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Abstract. Let G be a Lie group, let Ŵ ⊂ G be a discrete subgroup, let X = G/Ŵ and

let f be an affine map from X to itself. We give conditions on a submanifold Z of X

that guarantee that the set of points x ∈ X with f -trajectories avoiding Z is hyperplane

absolute winning (a property which implies full Hausdorff dimension and is stable under

countable intersections). A similar result is proved for one-parameter actions on X. This

has applications in constructing exceptional geodesics on locally symmetric spaces and in

non-density of the set of values of certain functions at integer points.
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1. Introduction

1.1. Non-dense orbits in homogeneous dynamics. Let X be a metric space and let F be

a set of self-maps X → X. For a non-empty subset Z of X, define

E(F , Z) := {x ∈ X : Fx ∩ Z = ∅}.

When f is a single transformation of X, we will slightly abuse notation and define

E(f , Z) := E({f n : n ≥ 0}, Z) = {x ∈ X : {f nx : n ≥ 0} ∩ Z = ∅}.
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Those sets carry important information about the dynamical system (X, F) and have

been extensively studied. Clearly, one has µ(E(f , Z)) = 0 whenever µ is an f -ergodic

measure on X with full support. On the other hand, for certain classes of dynamical

systems and subsets Z of X, sets of those exceptional points can be shown to be quite

substantial – in particular, they are thick. Here and hereafter, we say that E ⊂ X is thick if

dim(U ∩ E) = dim(U) for any open subset U of X, where dim stands for the Hausdorff

dimension. See, e.g., [13, 19, 20, 34] for some work done in this direction in the 1990s.

In this paper, we restrict ourselves to the study of the special case when X is a

homogeneous space of a Lie group G. Around 25 years ago, the third-named author

considered the case when F is either a one-parameter or a cyclic semigroup of G acting on

X by left translations. To state this result, we need to define the expanding horospherical

subgroup Gf corresponding to f ∈ G: that is,

Gf :=
{
g ∈ G : lim

n→∞
f −ngf n = 1G

}
.

Another way of defining Gf is as follows: its Lie algebra is the subalgebra of Lie(G) whose

complexification is the direct sum of generalized eigenspaces of Ad f corresponding to

eigenvalues of modulus greater than one (see §2.3 for a discussion). If F = {gt : t ∈ R} is a

one-parameter subgroup of G, we will denote F+ := {gt : t ≥ 0} and F− := {gt : t ≤ 0},
and we define the expanding horospherical subgroup GF± corresponding to F± as

GF± := Gg±1
=

{
g ∈ G : lim

n→∞
g∓ngg±n = 1G

}
. (1.1)

When Z ⊂ X is a smooth submanifold, it turns out that a condition sufficient for

abundance of orbits avoiding Z can be phrased in the language of transversality. Let G

be a Lie group, let D ⊂ G be a closed subgroup (not necessarily discrete), let X = G/D

and let H , F be Lie subgroups of G. According to the terminology introduced in [19, 23],

a C1 submanifold Z of X is said to be:

• H -transversal if Tz(Hz) 6⊂ TzZ for every z ∈ Z;

• (F , H)-transversal if Tz(Fz) 6⊂ TzZ for every z ∈ Z (that is, Z is F -transversal) and

also Tz(Hz) 6⊂ TzZ ⊕ Tz(Fz) for every z ∈ Z.

The following theorem was proved in [19].

THEOREM 1.1. Let G be a Lie group, let Ŵ ⊂ G be a discrete subgroup and let X = G/Ŵ.

(1) Let f ∈ G. Then, for any compact Gf -transversal C1 submanifold Z ⊂ X, the set

E(f , Z) is thick.

(2) Let F ⊂ G be a one-parameter subgroup. Then, for any compact (F , GF+)-

transversal C1 submanifold Z ⊂ X, the set E(F+, Z) is thick.

We note that the above theorem is meaningful only if Ad f (respectively, Ad g1) has at

least one eigenvalue of modulus > 1; otherwise, the groups Gf (respectively, GF+) are

trivial and the above transversality conditions are never satisfied.

The abundance of points with non-dense orbits has also been established when

f ∈ GLn(R) ∩ Mn×n(Z) is an endomorphism of the n-dimensional torus. Indeed, gener-

alizing a result of Dani [12], Broderick, Fishman and Kleinbock [3] proved the following

theorem.
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THEOREM 1.2. Let X = T
n, and let f ∈ GLn(R) ∩ Mn×n(Z) be an endomorphism of X

with at least one eigenvalue of modulus bigger than one. Then for any countable subset

Z ⊂ X, the set E(f , Z) is thick.

In fact, both in [12] and in [3], a stronger property of those sets was established:

namely, they were shown to be winning in the sense of Schmidt. Later this property was

upgraded by Broderick, Fishman and Simmons [5] to an even stronger hyperplane absolute

winning (HAW) property. See [4, 23], as well as §2.1, for definitions and discussion, and

[1, 2, 14, 16, 18, 22, 33, 36, 37] for other recent results involving winning properties of

exceptional sets in dynamical systems. We point out that one of the important advantages of

this strengthening is the fact that a countable intersection of winning (respectively, HAW)

sets is also winning (respectively, HAW).

Our first main theorem (Theorem A1 below) gives a unified treatment of Theorem 1.2

and part (1) of Theorem 1.1. To include both left translations on homogeneous spaces

and toral endomorphisms, we establish our result for affine maps. Let G be a Lie group

(not necessarily connected) with Lie algebra g, let Ŵ ⊂ G be a discrete subgroup and let

X = G/Ŵ. Let Aut(G, Ŵ) denote the set of automorphisms of G sending Ŵ into Ŵ. A map

f : X → X is said to be affine if there exist g ∈ G and σ ∈ Aut(G, Ŵ) such that

f (hŴ) = gσ(h)Ŵ for all h ∈ G. (1.2)

Let σf be the automorphism of G given by

σf (h) = gσ(h)g−1 for all h ∈ G, (1.3)

and let dσf be the induced automorphism of g. (It will be shown that dσf is uniquely

determined by f ; see Lemma 2.4.) In §2, for an affine map f , we, similarly to (1.1), define

the expanding horospherical subgroup Gf of G relative to f , and we also introduce a

subgroup Gmax
f ⊂ Gf , which we call the maximally expanding horospherical subgroup of

G relative to f . Roughly speaking, the latter subgroup corresponds to directions in g in

which dσf exhibits the maximal rate of expansion. For example, if dσf is diagonalizable

with at least one eigenvalue of modulus bigger than one, then the Lie algebra of Gmax
f is

the sum of eigenspaces corresponding to eigenvalues of dσf with maximal absolute value.

See §2.2 for a formal approach, and §2.3 for a precise definition. This subgroup replaces

Gf in the transversality conditions of Theorem 1.1, which makes it possible to upgrade its

conclusion to the winning property of E(f , Z), as follows.

THEOREM A1. Let G be a Lie group, let Ŵ ⊂ G be a discrete subgroup, let X = G/Ŵ

and let f be an affine map on X. Then, for any Gmax
f -transversal C1 submanifold Z ⊂ X,

the set E(f , Z) is HAW.

We remark that if f is an affine map and the assumption of Gmax
f -transversality of Z is

replaced by a weaker assumption of Gf -transversality, it is possible to use the methods of

[19] to show that the set E(f , Z) is thick. However, in order to prove the HAW property

(or even regular winning, in the sense of Schmidt), Gf -transversality does not seem to be

enough, and one has to require transversality with respect to Gmax
f .
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In the case G = R
n, Ŵ = Z

n and f ∈ GLn(R) ∩ Mn×n(Z), we note that dσf coincides

with f , and Theorem A1 implies the following strengthening of Theorem 1.2 and the

subsequent work in [5].

COROLLARY 1.3. Let X = Tn, and let f ∈ GLn(R) ∩ Mn×n(Z) be an endomorphism of

X. Then, for any Gmax
f -transversal C1 submanifold Z ⊂ Tn, the set E(f , Z) is HAW.

As an example: if f is uniformly expanding, such as x 7→ mx for a non-zero m ∈ Z,

then Gmax
f = Rn, and thus E(f , Z) is HAW for any proper C1 submanifold Z ⊂ Tn.

The case σ = Id of Theorem A1 (that is, when f is a left translation by an element g

of G) can be used to derive a continuous version of the above theorem, that is, a statement

similar to part (2) of Theorem 1.1. Here we will denote by Gmax
F+ the maximally expanding

horospherical subgroup Gmax
g1

of G relative to g1.

THEOREM A2. Let G, Ŵ and X be as in Theorem A1. Let F = {gt : t ∈ R} be a

one-parameter subgroup of G, and let Z be an (F , Gmax
F+ )-transversal C1 submanifold

of X. Then the set E(F+, Z) is HAW.

Note that, in view of intersection properties of winning sets, the conclusion of the two

theorems above will hold if Z is replaced by a countable union of sets satisfying the above

assumptions. Note also that the groups Gmax
f (respectively, Gmax

F+ ) are non-trivial if and only

if dσf (respectively, Ad g1) has at least one eigenvalue of modulus > 1. In the latter case,

the transversality conditions in Theorems A1 and A2 are definitely satisfied if Z consists

of a single point, and hence the conclusion of the two theorems holds for countable sets Z.

1.2. Non-dense geodesics on locally symmetric spaces. Theorems A1 and A2 will be

derived from their more general technical versions, Theorems 2.6 and 2.8, where we study

the HAW property of the intersections of the sets E(f , Z) and E(F+, Z) with orbits of

certain subgroups H ⊂ G. The advantage of such a general set-up is that some important

applications can be deduced from it. In particular, when G is semisimple and H is taken

to be the maximal compact subgroup of G, Theorem 2.8 has interesting applications to

geodesic flows on locally symmetric spaces.

Let Y be a locally symmetric space of non-compact type and let S(Y ) denote its unit

tangent bundle, whose fiber Sy(Y ) over a point y ∈ Y is the unit sphere in TyY centered at

the origin. For ξ ∈ S(Y ), let γ (ξ) denote the geodesic line through the base point of ξ in

the direction ξ . We will use Theorem 2.8 to prove the following result.

THEOREM B1. Let Y be a locally symmetric space of non-compact type, y ∈ Y , and let Z

be a countable subset of Y r {y}. Then the set

{ξ ∈ Sy(Y ) : γ (ξ) ∩ Z = ∅}

is thick in Sy(Y ).

Theorem B1, together with Marstrand’s slicing theorem, implies that, for any countable

subset Z ⊂ Y , the set {ξ ∈ S(Y ) : γ (ξ) ∩ Z = ∅} is thick in S(Y ). For locally symmetric

spaces of constant negative curvature (which corresponds to the case G = SO(n, 1)),
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the latter result for finite Z is given in [19, Corollary 4.4.4]; see also a related work by

Dolgopyat [13].

Note that if Y has rank one and has finite volume, the geodesic flow on S(Y ) is ergodic.

However, it is never ergodic if the rank of Y is greater than one. Mautner [27] showed

that S(Y ) can be naturally partitioned into closed submanifolds that are invariant under

the geodesic flow (see also [21]). If Y has finite volume, the geodesic flow is ergodic on a

generic submanifold. We refer to a submanifold in this partition as an ergodic submanifold

(see §5 for the definition). We will also prove the following theorem.

THEOREM B2. Let Y be a locally symmetric space of non-compact type, let E ⊂ S(Y ) be

an ergodic submanifold and let 4 ⊂ E be a finite subset. Then there exists a closed subset

of E that is invariant under the geodesic flow, does not intersect 4 and projects onto Y .

Theorem B2 is motivated by the unpublished work of Burns and Pollicott [6] and

subsequent papers [7, 8, 30, 32], where hyperbolic manifolds and more general manifolds

of non-positive curvature are considered. However, in all the aforementioned papers, the

set 4 consisted of a single point. Theorem B2 seems to be new even in the case when Y has

rank one (in which case, one has E = S(Y )). See also [35] for a related work concerning

CAT(-1) spaces.

1.3. Gaps between values of functions at integer points. For the special case

G/Ŵ = SL2(R)/ SL2(Z), Theorem A2 was established in [23] by the third-named author

and Weiss. That paper was, in fact, motivated by studying binary indefinite quadratic forms

with non-dense set of values at integer points, and it contains the following result.

THEOREM 1.4. The set of indefinite binary quadratic forms whose set of values at non-zero

integer points misses a given countable set is thick in the space of all binary indefinite

quadratic forms.

More generally, given φ ∈ C(Rn), one can consider the SLn(R)-orbit of φ: that is,

O(φ) := {φ ◦ g : g ∈ SLn(R)}. (1.4)

Then the stabilizer Aut(φ) of φ is a closed subgroup of SLn(R), and hence the orbit

O(φ) ∼= Aut(φ)\ SLn(R) has a natural smooth manifold structure. Theorem 1.4 dealt with

the case n = 2 and φ(x1, x2) = x1x2. See §6 for more background on this problem.

Using Theorem A2, we are able to prove a substantial generalization of Theorem 1.4.

Let n ≥ 2, and fix a norm ‖·‖ on Rn. We say that a continuous function φ : Rn → R

is a generalized indefinite binary form GIBF if there exists a non-trivial decomposition

Rn = U ⊕ W such that the following three conditions hold.

(IB-1) φ is invariant under the one-parameter transformation group

F = {gt : t ∈ R}, where gt = et/p idU ⊕e−t/q idW , p = dim U , q = dim W .

(1.5)

(IB-2) φ(0) = 0, and there is a continuous function N : R → [0, ∞) with N(0) = 0

such that

N(φ(uuu + www)) ≥ ‖uuu‖p‖www‖q for all uuu ∈ U , www ∈ W .
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(IB-3) For any a 6= 0, the set φ−1(a) is contained in a countable union of F -invariant

C1 submanifolds of Rn that are both U -transversal and W -transversal†.

It is clear that the above property is preserved by linear changes of coordinates, and thus,

if φ is a GIBF, its orbit (1.4) consists entirely of GIBFs. The binary form x1x2 mentioned

above is clearly a GIBF, and thus the same is true for all indefinite binary forms. The

polynomials listed below are also GIBFs.

x1(x
n−1
2 + · · · + xn−1

n ), n odd; (1.6)

(x2
1 + x2

2)(xn−2
3 + · · · + xn−2

n ), n even; (1.7)

(x2
1 + · · · + x2

n/2)(x
2
(n/2)+1 + · · · + x2

n), n even; (1.8)

x1x
2
2 + x3

1x6
3 , n = 3. (1.9)

For the verification of the above claim and for more examples of GIBFs, see §7.2. As a

non-polynomial example, if the norm ‖·‖ is C1 on R
n
r (U ∪ W), then the function

φ(uuu + www) = ‖uuu‖p‖www‖q , uuu ∈ U , www ∈ W

is a GIBF (see Example 7.4).

Now we are ready to generalize Theorem 1.4 to the set-up of gaps between values of

these functions at non-zero integer points.

THEOREM C. Let n ≥ 2, and let φ be a GIBF. Then, for any countable subset A of R, the

set

{ψ ∈ O(φ) : ψ(Zn r {0}) ∩ A = ∅}
is HAW.

1.4. Organization of the paper. In §2, we state our main technical results, Theorem 2.6

and Theorem 2.8, and deduce the latter from the former. §3 is devoted to the study of

the behavior of certain hyperplanes under linear transformations, which is utilized in the

subsequent section for the proof of Theorem 2.6. There we use the hyperplane percentage

game, a modification of the hyperplane absolute game introduced in [5] (see §4.1), a careful

analysis of the local behavior of the multiplication on G (§4.2) and an approximation

of pieces of submanifolds Z by neighborhoods of hyperplanes (§4.3). In §5, we apply

Theorem 2.8 to geodesic flows on locally symmetric spaces, proving Theorems B1 and

B2. Then, in §6, we discuss another application, in which we put X = SLn(R)/ SLn(Z)

and establish a general result (Theorem 6.3) concerning functions whose values at integer

points are not dense. Theorem C is derived from Theorem 6.3 in §7, and then we describe

a number of examples of generalized indefinite binary forms.

2. Statement of the main theorems

2.1. HAW subsets of a manifold. Our main theorems are stated in terms of the notion

of HAW subsets of smooth manifolds, introduced in [23]. Before defining this game, for

† Here the transversality is understood in the sense of the action of U and W on Rn by translations.
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comparison, let us recall Schmidt’s (α, β)-game [31]. It involves two parameters α, β ∈
(0, 1) and is played by two players Alice and Bob on a Euclidean space V with a target set

S ⊂ V . Bob starts the game by choosing a closed ball B0 in V with center x0 and radius r0.

