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ABSTRACT

We generalize Khintchine’s method of constructing totally irrational singu-

lar vectors and linear forms. The main result of the paper shows existence

of totally irrational vectors and linear forms with large uniform Diophan-

tine exponents on certain subsets of Rn, in particular on any analytic

submanifold of Rn of dimension ≥ 2 which is not contained in a proper

rational affine subspace.
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1. Introduction

1.1. Singular vectors and uniform Diophantine exponents. In this

paper we consider uniform rational approximations to n-tuples of real num-

bers. Denote by 〈x〉 the distance from x ∈ R to the nearest integer, and for

xxx = (x1, . . . , xn) ∈ Rn and yyy = (y1, . . . , yn) ∈ Rn let

〈xxx〉 def
= (〈x1〉, . . . , 〈xn〉), ‖xxx‖ def

= max
1≤j≤n

|xj |, xxx · yyy def
= x1y1 + · · ·+ xnyn.

A vector ξξξ = (ξ1, . . . , ξn) is called singular if for every c > 0 the system of

inequalities

(1.1) ‖〈qξξξ〉‖ ≤ ct−1/n, 0 < q ≤ t

has an integer solution q for any sufficiently large t. Equivalently (in view of

Khintchine’s Transference Principle [18, 7]), ξξξ is singular if for every c > 0 the

system of inequalities

(1.2) 〈qqq · ξξξ〉 ≤ ct−n, 0 < ‖qqq‖ ≤ t

has a solution qqq ∈ Zn for any sufficiently large t. We note that from Dirichlet’s

theorem, or, alternatively, from Minkowski’s convex body theorem, it follows

that when c = 1, for all t ≥ 1 both (1.1) and (1.2) have integer solutions. It is

well-known that the set of singular real numbers coincides with Q; thus in what

follows we will assume that n ≥ 2.

It was observed by Khintchine, see [7, Ch. V, §7], that singular vectors form a

set of Lebesgue measure zero. One reason why singular vectors are an interesting

object of study is their connection with homogeneous dynamics. It was showed

by Dani [10] that ξξξ is singular if and only if the trajectory of a certain lattice

in Rn+1 constructed from ξξξ diverges (i.e., leaves every compact subset of the

space of lattices). We will not exploit this connection in the present paper; see

however [24, 34, 11] for generalizations and further discussions. In particular,

the Hausdorff dimension of the set of singular vectors in Rn was only relatively

recently shown by Cheung and Chevallier [8] to be equal to n2

n+1 ; see also an

earlier work of Cheung [7] settling the case n = 2.

One can also introduce different ‘levels of singularity’ of vectors ξξξ ∈ Rn by

considering exponents of uniform Diophantine approximation. Namely, one de-

fines ω̂(ξξξ), the uniform exponent of ξξξ in the sense of simultaneous
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approximation, as the supremum of γ > 0 for which the system of inequalities

‖〈qξξξ〉‖ ≤ t−γ , 0 < q ≤ t

has an integer solution q for all t large enough. Likewise, ω̂∗(ξξξ), the uniform
exponent of ξξξ in the sense of dual approximation, is defined as the supre-

mum of such γ for which the system of inequalities

〈qqq · ξξξ〉 ≤ t−γ , 0 < ‖qqq‖ ≤ t

has an integer solution qqq for all t large enough. It is clear that always

(1.3) ω̂(ξξξ) ≥ 1/n and ω̂∗(ξξξ) ≥ n.

In [11] vectors ξξξ satisfying ω̂(ξξξ) > 1/n (equivalently, ω̂∗(ξξξ) > n) were called

very singular; clearly very singular implies singular. See [11, Theorem 1.3]

for an interpretation of the quantities ω̂(ξξξ) and ω̂∗(ξξξ) in terms of the rate of

divergence of certain trajectories in the space of lattices.

1.2. Theorems of Khintchine and Jarník. Let us say that ξξξ ∈ Rn is to-

tally irrational if 1, ξ1, . . . , ξn are linearly independent over Q. It is easy to

see that for not totally irrational vectors ξξξ one has

ω̂∗(ξξξ) = ∞ and ω̂(ξξξ) ≥ 1

n− 1
;

in particular, they clearly are very singular. On the other hand, it is clear that

for totally irrational ξξξ one has the upper bound

(1.4) ω̂(ξξξ) ≤ 1.

In a fundamental paper [18] in the case n = 2 Khintchine discovered the phe-

nomenon of existence of very singular totally irrational vectors. This was later

generalized by Jarník to the setting of systems of linear forms [16]. The following

two theorems constitute a special case of Jarník’s result.

Theorem A: There exist continuum many totally irrational ξξξ ∈ Rn such

that ω̂∗(ξξξ) = ∞.

Theorem B: There exist continuum many totally irrational ξξξ ∈ Rn such

that ω̂(ξξξ) = 1.

Here we should note that in the case n = 2 Khintchine deduced Theorem B

from Theorem A by means of a transference argument. However, for n > 2

Jarník proved Theorem B directly, without using transference. In fact, the
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transference argument from Jarník’s paper [15], which can also be found in the

monograph by Cassels [7, Ch. V, §2, Thm. II], when applied to Theorem A gives

a weaker conclusion ω̂(ξξξ) ≥ 1
n−1 .

Further results, generalizations and applications are discussed in Cassels’

book [7] and in a survey by the second-named author [26]. We note that Khint-

chine’s method was used by Dani [10] and later by the third-named [34] to

exhibit rapidly divergent trajectories of diagonalizable semigroups on homoge-

neous spaces of higher rank semisimple Lie groups.

1.3. Approximation on manifolds and fractals. A recurrent theme in

Diophantine approximation is the introduction of restrictions on the vector ξξξ,

for instance by imposing a functional dependence between its components, or

restrictions on the digital expansion of its coefficients. In other terms, one is

interested in the Diophantine properties of vectors ξξξ which are known to lie in

a certain subset of Rn, such as a fractal or a smooth submanifold. See [3] for

history and references, and [22, 21, 20] for developments utilizing dynamics on

the space of lattices, and in particular quantitative non-divergence estimates.

