and a function
81 : (0, 1) — (0, ©2] such that, for any 'y € By(15), there exists Ty € GL(h) with | Ty|| < 2
such that

¢ € (0,1),x € By(81(¢)) = [llog(exp(x) exp(y)) —y — Tyx|| < el|x]|.

Proof. The map ® defined in (4.2) sends By (12) x By(t2) into h. Let &y be the restriction
of ®toh x h. Fory € By(r2), let

Ty = id +a¢b(0 )
=i —0@O0,y).
y b ox y
Then, for x € By (12),

0d
log(exp(x) exp(y)) — y — Tyx = Py (x, y) — 8—X"<o, y)X

1
0 Jx X

Since the map (9 Py /0x) : By (12) x By(12) — L(b) is continuous, it is uniformly contin-
uous. Hence, there exists a function §; : (0, 1) — (0, 72] such that, for any ¢ € (0, 1) and
x,X,y,y € By(),

0P L]
max{|lx — x'||, |y — ¥'[I} < 81(e) = Ha—x"(x, y) — a—x"<x’, V)| <e.

Let 75 = 61(1/2). In view of (3®y/09x)(0,0) =0, it follows that, for any y € By(ts),
we have [|(0®p/0x)(0,y)|| < 1/2, and hence Ty is invertible and ||7y|| < 2. Moreover,
it follows that if x € By (81(¢)), then

)

? aDy,
(IX’ y) - 9 (0’ Y)
X

1
log(exp(®) exp(y)) — ¥ — Tyxl| < ( / .
0 X

dt)IIXII =< e|[x]|.

This completes the proof. O

4.3. A nice neighborhood of Z. Now let I" be a discrete subgroup of G, and let X =
G/T.For x € X, we define the map

exp, : g = X, exp,(X) = exp(X)x.
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Let d exp, : g — T, X be the tangent map of exp, at 0. The next lemma shows the
existence of a good neighborhood of the submanifold Z of X whenever Z is compact.

LEMMA 4.5. Let Z C X be a compact C' submanifold (possibly with boundary). For
z € Z, consider the subspace of g given by W, = (d expz)_l(TzZ). Then there exists a
function &3 : (0, 1) — (0, 00) such that, for any € € (0, 1) and r € (0, 52(¢)], there exists
a neighborhood Q2 of Z satisfying the following property. For any y € S, there exists 7 € Z
such that

X € By(r), exp,(x) € @ = dist(x, W,) < er.

Proof. First, let us notice that there exists a function 63 : (0, 1) — (0, oo) such that, for
anye € (0,1)and z € Z,

Yy € By(83(¢)), exp,(y) € Z = dist(y, W;) < ¢|ly]l. (4.6)

In fact, since Z is compact, there exists 76 > 0 such that, for every z € Z, there is a
unique C! map ¢, : Bw, (t6) — WZL with ¢,(0) = O satisfying the following property.
If y € By(tg) and exp,(y) € Z, then y = P,y + ¢,(P.y), where P, is the orthogonal
projection from g onto W;.

Let (do,)w : W, — WZJ- be the tangent map of ¢, at w € By, (t6). Then (d¢;)o =0,
and the map (z, W) — (d¢;)w (as a map between bundles over Z whose fibers at z
are Bw,(t¢) and the space of linear maps W, — WZJ-, respectively) is continuous. It
follows that there exists a function §3 : (0, 1) — (0, tg] such that, forany z € Z, e € (0, 1)
and w € By, (83(¢)), we have |(d¢;)wll < &, and hence ||¢,(W)|| < e||w]|. Now, if y €
Bg(83(¢)) and exp, (y) € Z, then

dist(y, W2) = lly — Pzyll = (Pl < el Pyl < ellyll-

Hence (4.6) holds.
Define the function &> as

82(¢) = min{83(e/4)/2, Ta()},

where t4(-) is as in Corollary 4.3. Let ¢ € (0, 1), r € (0, 2(¢)]. We verify that the
neighborhood

Q= U epo(BS(sr/8))

z€Z

of Z satisfies the required property. Let y € Q. Then there exists z € Z such that y =
exp,(v) for some v € Bg(er/8). Suppose X € By(r) and exp, (x) € Q. We need to show
that dist(x, W) < er. Since exp,(x) € €, there exist 7 € Z and v/ € B;(sr/8) such that
exp, (X) = exp,/ (), that is, exp(x)y = exp(v')z’. Since

Il <r < é2(e) < a(l)
and

max{[[VIl, [[V'[l} < er/8 < z(l),
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if we write
y = log(exp(—V') exp(x) exp(V)),
then it follows from Corollary 4.3(2) that
er
Iyl < X[+ 2wl 4+ 1Y) < 7 + 5 < 2r < 283(e) < 83(e/4) 4.7)

and
, er
Ix —yll <2(vll + V) < ER (4.8)
Note that

exp,(y) = exp(—V) exp(x) exp(v)z = exp(—V) exp(x)y =7’ € Z.
Thus, it follows from (4.6) and (4.7) that

. £ er
dist(y, W;) < leyll <5

Hence, by (4.8),
dist(x, W;) < [Ix —y|l + dist(y, W;) < er.

This proves the lemma. O
We now prove the following lemma.

LEMMA 4.6. Let G,T', X, H, f and Z be as in Theorem 2.6, and assume that the
conditions in the theorem hold. Moreover, assume that Z is compact (possibly with
boundary). Then there exist v € (0, t1] and a function 7y : (0, 1) — (0, 00) such that,
fJor any € € (0, 1) and rg € (0, ro(e)], there exists a neighborhood Q2 = (g, ro) of Z
satisfying the following property. For any x € X, any closed ball B C Bg(w) of radius
r <rgand any n > 0 with

=0 < oyl = 72, (4.9)
there exists an affine hyperplane L = L(x, B, n) in §) such that
exp. L) N B C LED, (4.10)
where L") is the er-neighborhood of L in b.

Note that, in the statement of Lemma 4.6, we do not require that exp, is injective on
By (7).

Proof. For z € Z, let W, be the subspace of g given in Lemma 4.5. We want to apply
Proposition 3.1 to V =g, U =b, T =doy and W = {W, : z € Z}. Since Z is C!, the
map Z — Grgim z(@), z — W, is continuous. It then follows, from the compactness of
Z, that W is compact. Condition (i), (respectively, (ii)) in Theorem 2.6 implies condition
(1), (respectively, (ii)) in Proposition 3.1, and also condition (2.14) implies (3.1). Thus, all
conditions in Proposition 3.1 hold. It follows that there exist ¢ > O such that, forany z € Z
and n > 0, there exists a linear hyperplane L, , in § with

dist((dos)"x, W,) > cll(dos)" || dist(x, L,,) forallx € b. (4.11)
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Let

77 = min{t4(1), 75},
where 74(-) and t5 are as in Corollary 4.3 and Lemma 4.4, and define the function 7 as

Fo(e) = § min{8(e/8), 8(ce?/4)},

where §1(-) and §>(-) are as in Lemmas 4.4 and 4.5. Let ¢ € (0, 1), r9 € (0, 7o(e)]. By
Lemma 4.5 and the choice of 7y (¢), there exists a neighborhood €2 of Z such that, for any
Yo € R, there is zg € Z such that