After Bob chooses a closed ball Bi = B(xi , ri), Alice chooses Ai = B(x′
i , r ′

i)⊂ Bi with

r ′
i = αri , and then Bob chooses Bi+1 = B(xi+1, ri+1)⊂ Ai with ri+1 = βr ′

i etc. Alice

wins the game if the unique point of intersection

∞⋂

i=0

Ai =
∞⋂

i=0

Bi

belongs to S, and Bob wins otherwise. The set S is (α, β)-winning if Alice has a winning

strategy, it is α-winning if it is (α, β)-winning for any β ∈ (0, 1), and is winning if it is

α-winning for some α. Schmidt [31] proved that winning sets are thick and that a countable

intersection of α-winning sets is again α-winning.

A more recent development of the theory started with a paper of McMullen [28]

who introduced the notion of absolute winning sets. These were generalized in [4] to

k-dimensionally absolute winning for any 0 ≤ k < dim V . In particular, the hyperplane

absolute game (the case k = dim V − 1) is played on an open subset U of V , as follows.

Again, there are two players called Alice and Bob and a target set S ⊂ U . Let β ∈ (0, 1
3
);

Bob starts the game by choosing a closed Euclidean ball B0 contained in U of radius r0.

For an affine hyperplane L ⊂ V and r > 0, we denote the r-neighborhood of L by

L(r) := {v ∈ V : dist(v, L) < r}.

After Bob chooses a closed Euclidean ball Bi ⊂ U of radius ri , Alice chooses a hyperplane

neighborhood L
(r ′

i )

i with r ′
i ≤ βri , and then Bob chooses a closed ball Bi+1 ⊂ Bi r L

(r ′
i )

i

of radius ri+1 ≥ βri . Alice wins the game if

∞⋂

i=0

Bi ∩ S 6= ∅.

The set S is β-hyperplane absolute winning on U , abbreviated as β-HAW, if Alice has

a winning strategy, and it is HAW on U if it is β-HAW for any β ∈ (0, 1
3
). It is easy to

see that HAW sets are winning in the sense of Schmidt. Moreover, it is proved in [4] that

the property of being HAW is invariant under C1 diffeomorphisms: if ϕ : U → V is a C1

diffeomorphism onto an open subset ϕ(U) of V , then S is HAW on U if and only if ϕ(S)

is HAW on ϕ(U). In particular, the class of HAW sets is independent of the inner product

on V .

The aforementioned property, as shown in [23], can be used to define the notion of HAW

sets for subsets of C1 manifolds. Namely, let M be a C1 manifold, and let {(Uα , ϕα)} be a

C1 atlas, that is, {Uα} is an open cover of M , and each ϕα is a C1 diffeomorphism from

Uα onto the open subset ϕα(Uα) of a Euclidean space V . A subset S ⊂ M is said to be

HAW if, for each α, ϕα(S ∩ Uα) is HAW on ϕα(Uα). The C1 invariance implies that the

definition is independent of the choice of the atlas. Moreover, we can summarize the above

discussion as follows.
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• HAW subsets of a C1 manifold are thick.

• A countable intersection of HAW subsets of a C1 manifold is again HAW.

• Let ϕ : M → N be a diffeomorphism between C1 manifolds. Then S ⊂ M is HAW if

and only if ϕ(S) is HAW.

For the proof of Theorems B1 and C, we will also need the following lemma.

LEMMA 2.1. Let ϕ : M → N be a surjective C1 submersion of C1 manifolds. If S ⊂ M

is HAW, then so is ϕ(S) ⊂ N .

Note that this lemma is complementary to [17, Proposition 6.1], where preimages of

HAW sets under surjective C1 maps are considered. We postpone the proof of Lemma 2.1

until Appendix A.

2.2. A polynomial associated with a linear transformation. Let V be a finite-dimensional

real vector space, regarded as a real subspace of its complexification

VC := V ⊗R C. For a linear transformation T on V , let TC denote the complex linear

extension on VC. Let Sp(T ) be the set of eigenvalues of TC, and let

ρ = ρ(T ) = max
λ∈Sp(T )

|λ|

be the spectral radius of T . Let

p0(x) =
∏

λ∈Sp(T )

(x − λ)s(λ)

be the minimal polynomial of T , and define

s = s(T ) = max
λ∈Sp(T ),|λ|=ρ

s(λ).

The polynomial p(x) given in the following lemma will play an important role.

LEMMA 2.2. There exists a unique real polynomial p(x) = pT (x) with deg p(x) <

deg p0(x) such that, for every λ ∈ Sp(T ),

p(x) ≡
{

(x − λ)s−1 if |λ| = ρ and s(λ) = s,

0 otherwise,
mod (x − λ)s(λ).

Proof. The existence and uniqueness of a complex polynomial p(x) satisfying the

required properties follow directly from the Chinese remainder theorem. Since the minimal

polynomial p0(x) is real, we have s(λ̄) = s(λ) for every λ ∈ Sp(T ). Thus the complex

conjugate of p(x) also satisfies the requirement, and hence the uniqueness implies that

p(x) is indeed real.

We will need to consider the transformation p(T ). To understand it, let us consider the

Jordan normal form of TC. Let

B = {e11, . . . , e1,s1
, e21, . . . , e2,s2

, . . . , er1, . . . , er ,sr } (2.1)

be an ordered basis of VC such that the matrix [TC]B of TC relative to B is a Jordan matrix

[TC]B = diag(J (λ1, s1), . . . , J (λr , sr)), (2.2)
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where J (λi , si) is the Jordan block with eigenvalue λi and size si . Then s = max|λi |=ρ si .

By reordering the vectors in B, we may assume that there is r0 ∈ {1, . . . , r} such that

{
1 ≤ i ≤ r0 H⇒ |λi | = ρ and si = s,

r0 < i ≤ r H⇒ either |λi | < ρ or si < s.
(2.3)

Then it is straightforward to verify that

[p(T )C]B = diag(

n times︷ ︸︸ ︷
E1s , . . . , E1s , 0, . . . , 0), (2.4)

where E1s is the s × s matrix with 1 in the (1, s)-entry and 0 elsewhere. In turn, this

implies that

Ker(p(T ))C =
{ r∑

i=1

si∑

j=1

xij eij : xij ∈ C, x1s = · · · = xr0,s = 0

}
, (2.5)

Im(p(T ))C =
{ r0∑

i=1

xi1ei1 : xi1 ∈ C

}
. (2.6)

It also follows from (2.4) that if T is R-diagonalizable, and if Vλ ⊂ V is the eigenspace

corresponding to λ ∈ Sp(T ), then

p(T ) is the projection onto
⊕

λ∈Sp(T ), |λ|=ρ

Vλ along
⊕

λ∈Sp(T ), |λ|<ρ

Vλ.

Let us also observe the following fact.

LEMMA 2.3. Assume that V is a Lie algebra and that T is an automorphism of V with

ρ = ρ(T ) > 1. Then Im(p(T )) is an abelian subalgebra of V .

Proof. It follows from (2.6) that the restriction of TC onto Im(p(T ))C is diagonalizable,

and all eigenvalues of the restriction have modulus ρ. Therefore, it suffices to show that

if λ1, λ2 ∈ Sp(T ), |λ1| = |λ2| = ρ and v1, v2 ∈ VC are such that TCvi = λivi (i = 1, 2),

then [v1, v2] = 0. Suppose not. In view of

TC([v1, v2]) = [TCv1, TCv2] = λ1λ2[v1, v2],

it follows that λ1λ2 ∈ Sp(T ). But |λ1λ2| = ρ2 > ρ, which is a contradiction.

2.3. Expanding and maximally expanding horospherical subgroups. Let G be a Lie

group with Lie algebra g, let Ŵ ⊂ G be a discrete subgroup and X = G/Ŵ. Recall that

a map f : X → X is affine if it is of the form (1.2) for some g ∈ G and σ ∈ Aut(G, Ŵ).

In this case, we also denote f = fg,σ . Note that f is always surjective and is injective if

and only if σ(Ŵ) = Ŵ. Let σf be the automorphism of G given by (1.3), and let dσf be

the tangent map of σf at 1G, which is an automorphism of g. Let us observe the following

simple facts.
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LEMMA 2.4. Let f = fg,σ be an affine map on X.

(1) Let g′ ∈ G and σ ′ ∈ Aut(G, Ŵ) be such that fg′,σ ′ = f , and let G◦ be the identity

component of G. Then there exists γ ∈ Ŵ such that

g′ = gγ , σ ′(h) = γ −1σ(h)γ for all h ∈ G◦. (2.7)

(2) The restriction of σf to G◦, and hence dσf , is independent of the choices of g and σ

that define f .

(3) For every n ≥ 0,

f n(hx) = σ n
f (h)f n(x) for all h ∈ G, x ∈ X. (2.8)

Proof. (1) The condition implies that σ(h)−1g−1g′σ ′(h) ∈ Ŵ for all h ∈ G. By taking

h = 1G, we see that g−1g′ = γ for some γ ∈ Ŵ. It follows that σ(h)−1γ σ ′(h) ∈ Ŵ for all

h ∈ G. Since Ŵ is discrete,

σ(h)−1γ σ ′(h) = σ(1G)−1γ σ ′(1G) = γ for all h ∈ G◦.

This proves (2.7).

(2) In view of (1), it suffices to verify that if g, g′, σ , σ ′ and γ are such that (2.7) holds,

then gσ(h)g−1 = g′σ ′(h)g′−1 for all h ∈ G◦. This is straightforward.

(3) If n = 0, there is nothing to prove. For n = 1, if h ∈ G and x = h′Ŵ ∈ X, then

f (hx) = f (hh′Ŵ) = gσ(hh′)Ŵ = (gσ(h)g−1)(gσ(h′)Ŵ) = σf (h)f (x).

This shows that (2.8) holds for n = 1. Assume that n ≥ 2 and that (2.8) holds if n is

replaced by 1, . . . , n − 1. Then, for h ∈ G and x ∈ X,

f n(hx) = f n−1(f (hx)) = f n−1(σf (h)f (x))

= σ n−1
f (σf (h))f n−1(f (x)) = σ n

f (h)f n(x).

This completes the proof.

With the above lemma in mind, one can easily generalize the notion of the expanding

horospherical subgroup Gf to the case when f is an affine map: the Lie algebra of Gf is

the subalgebra of g whose complexification is the direct sum of generalized eigenspaces

of dσf corresponding to eigenvalues of modulus greater than one. Clearly, it agrees with

(1.1) when f ∈ G.

Furthermore, let us now define the subgroup Gmax
f mentioned in the introduction.

Applying Lemma 2.2 to V = g and T = dσf , we get a polynomial p(x) = pdσf
(x). If

ρ(dσf ) ≤ 1, put gmax
f = {0}. Otherwise, denote

gmax
f := Im(p(dσf )), (2.9)

which is an abelian subalgebra of g by Lemma 2.3. After that, we can define Gmax
f to be

the connected Lie subgroup of G with Lie algebra gmax
f .

From the preceding discussion, it follows that another way of defining gmax
f is as follows.

We can decompose the complexification gC of g as a direct sum
⊕r

i=1 gi of dσf -invariant

subspaces such that the matrix of the restriction of dσf onto each gi , relative to a certain
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basis of gi , is a Jordan block with eigenvalue λi . Then, reordering the gi , we may assume

that there is r0 ∈ {1, . . . , r} such that |λ1| = · · · = |λr0
| and dim g1 = · · · = dim gr0

,

and, if i > r0, then either |λi | < |λ1| or |λi | = |λ1| and dim gi < dim g1. Finally, we

define gmax
f as the intersection of g with the subspace of gC spanned by the eigenvectors of

dσf contained in
⊕r0

i=1 gi . It follows from (2.9) that gmax
f thus defined does not depend on

the decomposition of gC. Note that, if dσf is diagonalizable over R, then gmax
f is the sum

of (real) eigenspaces corresponding to eigenvalues of dσf with maximum modulus.

More generally, if H is a closed subgroup of G with Lie algebra h, denote

hmax
f :=

{
{0} if ρ(dσf ) ≤ 1,

p(dσf )(h) if ρ(dσf ) > 1.

Since hmax
f ⊂ gmax

f , it is also an abelian subalgebra. Let Hmax
f denote the connected Lie

subgroup of G with Lie algebra hmax
f . Note that Hmax

f is not necessarily contained in H .

Similarly, one can define expanding and maximally expanding horospherical subgroups

for one-parameter subsemigroups. Let G be as above, and let F = {gt : t ∈ R} be a

one-parameter subgroup of G. If f (x) := gtx, then we clearly have σf (h) = gthg−t , and

hence dσf = Ad gt . Then define

GF± := Gg±1
, Gmax

F± := Gmax
g±1

.

Also, if H ⊂ G is a closed subgroup with Lie algebra h, we will denote hmax
F± := hmax

g±1
and

Hmax
F± := Hmax

g±1
.

Example 2.5. Let G = SLn(R), take p, q ∈ N with n = p + q, and let

F = {gt : t ∈ R} where gt = diag(et/pIp, e−t/qIq), (2.10)

a subgroup of G whose action on the quotient of G by SLn(Z) is useful for Diophantine

applications, as we shall see in §7. Then both Ad g1 and Ad g−1 have a unique eigenvalue

of absolute value > 1, and hence, in this case, there is no difference between expanding

and maximally expanding horospherical subgroups. Indeed,

gmax
F+ =

{(
0 A

0 0

)
: A ∈ Mp×q(R)

}
, gmax

F− =
{(

0 0

B 0

)
: B ∈ Mq×p(R)

}
. (2.11)

Note that any F of the form (1.5) is conjugate to (2.10).

2.4. Non-dense orbits of affine maps. Theorem A1 is a special case of the following

theorem.

THEOREM 2.6. Let G be a Lie group, let Ŵ ⊂ G be a discrete subgroup, let X = G/Ŵ,

H ⊂ G be a closed subgroup and let f be an affine map on X. Let Z be a C1 submanifold

of X satisfying one of the following conditions.

(i) Either:

dim(TzZ ∩ Tz(G
max
f z)) < dim Hmax

f for all z ∈ Z; (2.12)

(ii) or

#{λ ∈ Sp(dσf ) : |λ| = ρ(dσf ), s(λ) = s(dσf )} = 1
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and

Tz(H
max
f z) 6⊂ TzZ for all z ∈ Z (2.13)

(that is, Z is Hmax
f -transversal).

Assume also that

Tz(σ
n
f (H)z) 6⊂ TzZ for all z ∈ Z, n ≥ 0. (2.14)

Then, for every x ∈ X, the set {h ∈ H : hx ∈ E(f , Z)} is HAW.

Remark 2.7.

(1) If ρ(dσf ) ≤ 1, the group Hmax
f is trivial, and thus neither (2.12) nor (2.13) can be

satisfied. Thus, without loss of generality, one can assume that ρ(dσf ) > 1.

(2) When H = G, both (2.12) and (2.13) are equivalent to the condition that Z is

Gmax
f -transversal, and (2.14) is always satisfied as long as dim Z < dim X. Therefore

Theorem 2.6 implies Theorem A1.

(3) If Z is a point, then (2.14) always holds, and both (2.12) and (2.13) are equivalent to

dim Hmax
f > 0, which happens if and only if ρ(dσf ) > 1 and h 6⊂ Ker(p(dσf )).

(4) One can also take H to be a one-parameter subgroup. In this case, condition (2.12)

is stronger than (2.13).

(5) Condition (2.14) is imposed to exclude the case where Z contains an open subset of

f n(Hx) for some x ∈ X and n ≥ 0. If condition (2.14) is dropped, it can be shown

that, for every x ∈ X, the set {h ∈ H : ω(hx) ∩ Z = ∅}, where

ω(hx) := {y ∈ X : there exists nk → +∞ such that f nkhx → y}
is the ω-limit set of hx, is HAW on H (see Remark 4.7).

2.5. Non-dense orbits of continuous flows. We are now ready to state a continuous

analogue of Theorem 2.6.