As far as singular vectors on fractals or manifolds go, only a few results have

been known until recently. Davenport and Schmidt [12, Theorem 3] proved that

almost all vectors of the form (x, x2) are not singular. This was later extended

to other manifolds [1, 2, 13, 5]. Recall that a smooth submanifold of Rn is

called nondegenerate if at its Lebesgue-almost every point partial derivatives

of its parametrizing map up to some order span Rn; if M is connected and

real analytic, this is equivalent to not lying in any proper affine subspace (we

define real analytic manifolds in §3). Using quantitative non-divergence results

obtained in [21], two of the authors in [24, Theorem 1.1] generalized the results

of Davenport and Schmidt, proving that the intersection of the set of singular

vectors with any smooth nondegenerate manifold has measure zero. They also

showed that on a large class of fractal sets, the set of singular vectors has

measure zero with respect to the Hausdorff measure on the fractal.

A natural question to ask is whether the above intersection is in fact nontriv-

ial, that is, not contained in the set of totally irrational vectors.

The only examples of curves on which nontrivial singular vectors have been

exhibited are rational quadrics in R2 such as the parabola {(x, x2) : x ∈ R}.
This was done by Roy [30, 31]. His result for the parabola was optimal, in the

sense that he exhibited the least upper bounds for the sets {ω̂(ξξξ)} and {ω̂∗(ξξξ)}
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where ξξξ runs through all totally irrational vectors of the form (x, x2). Optimal

results for quadric hypersurfaces in Rn were very recently obtained by Poëls and

Roy [29, 28], complementing upper estimates for uniform Diophantine exponents

found earlier by two of the authors [23]; see §1.7.

For a quite general class of higher-dimensional real analytic manifolds this

question was addressed in [24, Theorem 1.2]:

Theorem C: Let S be a connected real analytic submanifold of Rn of dimen-

sion at least 2 which is not contained in any proper rational affine subspace

of Rn. Then there exists a totally irrational singular vector ξξξ ∈ S. Moreover,

one can find uncountably many such ξξξ with

(1.5) ω̂(ξξξ) ≥ n2 + 1

n(n2 − 1)
=

1

n
+

2

n(n2 − 1)
.

This was actually done in the context of weighted approximation, see §1.5.

The ‘moreover’ part was not written explicitly in [24], but can be easily derived

from [24, Corollary 5.2 and Remark 5.4]. However, the proof given in [24]

contains a gap, and one of the goals of the present paper is to rectify it by

providing a complete proof of a stronger statement. We will discuss the gap in

the proof at the end of §4.

1.4. The main result. We now formulate a general result, which extends

Theorem A to quite general subsets S ⊂ Rn, and from which a stronger version

of Theorem C follows. The conditions on S will be phrased in terms of its

intersections with rational affine hyperplanes. If m = (m0,m1, . . . ,mn) ∈ Zn+1

is a primitive vector, we will denote by Am the hyperplane

(1.6) Am
def
=

{
ξξξ ∈ Rn :

n∑
i=1

miξi = m0

}
,

and write

(1.7) |Am| def= ‖(m1, . . . ,mn)‖.

We will also work with a generalized version of the uniform exponent for dual

approximation. Let Φ : Zn�{0} → R+ be a proper function, that is

(1.8) the set {qqq ∈ Zn : Φ(qqq) ≤ C} is finite for any C > 0.
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In accordance with Φ we define the following irrationality measure function:

(1.9) ψΦ, ξξξ(t)
def
= min

qqq∈Zn�{000},Φ(qqq)≤t
〈qqq · ξξξ〉.

For example, for Φ(qqq) = ‖qqq‖ the function ψ‖·‖, ξξξ can be used to define the uni-

form exponent of ξξξ in the sense of dual approximation:

(1.10) ω̂∗(ξξξ) = sup{γ : lim sup
t→∞

tγψ‖·‖, ξξξ(t) < ∞}.

Recall that S ⊂ Rn is called locally closed if there is an open set W such

that S = S ∩W . The following is our main result.

Theorem 1.1: Let S ⊂ Rn be a nonempty locally closed subset, let {L1, L2, . . .}
and {L′

1, L
′
2, . . .} be disjoint collections of distinct closed subsets of S, each of

which is contained in a rational affine hyperplane in Rn, and for each i let Ai

be a rational affine hyperplane containing Li. Assume the following hold:

(a)

(1.11)
⋃
i

Li∪
⋃
j

L′
j={xxx∈S :xxx is contained in a rational affine hyperplane}.

(b) For each i and each T > 0,

Li =
⋃

|Aj |>T

Li ∩ Lj.

(c) For each i, and for any finite subsets of indices F, F ′ with i /∈ F , we

have

(1.12) Li = Li �

( ⋃
k∈F

Lk ∪
⋃

k′∈F ′
L′
k′

)
.

(d)
⋃

i Li is dense in S.

Then for arbitrary Φ : Zn → R+ satisfying (1.8) and for any non-increasing

function ϕ : R+ → R+, there exist uncountably many totally irrational ξξξ ∈ S

such that ψΦ,ξξξ(t) ≤ ϕ(t) for all large enough t.

An application of Theorem 1.1 to Φ(qqq) = ‖qqq‖, in view of (1.10), immediately

produces

Corollary 1.2: Let S ⊂ Rn for which there exist collections {Li}, {L′
j}, {Ai}

satisfying the conditions of Theorem 1.1. Then there exist uncountably many

totally irrational ξξξ ∈ S such that ω̂∗(ξξξ) = ∞.
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From this, a standard transference argument from [15] and [7, Ch. V, §2,

Thm. II] readily gives

Corollary 1.3: Let S be as in Corollary 1.2. Then there exist uncountably

many totally irrational ξξξ ∈ S such that ω̂(ξξξ) ≥ 1
n−1 .