2

v € By(4rg), exp,, (v) € @ = dist(v, Wy,) < %

In what follows, we prove that 2 satisfies the required property in Lemma 4.6. Let x € X,
B C Bg (77) be a closed ball of radius » < rg, and let n > 0 satisfy (4.9). We need to show
that there exists an affine hyperplane L C b satisfying (4.10). Without loss of generality,
assume that exp;1 (f7™(2)) N B # &. We choose and fix a point yg € exp;1 ()N
B.Let yo = f"(exp,(yo0)) € 2, and let zp € Z satisfy (4.12). Since ygp € B C Bg(ﬁ) and
77 < 75, it follows from Lemma 4.4 and the choice of 7o(¢) that there exists Ty, € GL(f)
with || Ty, || < 2 such that

ro. (4.12)

X € Byy(47g(e)) = |[[log(exp(x) exp(yo)) — yo — Ty x|l < %IIXII. (4.13)
We verify that the hyperplane
L =yo+ Ty, (Lzyn)
satisfies (4.10).
Lety € exp;l(f_"(Q)) N B. We need to prove that y € L"), Let y = f"(exp,(y)) €

Q,x = log(exp(y) exp(—Yyo)) € b. Since yp, y € B, we have ||y — yo|| < 2r. Note also that
B C B,‘]’ (r7) and 17 < 74(1). It then follows from Corollary 4.3(1) that

Ixll < 2lly — yoll < 4r.
Thus
ro
Idop)"xll < litdo )" x| < = - 4r = dro.
Note also that

exp,, ((doy)"x) = exp((dof)"x)yo = oy (exp(x)) /" (exp(y0)x)
2.8)
2 17 (exp(x) exp(yo)x) = [ (exp(y)x) = y € Q.
Hence, it follows from the choice of zq that

682

dist(do)"x. W) < — 7.

Together with (4.11), this implies that

dist(x, L) < ¢ i(dop)"I7" dist((dor)"x, We,)

o, r cg? er
<c - —-—r)=—.

erg 4 4
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Hence, if we letz € L, , be such that ||x — z|| = dist(x, L, ,), then

dist(Ty,X, Ty, Lzgn) < I TyoX — Tyezll < [Ty, llIx — ]

. er
< 2dist(x, L) < =

On the other hand, since ||x|| < 4r < 4rg < 47y(e) and exp(y) = exp(x) exp(yo), it follows
from (4.13) that
e er
ly — yo — Ty,x|l < gIIXII =5
This implies that
dist(y, L) = dist(y — yo, Ty, (Lzyn))

=< dist(Ty,X, Ty, (Lzon)) + Iy — Yo — Ty Xl
er i er <
< — - Er.
5 =

2
Hence y € L®"). This completes the proof. O

4.4. Proof of Theorem 2.6. We now use Lemma 4.6 to prove Theorem 2.6.

Proof of Theorem 2.6. Since any C' submanifold of X is the union of countably many
compact C! submanifolds (possibly with boundaries), we may assume, without loss of
generality, that Z is compact. Let x € X. We need to prove that, for every hg € H, there
is an open neighborhood U of kg in H such thattheset {h € U : {f"(hx) :n > 0}NZ =
&} is HAW on U. By replacing x with hox, we may assume that 7o = 1. Let 77 > 0
be as in Lemma 4.6, and let U = exp(Bg(m)). Since the exponential map restricts to a
diffeomorphism from Bg (77) onto U, in view of Lemma 4.1, it suffices to prove that the set

{x € 38(17) {f"(exp, (X)) :n > 0}NZ = &} (4.14)

is HPW on B; (17).
Let 8 € (0, Bo(dim b)) be fixed. By Lemma 3.2, there exists C > 1 such that

C 't~ 1" < dop)"|| < Cn*~1p" foralln >0, (4.15)
where p = p(doy) > 1 and s = s(doy). Let £ € N be large such that
Ptz C? (4.16)
and
cpl<1. 4.17)

We use Lemma 4.6 with ¢ = B¢*! to describe a winning strategy for Alice when playing
the B-hyperplane percentage game on Bg (77) with target set (4.14). As remarked in §4.1,

we may assume that Bob will play so that r; — 0 and rg < 7y (B, where 7y(-) is as in
Lemma 4.6. Let us partition the game into stages. For k > 0, we define the kth stage to be
the set of indices i > 0 for which

BUEHD 0 < 1y < By, (4.18)
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Then each stage is finite and contains at least £ indices. Suppose that the kth stage starts
when Bob chooses the ball B;, in b, that is, ix is the smallest index in the kth stage. In
particular, we have iy = 0. It follows, from the rule of the game, that

B5try < 1y < B%ry. (4.19)
Consider the set of integers
Ne={n>0:p7D < |dop)"| < p~*}. (4.20)
Note that, by (4.15) and (4.17), we have ||(dof)"|| > C~! > B¢ for any n > 0. Thus
M =Nu{o). 4.21)
k>0

Note also that, for any ny, np € Ny withn; < na,

n —Llk
C2pmm < ¢ 2 G dop)yl @20 pTT _pt 0
cn; 1pm Idopym] ~ p=tk=D

which implies that ny — nj < 2¢ — 1. Hence
#\G < 2% (4.22)
It follows from (4.19) and (4.20) that if n € N, then
rilldop)" |l € (B rg - g6, Btrg - B = (B o, rol.

Therefore, if we let Q = Q (BT, ro) be the neighborhood of Z given by Lemma 4.6, then,
for any n € N, there exists an affine hyperplane L(B;,, n) in b such that

41
expy ' (f7"(Q)) N By, C L(By, ;@7 (4.23)

Let Alice’s ixth move be the hyperplane neighborhoods
{(L(Bi, )P ') 0 e AR (4.24)

More generally, for any index i in the kth stage, after Bob chooses the ball B;, let Alice
choose those neighborhoods in (4.24) that intersect B;. Note that

B gty — g gLt 1 g

So Alice’s moves are legal. We prove that this strategy guarantees a win for Alice.
In view of the rule of the game, it follows that if i is an index in the kth stage, then

4.19)
£+1
/3 + riy <

#N @22 b—(i+1—ix)

4+,
#ln € Nic: Byt OV L(By, )77 £ 2} < (4.25)

On the other hand, since each stage contains at least £ indices, the index iy + ¢ — 1 is in
the kth stage. Substituting i = iy + £ — 1 into (4.25), we obtain

#{n € Nic: Biyyo N L(By, m) i) £ &} < 1.
This means that

Bi,4¢NL(Bj,n )(ﬂ i) = @ foralln € Ny.
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Together with (4.23), this implies that
Bi, e N exp;1 (f(Q) =2 foralln e N.

Hence, for any n € N, the unique point Xo in ()2, Bi is not contained in
exp;l( F7"()), or, equivalently, f"(exp,(Xoo)) ¢ 2. In view of (4.21), it follows that
Xoo 18 contained in the target set (4.14). Hence Alice wins. O]

Remark 4.7. In view of Remark 3.5, it follows that, without condition (2.14), Lemma 4.6
remains valid for sufficient large n. This implies that if condition (2.14) is dropped and
the submanifold Z in Theorem 2.6 is compact, then there exists N = N(Z) such that
the set {h € H : {f"(hx) :n > N} NZ = @&} is HAW on H, and hence, for a general
submanifold Z, the set {h € H : w(hx) N Z = @} is HAW on H. In turn, if condition
(2.17) in Theorem 2.8 is dropped, the set {h € H : w(hx) N Z = &} is HAW on H.

5. Geodesic flows on locally symmetric spaces
This section is devoted to the proof of Theorems B1 and B2. We first use Theorem 2.8 (and
its proof) to prove a result on semisimple Lie groups.

5.1. A proposition on semisimple groups. Let G be a non-compact semisimple Lie group
with finitely many connected components, let K C G be a maximal compact subgroup,
let g and € be the Lie algebras of G and K, respectively, and let p be the orthogonal
complement of € in g with respect to the Killing form on g. We assume that the identity
component G° of G has finite center. Then g = € @ p is a Cartan decomposition. Note that
the identity component K° of K is a maximal compact subgroup of G°.