THEOREM 2.8. Let G be a Lie group, let Ŵ ⊂ G be a discrete subgroup, let X = G/Ŵ

and let H ⊂ G be a closed subgroup. Let F = {gt : t ∈ R} be a one-parameter subgroup

of G. Let Z be an F -transversal C1 submanifold of X. Assume that either:

(i)

dim((TzZ ⊕ Tz(Fz)) ∩ Tz(G
max
F+ z)) < dim Hmax

F+ for all z ∈ Z; (2.15)

or

(ii) F is Ad-diagonalizable over R and

Tz(H
max
F+ z) 6⊂ TzZ ⊕ Tz(Fz) for all z ∈ Z (2.16)

(that is, Z is (F , Hmax
F+ )-transversal).

Assume also that

Tz(gtHg−1
t z) 6⊂ TzZ ⊕ Tz(Fz) for all z ∈ Z, t ≥ 0. (2.17)

Then, for every x ∈ X, the set

{h ∈ H : hx ∈ E(F+, Z)} (2.18)

is HAW.
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Remark 2.9.

(1) Similarly to Theorem 2.6, neither (2.15) nor (2.16) can hold if ρ(Ad g1) ≤ 1. Thus,

without loss of generality, one can assume that ρ(Ad g1) > 1.

(2) As in the case of Theorem 2.6, the H = G case of Theorem 2.8 implies Theorem

A2. In fact, in this situation, in view of the assumption of F -transversality of Z, both

(2.15) and (2.16) are equivalent to the condition that Z is (F , Gmax
F+ )-transversal, and

(2.17) is always satisfied.

(3) Assume that Z is a point. Then it is F -transversal. Since the intersection of f

and gmax
F+ is always trivial, both (2.15) and (2.16) are equivalent to dim Hmax

F+ > 0,

which happens if and only if ρ(Ad g1) > 1 and h 6⊂ Ker(p(Ad g1)). Note also

that (2.17) means that h 6⊂ f, which automatically holds if (2.15) or (2.16) is

satisfied.

(4) Condition (2.17) is imposed to exclude the case where F−Z contains an open subset

of Hx for some x ∈ X. If condition (2.17) is dropped, it can be shown that, for every

x ∈ X, the set {h ∈ H : ω(hx) ∩ Z = ∅} is HAW on H , where

ω(hx) := {y ∈ X : there exists tk → +∞, gtkhx → y}

is the ω-limit set of hx (see Remark 4.7).

2.6. Proof of Theorem 2.8 from Theorem 2.6. We now deduce Theorem 2.8 from

Theorem 2.6. Assume that the conditions of Theorem 2.8 hold. Since any C1 submanifold

of X is the union of countably many compact C1 submanifolds (possibly with boundaries),

we may assume, without loss of generality, that Z is compact. In this case, it follows from

the F -transversality of Z that the set

Z[0,τ ] :=
⋃

t∈[0,τ ]

gtZ

is a C1 submanifold of X for some τ > 0, and we have TzZ[0,τ ] = TzZ ⊕ Tz(Fz)

for every z ∈ Z. Moreover, shrinking τ if necessary, condition (2.15) (respectively,

(2.16), (2.17)) implies that (2.12) (respectively, (2.13), (2.14)) holds with f (x) = gτx

and Z replaced by Z[0,τ ] (see [19, Lemma 4.1.2] or [23, Lemma 4.1] for details).

Note also that pAd gτ (Ad gτ ) = pAd g1
(Ad g1). Therefore, Theorem 2.6 implies that

the set

{h ∈ H : {gnτhx : n ≥ 0} ∩ Z[0,τ ] = ∅} (2.19)

is HAW on H . On the other hand, the set (2.19) is contained in the set (2.18). In fact, if

h ∈ H is not in (2.18), then there exist tk ≥ 0 such that gtkhx → z ∈ Z. Let nk ≥ 0 be such

that nkτ − tk ∈ [0, τ). By passing to a subsequence, we may assume that nkτ − tk → t ∈
[0, τ ]. It follows that

gnkτhx = gnkτ−tk (gtkhx) → gtz ∈ Z[0,τ ].

Thus h is not in (2.19). This shows that the set (2.18) contains (2.19), and hence is HAW

on H .
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3. Hyperplanes in a subspace

Let V be a Euclidean space with inner product 〈·, ·〉, and let L(V ) denote the vector space

of linear transformations on V . Both the Euclidean norm on V and the operator norm on

L(V ) are denoted by ‖·‖. For 0 ≤ d ≤ dim V , let Grd(V ) denote the Grassmann manifold

of d-dimensional subspaces of V . Our primary goal in this section is to prove the following

result concerning hyperplanes in a subspace U of V .

PROPOSITION 3.1. Let T ∈ GL(V ), let U be a non-zero subspace of V , let 0 ≤ d ≤
dim V − 1, let W be a closed subset of Grd(V ) and let p(x) be the polynomial given

by Lemma 2.2. Suppose that either:

(i)

dim(W ∩ Im p(T )) < dim(p(T )U) for all W ∈ W;

or

(ii)

#{λ ∈ Sp(T ) : |λ| = ρ(T ), s(λ) = s(T )} = 1,

and p(T )U 6⊂ W for every W ∈ W.

Suppose also that

T n(U) 6⊂ W for all W ∈ W, n ≥ 0. (3.1)

Then there exists a constant c = c(T , U , W) > 0 satisfying the following property. For

any W ∈ W and n ≥ 0, there exists a linear hyperplane LW ,n in U such that

dist(T nu, W) ≥ c‖T n‖ dist(u, LW ,n) for all u ∈ U . (3.2)

Let us remark that if W (1) denotes the 1-neighborhood of W in V , then inequality (3.2)

means that T −n(W (1)) ∩ U is contained in the (c‖T n‖)−1-neighborhood of LW ,n in U .

We first prove some auxiliary lemmas. The first one is probably well known, but we

could not find an appropriate reference. We give its simple proof for completeness.

LEMMA 3.2. Suppose that T ∈ L(V ) is not nilpotent, and let ρ = ρ(T ), s = s(T ). Then

there exists C > 1 such that

C−1ns−1ρn ≤ ‖T n‖ ≤ Cns−1ρn for all n ≥ 0.

Proof. By replacing T with T/ρ, we may assume that ρ = 1. Let B be an ordered basis

of VC such that the matrix [TC]B is the Jordan normal form (2.2), and let ‖·‖B be the

norm on L(V ) given by ‖S‖B = ‖[SC]B‖∞, where ‖·‖∞ denotes the largest modulus of

the matrix entries. Then

‖T n‖B = ‖diag(J (λ1, s1)
n, . . . , J (λr , sr)

n)‖∞ = max
1≤i≤r

‖J (λi , si)
n‖∞.

It is straightforward to verify that, for 1 ≤ j ≤ k ≤ si ,

the (j , k)-entry of J (λi , si)
n is equal to

(
n

k−j

)
λ

n−(k−j)
i . (3.3)
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Since |λi | ≤ 1, this implies that ‖J (λi , si)
n‖∞ =

(
n

si−1

)
|λi |n−si+1 whenever n ≥ 2si .

Thus, there exists n0 > 0 such that

‖T n‖B = max
1≤i≤r

(
n

si−1

)
|λi |n−(si−1) =

(
n

s−1

)
for all n ≥ n0.

Now the lemma follows from the fact that any two norms on L(V ) are equivalent.

Let S(V ) be the unit sphere in V , that is,

S(V ) = {v ∈ V : ‖v‖ = 1}.

Then every T ∈ L(V ) induces a map

〈T 〉 : S(V ) r Ker T → S(V ), v 7→
T v

‖T v‖
.

The next lemma explains the role of the polynomial p(x).

LEMMA 3.3. Let T ∈ GL(V ), let p(x) be the polynomial given by Lemma 2.2 and let K

be a compact subset of S(V ) r Ker p(T ). Then

inf
v∈K , n≥0

‖T nv‖
‖T n‖

> 0 (3.4)

and

lim
n→+∞

sup
v∈K

‖〈T n〉v − 〈T n−s+1p(T )〉v‖ = 0. (3.5)

Proof. As in the proof of Lemma 3.2, we may assume that ρ(T ) = 1. Let B be an ordered

basis of VC of the form (2.1) such that [TC]B is the matrix (2.2) and satisfies (2.3). In this

proof, we always write a vector v ∈ V as

v =
r∑

i=1

si∑

j=1

xij eij .

It then follows from (3.3) that

T nv =
r∑

i=1

si∑

j=1

( si∑

k=j

(
n

k−j

)
λ

n−(k−j)
i xik

)
eij . (3.6)

Let c0 > 0 be such that, for any v ∈ V ,

‖v‖ ≥ c0 max
1≤i≤r0

|xi1|. (3.7)

In view of (2.5) and the conditions on K , we may also assume that if v ∈ K , then

max
1≤i≤r0

|xis | ≥ c0 and max
1≤i≤r ,1≤j≤si

|xij | ≤ c−1
0 . (3.8)
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It follows that, for n > n1 := ⌊2s2(1 + c−2
0 )⌋ and v ∈ K ,

(
n

s−1

)−1‖T nv‖
(3.6), (3.7)

≥ c0 max
1≤i≤r0

∣∣∣∣
s∑

k=1

(
n

s−1

)−1( n
k−1

)
λ

n−(k−1)
i xik

∣∣∣∣

≥ c0 max
1≤i≤r0

(
|xis | −

s−1∑

k=1

(
n

s−1

)−1( n
k−1

)
|xik|

)

(3.8)
≥ c0

(
c0 − (s − 1)

(
n

s−1

)−1( n
s−2

)
c−1

0

)

= c2
0 −

(s − 1)2

n − s + 2
≥

c2
0

2
. (3.9)

This, together with Lemma 3.2, shows that infv∈K ,n>n1
(‖T nv‖/‖T n‖) > 0. Clearly, we

also have infv∈K , 0≤n≤n1
(‖T nv‖/‖T n‖) > 0. This proves (3.4).

We now prove (3.5). For n > n1 and v ∈ K ,

‖〈T n〉v − 〈T n−s+1p(T )〉v‖

≤
∥∥∥∥

T nv

‖T nv‖
−

(
n

s−1

)
T n−s+1p(T )v

‖T nv‖

∥∥∥∥ +
∥∥∥∥

(
n

s−1

)
T n−s+1p(T )v

‖T nv‖
−

T n−s+1p(T )v

‖T n−s+1p(T )v‖

∥∥∥∥

=
‖T nv −

(
n

s−1

)
T n−s+1p(T )v‖

‖T nv‖
+

∣∣∣∣
‖T nv‖ −

(
n

s−1

)
‖T n−s+1p(T )v‖

‖T nv‖

∣∣∣∣
(3.9)
≤ 4c−2

0 ‖
(

n
s−1

)−1
T nv − T n−s+1p(T )v‖.

Let us write

(
n

s−1

)−1
T nv − T n−s+1p(T )v =

r∑

i=1

si∑

j=1

f
(n)
ij (v)eij .

It suffices to prove that

lim
n→+∞

sup
v∈K

|f (n)
ij (v)| = 0 (3.10)

for any 1 ≤ i ≤ r and 1 ≤ j ≤ si . It follows from (2.4) and (3.6) that

(
n

s−1

)−1
T nv − T n−s+1p(T )v =

r∑

i=1

si∑

j=1

( si∑

k=j

(
n

s−1

)−1( n
k−j

)
λ

n−(k−j)
i xik

)
eij

−
r0∑

i=1

λ
n−(s−1)
i xisei1.

Thus, by comparing the coefficients, we deduce that, for 1 ≤ i ≤ r0, j = 1, n ≥ 2s and

v ∈ K ,

|f (n)
i1 (v)| =

∣∣∣∣
( s∑

k=1

(
n

s−1

)−1( n
k−1

)
λ

n−(k−1)
i xik

)
− λ

n−(s−1)
i xis

∣∣∣∣

=
∣∣∣∣

s−1∑

k=1

(
n

s−1

)−1( n
k−1

)
λ

n−(k−1)
i xik

∣∣∣∣ ≤
(s − 1)2

c0(n − s + 2)
.
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Hence (3.10) holds for 1 ≤ i ≤ r0 and j = 1. Similarly, for 1 ≤ i ≤ r0, 2 ≤ j ≤ s, n ≥ 2s

and v ∈ K ,

|f (n)
ij (v)| =

∣∣∣∣
s∑

k=j

(
n

s−1

)−1( n
k−j

)
λ

n−(k−j)
i xik

∣∣∣∣ ≤
(s − j + 1)(s − 1)

c0(n − s + 2)
,

and hence (3.10) holds for 1 ≤ i ≤ r0 and 2 ≤ j ≤ s. Finally, for r0 < i ≤ r , 1 ≤ j ≤ si ,

n ≥ 2si and v ∈ K ,

|f (n)
ij (v)| =

∣∣∣∣
si∑

k=j

(
n

s−1

)−1( n
k−j

)
λ

n−(k−j)
i xik

∣∣∣∣ ≤ si
(

n
si−1

)
|λi |n−(si−1)c−1

0 .

Since |λi | < 1, we also have (3.10) for i and j in these ranges. This completes the proof.

We will also need the following result.

LEMMA 3.4. Let T , U , W and p(x) be as in Proposition 3.1, let T ∗ be the adjoint

transformation of T and suppose that one of the conditions (i) or (ii) in the Proposition

holds. Then there exist compact subsets

K ⊂ S(V ) r Ker p(T ∗) and K(1) ⊂ S(V ) r U⊥

such that

〈(T ∗)n−s+1p(T ∗)〉(K ∩ W⊥) ∩ K(1) 6= ∅ for all W ∈ W, n ≥ 0. (3.11)

Proof. (1) Assume that condition (i) holds. Let V (1) ⊂ Im p(T ∗) be a subspace such that

Im p(T ∗) = (U⊥ ∩ Im p(T ∗)) ⊕ V (1),

and let K(1) = S(V (1)). Then K(1) ⊂ S(V ) r U⊥. We first prove that, for every

W0 ∈ W, there exist a neighborhood NW0
of W0 in W and a compact subset KW0

of

S(V ) r Ker p(T ∗) such that

〈(T ∗)n−s+1p(T ∗)〉(KW0
∩ W⊥) ∩ K(1) 6= ∅ for all W ∈ NW0

, n ≥ 0. (3.12)

To show this, let V0 ⊂ W⊥
0 be a subspace such that

W⊥
0 = (Ker p(T ∗) ∩ W⊥

0 ) ⊕ V0,

and choose a neighborhood NW0
of W0 in W and a continuous map NW0

→ Grdim V0
(V ),

W 7→ VW with VW0
= V0 such that VW ⊂ W⊥ for W ∈ NW0

. Shrinking NW0
, if necessary,

we may also assume that VW ∩ Ker p(T ∗) = {0} for W ∈ NW0
. Then the set

KW0
=

⋃

W∈NW0

S(VW )
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is compact and contained in S(V ) r Ker p(T ∗). For W ∈ NW0
and n ≥ 0,

dim((T ∗)n−s+1p(T ∗)VW ∩V (1)) ≥ dim (T ∗)n−s+1p(T ∗)VW + dim V (1) − dim Im p(T ∗)

= dim V0 − (dim Im p(T ∗) − dim V (1))

= dim p(T ∗)W⊥
0 − dim(U⊥ ∩ Im p(T ∗))

= dim(W0 ∩ Im p(T ))⊥ − dim(p(T )U)⊥ > 0.

Thus (T ∗)n−s+1p(T ∗)(VW ) ∩ V (1) 6= {0}. Therefore, there exists v ∈ S(VW ) ⊂ KW0
∩

W⊥ such that 〈(T ∗)n−s+1p(T ∗)〉v ∈ K(1). This proves that NW0
and KW0

satisfy (3.12).

For every W0 ∈ W, let us choose NW0
and KW0

satisfying (3.12). Since W is compact,

there exist W1, . . . , Wm ∈ W such that W =
⋃m

i=1 NWi
. Then K =

⋃m
i=1 KWi

satisfy the

requirement of the lemma.

(2) We now assume that condition (ii) holds. We first construct a compact subset

K ⊂ S(V ) r Ker p(T ∗) such that −K = K , p(T ∗)K ∩ U⊥ = ∅ and K ∩ W⊥ 6= ∅ for

every W ∈ W. Let W0 ∈ W. It follows from condition (ii) that p(T ∗)W⊥
0 6⊂ U⊥. Let

v0 ∈ S(W⊥
0 ) be such that p(T ∗)v0 /∈ U⊥. Then we can choose a neighborhood NW0

of

W0 in W and a continuous map NW0
→ S(V ), W 7→ vW such that vW0

= v0, vW ∈ W⊥

and p(T ∗)vW /∈ U⊥ for W ∈ NW0
. The compact set KW0

= {vW : W ∈ NW0
} satisfies

KW0
∩ Ker p(T ∗) = ∅, p(T ∗)KW0

∩ U⊥ = ∅ and KW0
∩ W⊥ 6= ∅ for every W ∈ NW0

.