We note that the above corollary gives a stronger statement than Theorem C,

since the exponent n2+1
n(n2−1) =

1
n−1 − 1

n(n+1) appearing in (1.5) is strictly smaller

than 1
n−1 .

1.5. Approximation with weights. One advantage of the general setup of

Theorem 1.1 is the possibility to extend our results to approximation with

weights. The weighted setting in Diophantine approximation was initiated by

Schmidt [33] and became very popular during recent decades; see, e.g., [19].

Consider

(1.13) sss = (s1, . . . , sn) ∈ (0, 1)n, s1 + · · ·+ sn = 1,

and put

(1.14) ρ
def
= max

1≤j≤n
sj , δ

def
= min

1≤j≤n
sj .

Then introduce the sss-quasinorm ‖·‖sss on Rn by

‖xxx‖sss def
= max

1≤j≤n
|xj |1/sj .

Clearly ‖xxx‖sss = ‖xxx‖n when sss = ( 1n , . . . ,
1
n ). Now we define the weighted uni-

form exponent ω̂sss(ξξξ) for simultaneous approximation as the supremum

of those γ for which the system of inequalities

‖〈qξξξ〉‖sss ≤ t−nγ , 0 < q ≤ t

has a solution q ∈ Z+ for all t large enough, and the weighted uniform

exponent ω̂∗
sss (ξξξ) of a linear form ξξξ as the supremum of those γ for which the

system of inequalities

〈qqq · ξξξ〉 ≤ t−γ , 0 < ‖qqq‖sss ≤ tn

has a solution qqq ∈ Zn for all t large enough. Analogously to (1.3) and (1.4), for

totally irrational ξξξ one always has

ω̂∗
sss (ξξξ) ≥ n and

1

n
≤ ω̂sss(ξξξ) ≤ 1

ρn
.
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Now, in order to construct vectors with large weighted exponents all one

needs is to apply Theorem 1.7 to the function

Φsss(qqq)
def
= ‖qqq‖1/nsss ,

observing that one has

ω̂∗
sss (ξξξ)

def
= sup{γ : lim sup

t→∞
tγψΦsss,ξξξ(t) < ∞}.

This way we arrive at

Corollary 1.4: Let S be as in Corollary 1.2, and let sss be as in (1.13). Then

there exist uncountably many totally irrational ξξξ ∈ S such that ω̂∗
sss (ξξξ) = ∞.

Exact transference theorems for the weighted setting were obtained quite re-

cently. Improving on a paper by Chow, Ghosh, Guan, Marnat and Simmons [9],

German [14] proved a transference inequality which in particular states that

ω̂∗
sss (ξξξ) = ∞ =⇒ ω̂∗

sss(ξξξ) ≥
1

n(1− δ)
,

where δ is defined in (1.14). This leads to the following

Corollary 1.5: Let S be as in Theorem 1.1, let sss be as in (1.13), and let δ be

as in (1.14). Then there exist uncountably many totally irrational ξξξ ∈ S such

that ω̂sss(ξξξ) ≥ 1
n(1−δ) .

1.6. Applications to manifolds and fractals. We now describe two

classes of subsets S ⊂ Rn for which the assumptions of Theorem 1.1 can be

verified. The first application involves certain product subsets of Rn. Recall

that a subset of R is called perfect if it is compact and has no isolated points.

Theorem 1.6: Let n ≥ 2 and let S1, . . . , Sn be perfect subsets of R such that

(1.15) Q ∩ Sk is dense in Sk for each k ∈ {1, 2}.
Let S =

∏n
j=1 Sj. Then there are collections {Li}, {L′

j}, {Ai} satisfying the

hypotheses of Theorem 1.1. In particular, the conclusions of Theorem 1.1 and

Corollaries 1.2–1.5 hold for S.

For example, the above theorem applies to products of one-dimensional limit

sets of rational iterated function systems such as the middle third Cantor set and

its generalizations. Thus as a special case we see that a Cartesian product of two

copies of Cantor’s middle thirds set contains uncountably many totally irrational
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singular vectors. The question of determining the Hausdorff dimension of the set

of singular vectors in this fractal was raised in the recent paper [6] of Bugeaud,

Cheung and Chevallier, and an upper bound was obtained by Khalil [17].

As a second application, let us consider real analytic submanifolds.

Theorem 1.7: Let S be a connected real analytic submanifold of Rn of di-

mension at least 2 which is not contained in any proper rational affine subspace

of Rn. Then there are collections {Li}, {L′
j}, {Ai} satisfying the hypotheses

of Theorem 1.1. In particular, the conclusions of Theorem 1.1 and Corollaries

1.2–1.5 hold for S.
1.7. Optimality of exponents. One may wonder whether it is possible to

strengthen the conclusion of Corollary 1.3 and, for S as in Theorem 1.1, con-

struct totally irrational ξξξ ∈ S with ω̂(ξξξ) = 1, thereby obtaining an optimal

result identical to the conclusion of Theorem B restricted to S. However, this

is not the case. To explain why, we give two examples. First of all we refer to

the paper [23], where it is shown that for hypersurfaces of the form

S = {ξξξ ∈ Rn : f(ξξξ) = 1} ⊂ Rn,

where f is a homogeneous polynomial of degree s such that

#{xxx ∈ Qn : f(xxx) = 0} < ∞,

one has

sup
totally irrational ξξξ∈S

ω̂(ξξξ) ≤ Hn−1,s,

where Hn−1,s < 1 is the unique positive root of the equation

1− x = x ·
d∑

k=1

( x

s− 1

)k

.