PROPOSITION 5.1. Let G, K and p be as above, let I' C G be a discrete subgroup, let
X=G/T,letvep~{0}andlet F ={g; : t € R} be the one-parameter subgroup given
by g+ = exp(1v).

(1) Let x1, x3 € X be such that Kx1 # Kx;. Then the set

(k€ K :kx) € E(F, Kx»)}

is HAW on K.

(2) Let K' C K be a closed subgroup with dim K’ < dim K, and let S C X be a finite
subset. Then there exists an F-invariant closed subset of X that does not intersect
K'S but intersects every K°-orbit in X.

Proof. (1) For asubset A C R, let us denote F4 = {g; : t € A}. Since K is compact and
Kx1 # Kx, there exists € > 0 such that Fj_. ) Kx; N Kx, = &. Then, for k € K, we
have kx; € E(F, Kx3) if and only if both Fg oo)kx1 N Kxp and F_so —g1kx1 N Kxo are
empty. Hence, to prove part (1), it is enough to prove that the sets

{k € K : Figo0)kx1 N Kxp = &} (GR)Y)
and

{k € K : F_oo,—e1kx1 N Kxp = I} (5.2)
are HAW on K.
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Let us prove that the set (5.1) is HAW. Note that, for k € K,
Flecokxi N Kxy = ge(Fkx1 N g—c K x2).
Thus, it suffices to show that the set
(ke K :kxy € E(F', g_cKx))} (5.3)

is HAW. By Theorem 2.8, we only need to verify that p(Ad g1) > 1, Z=g_.Kx; is
F-transversal and that conditions (2.16) and (2.17) hold for H = K. The latter three
conditions translate, respectively, as

v ¢ (Ad g_.)t, (5.4)
e ¢ (Ad g_o)E @ Ry, (5.5
(Ad gt ¢ (Adg_)¢@®Rv forallt > 0. (5.6)

To verify these conditions, let a be a maximal abelian subspace of p containing v,
and let ¥ C a* be the restricted root system of (g, a). Then the set of eigenvalues of
Ad g; is {e*™V) : n € =} U{1}. Since v # 0, we have @ := maxycx h(V) > 0. It follows
that p(Ad g1) = e® > 1.

Next, notice that v = (Ad g_.)v € (Ad g_.)p. Hence (5.4) is clear.

To verify (5.5), recall that £723* = p(Ad g1)(t), where p is the polynomial given in
§2.5. Let g = go ® €D, 5 9 be the restricted root space decomposition. Then p(Ad g1)
is the projection onto (P y)—,, 81 along go & P vy, 91 Let ko € X be such that
NMo(V) = w. We first claim that gy, C €75, In fact, if 6 is the Cartan involution of g
corresponding to the Cartan decomposition g = £ @ p, then, for any w € g,,, we have
Ow € gy, and w + 0w € £, and hence w = p(Ad g1)(w + 0w) € t7i*, which proves the
claim. On the other hand, it follows from the Iwasawa decomposition (relative to a set of
positive roots containing ho) that g,,, ¢ £ @ Rv. Applying Ad g_; to both sides, we obtain
o € (Ad g—¢)t ® Rv. This, together with g;, C 7%, implies (5.5).

We now verify (5.6). Suppose the contrary. Then there exists ¢ > 0 such that
(Ad gi+c)t Ct®Rv. Since K° is a maximal compact subgroup of G°, it is
self-normalizing in G°. It follows that (Ad g;4.)€ # £. Letx € £ be such that (Ad g;4.)X ¢

€. Then there existy € € and b € R ~\ {0} such that
(Ad gr4e)x =y + bv.
Taking the Cartan involution 6 on both sides, we obtain
(Ad g,]_lg)x =y —bv.
It follows that
(Ad gr46)X — (Ad g3} )x = 2bv.
Let « (-, -) be the Killing form on g. Since « |y is positive definite,

0 # K (2bv, V) = k((Ad gr10)X, V) — k ((Ad g,7)%, V)
= K (X, (Ad g,35)V) — K (X, (Ad gr46)V) = K (X, V) — (X, V) = 0,
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which is a contradiction. This completes the verification of the required conditions, and
thus proves that the set (5.1) is HAW. A similar argument with v replaced by —v shows
that the set (5.2) is also HAW. This completes the proof of part (1).

(2) The proof is similar to that of Theorem 2.8. Let us sketch the argument and leave the
details to the reader. First, we pick t > O such that Z := Fjo1K’S is a smooth submanifold
of X and is such that (2.13) and (2.14) hold for both (H, f) = (K°, g;) and (H, f) =
(K°, g7 ). Then the conditions of Theorem 2.6 are satisfied for both cases. As in the
proof of Theorem 2.6, it can be shown that there exist positive constants t7, 8, o and
a neighborhood 2 of Z such that, for every x € X, Alice has a winning strategy for the
B-hyperplane percentage game on By (t7) with target set

Bg(m) ~ | ey (81 Q) (5.7)
nez

provided Bob’s initial ball By has the prescribed radius ryp (A major difference is that
we are now working with both f =g, and f =g, ! simultaneously. So we need to
replace ‘n > 0’ by ‘n € Z’ in the definition of N} in (4.20) and replace (4.16) by the
slightly stronger condition ,OZH 18t > (C? so that (4.22) still holds.). In particular, the set
(5.7) is non-empty. This implies that the set |, .5 g1-$2 does not contain any K °-orbit
in X. On the other hand, it is straightforward to show that (,¢[0) & 'Q contains an
open neighborhood U of K'S. This implies that FU C |J,,c7, gn:$2. Then the F-invariant
closed set X \ FU satisfies the requirement. O

5.2. Proofs of Theorems Bl and B2. We first review some basic facts concerning locally
symmetric spaces. Let Y be a locally symmetric space of non-compact type and let ¥ be its
universal cover. The isometry group G of Y has finitely many connected components, and
its identity component is a semisimple Lie group without compact factors and with trivial
center. Let yg € Y, and let yg € Y bea preimage of yg. The stabilizer K := Stabg () is
a maximal compact subgroup of G. We identify the globally symmetric space ¥ with
K\G, and we view the fundamental group I' := m{(Y) as a subgroup of G via deck
transformations. Then Y can be identified with K\G/T.

Let g, £ and p be asin §5.1. Then we have a natural identification 7\,Y = p. Let p; be the
unit sphere in p (with respect to the metric on Ty,Y) centered at 0, which is identified with
Sy, (Y). For v € py, let y(v) denote the geodesic line in Y through yq in the direction v.
Then

y(v) = {K exp(tv)[" : t € R}
Let us now prove Theorem B1.

Proof of Theorem Bl. Without loss of generality, we assume that y = yp. We need to
prove that the set

fvepr:y(vNZ=g} (5.8)
is thick in p;. Note that Ad(K)p; = p;. We first prove that, for every v € py, the set

(we Ad(K°)v:y(w)NZ = o) (5.9)
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is HAW on Ad(K °)v. To do this, let xo denote the point I" in X := G/ T', and consider the
surjective map

q:X—>Y, q(gxo)=Kgrl.

Let F = {g; : t € R}, where g; = exp(#v). We claim that the set (5.9) is the image of the
set

(k€ K°:kxo € E(F,q~"(2))} (5.10)
under the submersion K° — Ad(K°)v, k — (Ad k~!)v. In fact, fork € K° and 7 € R,
K exp(t(Ad k"YW = Kg,kT" = q(g:kxo).