Let W1, . . . , Wm ∈ W be such that W =
⋃m

i=1 NWi
. Then the set K =

⋃m
i=1(KWi

∪
(−KWi

)) satisfies the requirement.

Let K(1) = 〈p(T ∗)〉K ⊂ S(V ) r U⊥. Since T ∗ and T have the same minimal polyno-

mial, we have pT ∗(x) = p(x). It then follows from condition (ii) and Lemma 2.2 that the

restriction of 〈T ∗〉 to S(Im p(T ∗)) is ±1. Therefore, for every W ∈ W and n ≥ 0,

〈(T ∗)n−s+1p(T ∗)〉(K ∩ W⊥) ∩ K(1) = 〈p(T ∗)〉(K ∩ W⊥) 6= ∅.

This completes the proof.

We are now prepared to prove the main result of this section.

Proof of Proposition 3.1. Let K and K(1) be the compact sets given by Lemma 3.4, and let

K(2) be a compact neighborhood of K(1) in S(V ) r U⊥. Since pT ∗(x) = p(x), applying

Lemma 3.3 to T ∗, we get

lim
n→+∞

sup
v∈K

‖〈(T ∗)n〉v − 〈(T ∗)n−s+1p(T ∗)〉v‖ = 0.

Therefore, there exists N ≥ 0 such that, for n ≥ N and v ∈ K ,

〈(T ∗)n−s+1p(T ∗)〉v ∈ K(1) H⇒ 〈(T ∗)n〉v ∈ K(2).

For n ≥ N and W ∈ W, it follows from (3.11) that we can choose vW ,n ∈ K ∩ W⊥

such that 〈(T ∗)n−s+1p(T ∗)〉vW ,n ∈ K(1), and hence 〈(T ∗)n〉vW ,n ∈ K(2). For 0 ≤ n < N ,

using condition (3.1) and arguing as part (2) of the proof of Lemma 3.4 (with p(T ∗)
replaced by (T ∗)n), we see that there exists a compact subset Kn ⊂ S(V ) such that

(T ∗)n(Kn) ∩ U⊥ = ∅ and Kn ∩ W⊥ 6= ∅ for every W ∈ W. In this case, we choose
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vW ,n ∈ Kn ∩ W⊥. Let

K(3) = K(2) ∪
⋃

0≤n<N

〈(T ∗)n〉(Kn),

which is again a compact subset of S(V ) r U⊥. In summary, for every n ≥ 0 and W ∈ W,

we have chosen a unit vector vW ,n ∈ W⊥ with 〈(T ∗)n〉vW ,n ∈ K(3). When n ≥ N , we also

have vW ,n ∈ K .

Let PU ∈ L(V ) be the orthogonal projection onto U , and let

c1 = inf
v∈K(3)

‖PU v‖ > 0,

c2 = min

{
inf

v∈K , n≥N

‖(T ∗)nv‖
‖T n‖

, inf
v∈S(V ), 0≤n<N

‖(T ∗)nv‖
‖T n‖

}
(3.4)
> 0.

Then, for any n ≥ 0 and W ∈ W,

‖PU (T ∗)nvW ,n‖ ≥ c1‖(T ∗)nvW ,n‖ ≥ c1c2‖T n‖.

Since (T ∗)nvW ,n /∈ U⊥, the intersection

LW ,n = ((T ∗)nvW ,n)
⊥ ∩ U

is a hyperplane in U . For u ∈ U ,

dist(u, LW ,n) =
|〈u, PU (T ∗)nvW ,n〉|

‖PU (T ∗)nvW ,n‖
=

|〈T nu, vW ,n〉|
‖PU (T ∗)nvW ,n‖

≤
dist(T nu, W)

c1c2‖T n‖
.

This completes the proof.

Remark 3.5. In the proof of Proposition 3.1, condition (3.1) is only used to define the sets

Kn for 0 ≤ n < N . If condition (3.1) is dropped, the same argument (for K(3) = K(2) and

n ≥ N) shows the following weaker statement. There exist N > 0 and c > 0 such that, for

W ∈ W and n ≥ N , there exists a linear hyperplane LW ,n in U such that (3.2) holds.

4. Proof of Theorem 2.6

4.1. Hyperplane percentage game. We will prove the HAW property by demonstrating

the winning property for the hyperplane percentage game introduced in [5]. Being played

on an open subset U of a Euclidean space V , the hyperplane percentage game has the same

winning sets as the hyperplane absolute game.

Let S ⊂ U be a target set, and let β ∈ (0, 1). The β-hyperplane percentage game

is defined as follows. Bob begins by choosing a closed Euclidean ball B0 ⊂ U . After

Bob chooses a closed ball Bi of radius ri , Alice chooses finitely many hyperplane

neighborhoods {L(ri,j )

i,j : 1 ≤ j ≤ Ni} such that ri,j ≤ βri , and then Bob chooses a closed

ball Bi+1 ⊂ Bi of radius ri+1 ≥ βri such that

#{1 ≤ j ≤ Ni : Bi+1 ∩ L
(ri,j )

i,j = ∅} ≥ Ni/2.
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Alice wins the game if

∞⋂

i=0

Bi ∩ S 6= ∅.

The set S is β-hyperplane percentage winning (β-HPW) on U if Alice has a winning

strategy. Note that, for large values of β, it is possible for Alice to leave Bob with no

available moves after finitely many turns. However, an elementary argument (see [29,

Lemma 2] or [3, §2]) shows that Bob always has a legal move if β is smaller than some

constant β0(dim V ) < 1. For example, we have β0(1) = 1/5. The set S is hyperplane

percentage winning (HPW) on U if it is β-HPW on U for any β ∈ (0, β0(dim V )). The

significance of this notion lies in the following result.

LEMMA 4.1. [5] Let U be an open subset of a Euclidean space V . A subset S ⊂ U is HPW

on U if and only if it is HAW on U .

Let us remark that when proving a set S to be HPW, we may assume that ri → 0. In

fact, if Alice has a winning strategy whenever ri → 0, then S must be dense, and hence

Alice always wins if ri 6→ 0. Moreover, by letting Alice make dummy moves in the first

few rounds and relabeling Bi , we may also assume that r0 is smaller than any prescribed

small positive constant.

4.2. Some Lie-theoretic lemmas. Let G be a Lie group with Lie algebra g. We choose

and fix an inner product on g. For an inner product space V and τ > 0, let BV (τ )

(respectively, B◦
V (τ )) denote the closed ball (respectively, open ball) in V of radius

τ centered at 0. Let τ1 > 0 be such that the exponential map of G restricts to a

diffeomorphism from B◦
g(τ1) onto an open neighborhood of 1G in G, and let

log : exp(B◦
g(τ1)) → B◦

g(τ1)

be the inverse of exp |B◦
g(τ1). Let τ2 ∈ (0, τ1] be such that

x1, x2, x3 ∈ Bg(τ2) H⇒ exp(x1) exp(x2) exp(x3) ∈ exp(B◦
g(τ1)).

First, let us prove the following lemma.

LEMMA 4.2. For any ε > 0, there exists τ3 = τ3(ε) ∈ (0, τ2] such that if x, y, z ∈ Bg(τ3)

satisfy exp(x) exp(y) exp(z) = 1G, then

‖x + y + z‖ ≤ ε min{‖x‖, ‖y‖, ‖z‖, ‖x + y‖, ‖y + z‖, ‖z + x‖}.

Proof. By symmetry, it suffices to prove that

‖x + y + z‖ ≤ ε min{‖x‖, ‖y + z‖}. (4.1)

Consider the map 8 : Bg(τ2) × Bg(τ2) → g given by

8(x, y) = log(exp(x) exp(y)) − x − y. (4.2)

Note that

8(x, 0) = 8(0, y) = 0 for all x ∈ Bg(τ2). (4.3)
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Thus, if we let (∂8/∂x) : Bg(τ2) × Bg(τ2) → L(g) be the partial derivative of 8 with

respect to x, then

8(x, y) =
( ∫ 1

0

∂8

∂x
(tx, y) dt

)
x.

Note that ∂8/∂x is continuous, and it follows from (4.3) that (∂8/∂x)(0, 0) = 0. Thus,

for any ε > 0, there exists τ3 ∈ (0, τ2] such that

x, y ∈ Bg(τ3) H⇒
∥∥∥∥
∂8

∂x
(x, y)

∥∥∥∥ ≤
ε

1 + ε
.

Therefore,

‖8(x, y)‖ ≤
( ∫ 1

0

∥∥∥∥
∂8

∂x
(tx, y)

∥∥∥∥dt

)
‖x‖ ≤

ε

1 + ε
‖x‖ for all x, y ∈ Bg(τ3).

Suppose that x, y, z ∈ Bg(τ3) and exp(x) exp(y) exp(z) = 1G. Then 8(x, y) = −(x +
y + z). It follows that

‖x + y + z‖ = ‖8(x, y)‖ ≤
ε

1 + ε
‖x‖. (4.4)

This, in turn, implies that

‖x + y + z‖ = (1 + ε)‖x + y + z‖ − ε‖x + y + z‖
≤ ε‖x‖ − ε‖x + y + z‖
≤ ε‖y + z‖. (4.5)

Now (4.1) follows from (4.4) and (4.5).

For the convenience of later reference, let us record the following corollary.

COROLLARY 4.3. For any ε > 0, there exists τ4 = τ4(ε) ∈ (0, τ2] such that:

(1) for any x, y ∈ Bg(τ4),

‖log(exp(x) exp(y))‖ ≤ (1 + ε)‖x + y‖;

and

(2) for any x, y, z ∈ Bg(τ4),

‖log(exp(x) exp(y) exp(z)) − y‖ ≤ (1 + ε)(‖x‖ + ‖z‖).

Proof. For ε > 0, let τ3 = τ3(ε) ∈ (0, τ2] be as in Lemma 4.2, and let τ4 ∈ (0, τ2] be such

that

x1, x2, x3 ∈ Bg(τ4) H⇒ log(exp(x1) exp(x2) exp(x3)) ∈ Bg(τ3).

Then (1) follows by applying Lemma 4.2 to z = −log(exp(x) exp(y)). For (2), let

w = log(exp(x) exp(y) exp(z)), v = log(exp(x) exp(y)).

Then w, v ∈ Bg(τ3). Note that

exp(v) exp(−y) exp(−x) = exp(w) exp(−z) exp(−v) = 1G.

https://doi.org/10.1017/etds.2021.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.4


1348 J. An et al

It follows from Lemma 4.2 that

‖w − y‖ = ‖(v − y − x) + (w − z − v) + (x + z)‖
≤ ‖v − y − x‖ + ‖w − z − v‖ + ‖x + z‖
≤ ε‖x‖ + ε‖z‖ + ‖x + z‖
≤ (1 + ε)(‖x‖ + ‖z‖).

This proves (2).

We will only use the ε = 1 case of Corollary 4.3. However, the following result will be

needed for arbitrarily small ε.

LEMMA 4.4. Let h be a subalgebra of g. Then there exist τ5 ∈ (0, τ2] and a function

δ1 : (0, 1) → (0, τ2] such that, for any y ∈ Bh(τ5), there exists Ty ∈ GL(h) with ‖Ty‖ ≤ 2

such that

ε ∈ (0, 1), x ∈ Bh(δ1(ε)) H⇒ ‖log(exp(x) exp(y)) − y − Tyx‖ ≤ ε‖x‖.

Proof. The map 8 defined in (4.2) sends Bh(τ2) × Bh(τ2) into h. Let 8h be the restriction

of 8 to h × h. For y ∈ Bh(τ2), let

Ty = idh +
∂8h

∂x
(0, y).

Then, for x ∈ Bh(τ2),

log(exp(x) exp(y)) − y − Tyx = 8h(x, y) −
∂8h

∂x
(0, y)x

=
( ∫ 1

0

(
∂8h

∂x
(tx, y) −

∂8h

∂x
(0, y)

)
dt

)
x.

Since the map (∂8h/∂x) : Bh(τ2) × Bh(τ2) → L(h) is continuous, it is uniformly contin-

uous. Hence, there exists a function δ1 : (0, 1) → (0, τ2] such that, for any ε ∈ (0, 1) and

x, x′, y, y′ ∈ Bh(τ2),

max{‖x − x′‖, ‖y − y′‖} ≤ δ1(ε) H⇒
∥∥∥∥
∂8h

∂x
(x, y) −

∂8h

∂x
(x′, y′)

∥∥∥∥ ≤ ε.

Let τ5 = δ1(1/2). In view of (∂8h/∂x)(0, 0) = 0, it follows that, for any y ∈ Bh(τ5),

we have ‖(∂8h/∂x)(0, y)‖ ≤ 1/2, and hence Ty is invertible and ‖Ty‖ ≤ 2. Moreover,

it follows that if x ∈ Bh(δ1(ε)), then

‖log(exp(x) exp(y)) − y − Tyx‖ ≤
( ∫ 1

0

∥∥∥∥
∂8h

∂x
(tx, y) −

∂8h

∂x
(0, y)

∥∥∥∥ dt

)
‖x‖ ≤ ε‖x‖.

This completes the proof.

4.3. A nice neighborhood of Z. Now let Ŵ be a discrete subgroup of G, and let X =
G/Ŵ. For x ∈ X, we define the map

expx : g → X, expx(x) = exp(x)x.
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Let d expx : g → TxX be the tangent map of expx at 0. The next lemma shows the

existence of a good neighborhood of the submanifold Z of X whenever Z is compact.

LEMMA 4.5. Let Z ⊂ X be a compact C1 submanifold (possibly with boundary). For

z ∈ Z, consider the subspace of g given by Wz = (d expz)
−1(TzZ). Then there exists a

function δ2 : (0, 1) → (0, ∞) such that, for any ε ∈ (0, 1) and r ∈ (0, δ2(ε)], there exists

a neighborhood � of Z satisfying the following property. For any y ∈ �, there exists z ∈ Z

such that

x ∈ Bg(r), expy(x) ∈ � H⇒ dist(x, Wz) < εr .

Proof. First, let us notice that there exists a function δ3 : (0, 1) → (0, ∞) such that, for

any ε ∈ (0, 1) and z ∈ Z,

y ∈ Bg(δ3(ε)), expz(y) ∈ Z H⇒ dist(y, Wz) ≤ ε‖y‖. (4.6)

In fact, since Z is compact, there exists τ6 > 0 such that, for every z ∈ Z, there is a

unique C1 map φz : BWz(τ6) → W⊥
z with φz(0) = 0 satisfying the following property.

If y ∈ Bg(τ6) and expz(y) ∈ Z, then y = Pzy + φz(Pzy), where Pz is the orthogonal

projection from g onto Wz.

Let (dφz)w : Wz → W⊥
z be the tangent map of φz at w ∈ BWz(τ6). Then (dφz)0 = 0,

and the map (z, w) 7→ (dφz)w (as a map between bundles over Z whose fibers at z

are BWz(τ6) and the space of linear maps Wz → W⊥
z , respectively) is continuous. It

follows that there exists a function δ3 : (0, 1) → (0, τ6] such that, for any z ∈ Z, ε ∈ (0, 1)

and w ∈ BWz(δ3(ε)), we have ‖(dφz)w‖ ≤ ε, and hence ‖φz(w)‖ ≤ ε‖w‖. Now, if y ∈
Bg(δ3(ε)) and expz(y) ∈ Z, then

dist(y, Wz) = ‖y − Pzy‖ = ‖φz(Pzy)‖ ≤ ε‖Pzy‖ ≤ ε‖y‖.

Hence (4.6) holds.