In particular for any totally irrational ξξξ on the unit sphere

{(x1, . . . , xn) : x
2
1 + · · ·+ x2

n = 1} ⊂ Rn

one has ω̂(ξξξ) ≤ Hn−1, where Hn−1 = Hn−1,2 is the unique positive root of the

polynomial xn + · · ·+ x− 1. More general results for quadric hypersurfaces, as

well as the optimality of the aforementioned bound, were very recently proved

by Poëls and Roy in [29].
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In addition to that, in §5 below we show that in the case when S is a so-called

badly approximable affine subspace of Rn, the value ω̂(ξξξ) is uniformly bounded

away from 1 for any totally irrational ξ ∈ S.

2. Proof of Theorem 1.1

The idea of the proof goes back to Khintchine’s original argument [18] and has

appeared in many incarnations in work on the subject; see [26] for a survey. We

retain the notation and assumptions of the theorem; that is,

• S ⊂ Rn is a nonempty locally closed subset;

• L def
= {L1, L2, . . .}, L′ def= {L′

1, L
′
2, . . .} are disjoint collections of distinct

closed subsets of S such that conditions (a)–(d) of Theorem 1.1 hold;

• Φ : Zn�{0} → R+ is such that (1.8) holds;

• ϕ : R+ → R+ is non-increasing.

Also for a rational affine hyperplane Ai as in the statement of the theorem

we let mi ∈ Zn+1 be a primitive vector so that Ai = Ami , where the notation

and normalization are as in (1.6).

Proof of Theorem 1.1. Let

B def
= {ξξξ ∈ S : ∃ t0 such that ∀ t ≥ t0, ψΦ,ξξξ(t) ≤ ϕ(t) and ξξξ is totally irrational},

and suppose by contradiction that B is at most countably infinite. Write

B = {bbb1, bbb2, . . .} (in case B is finite, this is a finite list). Let W be an open

subset of Rn for which S = S ∩ W . Put U0 = W , qqq0 = 0, p0 = 0, i0 = 0

and Φ(0) = 0. We will show that for each ν ∈ N there is a bounded open

set Uν ⊂ W , and an index iν ∈ N, such that, with the notation

(pν , qqqν)
def
= miν ,

the following conditions are satisfied:

(1) ∅ �= S ∩ Uν ⊂ Uν−1.

(2) iν > iν−1 and Φ(qqqν) > Φ(qqqν−1) for all ν ∈ N.

(3) For all k < ν, Uν is disjoint from Lk ∪ L′
k ∪ {bbbk}.

(4) For all ν ∈ N and all ξξξ ∈ Uν we have

|ξξξ · qqqν−1 − pν−1| < ϕ(Φ(qqqν)).

(5) For all ν ∈ N, Uν ∩ Liν �= ∅.
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To see this suffices, take a point

(2.1) ξξξ ∈ S ∩
⋂
ν

Uν =
⋂
ν

S ∩ Uν .

This intersection is nonempty since the right-hand side of (2.1) is by (1) an

intersection of nonempty nested compact sets, and the equality between both

sides of (2.1) follows from the fact that for ν ≥ 2, the sets Uν are contained

in W . We will reach a contradiction by showing that both ξξξ /∈ B and ξξξ ∈ B.
By (3), ξξξ is not equal to any of the bbbi and hence ξξξ /∈ B. Also by (3), ξξξ is not

contained in any of the sets in the collections L,L′, and thus by (1.11), ξξξ is

totally irrational. The function ϕ is non-increasing by assumption, and so is

the irrationality measure function t �→ ψΦ,ξξξ(t), as follows from its definition

(1.9). The properness condition (1.8) guarantees that Φ(qqqν) → ∞ as ν → ∞.

By (2), for any t > t0
def
= Φ(qqq1) there is ν with t ∈ [Φ(qqqν),Φ(qqqν+1)] and by (4)

we have

ψΦ,ξξξ(t) ≤ ψΦ,ξξξ(Φ(qqqν)) ≤ 〈qqqν · ξξξ〉 ≤ |qqqν · ξξξ − pν | < ϕ(Φ(qqqν+1)) ≤ ϕ(t).

This shows that ξξξ ∈ B.
Note that when utilizing the above properties, we did not require property (5).

However we will use it for constructing the sequences Uν , iν .

The inductive construction starts with ν=1. Choose i1
def
= min{i∈N :Li �=∅},

which exists in view of hypothesis (d), and define U1 to be some open set

containing a point in Li1 and such that U1 ⊂ W . Then (1) and (5) follow from

this choice, and properties (2)–(4) hold vacuously for ν = 1.

Now suppose we have constructed Uk and ik with the required properties for

k = 1, . . . , ν, and we explain the construction for ν + 1. Let i = iν . By (5) for

k = ν we have Uν ∩ Li �= ∅. By hypothesis (b) there is an infinite subsequence

of indices j such that along this subsequence,

(2.2) Uν ∩ Li ∩ Lj �= ∅ and |Aj | →j→∞ ∞.

For each such j, write Aj = Amj , mj = (p′j , qqq
′
j). Then by (1.7), along this

subsequence we have ‖qqq′j‖ → ∞, and hence by the property (1.8) of Φ, we can

choose j > i so that Φ(qqq′j) > Φ(qqqν). We then set iν+1 = j. This choice ensures

that (2) holds for ν + 1. Let

ξξξ1 ∈ Uν ∩ Li ∩ Lj .
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The point ξξξ1 belongs to Li and hence satisfies ξξξ1 · qqqν = pν . By continuity, we

can take a small neighborhood V ⊂ Uν around ξξξ1, so that for all ξξξ ∈ V we have

|ξξξ · qqqν − pν | < ϕ(Φ(qqqν+1)).

This is the inequality in (4), for ν + 1.

Since ξξξ1 ∈ Lj = Liν+1 we have V ∩Liν+1 �= ∅, so we can apply hypothesis (c)

to find that there is

ξξξ ∈ Lj ∩ V �
⋃

k<ν+1

(Lk ∪ L′
k ∪ {bbbk}).