So y((Ad kHy) = q(Fkxg). Since the map g has compact fibers, it is a closed map.
It follows that y ((Ad k—1)v) = q(Fkxo). Thus, ¥y ((Ad k—1)v) N Z = @ if and only if
FkxoN g~ (Z) = @, that is, kxg € E(F, ¢~ '(Z)). This verifies the claim. Since ¢ ~!(Z)
is a countable union of K -orbits in X distinct from K xo, it follows, from Proposition 5.1(1),
that the set (5.10) is HAW on K°. Then, by Lemma 2.1, the set (5.9) is HAW on Ad(K°)v.

To complete the proof, let us choose a maximal abelian subspace a C p and an (open)
Weyl chamber a™ C a. Let M = Zgo(a), a]+ = a* N p;. Then the map

®:K°/M xaf - p1, ®EM,v) = (Adk)v

is a diffeomorphism onto an open dense subset of p;. The HAW property of the set (5.9)
implies that, foreach v € af, the intersection of the set (5.8) with ®(K°/M x {v}) is thick
in ®(K°/M x {v}). By the Marstrand slicing theorem (see, for example, [20, Lemma 1.4]),
the intersection of (5.8) with Im & is thick in Im &, and hence it is also thick in p;. This
proves Theorem B1. O

Before proving Theorem B2, let us recall some more facts concerning the geodesic flow
on the unit tangent bundle S(Y) (see, for example, [21, 27]). We keep the notation as
in the beginning of this subsection and consider the natural G-action on S(Y). We refer
to a connected component of the image of a G-orbit in S(¥) under the covering map
S(Y) — S(Y) as an ergodic submanifold of S(Y). Each ergodic submanifold is a closed
submanifold of S(Y) and is invariant under the geodesic flow. Note that every G°-orbit in
S (f’) meets p; = Syo(?). The stabilizer of a vector v € py in G is equal to its centralizer
Ky in K. So the G-orbit of v in S(f’) can be identified with Ky\G, and its projection in
S(Y) can be identified with Ky\G/I". Under the latter identification, the restriction of the
geodesic flow on Ky\G/ T is given by

i (Kvgl') = Ky exp(tv)gl’, g € G.
Let &y C S(Y) denote the corresponding ergodic submanifold, namely,
Ey = {Kygl' : g € G°}.

Then every ergodic submanifold is of the form £y for some v € pj.
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Proof of Theorem B2. Assume that & = €y, where v € p;. We keep the notation as in the
proof of Theorem B1. Then the surjective map

q" : X - K\G/T, 4q'(gx0) = Kygl'

intertwines the flow (X, F) and the geodesic flow on Ky\G/T. Each fiber of ¢’ is a
Ky-orbit in X. Note that dim Ky < dim K. By Proposition 5.1(2), there is an F-invariant
closed subset X’ C X that does not intersect ¢~ (Z) but intersects every K°-orbit in X.
It follows that the closed subset ¢’(X’) N € of & is invariant under the geodesic flow and
does not intersect E. Moreover, the projection of ¢’(X") N & to Y contains g(X’ N G°xp),
which is the whole space Y. This completes the proof of Theorem B2. O

Remark 5.2. Similar to (in fact, simpler than) the proofs of Proposition 5.1(1) and
Theorem B1, it can be shown that, for every ergodic submanifold &€ C S(Y), if Z C €
is a countable subset, then the set {£ € € : y(§) N Z = @} is HAW on €.

6. Gaps between values of functions at integer points

6.1. The general set-up. Let n > 2 be an integer and let C(R") denote the space of
real-valued continuous functions on R". For ¢ € C(R") we will be studying the values of
¢ at non-zero integer points Z;eo := 7" ~ {0}. An important question in number theory is,
for ¢ as above, whether d)(Z;’éO) is dense in its image ¢ (R") or perhaps has a gap at a real
number a € R. Here, we say that ¢(ZZ&0) has a gap at a if ¢(Z;L0) N(a—¢e,a+e)=9
for some ¢ > 0. Clearly, when a # ¢(0), it is equivalent to ¢(Z") N (a —e,a+¢) =S
for some ¢ > 0.

If ¢ is a linear form, it is easy to see that ¢ (Z") is not dense in R if and only if ¢
is a multiple of a rational form. The famous Oppenheim conjecture, proved by Margulis
[24, 25], states that the same statement holds if ¢ is a non-degenerate indefinite quadratic
form and n > 3. It follows that, in both cases, if ¢ (Z';O) has a gap at some number a, then
¢ is a multiple of a rational form. Moreover, a conjecture from Margulis [26, Conjecture
8] (see also Cassels and Swinnerton-Dyer [9, Hypothesis A]) states that if n > 3 and ¢ is
the product of n linearly independent linear forms such that ¢(Z’;0) has a gap at O, then
¢ is a multiple of a rational polynomial. Although this conjecture remains open, it has
been proved by Einsiedler, Katok and Lindenstrauss [15, Theorem 1.6] that, in the space
of products of n linearly independent linear forms, the set of polynomials ¢ with ¢(Z’;e0)
having a gap at 0 has the same Hausdorff dimension as the set of multiples of rational
polynomials, namely, one.

The situation is completely different when n = 2. It is proved by Kleinbock and Weiss
[23] that, given any countable subset A of R, the set of ¢ in the space of non-degenerate
indefinite binary quadratic forms (or, equivalently, products of two linearly independent
linear forms) such that ¢(Zi0) has a gap at every a € A is thick in this space. In this
section, we use Theorem A2 to extend the last result.

To begin with, let us introduce some notation. Let c (R™) denote the set of ¢ € C(R")
such that ¢ (Z") is not dense in ¢ (R"), that is,

CR") :={p € CR"): p(R") ¢ $(Z")}.
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Fora € R, let 6a (R™) denote the set of ¢ € C(R") such that ¢ (Z;Zo) has a gap at a, that is,
CaR") :={$ € C(R") : a ¢ (Z)}.

It is easy to see that ¢ € Cc (R™) if and only if ¢ € Uae(b(R”) 60 (R™). We would like to
understand the sets C (R™) and al (R™). However, they are too large to be addressed. To
proceed, consider the natural right action of SL,, (R) on C(R"), which is given by

SL,(R) x CR") > CR"), (g.9) > ¢og.

Here R” is understood to be the space of column vectors, and g € SL, (R) is identified
with the left multiplication by g on R". For ¢ € C(R"), recall the definition (1.4) of the
SL, (R)-orbit O(¢) = Aut(¢)\ SL,(R) of ¢, where Aut(¢p) C SL,(R) is the stabilizer of
¢ in SL,, (R). Aut(¢) is a closed subgroup of SL,, (R), and hence O(¢) has a natural smooth
manifold structure.
Let
O(¢) :=0@) NCR"), Ou(¢) :=0@) NCu(R"), acR.
Then
O = J 0Ou@.
acp(R")
More generally, for a subset A of R, denote

Oa@) =[] Ou(¢) = {¥ € O@) : ¥ (Z) N A = 2}.

acA

Our aim is to understand @(d)) and O 4 (@) as subsets of the manifold O(¢).

Remark. It is easy to see from the Taylor expansion that if ¢ is real analytic, then Aut(¢)
is algebraic. However, even if ¢ is smooth, Aut(¢) may fail to be algebraic. For example,
the function ¢ on R3 given by

(2xyz + y*zlog |z|) exp(—1/y%|z]) if yz #0,

$(x,y,2) =
Y ifyz=0
+e! £t 0
is smooth, but Aut(¢) = 0 +e' 0 1t € R} is not algebraic.
0 0 e

First, let us observe the following fact.