Define the function δ2 as

δ2(ε) = min{δ3(ε/4)/2, τ4(1)},

where τ4(·) is as in Corollary 4.3. Let ε ∈ (0, 1), r ∈ (0, δ2(ε)]. We verify that the

neighborhood

� =
⋃

z∈Z

expz(B
◦
g(εr/8))

of Z satisfies the required property. Let y ∈ �. Then there exists z ∈ Z such that y =
expz(v) for some v ∈ B◦

g(εr/8). Suppose x ∈ Bg(r) and expy(x) ∈ �. We need to show

that dist(x, Wz) < εr . Since expy(x) ∈ �, there exist z′ ∈ Z and v′ ∈ B◦
g(εr/8) such that

expy(x) = expz′(v′), that is, exp(x)y = exp(v′)z′. Since

‖x‖ ≤ r ≤ δ2(ε) ≤ τ4(1)

and

max{‖v‖, ‖v′‖} < εr/8 ≤ τ4(1),
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if we write

y = log(exp(−v′) exp(x) exp(v)),

then it follows from Corollary 4.3(2) that

‖y‖ ≤ ‖x‖ + 2(‖v‖ + ‖v′‖) < r +
εr

2
< 2r ≤ 2δ2(ε) ≤ δ3(ε/4) (4.7)

and

‖x − y‖ ≤ 2(‖v‖ + ‖v′‖) <
εr

2
. (4.8)

Note that

expz(y) = exp(−v′) exp(x) exp(v)z = exp(−v′) exp(x)y = z′ ∈ Z.

Thus, it follows from (4.6) and (4.7) that

dist(y, Wz) ≤
ε

4
‖y‖ <

εr

2
.

Hence, by (4.8),

dist(x, Wz) ≤ ‖x − y‖ + dist(y, Wz) < εr .

This proves the lemma.

We now prove the following lemma.

LEMMA 4.6. Let G, Ŵ, X, H , f and Z be as in Theorem 2.6, and assume that the

conditions in the theorem hold. Moreover, assume that Z is compact (possibly with

boundary). Then there exist τ7 ∈ (0, τ1] and a function r̃0 : (0, 1) → (0, ∞) such that,

for any ε ∈ (0, 1) and r0 ∈ (0, r̃0(ε)], there exists a neighborhood � = �(ε, r0) of Z

satisfying the following property. For any x ∈ X, any closed ball B ⊂ B◦
h(τ7) of radius

r ≤ r0 and any n ≥ 0 with

εr0

r
≤ ‖(dσf )n‖ ≤

r0

r
, (4.9)

there exists an affine hyperplane L = L(x, B, n) in h such that

exp−1
x (f −n(�)) ∩ B ⊂ L(εr), (4.10)

where L(εr) is the εr-neighborhood of L in h.

Note that, in the statement of Lemma 4.6, we do not require that expx is injective on

B◦
h(τ7).

Proof. For z ∈ Z, let Wz be the subspace of g given in Lemma 4.5. We want to apply

Proposition 3.1 to V = g, U = h, T = dσf and W = {Wz : z ∈ Z}. Since Z is C1, the

map Z → Grdim Z(g), z 7→ Wz is continuous. It then follows, from the compactness of

Z, that W is compact. Condition (i), (respectively, (ii)) in Theorem 2.6 implies condition

(i), (respectively, (ii)) in Proposition 3.1, and also condition (2.14) implies (3.1). Thus, all

conditions in Proposition 3.1 hold. It follows that there exist c > 0 such that, for any z ∈ Z

and n ≥ 0, there exists a linear hyperplane Lz,n in h with

dist((dσf )nx, Wz) ≥ c‖(dσf )n‖ dist(x, Lz,n) for all x ∈ h. (4.11)
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Let

τ7 = min{τ4(1), τ5},
where τ4(·) and τ5 are as in Corollary 4.3 and Lemma 4.4, and define the function r̃0 as

r̃0(ε) = 1
4

min{δ1(ε/8), δ2(cε
2/4)},

where δ1(·) and δ2(·) are as in Lemmas 4.4 and 4.5. Let ε ∈ (0, 1), r0 ∈ (0, r̃0(ε)]. By

Lemma 4.5 and the choice of r̃0(ε), there exists a neighborhood � of Z such that, for any

y0 ∈ �, there is z0 ∈ Z such that

v ∈ Bg(4r0), expy0
(v) ∈ � H⇒ dist(v, Wz0

) <
cε2

4
r0. (4.12)

In what follows, we prove that � satisfies the required property in Lemma 4.6. Let x ∈ X,

B ⊂ B◦
h(τ7) be a closed ball of radius r ≤ r0, and let n ≥ 0 satisfy (4.9). We need to show

that there exists an affine hyperplane L ⊂ h satisfying (4.10). Without loss of generality,

assume that exp−1
x (f −n(�)) ∩ B 6= ∅. We choose and fix a point y0 ∈ exp−1

x (f −n(�)) ∩
B. Let y0 = f n(expx(y0)) ∈ �, and let z0 ∈ Z satisfy (4.12). Since y0 ∈ B ⊂ B◦

h(τ7) and

τ7 ≤ τ5, it follows from Lemma 4.4 and the choice of r̃0(ε) that there exists Ty0
∈ GL(h)

with ‖Ty0
‖ ≤ 2 such that

x ∈ Bh(4r̃0(ε)) H⇒ ‖log(exp(x) exp(y0)) − y0 − Ty0
x‖ ≤

ε

8
‖x‖. (4.13)

We verify that the hyperplane

L = y0 + Ty0
(Lz0,n)

satisfies (4.10).

Let y ∈ exp−1
x (f −n(�)) ∩ B. We need to prove that y ∈ L(εr). Let y = f n(expx(y)) ∈

�, x = log(exp(y) exp(−y0)) ∈ h. Since y0, y ∈ B, we have ‖y − y0‖ ≤ 2r . Note also that

B ⊂ B◦
h(τ7) and τ7 ≤ τ4(1). It then follows from Corollary 4.3(1) that

‖x‖ ≤ 2‖y − y0‖ ≤ 4r .

Thus

‖(dσf )nx‖ ≤ ‖(dσf )n‖‖x‖ ≤
r0

r
· 4r = 4r0.

Note also that

expy0
((dσf )nx) = exp((dσf )nx)y0 = σ n

f (exp(x))f n(exp(y0)x)

(2.8)= f n(exp(x) exp(y0)x) = f n(exp(y)x) = y ∈ �.

Hence, it follows from the choice of z0 that

dist((dσf )nx, Wz0
) <

cε2

4
r0.

Together with (4.11), this implies that

dist(x, Lz0,n) ≤ c−1‖(dσf )n‖−1 dist((dσf )nx, Wz0
)

< c−1 ·
r

εr0
·
cε2

4
r0 =

εr

4
.
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Hence, if we let z ∈ Lz0,n be such that ‖x − z‖ = dist(x, Lz0,n), then

dist(Ty0
x, Ty0

Lz0,n) ≤ ‖Ty0
x − Ty0

z‖ ≤ ‖Ty0
‖‖x − z‖

≤ 2 dist(x, Lz0,n) <
εr

2
.

On the other hand, since ‖x‖ ≤ 4r ≤ 4r0 ≤ 4r̃0(ε) and exp(y) = exp(x) exp(y0), it follows

from (4.13) that

‖y − y0 − Ty0
x‖ ≤

ε

8
‖x‖ ≤

εr

2
.

This implies that

dist(y, L) = dist(y − y0, Ty0
(Lz0,n))

≤ dist(Ty0
x, Ty0

(Lz0,n)) + ‖y − y0 − Ty0
x‖

<
εr

2
+

εr

2
≤ εr .

Hence y ∈ L(εr). This completes the proof.

4.4. Proof of Theorem 2.6. We now use Lemma 4.6 to prove Theorem 2.6.

Proof of Theorem 2.6. Since any C1 submanifold of X is the union of countably many

compact C1 submanifolds (possibly with boundaries), we may assume, without loss of

generality, that Z is compact. Let x ∈ X. We need to prove that, for every h0 ∈ H , there

is an open neighborhood U of h0 in H such that the set {h ∈ U : {f n(hx) : n ≥ 0} ∩ Z =
∅} is HAW on U . By replacing x with h0x, we may assume that h0 = 1G. Let τ7 > 0

be as in Lemma 4.6, and let U = exp(B◦
h(τ7)). Since the exponential map restricts to a

diffeomorphism from B◦
h(τ7) onto U , in view of Lemma 4.1, it suffices to prove that the set

{x ∈ B◦
h(τ7) : {f n(expx(x)) : n ≥ 0} ∩ Z = ∅} (4.14)

is HPW on B◦
h(τ7).

Let β ∈ (0, β0(dim h)) be fixed. By Lemma 3.2, there exists C > 1 such that

C−1ns−1ρn ≤ ‖(dσf )n‖ ≤ Cns−1ρn for all n ≥ 0, (4.15)

where ρ = ρ(dσf ) > 1 and s = s(dσf ). Let ℓ ∈ N be large such that

ρ2ℓ−1βℓ ≥ C2 (4.16)

and

Cβℓ ≤ 1. (4.17)

We use Lemma 4.6 with ε = βℓ+1 to describe a winning strategy for Alice when playing

the β-hyperplane percentage game on B◦
h(τ7) with target set (4.14). As remarked in §4.1,

we may assume that Bob will play so that ri → 0 and r0 ≤ r̃0(β
ℓ+1), where r̃0(·) is as in

Lemma 4.6. Let us partition the game into stages. For k ≥ 0, we define the kth stage to be

the set of indices i ≥ 0 for which

βℓ(k+1)r0 < ri ≤ βℓkr0. (4.18)
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Then each stage is finite and contains at least ℓ indices. Suppose that the kth stage starts

when Bob chooses the ball Bik in h, that is, ik is the smallest index in the kth stage. In

particular, we have i0 = 0. It follows, from the rule of the game, that

βℓk+1r0 < rik ≤ βℓkr0. (4.19)

Consider the set of integers

Nk = {n ≥ 0 : β−ℓ(k−1) ≤ ‖(dσf )n‖ < β−ℓk}. (4.20)

Note that, by (4.15) and (4.17), we have ‖(dσf )n‖ ≥ C−1 ≥ βℓ for any n ≥ 0. Thus
⋃

k≥0

Nk = N ∪ {0}. (4.21)

Note also that, for any n1, n2 ∈ Nk with n1 < n2,

C−2ρn2−n1 ≤
C−1ns−1

2 ρn2

Cns−1
1 ρn1

(4.15)
≤

‖(dσf )n2‖
‖(dσf )n1‖

(4.20)
<

β−ℓk

β−ℓ(k−1)
= β−ℓ

(4.16)
≤ C−2ρ2ℓ−1,

which implies that n2 − n1 < 2ℓ − 1. Hence

#Nk < 2ℓ. (4.22)

It follows from (4.19) and (4.20) that if n ∈ Nk , then

rik‖(dσf )n‖ ∈ [βℓk+1r0 · β−ℓ(k−1), βℓkr0 · β−ℓk] = [βℓ+1r0, r0].

Therefore, if we let � = �(βℓ+1, r0) be the neighborhood of Z given by Lemma 4.6, then,

for any n ∈ Nk , there exists an affine hyperplane L(Bik , n) in h such that

exp−1
x (f −n(�)) ∩ Bik ⊂ L(Bik , n)(β

ℓ+1rik ). (4.23)

Let Alice’s ikth move be the hyperplane neighborhoods

{L(Bik , n)(β
ℓ+1rik ) : n ∈ Nk}. (4.24)

More generally, for any index i in the kth stage, after Bob chooses the ball Bi , let Alice

choose those neighborhoods in (4.24) that intersect Bi . Note that

βℓ+1rik
(4.19)
≤ βℓ+1 · βℓkr0 = β · βℓ(k+1)r0

(4.18)
< βri .

So Alice’s moves are legal. We prove that this strategy guarantees a win for Alice.

In view of the rule of the game, it follows that if i is an index in the kth stage, then

#{n ∈ Nk : Bi+1 ∩ L(Bik , n)(β
ℓ+1rik ) 6= ∅} ≤

#Nk

2i+1−ik

(4.22)
< 2ℓ−(i+1−ik). (4.25)

On the other hand, since each stage contains at least ℓ indices, the index ik + ℓ − 1 is in

the kth stage. Substituting i = ik + ℓ − 1 into (4.25), we obtain

#{n ∈ Nk : Bik+ℓ ∩ L(Bik , n)(β
ℓ+1rik ) 6= ∅} < 1.

This means that

Bik+ℓ ∩ L(Bik , n)(β
ℓ+1rik ) = ∅ for all n ∈ Nk .

https://doi.org/10.1017/etds.2021.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.4


1354 J. An et al

Together with (4.23), this implies that

Bik+ℓ ∩ exp−1
x (f −n(�)) = ∅ for all n ∈ Nk .

Hence, for any n ∈ Nk , the unique point x∞ in
⋂∞

i=0 Bi is not contained in

exp−1
x (f −n(�)), or, equivalently, f n(expx(x∞)) /∈ �. In view of (4.21), it follows that

x∞ is contained in the target set (4.14). Hence Alice wins.

Remark 4.7. In view of Remark 3.5, it follows that, without condition (2.14), Lemma 4.6

remains valid for sufficient large n. This implies that if condition (2.14) is dropped and

the submanifold Z in Theorem 2.6 is compact, then there exists N = N(Z) such that

the set {h ∈ H : {f n(hx) : n ≥ N} ∩ Z = ∅} is HAW on H , and hence, for a general

submanifold Z, the set {h ∈ H : ω(hx) ∩ Z = ∅} is HAW on H . In turn, if condition

(2.17) in Theorem 2.8 is dropped, the set {h ∈ H : ω(hx) ∩ Z = ∅} is HAW on H .

5. Geodesic flows on locally symmetric spaces

This section is devoted to the proof of Theorems B1 and B2. We first use Theorem 2.8 (and

its proof) to prove a result on semisimple Lie groups.

5.1. A proposition on semisimple groups. Let G be a non-compact semisimple Lie group

with finitely many connected components, let K ⊂ G be a maximal compact subgroup,

let g and k be the Lie algebras of G and K , respectively, and let p be the orthogonal

complement of k in g with respect to the Killing form on g. We assume that the identity

component G◦ of G has finite center. Then g = k ⊕ p is a Cartan decomposition. Note that

the identity component K◦ of K is a maximal compact subgroup of G◦.

PROPOSITION 5.1. Let G, K and p be as above, let Ŵ ⊂ G be a discrete subgroup, let

X = G/Ŵ, let v ∈ pr {0} and let F = {gt : t ∈ R} be the one-parameter subgroup given

by gt = exp(tv).

(1) Let x1, x2 ∈ X be such that Kx1 6= Kx2. Then the set

{k ∈ K : kx1 ∈ E(F , Kx2)}

is HAW on K .

(2) Let K ′ ⊂ K be a closed subgroup with dim K ′ < dim K , and let S ⊂ X be a finite

subset. Then there exists an F -invariant closed subset of X that does not intersect

K ′S but intersects every K◦-orbit in X.

Proof. (1) For a subset A ⊂ R, let us denote FA = {gt : t ∈ A}. Since K is compact and

Kx1 6= Kx2, there exists ε > 0 such that F[−ε,ε]Kx1 ∩ Kx2 = ∅. Then, for k ∈ K , we

have kx1 ∈ E(F , Kx2) if and only if both F[ε,∞)kx1 ∩ Kx2 and F(−∞,−ε]kx1 ∩ Kx2 are

empty. Hence, to prove part (1), it is enough to prove that the sets

{k ∈ K : F[ε,∞)kx1 ∩ Kx2 = ∅} (5.1)

and

{k ∈ K : F(−∞,−ε]kx1 ∩ Kx2 = ∅} (5.2)

are HAW on K .
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Let us prove that the set (5.1) is HAW. Note that, for k ∈ K ,

F[ε,∞)kx1 ∩ Kx2 = gε(F+kx1 ∩ g−εKx2).

Thus, it suffices to show that the set

{k ∈ K : kx1 ∈ E(F+, g−εKx2)} (5.3)

is HAW. By Theorem 2.8, we only need to verify that ρ(Ad g1) > 1, Z = g−εKx2 is

F -transversal and that conditions (2.16) and (2.17) hold for H = K . The latter three

conditions translate, respectively, as

v /∈ (Ad g−ε)k, (5.4)

kmax
F+ 6⊂ (Ad g−ε)k ⊕ Rv, (5.5)

(Ad gt )k 6⊂ (Ad g−ε)k ⊕ Rv for all t ≥ 0. (5.6)

To verify these conditions, let a be a maximal abelian subspace of p containing v,

and let 6 ⊂ a∗ be the restricted root system of (g, a). Then the set of eigenvalues of

Ad g1 is {eλ(v) : λ ∈ 6} ∪ {1}. Since v 6= 0, we have ω := maxλ∈6 λ(v) > 0. It follows

that ρ(Ad g1) = eω > 1.

Next, notice that v = (Ad g−ε)v ∈ (Ad g−ε)p. Hence (5.4) is clear.