Furthermore, we can take a small enough neighborhood Uν+1 of ξξξ so that

Uν+1 ⊂ Uν , and Uν+1 ∩
⋃

k<ν+1

(Lk ∪ L′
k ∪ {bbbk}) = ∅.

With these choices Uν+1 and iν+1 will also satisfy (1), (3) and (5). Thus we

have completed the inductive construction.

With Theorem 1.1 in hand, it is easy to complete the

Proof of Theorem 1.6. Recall that we are given S =
∏n

j=1 Sj , where S1, . . . , Sn

are perfect subsets of R satisfying (1.15). Let e1, . . . , en be the standard base

vectors, and let {Ai} be the collection of all rational hyperplanes which are

normal to one of e1, e2 and have nontrivial intersection with S (where each of the

rational hyperplanes appears exactly once). That is, each of the hyperplanes Ai

is of the form

(2.3) Ai=
{
ξξξ∈Rn :ξki =

pi
qi

}
, where pi∈Z, qi∈N are coprime, and ki∈{1, 2};

note that necessarily we have pi

qi
∈ Ski .

For each i define Li
def
= S∩Ai, and let {L′

j} denote the collection of non-empty

intersections S∩A, where A is a rational affine hyperplane, and the set L′
j does

not appear in the list {Li}. We claim that with these choices, hypotheses (a)–(d)

of Theorem 1.1 are satisfied.

Indeed, (a) is obvious from the definition, and (d) follows from (1.15). For (b)

and (c), suppose for concreteness that ki = 1. Then it follows from (2.3) that

(2.4) Li =
{
ξξξ ∈ Rn : ξ1 =

pi
qi

and ξj ∈ Sj ∀ j �= 1
}
.
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Let ξξξ ∈ Li and let pj/qj be a sequence of distinct rationals in S2 satisfy-

ing pj/qj → ξ2. Such a sequence exists since S2 is perfect and the rationals are

dense in S2. Let

Lj
def
=

{
ξξξ ∈ Rn : ξ2 =

pj
qj

}
∩ S.

Then it is clear from (2.4) that Li ∩ Lj contains elements ξξξj such that ξξξj → ξξξ,

and such that ξξξj differs from ξξξ only in the 2nd coordinate. Also |Aj | = qj → ∞
and so for any T > 0, ξξξ is an accumulation point of the sets Li ∩ Lj with

|Aj | > T . This proves (b). To show (c), note that because S2, . . . , Sn are

perfect, the intersection of the set (2.4) with an arbitrary open subset of Rn

cannot lie in a union of finitely many proper affine subspaces of Rn different

from Ai; hence (1.12).

3. Real analytic submanifolds

Let k ≤ n, and let U ⊂ Rk be open. We say that f : U → Rn is real ana-

lytic immersion if it is injective, each of its coordinate functions fi : U → R

(i = 1, . . . , n) is infinitely differentiable, the Taylor series of each fi converges

in a neighborhood of every xxx ∈ U , and the derivative mapping dxxxf : Rk → Rn

has rank k. By a k-dimensional real analytic submanifold in Rn we mean

a subset M ⊂ Rn such that for every ξξξ ∈ M there is a neighborhood V ⊂ Rn

containing ξξξ, an open set U ⊂ Rk, and a real analytic immersion f : U → Rn

such that V ∩M = f(U). By a real analytic curve (resp., surface) we mean a

connected one-dimensional (resp., two-dimensional) real analytic submanifold.

A mapping h : M → Rm is real analytic if for any ξξξ, f,U as above, each

coordinate function of h ◦ f : U → Rm is infinitely differentiable and its Taylor

series converges in some neighborhood of f−1(ξξξ).

The crucial property which distinguishes real analytic submanifolds from

smooth manifolds, and follows easily from definitions, is the following.

LetM1,M2 be real analytic submanifolds (where we equip them with the topol-

ogy inherited from the ambient space Rn). Then, if the intersection M1 ∩M2

has nonempty interior in M1, then this intersection is open in M1; and thus,

if additionally M1 is connected and M2 is closed, then M1 ⊂ M2.
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A subset N ⊂ M is called semianalytic if it is locally described by finitely

many equalities and inequalities involving real analytic functions, i.e., for every

ξξξ0 ∈ N there is an open neighborhood U containing ξξξ0 such that

N ∩ U = {ξξξ ∈ M∩ U : ∀i, hi(ξξξ) = 0 and ∀j, h̄j(ξξξ) > 0},
for finitely many real analytic functions hi, h̄j on M ∩ U . For background on

the geometry of analytic and semianalytic manifolds we refer the reader to [4]

and the references therein. In particular, the reader may consult [4] for the

definition of the dimension of a semianalytic set.

We will need to decompose semianalytic subsets into analytic submanifolds.

In this regard we have the following (see [4, §2]):

Proposition 3.1: Let N ⊂ M be a semianalytic subset of a real analytic

submanifold M ⊂ Rn. Then any connected component of N is semianalytic,

and N has a locally finite presentation as a disjoint union of sets N1,N2, . . .,

each of which is a connected analytic submanifold of dimension at most dimN ,

and such that

(3.1) i �= j, Ni ∩ Nj �= ∅ =⇒ dimNj > dimNi.

It will be easier to work with real analytic surfaces than with manifolds of

higher dimension. The reason for this is that in this case it will be possible to

describe a stratification as in Proposition 3.1 in topological terms.

Proposition 3.2: Let S be a bounded real analytic surface, and let A be an

affine hyperplane such that S �⊂ A. Denote by F the set of points ξξξ ∈ S ∩ A

for which there does not exist a neighborhood U of ξξξ such that U ∩ S ∩ A is a

real analytic curve. Then F is finite, the number of connected components of

(S ∩A)�F is finite, and each of these connected components is a real analytic

curve.