PROPOSITION 6.1. If Aut(¢) is non-compact, then @(q&) has measure zero (with respect
to any smooth measure on O(¢)).

Proof. Let
p:SLy(R) — O(p), gr>¢og (6.1)
be the natural projection. It suffices to prove that the set
P~ (O@) = {g € SLi(R) : g 0 g € ()} 6.2)
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has measure zero with respect to the Haar measure on SL, (R). Since the group Aut(¢)
is non-compact, it follows from Moore’s ergodicity theorem that the Aut(¢)-action on
SL,(R)/ SL, (Z) is ergodic. Hence, almost every point in SL,(R)/ SL, (Z) has a dense
Aut(¢)-orbit. This implies that, for almost every g € SL, (R), the set Aut(¢)g SL, (Z) is
dense in SL,, (R). For such a g,

¢ 0 g(Z") = ¢p(Aut(p)g SL.(Z)Z")
D ¢(Aut(p)g SLn(Z)Z")

= ¢(SL,(R)Z")

=¢og(R"),
thatis, o g ¢ @(qﬁ). Hence the set (6.2) has measure zero in SL,, (R). This completes the
proof. O

In view of Proposition 6.1, it is natural to ask what is the Hausdorff dimension of (5(4))
or Oy (¢). Let us first review the cases mentioned at the beginning of this section.

1) If ¢ € (R™)* {0}, then O(¢p) = (R™)* \ {0}, Aut(¢) is conjugate to the group of
matrices in SL,(R) with (1,0, ...,0) as the first row, and @(q)) consists of non-zero
multiples of rational linear forms.

2)If n=p+gq >3, where p,q > 1, and ¢ is a quadratic form of signature (p, q),
then O(¢) is the space of all such forms with the same determinant as ¢, Aut(¢) is
conjugate to SO(p, g), and by the Oppenheim conjecture (Margulis’ theorem), the set
(AO(qb) consists of forms in O(¢) that are multiples of rational forms. It follows that

dim O, (¢) = dim O(¢) =0 foralla € R.

(3) If n > 3 and ¢ is the product of n linearly independent linear forms, then O(¢)
is the space of all such polynomials with the same ‘determinant’ as ¢, and the identity
component of Aut(¢) is conjugate to the group of positive diagonal matrices in SL, (R).
The above-mentioned conjecture from [9, 26] states that every polynomial in @0 (@) isa
multiple of a rational polynomial; it is proved in [15] that

dim Oy(¢) = 0.

(4) If n = 2 and ¢ is a non-degenerate indefinite binary quadratic form (or, equivalently,
the product of two linearly independent linear forms), then O(¢) is the space of all
such forms with the same determinant as ¢, and the identity component of Aut(¢) is
a one-parameter diagonalizable subgroup of SL;(R). It is proved in [23] that, for any
countable subset A of R, the set O 4(¢) is thick in O(¢). In particular,

dim O4(¢) = dim O(¢) = 2.
6.2. A sufficient condition for the winning property of 0 4(¢). In this section, we prove
a general theorem which extends case (4) above. Let F = {g; : t € R} be a one-parameter

subgroup of SL, (R). Say that F is non-quasiunipotent if p(Ad g1) > 1. Since SL, (R) is
unimodular, this is equivalent to p(Ad g—1) > 1, and hence to the subgroups G'2¥* and
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G¥* (the maximally expanding horospherical subgroups of G relative to g and g—i,
respectively) being non-trivial.

Let X, denote the space of unimodular lattices in R”, which is identified with the space
SL,(R)/ SL, (Z) in the natural way. Let us first recall the following conjecture from [2].

CONJECTURE 6.2. Let F be a non-quasiunipotent one-parameter subgroup of SL,(R).
Then the set

E(F,00) :={A € X,, : FA is bounded}
is HAW in X,,.

Remark. The conjecture is stated in [2, Conjecture 7.1] for any Lie group G and any lattice
I' C G. In this case, it is proved in [20] that the set E(F, co) is thick if and only if F has
the so-called property (Q). If F' is Ad-diagonalizable, then it has property (Q). So, in [2,
Conjecture 7.1], F is assumed to be Ad-diagonalizable for simplicity. For G = SL, (R),
any non-quasiunipotent F has property (Q). We prefer to state Conjecture 6.2 for any
non-quasiunipotent F.

Conjecture 6.2 is proved for n = 2 in [23] and for n = 3 and diagonalizable F in [2]. It
also follows from a result in [5] that the conjecture holds for diagonalizable F' such that g{
has only two eigenvalues (see Theorem 7.2 below). Moreover, the conjecture is proved in
[16] for diagonalizable F such that the eigenvalues L1, . . ., h, of g; satisfy

#i: Nl <1)=1 and #{i:|N]|= max ||} >n—2.
1<j=<n

See also [1, 11, 20, 22] for other related results.
The main result of this section, which is a generalization of Theorem C, is as follows.

THEOREM 6.3. Let ¢ € C(R"). Suppose that Aut(¢) has a one-parameter non-
quasiunipotent subgroup F = {g; : t € R} satisfying the following conditions.
@) There exists a continuous function N : R — [0, co) with N(0) = 0 such that

N(p@w) — ¢(0)) > dist(Fv,0) forallv e R".

(i)  For any real number a # ¢(0), the set ¢_1(a) is contained in a countable
union of F-invariant C' submanifolds of R" that are both G -transversal and
G -transversali.

(iii)  Conjecture 6.2 holds for F.

Then, for any countable subset A of R, the set 0 4(@) is HAW on O(¢).

Note that condition (i) in Theorem 6.3 is independent of the choice of the norm ||-]| on
R”" that is used to define dist(Fv, 0) := inf;cr| g v]|.
We first deduce Theorem 6.3 from the following dual statement.

THEOREM 6.4. Let ¢ € C(R") be such that Aut(¢) has a one-parameter non-
quasiunipotent subgroup F satisfying conditions (1)—(iii) in Theorem 6.3. Then for every

+ Here the transversality is understood in the sense of the linear action of SL, (R) on R” ~\ {0}.
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a € R, the set
X(¢p,a) ={AeX,:a¢ (AN {0D}
is HAW on X,,.

Proof of Theorem 6.3 assuming Theorem 6.4. Note that O 4(¢) is the image of the set

(g €SL,(R) : ¢ o g € Oa(9)} (6.3)
under the projection p as in (6.1). By Lemma 2.1, it suffices to show that the set (6.3) is
HAW on SL, (R). Let

7 :SL,(R) - X,,, mn(g) =gZ" (6.4)
be the natural projection. The set (6.3) is equal to
g eSL,(R) : ¢ (eZL)NA =2} =) n~ ' (X (¢, a)).
acA

Assuming Theorem 6.4, each X (¢, a) is HAW on X,,. Thus, the set (6.3) is HAW on
SL, (R), and hence O 4(¢) is HAW on O(¢). O

In order to prove Theorem 6.4, let us introduce the following notation. For ¢ € C(R")
and a € R, denote

Zpa={A € X, :aed(A~{OD)

Then let us prove the following lemma, which relates gaps in ¢ (A \ {0}) to dynamical
properties of the orbit FA.

LEMMA 6.5. Let ¢ € C(R"), and let F be a one-parameter subgroup of Aut(¢) satisfying
condition (i) in Theorem 6.3. Then:

(1) E(F,00) C X(¢,9(0)); and

(2)  foranya # ¢(0),

E(F, Zpa) NE(F,00) C X(¢,a) C E(F, Zga).
Proof. (1) It suffices to prove that if A € X,, and ¢(0) € ¢(A ~ {0}), then FA

is unbounded. Let vy € A ~\ {0} be such that ¢(vr) — ¢(0). Then, condition (i) in
Theorem 6.3 implies that

dist(Fvg, 0) < N(¢p (i) — ¢(0)) — 0.