To verify (5.5), recall that kmax
F+ = p(Ad g1)(k), where p is the polynomial given in

§2.5. Let g = g0 ⊕
⊕

λ∈6 gλ be the restricted root space decomposition. Then p(Ad g1)

is the projection onto
⊕

λ(v)=ω gλ along g0 ⊕
⊕

λ(v)<ω gλ. Let λ0 ∈ 6 be such that

λ0(v) = ω. We first claim that gλ0
⊂ kmax

F+ . In fact, if θ is the Cartan involution of g

corresponding to the Cartan decomposition g = k ⊕ p, then, for any w ∈ gλ0
, we have

θw ∈ g−λ0
and w + θw ∈ k, and hence w = p(Ad g1)(w + θw) ∈ kmax

F+ , which proves the

claim. On the other hand, it follows from the Iwasawa decomposition (relative to a set of

positive roots containing λ0) that gλ0
6⊂ k ⊕ Rv. Applying Ad g−ε to both sides, we obtain

gλ0
6⊂ (Ad g−ε)k ⊕ Rv. This, together with gλ0

⊂ kmax
F+ , implies (5.5).

We now verify (5.6). Suppose the contrary. Then there exists t ≥ 0 such that

(Ad gt+ε)k ⊂ k ⊕ Rv. Since K◦ is a maximal compact subgroup of G◦, it is

self-normalizing in G◦. It follows that (Ad gt+ε)k 6= k. Let x ∈ k be such that (Ad gt+ε)x /∈
k. Then there exist y ∈ k and b ∈ Rr {0} such that

(Ad gt+ε)x = y + bv.

Taking the Cartan involution θ on both sides, we obtain

(Ad g−1
t+ε)x = y − bv.

It follows that

(Ad gt+ε)x − (Ad g−1
t+ε)x = 2bv.

Let κ(·, ·) be the Killing form on g. Since κ|p×p is positive definite,

0 6= κ(2bv, v) = κ((Ad gt+ε)x, v) − κ((Ad g−1
t+ε)x, v)

= κ(x, (Ad g−1
t+ε)v) − κ(x, (Ad gt+ε)v) = κ(x, v) − κ(x, v) = 0,
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which is a contradiction. This completes the verification of the required conditions, and

thus proves that the set (5.1) is HAW. A similar argument with v replaced by −v shows

that the set (5.2) is also HAW. This completes the proof of part (1).

(2) The proof is similar to that of Theorem 2.8. Let us sketch the argument and leave the

details to the reader. First, we pick τ > 0 such that Z := F[0,τ ]K
′S is a smooth submanifold

of X and is such that (2.13) and (2.14) hold for both (H , f ) = (K◦, gτ ) and (H , f ) =
(K◦, g−1

τ ). Then the conditions of Theorem 2.6 are satisfied for both cases. As in the

proof of Theorem 2.6, it can be shown that there exist positive constants τ7, β, r0 and

a neighborhood � of Z such that, for every x ∈ X, Alice has a winning strategy for the

β-hyperplane percentage game on B◦
k (τ7) with target set

B◦
k (τ7) r

⋃

n∈Z
exp−1

x (gnτ�), (5.7)

provided Bob’s initial ball B0 has the prescribed radius r0 (A major difference is that

we are now working with both f = gτ and f = g−1
τ simultaneously. So we need to

replace ‘n ≥ 0’ by ‘n ∈ Z’ in the definition of Nk in (4.20) and replace (4.16) by the

slightly stronger condition ρ2ℓ−1−1βℓ ≥ C2 so that (4.22) still holds.). In particular, the set

(5.7) is non-empty. This implies that the set
⋃

n∈Z gnτ� does not contain any K◦-orbit

in X. On the other hand, it is straightforward to show that
⋂

t∈[0,τ ] g−1
t � contains an

open neighborhood U of K ′S. This implies that FU ⊂
⋃

n∈Z gnτ�. Then the F -invariant

closed set X r FU satisfies the requirement.

5.2. Proofs of Theorems B1 and B2. We first review some basic facts concerning locally

symmetric spaces. Let Y be a locally symmetric space of non-compact type and let Ỹ be its

universal cover. The isometry group G of Ỹ has finitely many connected components, and

its identity component is a semisimple Lie group without compact factors and with trivial

center. Let y0 ∈ Y , and let ỹ0 ∈ Ỹ be a preimage of y0. The stabilizer K := StabG(ỹ0) is

a maximal compact subgroup of G. We identify the globally symmetric space Ỹ with

K\G, and we view the fundamental group Ŵ := π1(Y ) as a subgroup of G via deck

transformations. Then Y can be identified with K\G/Ŵ.

Let g, k and p be as in §5.1. Then we have a natural identification Ty0
Y ∼= p. Let p1 be the

unit sphere in p (with respect to the metric on Ty0
Y ) centered at 0, which is identified with

Sy0
(Y ). For v ∈ p1, let γ (v) denote the geodesic line in Y through y0 in the direction v.

Then

γ (v) = {K exp(tv)Ŵ : t ∈ R}.

Let us now prove Theorem B1.

Proof of Theorem B1. Without loss of generality, we assume that y = y0. We need to

prove that the set

{v ∈ p1 : γ (v) ∩ Z = ∅} (5.8)

is thick in p1. Note that Ad(K)p1 = p1. We first prove that, for every v ∈ p1, the set

{w ∈ Ad(K◦)v : γ (w) ∩ Z = ∅} (5.9)
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is HAW on Ad(K◦)v. To do this, let x0 denote the point Ŵ in X := G/Ŵ, and consider the

surjective map

q : X → Y , q(gx0) = KgŴ.

Let F = {gt : t ∈ R}, where gt = exp(tv). We claim that the set (5.9) is the image of the

set

{k ∈ K◦ : kx0 ∈ E(F , q−1(Z))} (5.10)

under the submersion K◦ → Ad(K◦)v, k 7→ (Ad k−1)v. In fact, for k ∈ K◦ and t ∈ R,

K exp(t (Ad k−1)v)Ŵ = KgtkŴ = q(gtkx0).

So γ ((Ad k−1)v) = q(Fkx0). Since the map q has compact fibers, it is a closed map.

It follows that γ ((Ad k−1)v) = q(Fkx0). Thus, γ ((Ad k−1)v) ∩ Z = ∅ if and only if

Fkx0 ∩ q−1(Z) = ∅, that is, kx0 ∈ E(F , q−1(Z)). This verifies the claim. Since q−1(Z)

is a countable union of K-orbits in X distinct from Kx0, it follows, from Proposition 5.1(1),

that the set (5.10) is HAW on K◦. Then, by Lemma 2.1, the set (5.9) is HAW on Ad(K◦)v.

To complete the proof, let us choose a maximal abelian subspace a ⊂ p and an (open)

Weyl chamber a+ ⊂ a. Let M = ZK◦(a), a+
1 = a+ ∩ p1. Then the map

8 : K◦/M × a+
1 → p1, 8(kM , v) = (Ad k)v

is a diffeomorphism onto an open dense subset of p1. The HAW property of the set (5.9)

implies that, for each v ∈ a+
1 , the intersection of the set (5.8) with 8(K◦/M × {v}) is thick

in 8(K◦/M × {v}). By the Marstrand slicing theorem (see, for example, [20, Lemma 1.4]),

the intersection of (5.8) with Im 8 is thick in Im 8, and hence it is also thick in p1. This

proves Theorem B1.

Before proving Theorem B2, let us recall some more facts concerning the geodesic flow

on the unit tangent bundle S(Y ) (see, for example, [21, 27]). We keep the notation as

in the beginning of this subsection and consider the natural G-action on S(Ỹ ). We refer

to a connected component of the image of a G-orbit in S(Ỹ ) under the covering map

S(Ỹ ) → S(Y ) as an ergodic submanifold of S(Y ). Each ergodic submanifold is a closed

submanifold of S(Y ) and is invariant under the geodesic flow. Note that every G◦-orbit in

S(Ỹ ) meets p1
∼= Sỹ0

(Ỹ ). The stabilizer of a vector v ∈ p1 in G is equal to its centralizer

Kv in K . So the G-orbit of v in S(Ỹ ) can be identified with Kv\G, and its projection in

S(Y ) can be identified with Kv\G/Ŵ. Under the latter identification, the restriction of the

geodesic flow on Kv\G/Ŵ is given by

γt (KvgŴ) = Kv exp(tv)gŴ, g ∈ G.

Let Ev ⊂ S(Y ) denote the corresponding ergodic submanifold, namely,

Ev := {KvgŴ : g ∈ G◦}.

Then every ergodic submanifold is of the form Ev for some v ∈ p1.
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Proof of Theorem B2. Assume that E = Ev, where v ∈ p1. We keep the notation as in the

proof of Theorem B1. Then the surjective map

q ′ : X → Kv\G/Ŵ, q ′(gx0) = KvgŴ

intertwines the flow (X, F) and the geodesic flow on Kv\G/Ŵ. Each fiber of q ′ is a

Kv-orbit in X. Note that dim Kv < dim K . By Proposition 5.1(2), there is an F -invariant

closed subset X′ ⊂ X that does not intersect q ′−1(4) but intersects every K◦-orbit in X.

It follows that the closed subset q ′(X′) ∩ E of E is invariant under the geodesic flow and

does not intersect 4. Moreover, the projection of q ′(X′) ∩ E to Y contains q(X′ ∩ G◦x0),

which is the whole space Y . This completes the proof of Theorem B2.

Remark 5.2. Similar to (in fact, simpler than) the proofs of Proposition 5.1(1) and

Theorem B1, it can be shown that, for every ergodic submanifold E ⊂ S(Y ), if Z ⊂ E

is a countable subset, then the set {ξ ∈ E : γ (ξ) ∩ Z = ∅} is HAW on E.

6. Gaps between values of functions at integer points

6.1. The general set-up. Let n ≥ 2 be an integer and let C(Rn) denote the space of

real-valued continuous functions on R
n. For φ ∈ C(Rn) we will be studying the values of

φ at non-zero integer points Zn
6=0 := Zn r {0}. An important question in number theory is,

for φ as above, whether φ(Zn
6=0) is dense in its image φ(Rn) or perhaps has a gap at a real

number a ∈ R. Here, we say that φ(Zn
6=0) has a gap at a if φ(Zn

6=0) ∩ (a − ε, a + ε) = ∅

for some ε > 0. Clearly, when a 6= φ(0), it is equivalent to φ(Zn) ∩ (a − ε, a + ε) = ∅

for some ε > 0.

If φ is a linear form, it is easy to see that φ(Zn) is not dense in R if and only if φ

is a multiple of a rational form. The famous Oppenheim conjecture, proved by Margulis

[24, 25], states that the same statement holds if φ is a non-degenerate indefinite quadratic

form and n ≥ 3. It follows that, in both cases, if φ(Zn
6=0) has a gap at some number a, then

φ is a multiple of a rational form. Moreover, a conjecture from Margulis [26, Conjecture

8] (see also Cassels and Swinnerton-Dyer [9, Hypothesis A]) states that if n ≥ 3 and φ is

the product of n linearly independent linear forms such that φ(Zn
6=0) has a gap at 0, then

φ is a multiple of a rational polynomial. Although this conjecture remains open, it has

been proved by Einsiedler, Katok and Lindenstrauss [15, Theorem 1.6] that, in the space

of products of n linearly independent linear forms, the set of polynomials φ with φ(Zn
6=0)

having a gap at 0 has the same Hausdorff dimension as the set of multiples of rational

polynomials, namely, one.

The situation is completely different when n = 2. It is proved by Kleinbock and Weiss

[23] that, given any countable subset A of R, the set of φ in the space of non-degenerate

indefinite binary quadratic forms (or, equivalently, products of two linearly independent

linear forms) such that φ(Z2
6=0) has a gap at every a ∈ A is thick in this space. In this

section, we use Theorem A2 to extend the last result.

To begin with, let us introduce some notation. Let Ĉ(Rn) denote the set of φ ∈ C(Rn)

such that φ(Zn) is not dense in φ(Rn), that is,

Ĉ(Rn) := {φ ∈ C(Rn) : φ(Rn) 6⊂ φ(Zn)}.
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For a ∈ R, let Ĉa(R
n) denote the set of φ ∈ C(Rn) such that φ(Zn

6=0) has a gap at a, that is,

Ĉa(R
n) := {φ ∈ C(Rn) : a /∈ φ(Zn

6=0)}.

It is easy to see that φ ∈ Ĉ(Rn) if and only if φ ∈
⋃

a∈φ(Rn) Ĉa(R
n). We would like to

understand the sets Ĉ(Rn) and Ĉa(R
n). However, they are too large to be addressed. To

proceed, consider the natural right action of SLn(R) on C(Rn), which is given by

SLn(R) × C(Rn) → C(Rn), (g, φ) 7→ φ ◦ g.

Here Rn is understood to be the space of column vectors, and g ∈ SLn(R) is identified

with the left multiplication by g on R
n. For φ ∈ C(Rn), recall the definition (1.4) of the

SLn(R)-orbit O(φ) ∼= Aut(φ)\ SLn(R) of φ, where Aut(φ) ⊂ SLn(R) is the stabilizer of

φ in SLn(R). Aut(φ) is a closed subgroup of SLn(R), and hence O(φ) has a natural smooth

manifold structure.

Let

Ô(φ) := O(φ) ∩ Ĉ(Rn), Ôa(φ) := O(φ) ∩ Ĉa(R
n), a ∈ R.

Then

Ô(φ) =
⋃

a∈φ(Rn)

Ôa(φ).

More generally, for a subset A of R, denote

ÔA(φ) =
⋂

a∈A

Ôa(φ) = {ψ ∈ O(φ) : ψ(Zn
6=0) ∩ A = ∅}.

Our aim is to understand Ô(φ) and ÔA(φ) as subsets of the manifold O(φ).

Remark. It is easy to see from the Taylor expansion that if φ is real analytic, then Aut(φ)

is algebraic. However, even if φ is smooth, Aut(φ) may fail to be algebraic. For example,

the function φ on R
3 given by

φ(x, y, z) =
{

(2xyz + y2z log |z|) exp(−1/y2|z|) if yz 6= 0,

0 if yz = 0

is smooth, but Aut(φ) =








±et ±tet 0

0 ±et 0

0 0 e−2t


 : t ∈ R



 is not algebraic.

First, let us observe the following fact.

PROPOSITION 6.1. If Aut(φ) is non-compact, then Ô(φ) has measure zero (with respect

to any smooth measure on O(φ)).

Proof. Let

ρ : SLn(R) → O(φ), g 7→ φ ◦ g (6.1)

be the natural projection. It suffices to prove that the set

ρ−1(Ô(φ)) = {g ∈ SLn(R) : φ ◦ g ∈ Ô(φ)} (6.2)
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has measure zero with respect to the Haar measure on SLn(R). Since the group Aut(φ)

is non-compact, it follows from Moore’s ergodicity theorem that the Aut(φ)-action on

SLn(R)/ SLn(Z) is ergodic. Hence, almost every point in SLn(R)/ SLn(Z) has a dense

Aut(φ)-orbit. This implies that, for almost every g ∈ SLn(R), the set Aut(φ)g SLn(Z) is

dense in SLn(R). For such a g,

φ ◦ g(Zn) = φ(Aut(φ)g SLn(Z)Zn)

⊃ φ(Aut(φ)g SLn(Z)Zn)

= φ(SLn(R)Zn)

= φ ◦ g(Rn),

that is, φ ◦ g /∈ Ô(φ). Hence the set (6.2) has measure zero in SLn(R). This completes the

proof.

In view of Proposition 6.1, it is natural to ask what is the Hausdorff dimension of Ô(φ)

or ÔA(φ). Let us first review the cases mentioned at the beginning of this section.

(1) If φ ∈ (Rn)∗ r {0}, then O(φ) = (Rn)∗ r {0}, Aut(φ) is conjugate to the group of

matrices in SLn(R) with (1, 0, . . . , 0) as the first row, and Ô(φ) consists of non-zero

multiples of rational linear forms.

(2) If n = p + q ≥ 3, where p, q ≥ 1, and φ is a quadratic form of signature (p, q),

then O(φ) is the space of all such forms with the same determinant as φ, Aut(φ) is

conjugate to SO(p, q), and by the Oppenheim conjecture (Margulis’ theorem), the set

Ô(φ) consists of forms in O(φ) that are multiples of rational forms. It follows that

dim Ôa(φ) = dim Ô(φ) = 0 for all a ∈ R.