We will refer to the connected components of the set (S ∩ A) � F as the

one-dimensional basic components of S ∩ A.

Example 3.3: Let n = 3, let S be defined by

S = {(x, y, xy) : x, y ∈ (−1, 1)},
and let

A = {(x, y, 0) : x, y ∈ R}.
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Then A∩S is the union of a vertical line {x = 0} and a horizontal line {y = 0}
in the plane A, intersecting at the origin (0, 0, 0). The set F defined in Propo-

sition 3.2 consists of the origin, and the one-dimensional basic components are

four open intervals (two horizontal and two vertical) in A.

Proof of Proposition 3.2. Write S0
def
= S∩A, a semianalytic subset of S. Clearly

dimS0 ≤ 2 and we claim that dimS0 �= 2. Indeed, if this were to hold then S0

would be open in S, but also closed since A is a closed subset of Rn. By

connectedness this would imply S ⊂ A, contrary to assumption.

Thus dimS0 ≤ 1. We treat separately the cases dimS0 = 0 and dimS0 = 1.

If S has dimension 0, then each of its connected components is a real analytic

submanifold of dimension 0, i.e., S0 is a discrete subset of S. Moreover S0 is

finite, since the collection described in Proposition 3.1 is locally finite and S is

bounded, and by definition F = S0.

If dimS0 = 1, then by Proposition 3.1 (and using again that S is bounded) we

can write S0 as a disjoint union F0∪F1, where F0 is a finite set of points and F1

is a finite union of disjoint real analytic curves Ni. Such a stratification is not

unique, but we choose one so that the cardinality of F0 is as small as possible.

We claim that with this choice, F0 = F and the real analytic curves Ni are the

connected components of S0 � F .

To see this, note that since the Ni are real analytic curves, any point in any

one of the Ni cannot belong to the set F , so F ⊂ F0. Suppose if possible that

there is some ξξξ ∈ F0�F . Since ξξξ /∈ F , it is not an isolated point of S0. Thus, if

we denote by F1(ξξξ) the collection of curvesNi for which ξξξ ∈ Ni, then F1(ξξξ) �= ∅.

Let η be the connected component of S0 � F containing ξξξ. Then η is a real

analytic curve. By the connectedness of η and property (3.1), any Ni in the

collection F1(ξξξ) must be contained in η. Since ξξξ is a smooth point of η, i.e.,

there is a neighborhood W of ξ such that W ∩S0 = W ∩η, it follows that F1(ξξξ)

consists of two real analytic curvesNi,Nj such that the union γ
def
= Ni∪{ξξξ}∪Nj

is also a real analytic curve contained in η. We can therefore modify F0 and F1,

by replacing F0, F1 respectively with

F0 � {ξξξ} and F1 ∪ {ξξξ} = F1 ∪ γ � (Ni ∪ Nj).

But this contradicts the minimality of F0, showing that F0 = F . Since by (3.1)

any boundary point of any Ni is in F , the Ni are open and closed as subsets of

S0 � F . Thus they coincide with the connected components of S0 � F .
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In order to be in a position to apply Proposition 3.2 we will need the following.

Proposition 3.4: Let k ≥ 2, and let M ⊂ Rn be a connected k-dimensional

real analytic submanifold which is not contained in a proper rational affine

subspace of Rn. Then M contains a bounded real analytic surface which is not

contained in a proper rational affine subspace of Rn.

Proposition 3.4 is proved by induction on the dimension k, the base case k = 2

being obvious. For k ≥ 3, the deduction of case k from case k − 1 follows from

the observation that any proper affine rational subspace of Rn is contained in

a rational affine hyperplane, and from the following. For each k we denote

Ik
def
= (0, 1)k the open unit k-dimensional cube.

Lemma 3.5: Suppose that for k ≥ 3, M is a k-dimensional real analytic sub-

manifold which is the image of Ik under a real analytic immersion f : Ik → Rn.

Suppose also that M is not contained in any rational affine hyperplane. Then

there exists α ∈ (0, 1) such that the analytic manifold fα(Ik−1), where

(3.2) fα : Ik−1 → Rn, fα(x1, . . . , xk−1)
def
= f(x1, . . . , xk−1, α),

does not belong to any rational affine hyperplane.

Proof of Lemma 3.5 (and hence of Proposition 3.4). If the conclusion of the

Lemma is not true, then for any α ∈ (0, 1) there exists a rational affine hy-

perplane A containing the image of the function (3.2). This means that

(3.3)
⋃
m

f−1(Am ∩M) = Ik

where the union is taken over all primitive vectors m ∈ Zn+1 and Am is the

rational affine hyperplane defined via (1.6). This is a countable union of closed

subsets of Ik so by the Baire category theorem, one of them has nonempty

interior. That is, there is a nonempty open subset U ⊂ Ik and m0 such that

f(U) ⊂ Am0 . That is, M∩ Am0 has nonempty interior in M. By analyticity

and connectedness of M we then have M ⊂ Am0 , contrary to hypothesis.

4. Proof of Theorem 1.7

We first explain informally the main difficulty in the proof and the idea that

allows us to overcome it. As was mentioned above, the intersections of real ana-

lytic submanifolds with affine hyperplanes are semianalytic sets, but they need
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not themselves be real analytic submanifolds. This makes it tricky to verify

the hypotheses of Theorem 1.1. To deal with this, we first pass to the case in

which S is a surface and is not contained in a proper rational affine hyperplane.

This means that the intersections S ∩ A can be described by Proposition 3.2.

Moreover, for some affine hyperplanes A, the sets S∩A can be taken to satisfy a

transversality condition which implies that they are real analytic curves. Specif-

ically in the proof below, the Li will be closed real analytic curves, while the L′
j

will be basic one-dimensional components of one-dimensional semianalytic sets.

We now proceed to the details of the argument.