Hence there are #; € R such that g, vy — 0. It then follows from Mahler’s criterion that
the sequence g;, A in X, is unbounded. Hence F A is unbounded.

(2) Suppose, to the contrary, that the first inclusion does not hold. Then there exists A €
X, such that FA is bounded, FA N Zypa=,buta € ¢p(A N {0}). Letvp € A {0} be
such that ¢ (vx) — a. Since

dist(Fvg, 0) < N(¢ () — ¢(0)) — N(a —¢(0)),

there exist #x € R such that g;, v, is a bounded sequence in R”. Note that the sequence g;, A
in X, is also bounded. By passing to subsequences, we may assume that g, vy — v € R"
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and g, A — A € X,,. It follows thatv € A and
¢ () = lim ¢(gyvi) = lim ¢(vg) = a.
k—o00 k—o00

Together with the fact that a # ¢(0), this also implies that v # 0. So A € FAN Zpas
which is a contradiction.

To prove the second inclusion, it suffices to show that if A € X,, and FAN Zpa # 9,
thena € (A ~ {0}). Letfy e Rand A € Zy, be such that g, A — A, andletv € A \
{0} be such that ¢ (v) = a. Then there exist vy € A \ {0} such that g, vy — v. It follows
that

d (i) = ¢(gy Vi) —> d(v) = a.
Hence a € ¢(A ~ {0}). O

In view of Lemma 6.5, to prove Theorem 6.4 we need only to show that E(F, Zy ) is
HAW for every a # ¢(0). For a subset M of R”, denote

Zy ={AeX,: P(ANNM # o},
where
P(A):={veA:v/k¢ A forevery integer k > 2}

is the set of primitive vectors in A. We first use Theorem A2 to prove the following
proposition.

PROPOSITION 6.6. Let F be a one-parameter non-quasiunipotent subgroup of SL, (R),
and let M be an F-invariant C' submanifold of R" which is both G -transversal and
Grlf_lz_‘x-transversal. Then E(F, Zy) is HAW on X,,.

Proof. Let m be as in (6.4), and let p; : SL,(R) — R” be the map that sends a matrix to

its first column. It is easy to see that Zy; = 7 ( pl_1 (M)). Since p; is a submersion and is

F-equivariant with respect to the left multiplications on SL, (R) and R", the set pl_1 (M)

is a left F-invariant C! submanifold of SL, (R). Thus, we can select a countable family

{Z] : i € N} of codimension one C ! submanifolds of pf] (M) such that:

o foranyi e Nand g € Z], we have Ty (Fg) ¢ T,Z};

o p'M) =y FZj; and

e foranyi € N, there exists an open subset U; of SL, (R) containing Z; such that 7|y,
is a diffeomorphism onto 7 (U;).

Let Z; = w(Z;). Then {Z; : i € N} is a family of C! submanifolds of X,,, and

Zy =n(py ) = Jn(Fz) = Fz.
ieN ieN
It follows that
E(F.Zy) =) E(F. FZi) = (| E(F. Z)).
ieN ieN
Thus, in view of Theorem A2, it suffices to show that each Z; is (F, G'2¥*)-transversal and
(F, G¥)-transversal.

https://doi.org/10.1017/etds.2021.4 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.4

1364 J. Anetal

Leti € N, A € Z;,and let g € Z] be such that A = 7(g). Then
TA(FA) = (dn)g(Tg(Fg)) ¢ (dm)g(ToZ)) = TpZ;.
On the other hand, for H € {GT4* G‘;‘i"}, wehave T, (Hg) ¢ Tg(pfl(M)),for otherwise,

F+>
if T,(Hg) C To(py ' (M)), and if we let v = pi(g), then

T, (Hv) = (dp1)(Te(Hg)) C (dp1)g(Te(py ' (M))) = TyM,
which is contrary to the assumption that M is H-transversal. Thus,
TA(HA) = (dm)g(Tg(Hg))
¢ (dn)g(Te(py ! (M)
= (dn)g(TyZ] & T4 (Fg))
= (dn)g(TyZ)) ® (dm)g(Tg(Fg))
=TAZ; ® TA(FA).

This proves that each Z; is (F, G¥")-transversal and (F, G3*)-transversal, and hence

completes the proof of the proposition. O

Remark 6.7. Even if M is a nice submanifold of R", the set Zj; may fail to be a
submanifold of X,,. In fact, if dim M < n and M contains at least two linearly independent
vectors in P(A), then A is a self-intersection point of Zjy.

We now derive the HAW property of E(F, Zy ,) from the above proposition.

COROLLARY 6.8. Let ¢ € C(R"), and let F be a one-parameter non-quasiunipotent
subgroup of Aut(¢) satisfying condition (ii) in Theorem 6.3. Then, for any a # ¢ (0), the
set E(F, Zy q) is HAW on X,,.

Proof. Suppose that ¢_1(a) C UieN M;, where each M; is an F-invariant C! sub-
manifold of R” and is both G7{*-transversal and G'7%*-transversal. Since A \ {0} =

Uken kP(A),
Zpa=1{A€Xy: (AN{OH N~ () # 2}

c |JiaeXx, kPA) N M; # 2}
k,ieN

= U Za/kM;-

k,ieN
This implies that
E(F,Z3a) D [ E(F. Zaom)-
k,ieN

Note that each (1/k)M; is an F-invariant C' submanifold of R” and is both G-
transversal and G%’i"-transversal. Thus, it follows from Proposition 6.6 that each
E(F, Z(xm;) is HAW. Hence E(F, Zy 4) is HAW. O

It is now straightforward to derive Theorem 6.4 from Lemma 6.5 and Corollary 6.8.
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Proof of Theorem 6.4. If a = ¢(0), then, by Lemma 6.5(1), the set X (¢, a) contains
E(F, o0), which is HAW by the assumption. If a # ¢ (0), then, by Lemma 6.5(2), the
set X (¢, a) contains E(F,o00) N E(F, Zy,), which is HAW by the assumption and
Corollary 6.8. O

7. Applications to GIBF's

7.1. Proof of Theorem C. Recall that in §1.3 we defined a continuous function ¢ :
R" — R to be a GIBF if there exists a non-trivial decomposition R” = U @& W such that
conditions (IB-1), (IB-2) and (IB-3) hold. Throughout this section, let R* = U @& W be
such a non-trivial decomposition, let G = SL,,(R) and let F = {g; : t € R} C G be as in
(1.5). Forv € R”, we always let u and w denote the unique vectors withu € U andw € W
such that v = u 4+ w. As a sample case of the decomposition, one can take

U=Re  ®---®Re,, W =Re, 1 ® - -DRe,, (7.1)

where {eq, ..., e,} is the standard basis of R”. In this case, (1.5) reduces to (2.10) (see
Example 2.5).
First, let us observe the following facts.

LEMMA 7.1.

(1) Foranyv € R", we have dist(Fv, 0) < 2||u|/?/"||w]|?/".

(2)  Supposev € R" ~ (U U W). Then, under the natural identification T,R" = R", we
have Ty (Gp{*v) = U, Ty (Gp%¥v) = W.

(3)  Suppose ¢ € C(R") satisfies conditions (IB-1) and (IB-2). Then ¢~1(0) = U U W.

Proof. (1) If v € UU W, then both sides of the inequality are equal to 0. Suppose
v ¢ U U W. Then there exists 7y € R such that /P ||u| = e~/ ||w]| = ||u|?/" |w]|?/".
It follows that

dist(Fv, 0) < [lgnull = [le"/Pu + e~/ Tw]|| < /P |lu| + e~/ |jw|| = 2u||”/" |lw]4/".