(3) If n ≥ 3 and φ is the product of n linearly independent linear forms, then O(φ)

is the space of all such polynomials with the same ‘determinant’ as φ, and the identity

component of Aut(φ) is conjugate to the group of positive diagonal matrices in SLn(R).

The above-mentioned conjecture from [9, 26] states that every polynomial in Ô0(φ) is a

multiple of a rational polynomial; it is proved in [15] that

dim Ô0(φ) = 0.

(4) If n = 2 and φ is a non-degenerate indefinite binary quadratic form (or, equivalently,

the product of two linearly independent linear forms), then O(φ) is the space of all

such forms with the same determinant as φ, and the identity component of Aut(φ) is

a one-parameter diagonalizable subgroup of SL2(R). It is proved in [23] that, for any

countable subset A of R, the set ÔA(φ) is thick in O(φ). In particular,

dim ÔA(φ) = dim O(φ) = 2.

6.2. A sufficient condition for the winning property of ÔA(φ). In this section, we prove

a general theorem which extends case (4) above. Let F = {gt : t ∈ R} be a one-parameter

subgroup of SLn(R). Say that F is non-quasiunipotent if ρ(Ad g1) > 1. Since SLn(R) is

unimodular, this is equivalent to ρ(Ad g−1) > 1, and hence to the subgroups Gmax
F+ and
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Gmax
F− (the maximally expanding horospherical subgroups of G relative to g1 and g−1,

respectively) being non-trivial.

Let Xn denote the space of unimodular lattices in Rn, which is identified with the space

SLn(R)/ SLn(Z) in the natural way. Let us first recall the following conjecture from [2].

CONJECTURE 6.2. Let F be a non-quasiunipotent one-parameter subgroup of SLn(R).

Then the set

E(F , ∞) := {3 ∈ Xn : F3 is bounded}
is HAW in Xn.

Remark. The conjecture is stated in [2, Conjecture 7.1] for any Lie group G and any lattice

Ŵ ⊂ G. In this case, it is proved in [20] that the set E(F , ∞) is thick if and only if F has

the so-called property (Q). If F is Ad-diagonalizable, then it has property (Q). So, in [2,

Conjecture 7.1], F is assumed to be Ad-diagonalizable for simplicity. For G = SLn(R),

any non-quasiunipotent F has property (Q). We prefer to state Conjecture 6.2 for any

non-quasiunipotent F .

Conjecture 6.2 is proved for n = 2 in [23] and for n = 3 and diagonalizable F in [2]. It

also follows from a result in [5] that the conjecture holds for diagonalizable F such that g1

has only two eigenvalues (see Theorem 7.2 below). Moreover, the conjecture is proved in

[16] for diagonalizable F such that the eigenvalues λ1, . . . , λn of g1 satisfy

#{i : |λi | < 1} = 1 and #{i : |λi | = max
1≤j≤n

|λj |} ≥ n − 2.

See also [1, 11, 20, 22] for other related results.

The main result of this section, which is a generalization of Theorem C, is as follows.

THEOREM 6.3. Let φ ∈ C(Rn). Suppose that Aut(φ) has a one-parameter non-

quasiunipotent subgroup F = {gt : t ∈ R} satisfying the following conditions.

(i) There exists a continuous function N : R → [0, ∞) with N(0) = 0 such that

N(φ(vvv) − φ(0)) ≥ dist(Fvvv, 0) for all vvv ∈ R
n.

(ii) For any real number a 6= φ(0), the set φ−1(a) is contained in a countable

union of F -invariant C1 submanifolds of Rn that are both Gmax
F+ -transversal and

Gmax
F− -transversal†.

(iii) Conjecture 6.2 holds for F .

Then, for any countable subset A of R, the set ÔA(φ) is HAW on O(φ).

Note that condition (i) in Theorem 6.3 is independent of the choice of the norm ‖·‖ on

R
n that is used to define dist(Fvvv, 0) := inft∈R‖gtvvv‖.

We first deduce Theorem 6.3 from the following dual statement.

THEOREM 6.4. Let φ ∈ C(Rn) be such that Aut(φ) has a one-parameter non-

quasiunipotent subgroup F satisfying conditions (i)–(iii) in Theorem 6.3. Then for every

† Here the transversality is understood in the sense of the linear action of SLn(R) on Rn r {0}.
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a ∈ R, the set

X(φ, a) := {3 ∈ Xn : a /∈ φ(3 r {0})}

is HAW on Xn.

Proof of Theorem 6.3 assuming Theorem 6.4. Note that ÔA(φ) is the image of the set

{g ∈ SLn(R) : φ ◦ g ∈ ÔA(φ)} (6.3)

under the projection ρ as in (6.1). By Lemma 2.1, it suffices to show that the set (6.3) is

HAW on SLn(R). Let

π : SLn(R) → Xn, π(g) = gZn (6.4)

be the natural projection. The set (6.3) is equal to

{g ∈ SLn(R) : φ(gZn
6=0) ∩ A = ∅} =

⋂

a∈A

π−1(X(φ, a)).

Assuming Theorem 6.4, each X(φ, a) is HAW on Xn. Thus, the set (6.3) is HAW on

SLn(R), and hence ÔA(φ) is HAW on O(φ).

In order to prove Theorem 6.4, let us introduce the following notation. For φ ∈ C(Rn)

and a ∈ R, denote

Zφ,a = {3 ∈ Xn : a ∈ φ(3 r {0})}.

Then let us prove the following lemma, which relates gaps in φ(3 r {0}) to dynamical

properties of the orbit F3.

LEMMA 6.5. Let φ ∈ C(Rn), and let F be a one-parameter subgroup of Aut(φ) satisfying

condition (i) in Theorem 6.3. Then:

(1) E(F , ∞) ⊂ X(φ, φ(0)); and

(2) for any a 6= φ(0),

E(F , Zφ,a) ∩ E(F , ∞) ⊂ X(φ, a) ⊂ E(F , Zφ,a).

Proof. (1) It suffices to prove that if 3 ∈ Xn and φ(0) ∈ φ(3 r {0}), then F3

is unbounded. Let vvvk ∈ 3 r {0} be such that φ(vvvk) → φ(0). Then, condition (i) in

Theorem 6.3 implies that

dist(Fvvvk , 0) ≤ N(φ(vvvk) − φ(0)) → 0.

Hence there are tk ∈ R such that gtkvvvk → 0. It then follows from Mahler’s criterion that

the sequence gtk3 in Xn is unbounded. Hence F3 is unbounded.

(2) Suppose, to the contrary, that the first inclusion does not hold. Then there exists 3 ∈
Xn such that F3 is bounded, F3 ∩ Zφ,a = ∅, but a ∈ φ(3 r {0}). Let vvvk ∈ 3 r {0} be

such that φ(vvvk) → a. Since

dist(Fvvvk , 0) ≤ N(φ(vvvk) − φ(0)) → N(a − φ(0)),

there exist tk ∈ R such that gtkvvvk is a bounded sequence in Rn. Note that the sequence gtk3

in Xn is also bounded. By passing to subsequences, we may assume that gtkvvvk → vvv ∈ Rn
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and gtk3 → ∆ ∈ Xn. It follows that vvv ∈ ∆ and

φ(vvv) = lim
k→∞

φ(gtkvvvk) = lim
k→∞

φ(vvvk) = a.

Together with the fact that a 6= φ(0), this also implies that vvv 6= 0. So ∆ ∈ F3 ∩ Zφ,a ,

which is a contradiction.

To prove the second inclusion, it suffices to show that if 3 ∈ Xn and F3 ∩ Zφ,a 6= ∅,

then a ∈ φ(3 r {0}). Let tk ∈ R and ∆ ∈ Zφ,a be such that gtk3 → ∆, and let vvv ∈ ∆ r

{0} be such that φ(vvv) = a. Then there exist vvvk ∈ 3 r {0} such that gtkvvvk → vvv. It follows

that

φ(vvvk) = φ(gtkvvvk) → φ(vvv) = a.

Hence a ∈ φ(3 r {0}).

In view of Lemma 6.5, to prove Theorem 6.4 we need only to show that E(F , Zφ,a) is

HAW for every a 6= φ(0). For a subset M of Rn, denote

ZM := {3 ∈ Xn : P(3) ∩ M 6= ∅},

where

P(3) := {vvv ∈ 3 : vvv/k /∈ 3 for every integer k ≥ 2}
is the set of primitive vectors in 3. We first use Theorem A2 to prove the following

proposition.

PROPOSITION 6.6. Let F be a one-parameter non-quasiunipotent subgroup of SLn(R),

and let M be an F -invariant C1 submanifold of Rn which is both Gmax
F+ -transversal and

Gmax
F− -transversal. Then E(F , ZM) is HAW on Xn.

Proof. Let π be as in (6.4), and let p1 : SLn(R) → Rn be the map that sends a matrix to

its first column. It is easy to see that ZM = π(p−1
1 (M)). Since p1 is a submersion and is

F -equivariant with respect to the left multiplications on SLn(R) and Rn, the set p−1
1 (M)

is a left F -invariant C1 submanifold of SLn(R). Thus, we can select a countable family

{Z′
i : i ∈ N} of codimension one C1 submanifolds of p−1

1 (M) such that:

• for any i ∈ N and g ∈ Z′
i , we have Tg(Fg) 6⊂ TgZ

′
i ;

• p−1
1 (M) =

⋃
i∈N FZ′

i ; and

• for any i ∈ N, there exists an open subset Ui of SLn(R) containing Z′
i such that π |Ui

is a diffeomorphism onto π(Ui).

Let Zi = π(Z′
i). Then {Zi : i ∈ N} is a family of C1 submanifolds of Xn, and

ZM = π(p−1
1 (M)) =

⋃

i∈N
π(FZ′

i) =
⋃

i∈N
FZi .

It follows that

E(F , ZM) =
⋂

i∈N
E(F , FZi) =

⋂

i∈N
E(F , Zi).

Thus, in view of Theorem A2, it suffices to show that each Zi is (F , Gmax
F+ )-transversal and

(F , Gmax
F− )-transversal.
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Let i ∈ N, 3 ∈ Zi , and let g ∈ Z′
i be such that 3 = π(g). Then

T3(F3) = (dπ)g(Tg(Fg)) 6⊂ (dπ)g(TgZ
′
i) = T3Zi .

On the other hand, for H ∈ {Gmax
F+ , Gmax

F− }, we have Tg(Hg) 6⊂ Tg(p
−1
1 (M)), for otherwise,

if Tg(Hg) ⊂ Tg(p
−1
1 (M)), and if we let vvv = p1(g), then

Tv(Hvvv) = (dp1)g(Tg(Hg)) ⊂ (dp1)g(Tg(p
−1
1 (M))) = TvvvM ,

which is contrary to the assumption that M is H -transversal. Thus,

T3(H3) = (dπ)g(Tg(Hg))

6⊂ (dπ)g(Tg(p
−1
1 (M)))

= (dπ)g(TgZ
′
i ⊕ Tg(Fg))

= (dπ)g(TgZ
′
i) ⊕ (dπ)g(Tg(Fg))

= T3Zi ⊕ T3(F3).

This proves that each Zi is (F , Gmax
F+ )-transversal and (F , Gmax

F− )-transversal, and hence

completes the proof of the proposition.

Remark 6.7. Even if M is a nice submanifold of R
n, the set ZM may fail to be a

submanifold of Xn. In fact, if dim M < n and M contains at least two linearly independent

vectors in P(3), then 3 is a self-intersection point of ZM .

We now derive the HAW property of E(F , Zφ,a) from the above proposition.

COROLLARY 6.8. Let φ ∈ C(Rn), and let F be a one-parameter non-quasiunipotent

subgroup of Aut(φ) satisfying condition (ii) in Theorem 6.3. Then, for any a 6= φ(0), the

set E(F , Zφ,a) is HAW on Xn.

Proof. Suppose that φ−1(a) ⊂
⋃

i∈N Mi , where each Mi is an F -invariant C1 sub-

manifold of Rn and is both Gmax
F+ -transversal and Gmax

F− -transversal. Since 3 r {0} =⋃
k∈N kP (3),

Zφ,a = {3 ∈ Xn : (3 r {0}) ∩ φ−1(a) 6= ∅}

⊂
⋃

k,i∈N
{3 ∈ Xn : kP (3) ∩ Mi 6= ∅}

=
⋃

k,i∈N
Z(1/k)Mi

.

This implies that

E(F , Zφ,a) ⊃
⋂

k,i∈N
E(F , Z(1/k)Mi

).

Note that each (1/k)Mi is an F -invariant C1 submanifold of Rn and is both Gmax
F+ -

transversal and Gmax
F− -transversal. Thus, it follows from Proposition 6.6 that each

E(F , Z(1/k)Mi
) is HAW. Hence E(F , Zφ,a) is HAW.

It is now straightforward to derive Theorem 6.4 from Lemma 6.5 and Corollary 6.8.
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Proof of Theorem 6.4. If a = φ(0), then, by Lemma 6.5(1), the set X(φ, a) contains

E(F , ∞), which is HAW by the assumption. If a 6= φ(0), then, by Lemma 6.5(2), the

set X(φ, a) contains E(F , ∞) ∩ E(F , Zφ,a), which is HAW by the assumption and

Corollary 6.8.

7. Applications to GIBFs

7.1. Proof of Theorem C. Recall that in §1.3 we defined a continuous function φ :

R
n → R to be a GIBF if there exists a non-trivial decomposition R

n = U ⊕ W such that

conditions (IB-1), (IB-2) and (IB-3) hold. Throughout this section, let Rn = U ⊕ W be

such a non-trivial decomposition, let G = SLn(R) and let F = {gt : t ∈ R} ⊂ G be as in

(1.5). For vvv ∈ Rn, we always let uuu and www denote the unique vectors with uuu ∈ U and www ∈ W

such that vvv = uuu + www. As a sample case of the decomposition, one can take

U = Reee1 ⊕ · · · ⊕ Reeep, W = Reeep+1 ⊕ · · · ⊕ Reeen, (7.1)

where {eee1, . . . , eeen} is the standard basis of Rn. In this case, (1.5) reduces to (2.10) (see

Example 2.5).

First, let us observe the following facts.

LEMMA 7.1.

(1) For any vvv ∈ R
n, we have dist(Fvvv, 0) ≤ 2‖uuu‖p/n‖www‖q/n.

(2) Suppose vvv ∈ Rn r (U ∪ W). Then, under the natural identification TvvvR
n ∼= Rn, we

have Tvvv(G
max
F+ vvv) = U , Tvvv(G

max
F− vvv) = W .

(3) Suppose φ ∈ C(Rn) satisfies conditions (IB-1) and (IB-2). Then φ−1(0) = U ∪ W .

Proof. (1) If vvv ∈ U ∪ W , then both sides of the inequality are equal to 0. Suppose

vvv /∈ U ∪ W . Then there exists t0 ∈ R such that et0/p‖uuu‖ = e−t0/q‖www‖ = ‖uuu‖p/n‖www‖q/n.

It follows that

dist(Fvvv, 0) ≤ ‖gt0vvv‖ = ‖et0/puuu + e−t0/qwww‖ ≤ et0/p‖uuu‖ + e−t0/q‖www‖ = 2‖uuu‖p/n‖www‖q/n.

(2) Without loss of generality, we may assume that U and W are as in (7.1) and F is as in

(2.10). Then gmax
F+ and gmax

F− are given by (2.11). Write vvv =
(

uuu

www

)
, where uuu ∈ Rp, www ∈ Rq .

Then uuu and www are non-zero. It follows that

Tvvv(G
max
F+ vvv) = gmax

F+ vvv =
{(

Awww

0

)
: A ∈ Mp×q(R)

}
= U ,

Tvvv(G
max
F− vvv) = gmax

F− vvv =
{(

0

Buuu

)
: B ∈ Mq×p(R)

}
= W .

This proves (2).

(3) Suppose vvv ∈ U ∪ W . Then there exist tk ∈ R such that gtkvvv → 0. It follows

from condition (IB-1) that φ(vvv) = φ(gtkvvv) → φ(0) = 0. Hence φ(vvv) = 0. Conversely,

if φ(vvv) = 0, then condition (IB-2) implies that ‖uuu‖p‖www‖q = 0, which means that vvv ∈
U ∪ W .
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Next, let us note the following result, which can be easily deduced from one of the main

results of [5].

THEOREM 7.2. Conjecture 6.2 holds for F as in (1.5).