Proof of Theorem 1.7. By Proposition 3.4 we can assume that S is bounded,

connected and two-dimensional. Let {Ai} be the collection as in the proof

of Theorem 1.6, that is, the Ai are the affine rational hyperplanes normal to

one of the two standard basis vectors e1, e2. For each ξξξ ∈ S, the tangent

space TξξξS is a two-dimensional affine subspace of Rn passing through ξξξ. Recall

that S is not contained in any proper rational affine subspace of Rn; thus, by

possibly replacing S with its smaller connected open subset, we can assume that

for every ξξξ ∈ S, the tangent space TξξξS is not normal to either of e1, e2. This

implies that we can view S as a graph of a smooth function over its projection to

the two-dimensional space V12
def
= span(e1, e2) ∼= R2. This implies furthermore

that for each i and each ξξξ ∈ S ∩ Ai, the intersection TξξξS ∩ Ai is a transversal

intersection, that is, an affine subspace of dimension one. By taking S smaller,

we can ensure that its projection to the plane V12 is an open bounded convex

set. Now define Li
def
= S ∩ Ai (where we only take those indices i for which Li

is not empty). Each Li is closed as a subset of S, and by the implicit function

theorem it is a real analytic curve. Since the projection of S on V12 is convex,

each Li is also connected.

Having defined the collections {Li}, {Ai} we now define the collection {L′
j}.

For any rational affine hyperplane A for which S ∩ A is nonempty, we have

by Proposition 3.2 its one-dimensional basic components. There are at most

countably many such sets {γj} where each γj is a real analytic curve whose

closure γj satisfies that γj � γj consists of at most two points. We take

{L′
j} def

= {γj : ∀ i, γj �⊂ Li}.

We claim that with these choices, conditions (a)–(d) of Theorem 1.1 are satisfied

(note that as a real analytic submanifold of Rn, S is locally closed).
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Properties (a), (b), (d) are straightforward. Indeed, since each Li is a con-

nected real analytic curve, the condition γj �⊂ Li is equivalent to γj �⊂ Li. Also

the sets γj contain all points of S which belong to rational affine hyperplanes

but not to one of the hyperplanes Ai. Thus we have (a). For (d) note we

can apply the projection to the plane V12, since S is a graph over this plane.

By construction, the projections of the Li form a dense collection of horizontal

lines and a dense collection of vertical lines. In particular (d) holds. For (b)

we continue to work in the plane V12. For every point ξξξ on (say) a horizontal

line � ⊂ V12, which is the projection of some Li, there is a sequence of intersec-

tion points ξξξj of � with vertical lines such that ξξξj → ξξξ and ξξξj is contained in

spaces Aj . A computation similar to the one used in the proof of Theorem 1.6

shows that along this sequence, we have |Aj | → ∞, and (b) follows.

For (c) we argue as follows. Let F, F ′ be as in statement (c). The set Li is a

real analytic curve and for each k ∈ F , Li ∩ Lk is either empty or consists of a

single point. Now let k′ ∈ F ′, and suppose by contradiction that L′
k′ ∩ Li has

nonempty interior, relative to the topology on Li. Then, since L
′
k′ is the closure

of a real analytic curve γ with γ � γ consisting of at most two points, Li ∩ γ

also has nonempty interior relative to Li, and, since the dimensions are both

equal to one, γ ∩ Li also has nonempty interior relative to the topology of γ.

Since Li is closed and γ is connected, this means that γ ⊂ Li, contradicting the

definition of L′
k′ .

We close the section by commenting on Theorem C and its proof given in [24],

which, as was mentioned in the introduction, contained an error. Since in this

paper we prove a strengthening, namely Theorem 1.7, we do not rewrite the

proof of [24] completely. Rather we explain the gap in the proof and sketch how

it can be fixed.

Theorem C is derived in [24] from an abstract result [24, Theorem 5.1],

which is similar to Theorem 1.1 (abstracting Khintchine’s classical argument).

The statement of [24, Theorem 5.1] involves two countable lists X1, X2, . . .

and X ′
1, X

′
2, . . . of closed subsets of a subset X of a Lie group. The appli-

cation deals with a real analytic submanifold S ⊂ Rn of dimension at least

two, embedded in the group SLn+1(R). In order to conclude that S contains

totally irrational singular vectors ξξξ, and to obtain a bound on their associated

parameter ω̂(ξξξ), some conditions on the sets Xi, X
′
j must be checked. One of
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these is the following transversality condition:

(4.1) for every i, j, Xi = Xi �X ′
j

(which is analogous to hypothesis (c) of Theorem 1.1). The argument given in

[24] defines the Xi, X
′
j as connected components of the intersection of S with

rational affine hyperplanes. It is then erroneously claimed that (4.1) holds

for these choices. Indeed, with the notations of Example 3.3, set A1
def
= A

and A′
1
def
= {(0, y, z) : y, z ∈ R}. Then X1 = S ∩ A1 is the union of two lines

intersecting at a point, and X ′
1 = S ∩ A′

1 is one of these lines. So (4.1) fails.

It is possible to rectify the proof by adapting some of the arguments we used

in the proof of Theorem 1.7; namely, by replacing S with a two-dimensional

real analytic submanifold, and adjusting the definitions of the sets Xi, X
′
i using

the notion of basic components. We leave the details to the reader.

5. Badly approximable subspaces

In this section we give upper bounds for the exponent ω̂(ξξξ) for points ξξξ ∈ A in

case when an s-dimensional affine subspace A of Rn is badly approximable. To

define the latter property, we identify Rn with the affine subspace

Rn
1 := {x = (x0, x1, . . . , xn) ∈ Rn+1 : x0 = 1}

and consider the affine subspace

A def
= {x ∈ Rn+1 : x0 = 1 , (x1, . . . , xn) ∈ A}.

Let us define the linear subspace

LA
def
= spanA ⊂ Rn+1.