(2) Without loss of generality, we may assume that U and W are as in (7.1) and F is as in

(2.10). Then g'7%* and g2%* are given by (2.11). Write v = (:}), where u € R”, w € RY.

Then u and w are non-zero. It follows that

T, (G}v) = gf¥v = {( ;u) !B e qup(R>} =W

This proves (2).

(3) Suppose v € U U W. Then there exist # € R such that g, v — 0. It follows
from condition (IB-1) that ¢ (v) = ¢(g,v) — ¢(0) = 0. Hence ¢(v) = 0. Conversely,
if ¢(v) =0, then condition (IB-2) implies that |u||”||w||Y = 0, which means that v €
Uu w. O
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Next, let us note the following result, which can be easily deduced from one of the main
results of [5].

THEOREM 7.2. Conjecture 6.2 holds for F as in (1.5).

Proof. Without loss of generality, we may assume that F is as in (2.10). Let F* = {g; :
t>0}, F- ={g:t <0}, and let E(Fi, 00) be the set of A € X, such that FEA is
bounded. As is well known, bounded F*-orbits in X,, are related to badly approximable
matrices. More precisely, it is shown in [10] that a matrix A € My, (R) is badly
approximable if and only if the orbit F +( Ié’ 2 )Z" is bounded. On the other hand, it is
proved in [5] that the set of badly approximable matrices is HAW. Starting from these
results, and using the method as in the proof of [2, Theorem 1.2], it is easy to show that
E(F*, 00) is HAW. Let ¢ be the diffeomorphism of X, given by ¢(gI') = (gT)_lF.
Then E(F~,00) = ¢(E(F™, c0)), and hence it is also HAW. Therefore, E(F, c0) =
E(FT,00)NE(F™, 00) is HAW. O

It is now straightforward to deduce Theorem C from Theorem 6.3.

Proof of Theorem C. Since ¢ is a GIBF, the group F given by (1.5) is a one-parameter
non-quasiunipotent subgroup of Aut(¢). It follows from conditions (IB-2), (IB-3) and
Lemma 7.1 that conditions (i) and (ii) in Theorem 6.3 are satisfied. Moreover, condition
(iii) in Theorem 6.3 follows from Theorem 7.2. Thus Theorem 6.3 implies the conclusion
of Theorem C. O

7.2. Examples. In this subsection, we give several interesting examples of GIBFs. Let
us first note the following fact, which will be used to verify condition (IB-3).

LEMMA 7.3. Let R* = U @ W be a non-trivial decomposition, let F be as in (1.5) and let

D1, - - ., Om € C(R™) be finitely many F-invariant functions satisfying

$:i(0) =0, ¢;isC'onR"\ ¢ (0), and

d o (72)

o ¢i(tu +w) #0 foranyv € R" \ ¢, (0).

t=1
Then the function
¢(v) := max ¢;(v) (7.3)
1<i<m

satisfies (IB-3).

Proof. Note that ¢~ (a) C UL, o Y(a). Thus, it suffices to show that if a # 0, then
each ¢; 1(a) is an F-invariant C! submanifold of R” that is both U-transversal and
W-transversal. Since ¢; is F-invariant, so is the set ¢;" 1(a). It follows from (7.2) that
¢iisa C ! submersion on R” o 1(0). So ¢;” ! (a) is a C! submanifold of R”, and for
v € ¢, ' (a), we have Ty (¢; ' (a)) = Ker(d¢; ). By (7.2) again,

d
(doi)y(u) = o ¢i(tu +w) # 0.
Hi=1

1=
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This means that u ¢ Ker(d¢; )y, which implies that U ¢ Ty(¢); 1(a)), that is, ¢, 1(cz) is
U -transversal. On the other hand, it follows from

d d
0=— ¢i(gv) = (d¢i)v<a

B dt t=0

gm) = (dgi)ym/p—w/q)
=0

that (d¢;)y(w) # 0. So w ¢ Ker(d@; )y, which implies that ¢, ! (a) is W-transversal. The
proof of the lemma is thus complete. O

A special case of Lemma 7.3 is that if ¢ € C(R") satisfies (IB-1), (IB-2) and (7.2), then
it is a GIBF. We use this special case to verify Examples 7.4-7.7 below.

Example 7.4. Let R" = U @& W be a non-trivial decomposition, let ||-|| be a norm on R”
thatis C! on R” ~. (U U W) and consider the function

¢ +w) = |lull”lw]?. (7.4)

Conditions (IB-1) and (IB-2) are clearly satisfied. Also, foru € U . {0} andw € W ~ {0},

7 P lullPlwl? = plull”|lw]? # 0,

t=1

tu + —d
¢ (tu w)—E

t=1

which implies that (7.2) is satisfied. Thus ¢ is a GIBF. Note that the polynomial (1.7) is of
the form (7.4), and hence it is a GIBF.

Example 7.5. Letn = 2p be even, let ¢ > 0 and consider the polynomial

P 2 P p
Ge(X1, ..., xy) = ( Z x,-xp+i) +8< Z x12> < lez,+i>.
i=1 i=1 i=1
Let us verify that if ¢ > 0, then ¢, is a GIBF. Let U and W be as in the sample case (7.1)
with ¢ = p. Then (IB-1) is clear, (IB-2) is satisfied for N(») = |/e|P/? and the standard
Euclidean norm, and (7.2) is also satisfied as

7 Qe(tX1, o X, Xpils - v s Xp) = 20 (X1, . . ., Xp).

t=1

Thus ¢, is a GIBF, and hence the set O 4(¢¢) is HAW for any countable A C R. (The
same argument also shows that the polynomial (1.8) is a GIBF.) However, if ¢ = 0 and
n # 2, then ¢y is the square of a quadratic form of signature (p, p), and the Oppenheim
conjecture (Margulis’ theorem) implies that dim @(d)g) =0.

Example 7.6. The polynomial (1.9), namely, the function ¢ on R3 given by
¢ (x1, x2, x3) = x1%3 + X} x5

is a GIBF. In fact, let U and W be as in (7.1) with p = 1 and ¢ = 2. Then (IB-1) is clear,
(IB-2) is satisfied for N (») = max{|%|, |x|'/3} and the supremum norm as

2 23 2 23,13 2 2
N (¢ (x1, x2, x3)) = max{lxxy| + [x1x3]7, (Ixix3] + [x1x317) 7} = max{|xix3], [x1x51},
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and (7.2) is also satisfied as

d
i ¢ (1x1, x2, x3) =x1x§+3xfx36 #0
r=1

if x; # 0and (x2, x3) # (0, 0).
Example 7.7. The function ¢ on R* given by
d(x,y,2,8) = X272+ exp(y252) +log(1 + X252 + yzzz) -1

is a GIBF. In fact, let U and W be as in (7.1) with p = ¢ = 2. Then (IB-1) is clear, (IB-2)
is satisfied for N (%) = ¢/* — 1 and the supremum norm as

¢(x,y,z,8) > log(l + max{xz, y2} max{zz, sz}),

and (7.2) is also satisfied as

d 2(x%s% + y?2?)
— tx, 1y, 7, 8) = 2x272 + 29252 exp(y%s?) + ——— = 2~
T t=1¢>( Y, 2,5) z y p(y“s®) T4 x252 43222

if (x, y) # (0, 0) and (z, 5) # (0, 0).