Proof. Without loss of generality, we may assume that F is as in (2.10). Let F+ = {gt :

t ≥ 0}, F− = {gt : t ≤ 0}, and let E(F±, ∞) be the set of 3 ∈ Xn such that F±3 is

bounded. As is well known, bounded F+-orbits in Xn are related to badly approximable

matrices. More precisely, it is shown in [10] that a matrix A ∈ Mp×q(R) is badly

approximable if and only if the orbit F+( Ip A

0 Iq

)
Zn is bounded. On the other hand, it is

proved in [5] that the set of badly approximable matrices is HAW. Starting from these

results, and using the method as in the proof of [2, Theorem 1.2], it is easy to show that

E(F+, ∞) is HAW. Let ϕ be the diffeomorphism of Xn given by ϕ(gŴ) = (gT)−1Ŵ.

Then E(F−, ∞) = ϕ(E(F+, ∞)), and hence it is also HAW. Therefore, E(F , ∞) =
E(F+, ∞) ∩ E(F−, ∞) is HAW.

It is now straightforward to deduce Theorem C from Theorem 6.3.

Proof of Theorem C. Since φ is a GIBF, the group F given by (1.5) is a one-parameter

non-quasiunipotent subgroup of Aut(φ). It follows from conditions (IB-2), (IB-3) and

Lemma 7.1 that conditions (i) and (ii) in Theorem 6.3 are satisfied. Moreover, condition

(iii) in Theorem 6.3 follows from Theorem 7.2. Thus Theorem 6.3 implies the conclusion

of Theorem C.

7.2. Examples. In this subsection, we give several interesting examples of GIBFs. Let

us first note the following fact, which will be used to verify condition (IB-3).

LEMMA 7.3. Let Rn = U ⊕ W be a non-trivial decomposition, let F be as in (1.5) and let

φ1, . . . , φm ∈ C(Rn) be finitely many F -invariant functions satisfying

φi(0) = 0, φi is C1 on R
n
r φ−1

i (0), and

d

dt

∣∣∣∣
t=1

φi(tuuu + www) 6= 0 for any vvv ∈ R
n
r φ−1

i (0).
(7.2)

Then the function

φ(vvv) := max
1≤i≤m

φi(vvv) (7.3)

satisfies (IB-3).

Proof. Note that φ−1(a) ⊂
⋃m

i=1 φ−1
i (a). Thus, it suffices to show that if a 6= 0, then

each φ−1
i (a) is an F -invariant C1 submanifold of Rn that is both U -transversal and

W -transversal. Since φi is F -invariant, so is the set φ−1
i (a). It follows from (7.2) that

φi is a C1 submersion on Rn r φ−1
i (0). So φ−1

i (a) is a C1 submanifold of Rn, and for

vvv ∈ φ−1
i (a), we have Tvvv(φ

−1
i (a)) = Ker(dφi)vvv . By (7.2) again,

(dφi)vvv(uuu) =
d

dt

∣∣∣∣
t=1

φi(tuuu + www) 6= 0.
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This means that uuu /∈ Ker(dφi)vvv , which implies that U 6⊂ Tvvv(φ
−1
i (a)), that is, φ−1

i (a) is

U -transversal. On the other hand, it follows from

0 =
d

dt

∣∣∣∣
t=0

φi(gtvvv) = (dφi)vvv

(
d

dt

∣∣∣∣
t=0

gtvvv

)
= (dφi)vvv(uuu/p − www/q)

that (dφi)vvv(www) 6= 0. So www /∈ Ker(dφi)vvv , which implies that φ−1
i (a) is W -transversal. The

proof of the lemma is thus complete.

A special case of Lemma 7.3 is that if φ ∈ C(Rn) satisfies (IB-1), (IB-2) and (7.2), then

it is a GIBF. We use this special case to verify Examples 7.4–7.7 below.

Example 7.4. Let Rn = U ⊕ W be a non-trivial decomposition, let ‖·‖ be a norm on Rn

that is C1 on R
n
r (U ∪ W) and consider the function

φ(uuu + www) = ‖uuu‖p‖www‖q . (7.4)

Conditions (IB-1) and (IB-2) are clearly satisfied. Also, for uuu ∈ U r {0} and www ∈ W r {0},

d

dt

∣∣∣∣
t=1

φ(tuuu + www) =
d

dt

∣∣∣∣
t=1

tp‖uuu‖p‖www‖q = p‖uuu‖p‖www‖q 6= 0,

which implies that (7.2) is satisfied. Thus φ is a GIBF. Note that the polynomial (1.7) is of

the form (7.4), and hence it is a GIBF.

Example 7.5. Let n = 2p be even, let ε ≥ 0 and consider the polynomial

φε(x1, . . . , xn) =
( p∑

i=1

xixp+i

)2

+ ε

( p∑

i=1

x2
i

)( p∑

i=1

x2
p+i

)
.

Let us verify that if ε > 0, then φε is a GIBF. Let U and W be as in the sample case (7.1)

with q = p. Then (IB-1) is clear, (IB-2) is satisfied for N(λ) = |λ/ε|p/2 and the standard

Euclidean norm, and (7.2) is also satisfied as

d

dt

∣∣∣∣
t=1

φε(tx1, . . . , txp, xp+1, . . . , xn) = 2φε(x1, . . . , xn).

Thus φε is a GIBF, and hence the set ÔA(φε) is HAW for any countable A ⊂ R. (The

same argument also shows that the polynomial (1.8) is a GIBF.) However, if ε = 0 and

n 6= 2, then φ0 is the square of a quadratic form of signature (p, p), and the Oppenheim

conjecture (Margulis’ theorem) implies that dim Ô(φ0) = 0.

Example 7.6. The polynomial (1.9), namely, the function φ on R3 given by

φ(x1, x2, x3) = x1x
2
2 + x3

1x6
3

is a GIBF. In fact, let U and W be as in (7.1) with p = 1 and q = 2. Then (IB-1) is clear,

(IB-2) is satisfied for N(λ) = max{|λ|, |λ|1/3} and the supremum norm as

N(φ(x1, x2, x3)) = max{|x1x
2
2 | + |x1x

2
3 |3, (|x1x

2
2 | + |x1x

2
3 |3)13} ≥ max{|x1x

2
2 |, |x1x

2
3 |},
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and (7.2) is also satisfied as

d

dt

∣∣∣∣
t=1

φ(tx1, x2, x3) = x1x
2
2 + 3x3

1x6
3 6= 0

if x1 6= 0 and (x2, x3) 6= (0, 0).

Example 7.7. The function φ on R4 given by

φ(x, y, z, s) = x2z2 + exp(y2s2) + log(1 + x2s2 + y2z2) − 1

is a GIBF. In fact, let U and W be as in (7.1) with p = q = 2. Then (IB-1) is clear, (IB-2)

is satisfied for N(λ) = e|λ| − 1 and the supremum norm as

φ(x, y, z, s) ≥ log(1 + max{x2, y2} max{z2, s2}),

and (7.2) is also satisfied as

d

dt

∣∣∣∣
t=1

φ(tx, ty, z, s) = 2x2z2 + 2y2s2 exp(y2s2) +
2(x2s2 + y2z2)

1 + x2s2 + y2z2
> 0

if (x, y) 6= (0, 0) and (z, s) 6= (0, 0).

The function φ in the next example can be written in the form (7.3).

Example 7.8. Let p, q ≥ 1 be such that p + q = n, and let

φ(x1, . . . , xn) = max{|x1|, . . . , |xp|}p max{|xp+1|, . . . , |xn|}q .

It is easy to see that (IB-1) and (IB-2) are satisfied for U and W being as in (7.1). To verify

(IB-3), let us write

φ = max
1≤i≤p,1≤j≤q

φij ,

where

φij (x1, . . . , xn) = |xi |p|xp+j |q .

Then each φij satisfies (7.2). By Lemma 7.3, φ satisfies (IB-3), and thus it is a GIBF.

We conclude this section by a example that is not covered by Lemma 7.3.

Example 7.9. Let r > 0. We verify that the function

φ(x1, . . . , xn) = x1

( n∑

i=2

|xi |r
)(n−1)/r

(7.5)

is a GIBF. Let U and W be as in (7.1) with p = 1 and q = n − 1. Then (IB-1) is clear, and

(IB-2) is satisfied for N(λ) = |λ| and the supremum norm on R
n. To verify (IB-3), for a

subset I of {2, . . . , n} we denote

VI ={(x1, . . . , xn) ∈ R
n : xi 6= 0 for every i ∈ I and xj =0 for every j ∈ {2, . . . , n}rI }.

https://doi.org/10.1017/etds.2021.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.4


Non-dense orbits on homogeneous spaces and applications 1369

Then {VI : I ⊂ {2, . . . , n}} is a partition of Rn, and thus, for any a ∈ R,

φ−1(a) =
⋃

I⊂{2,...,n}
φ−1(a) ∩ VI .

It is straightforward to show that if a 6= 0, then each φ−1(a) ∩ VI is an F -invariant C1

submanifold of Rn and is both U -transversal and W -transversal. So (IB-3) is satisfied.

Hence φ is a GIBF. Note that the polynomial (1.6) is the r = n − 1 case of (7.5). Note also

that, when r > 1, one can also verify (IB-3) by verifying (7.2).
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A. Appendix. Proof of Lemma 2.1

We give the proof of Lemma 2.1 here. In view of the local nature of the HAW property and

the local normal form of a submersion, it suffices to prove the following statement.

(∗) Let β ∈ (0, 1
3
), let β̃ = β2/6, let V be a Euclidean space, let W ⊂ V be a linear

subspace, let PW : V → W be the orthogonal projection, let U ⊂ V be an open subset

and let S ⊂ U be a subset that is β̃-HAW on U . Then PW (S) is β-HAW on PW (U).

For the sake of convenience, let us introduce the following concept. We say that two

closed balls B ⊂ W and B̃ ⊂ V are compatible if PW sends the center of B̃ to the center

of B and if the radius of B̃ is twice the radius of B. Let us first prove the following lemma.

LEMMA A.1. Let B ⊂ W and B̃ ⊂ V be compatible closed balls, and let L̃ be an affine

hyperplane in V . Let r denote the radius of B. Then there exists an affine hyperplane

L = L(B, B̃, L̃) in W such that any closed ball in B r L(βr) of radius ≤ βr/6 is

compatible with some closed ball in B̃ r L̃(2β̃r).

Proof. Without loss of generality, we may assume that both B and B̃ are centered at the

origin. Let u ∈ V be a unit normal vector of L̃. We divide the proof into two cases.

(1) Suppose ‖PWu‖ ≤ 1/
√

2. We show that any hyperplane L in W has the required

property. Let B ′ ⊂ B be a closed ball with center w ∈ W and radius r ′ ≤ βr/6. Let v± =
w ± r(u − PWu)/‖u − PWu‖. Without loss of generality, assume that dist(v+, L̃) ≥
dist(v−, L̃). Let B̃ ′ be the closed ball in V with center v+ and radius 2r ′. Then B̃ ′ is

compatible with B ′. We claim that B̃ ′ ⊂ B̃ r L̃(2β̃r). First,

dist(v+, L̃) ≥ 1
2
(dist(v+, L̃) + dist(v−, L̃)) ≥ 1

2
|〈v+ − v−, u〉|

= r‖u − PWu‖ ≥ r/
√

2 ≥ 2r ′ + 2β̃r .

This means that B̃ ′ ∩ L̃(2β̃r) = ∅. On the other hand, for v ∈ B̃ ′,

‖v‖ ≤ ‖v − v+‖ + ‖v+‖ ≤ 2r ′ +
√

2r ≤ 2r .

So B̃ ′ ⊂ B̃. This verifies the claim.
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(2) Suppose ‖PWu‖ > 1/
√

2. We show that the hyperplane L := L̃ ∩ W in W has the

required property. Let B ′ ⊂ B r L(βr) be a closed ball with center w ∈ W and radius r ′ ≤
βr/6. Let B̃ ′ be the closed ball in V with center w and radius 2r ′. Then B̃ ′ is compatible

with B ′. We have

dist(w, L̃) = ‖PWu‖ dist(w, L) ≥ (r ′ + βr)/
√

2 ≥ 2r ′ + 2β̃r ,

and for v ∈ B̃ ′,

‖v‖ ≤ ‖v − w‖ + ‖w‖ ≤ 2r ′ + r ≤ 2r .

So B̃ ′ ⊂ B̃ r L̃(2β̃r). This proves the lemma.

We now proceed to prove statement (∗). For simplicity, let us refer to the β-hyperplane

absolute game on PW (U) with target set PW (S) as Game 1, and refer to the β̃-hyperplane

absolute game on U with target set S as Game 2. We will construct a winning strategy for

Game 1 using the winning strategy for Game 2.

In order to win Game 1, Alice invites two assistants, say Alice’s sister and Bob’s brother,

to play Game 2. Bob’s brother will play following Alice’s instructions, and Alice’s sister

will play according to the winning strategy for Game 2. Suppose Bob starts Game 1 by

choosing a closed ball B0 ⊂ PW (U). Without loss of generality, we may assume that

Bob will choose the closed balls Bi so that their radii ri tend to zero. Let i0 ≥ 0 be the

smallest index such that Bi0 is compatible with some closed ball in U . If i0 6= 0, Alice

chooses the hyperplane neighborhoods {L(r ′
i )

i : 0 ≤ i < i0} arbitrarily. After the ball Bi0

is chosen by Bob, Alice asks Bob’s brother to start Game 2 by choosing a closed ball

B̃0 ⊂ U compatible with Bi0 , and next asks her sister to choose a hyperplane neighborhood

L̃
(r̃ ′

0)

0 ⊂ V according to the winning strategy for Game 2, where r̃ ′
0 ≤ β̃r̃0 and r̃0 is

the radius of B̃0. Then Alice chooses the hyperplane neighborhood L
(r ′

i0
)

i0
⊂ W , where

r ′
i0

= βri0 , Li0 = L(Bi0 , B̃0, L̃0) and L(·, ·, ·) is the function given in Lemma A.1.

Assume that, for some k ≥ 0 and some ik ≥ k, the following data have been chosen:

• a closed ball Bik in W chosen by Bob;

• a closed ball B̃k in V of radius r̃k chosen by Bob’s brother, which is compatible

with Bik ;

• a hyperplane neighborhood L̃
(r̃ ′

k)

k (r̃ ′
k ≤ β̃r̃k) in V chosen by Alice’s sister, according

to the winning strategy for Game 2; and

• a hyperplane neighborhood L
(r ′

ik
)

ik
in W chosen by Alice, such that r ′

ik
= βrik and Lik =

L(Bik , B̃k , L̃k).

(Note that these data have been chosen for k = 0.) Let ik+1 ≥ ik + 1 be the smallest index

such that the radius of the closed ball Bik+1
chosen by Bob satisfies rik+1

≤ βrik/6. Alice

chooses the hyperplane neighborhoods {L(r ′
i )

i : ik < i < ik+1} arbitrarily, and then asks

Bob’s brother to choose a closed ball B̃k+1 ⊂ B̃k r L̃
(β̃r̃k)
k compatible with Bik+1

. Note

that, since Bik+1
⊂ Bik+1 ⊂ Bik r L

(βrik )

ik
, the choice of Lik guarantees that the choice of

such a B̃k+1 is possible. Note also that B̃k r L̃
(β̃r̃k)
k ⊂ B̃k r L̃

(r̃ ′
k)

k and the radius r̃k+1 of
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B̃k+1 satisfies

r̃k+1 = 2rik+1
≥ 2βrik+1−1 > 2β · βrik/6 = β̃r̃k .

So the move of Bob’s brother is legal for Game 2. Next, Alice asks her sister to choose

a hyperplane neighborhood L̃
(r̃ ′

k+1)

k+1 in V according to the winning strategy for Game 2.

Then Alice choose the hyperplane neighborhood L
(r ′

ik+1
)

ik+1
in W such that r ′

ik+1
= βrik+1

and Lik+1
= L(Bik+1

, B̃k+1, L̃k+1).

Let us show that the strategy constructed above guarantees a win for Alice. Since Alice’s

sister is playing according to the winning strategy for Game 2, we have
⋂∞

k=0 B̃k ⊂ S.

Since Bik and B̃k are compatible, we have Bik ⊂ PW (B̃k). It follows that

∞⋂

i=0

Bi =
∞⋂

k=0

Bik ⊂
∞⋂

k=0

PW (B̃k) = PW

( ∞⋂

k=0

B̃k

)
⊂ PW (S).

Hence Alice wins. This proves statement (∗) and thus completes the proof of

Lemma 2.1.
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