>0

The function ¢ in the next example can be written in the form (7.3).
Example 7.8. Let p, g > 1 be such that p + g = n, and let
¢(-x19 EEEEEEE ] -xl’l) = maX{|X1|, RN} |-xp|}p maX{|xp+1|7 LR} |-xl’l|}q'

It is easy to see that (IB-1) and (IB-2) are satisfied for U and W being as in (7.1). To verify
(IB-3), let us write

= max ¢,
I<i<p,1<j=<q
where
Gij(x1, ..y xn) = x| P lxpg 19

Then each ¢;; satisfies (7.2). By Lemma 7.3, ¢ satisfies (IB-3), and thus it is a GIBF.
We conclude this section by a example that is not covered by Lemma 7.3.
Example 7.9. Letr > 0. We verify that the function

n (n—1)/r
Gx1, ..., Xy) = m(Z |x,-|r) (7.5)

i=2

is a GIBF. Let U and W be as in (7.1) with p = 1 and ¢ = n — 1. Then (IB-1) is clear, and
(IB-2) is satisfied for N(\) = || and the supremum norm on R". To verify (IB-3), for a
subset 1 of {2, ..., n} we denote

Vi={(x1,...,x,) € R" : x; #0foreveryiel andx;=0forevery j € {2,...,n}~\1}.
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Then {V; : I C {2, ..., n}}is apartition of R”, and thus, for any a € R,

o= |J ¢ '@nvi.

It is straightforward to show that if @ # 0, then each ¢~!(a) N V; is an F-invariant C'
submanifold of R” and is both U-transversal and W-transversal. So (IB-3) is satisfied.
Hence ¢ is a GIBF. Note that the polynomial (1.6) is the r = n — 1 case of (7.5). Note also
that, when r > 1, one can also verify (IB-3) by verifying (7.2).
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A. Appendix. Proof of Lemma 2.1

We give the proof of Lemma 2.1 here. In view of the local nature of the HAW property and

the local normal form of a submersion, it suffices to prove the following statement.

(%) Let B € (0, %), let B = B%/6, let V be a Euclidean space, let W C V be a linear
subspace, let Py : V — W be the orthogonal projection, let U C V be an open subset
and let S C U be a subset that is B-HAW on U. Then Py (S) is B-HAW on Py (U).

For the sake of convenience, let us introduce the following concept. We say that two
closed balls B ¢ W and B C V are compatible if Py sends the center of B to the center
of B and if the radius of B is twice the radius of B. Let us first prove the following lemma.

LEMMA A.l. Let BC W and B C V be compatible closed balls, and let L be an affine
hyperplane in V. Let r denote the radius of B. Then there exists an affine hyperplane
L=L(B,B,L) in W such that any closed ball in B~ LB of radius < Br/6 is
compatible with some closed ball in B ~. L2P").

Proof. Without loss of generality, we may assume that both B and B are centered at the
origin. Let u € V be a unit normal vector of L. We divide the proof into two cases.

(1) Suppose || Pwul|l < 1/+/2. We show that any hyperplane L in W has the required
property. Let B’ C B be a closed ball with center w € W and radius " < 8r/6. Let vy =
w=xru — Pyu)/|lu — Pwu|. Without loss of generality, assume that dist(vy, L) >
dist(v_, L). Let B’ be the closed ball in V with center vy and radius 2r'. Then B’ is
compatible with B’. We claim that B’ C B~ L@ _First,

dist(vy, L) > 5 (dist(vy, L) + dist(v_, L)) > 1[{vy — v, u)]|

=rllu — Pyul > r/~2 > 2r +2Br.
This means that B’ N L2#") = &. On the other hand, for v € B,
oIl < lv = vell + llogll < 27" +V2r <2r.

So B’ C B. This verifies the claim.
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(2) Suppose || Pwull > 1/ V2. We show that the hyperplane L := LN W in W has the
required property. Let B’ C B ~. L#") be a closed ball with center w € W and radius ' <
Br/6. Let B’ be the closed ball in V with center w and radius 2r. Then B’ is compatible
with B’. We have

dist(w, L) = || Pwu|| dist(w, L) > (' + Br)/~2 > 2r’ + 2Br,
and forv € B/,
vl < llv—wl + wll <2r" +r <2r.

So B’ B~ LP")_ This proves the lemma. O

We now proceed to prove statement (). For simplicity, let us refer to the B-hyperplane
absolute game on Py (U) with target set Py (S) as Game 1, and refer to the B -hyperplane
absolute game on U with target set S as Game 2. We will construct a winning strategy for
Game 1 using the winning strategy for Game 2.

In order to win Game 1, Alice invites two assistants, say Alice’s sister and Bob’s brother,
to play Game 2. Bob’s brother will play following Alice’s instructions, and Alice’s sister
will play according to the winning strategy for Game 2. Suppose Bob starts Game 1 by
choosing a closed ball By C Pw (U). Without loss of generality, we may assume that
Bob will choose the closed balls B; so that their radii ; tend to zero. Let iy > O be the
smallest index such that B;, is compatible with some closed ball in U. If iy # 0, Alice

chooses the hyperplane neighborhoods {L;r" ) 10 <i < ip} arbitrarily. After the ball B;,
is chosen by Bob, Alice asks Bob’s brother to start Game 2 by choosing a closed ball
By C U compatible with B;,, and next asks her sister to choose a hyperplane neighborhood

L (7o) C V according to the winning strategy for Game 2, where rO < Bip and 7y is

the radius of By. Then Alice chooses the hyperplane neighborhood Ll.0 i C W, where

rl’0 = Briy, Liy = L(B,,, Eo, Zo) and L(, -, -) is the function given in Lemma A.1.
Assume that, for some k£ > 0 and some i > k, the following data have been chosen:

e aclosed ball B;, in W chosen by Bob;

a closed ball By in V of radius 7 chosen by Bob’s brother, which is compatible

with B;, ;

e a hyperplane neighborhood Z,(j") (7 < BFi) in V chosen by Alice’s sister, according
to the winning strategy for Game 2; and

)
e ahyperplane neighborhood L in W chosen by Alice, such that ri’k = Bri and L;, =
L(Blk ’ Bk’ Lk)
(Note that these data have been chosen for k = 0.) Let ix+1 > i; + 1 be the smallest index

such that the radius of the closed ball B;,, chosen by Bob satisfies r;,,, < Br; /6. Alice

chooses the hyperplane neighborhoods {Lfri) Dig < i < ipy1} arbitrarily, and then asks

Bob’s brother to choose a closed ball Bk+1 C f?k ~ I:,(f} ) compatible with B; Note

lk+1°
(Briy)

that, since Bj,,, C Bj,+1 C B, ~ L; "', the choice of L;, guarantees that the choice of

such a Bk+1 is possible. Note also that Ek ~ I:,(ff") C Ek ~ I:,(:k) and the radius 7¢4 of
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By satisfies

Fer1 = 2rip,, > 2Briy,,—1 > 2B - Bri, /6 = B

So the move of Bob’s brother is legal for Game 2. Next, Alice asks her sister to choose

a hyperplane neighborhood L X fi‘ in V according to the winning strategy for Game 2.

D

(]
Then Alice choose the hyperplane neighborhood LiH’T
and L;,,, = L(Bi,,,» Bit1, Lis1).
Let us show that the strategy constructed above guarantees a win for Alice. Since Alice’s
sister is playlng according to the winning strategy for Game 2, we have ()2 By C S.
Since B;, and Bk are compatible, we have B;, C Py (Bk) It follows that

ﬂ B = ﬂ B, C ﬂ Py (By) = PW< N §k> C Pw(S).

k=0

. r
in W such that r; = Bri,

Hence Alice wins. This proves statement (x) and thus completes the proof of
Lemma 2.1. O
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