It is clear that LA has dimension s+1. From Minkowski’s convex body theorem

it follows that there exists a constant C dependent only on n such that for any A

there exists infinitely many integer vectors m ∈ Zn+1 such that

dist (LA,m)n−s · ‖m‖s+1 < C.

We define A to be a badly approximable subspace if

inf
m∈Zn+1�{0}

dist(LA,m)n−s · ‖m‖s+1 > 0.

It is clear that badly approximable subspaces exist. Moreover, from a famous

theorem of Schmidt [32] it follows that they form a thick set (that is, the set of
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badly approximable subspaces in any non-empty open subset of the Grassma-

nian of all s-dimensional affine subspaces of Rn has full Hausdorff dimension).

Indeed, without loss of generality one can parametrize A in the following form:

(5.1) A =

{
ξξξ =

(
xxx

yyy0 + Y xxx

)
: xxx ∈ Rs

}
,

where Y ∈ Mn−s,s and yyy0 ∈ Rn−s. Define

ws,n
def
=

s+ 1

n− s
.

Then it is easy to see that A is badly approximable if and only if the augmented

matrix

(5.2) Ỹ := [yyy0 Y ] ∈ Mn−s,s+1

is badly approximable, that is, if

inf
q∈Zs+1�{0}

‖q‖ws,n‖〈Ỹ q〉‖ > 0.

Note that

(5.3) ws,n < 1 ⇐⇒ s <
n− 1

2
.

Let Ws,n be the unique root of the equation

(5.4) xn+1 − wn−1
s,n (1 + ws,n)x+ wn

s,n = 0

in the interval (0, ws,n).

Proposition 5.1: Let A be an s-dimensional badly approximable affine sub-

space of Rn. Then:

(i) for any ξξξ ∈ A one has

(5.5) ω̂(ξξξ) ≤ ws,n;

(ii) for any totally irrational ξξξ ∈ A one has

(5.6) ω̂(ξξξ) ≤ Ws,n.

Remark 5.2: In view of (5.3), when ξξξ is totally irrational, the estimate in (i) is

non-trivial only if s < n−1
2 . If s is fixed, then ws,n = O( 1

n ) as n → ∞, which

shows that for large n the conclusion of Corollary 1.3, that is, the existence of

uncountably many totally irrational ξξξ ∈ S with ω̂(ξξξ) ≥ 1
n−1 , is close to optimal,

in some sense. Statement (ii) gives a slight improvement of this bound.



Vol. 245, 2021 SINGULAR VECTORS ON MANIFOLDS AND FRACTALS 609

In particular, we can consider the following examples:

(1) if n = 4 and s = 1, the inequality (5.5) gives ω̂ ≤ w1,4 = 2
3 ;

(2) if n = 2 and s = 1, we havew1,2 = 2; equation (5.4) is now x3−6x+4=0,

and the inequality (5.6) gives

ω̂ ≤ W1,2 =
√
3− 1 = 0.732 . . . ;

(3) if n = 3 and s = 1, we have w1,3 = 1, equation (5.4) has the form

x4 − 2x+ 1 = 0, and the inequality (5.6) gives

ω̂ ≤ W1,3 = 0.54 . . . ;

(4) if n=3 and s=2, we havew2,3=3, equation (5.4) is now x3−36x+27=0,

and the inequality (5.6) gives

ω̂ ≤ W2,3 = 0.759 . . . .

Proof of Proposition 5.1. To prove (i), we will use the following elementary

Lemma 5.3: If ξξξ ∈ A and A is badly approximable, then there exists a positive c

such that for every q ∈ N we have

(5.7) ‖〈qξξξ〉‖ ≥ cq−wn,s .

From this lemma (5.5) follows immediately.

Proof of Lemma 5.3. We will use the parameterization (5.1). Assume the con-

trary, that is, for some ξξξ = ( xxx
yyy0+Y xxx ) and any ε > 0 there exists mmm = ( ppprrr ) ∈ Zn

such that

‖qξξξ −mmm‖ =

∥∥∥∥∥
(

qxxx

qyyy0 + Y (qxxx)

)
−
(
ppp

rrr

)∥∥∥∥∥ < εq−wn,s .

In particular, ‖qxxx− ppp‖ < εq−wn,s ; thus, if we define q := ( q
ppp ), it follows that

(5.8) ‖q‖ ≤ Cq for some C = C(xxx) independent on q, ppp and ε.

Note that

qyyy0 + Y (qxxx)− rrr = qyyy0 + Y (ppp+ qxxx− ppp)− rrr = Ỹ q− rrr + Y (qxxx− ppp),

where Ỹ is as in (5.2). Hence

‖〈Ỹ q〉‖ ≤ ‖qyyy0 + Y (qxxx)− rrr‖+ ‖Y (qxxx − ppp)‖ < C̃εq−wn,s ,
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where C̃ is a constant depending only on Y . Since ε was arbitrary and in

view of (5.8), this shows that Ỹ , and hence the subspace A, is not badly

approximable.

To prove (ii) we consider the ordinary Diophantine exponent ω = ω(ξξξ), de-

fined as supremum of those γ > 0 for which the inequality

||〈qξξξ〉|| < q−γ

has infinitely many solutions in q ∈ N. It is clear from (5.7) that for ξξξ ∈ A one

has

(5.9) ω(ξξξ) ≤ s+ 1

n− s
= ws,n.

Then we apply the inequality

(5.10)
ω(ξξξ)

ω̂(ξξξ)
≥ Gn,

where Gn the unique positive root of the equation

xn−1 =
ω̂

1− ω̂
(xn−2 + xn−3 + · · ·+ x+ 1),

which is valid for all totally irrational ξξξ ∈ Rn. This result was proven in [25],

and a short and beautiful proof was given recently in [27].

Note that as 1
n ≤ ω̂ ≤ 1, we have Gn ≥ 1 and Gn = 1 if and only if ω̂ = 1

n .

We see that Gn is also a root of the simpler equation

(1− ω̂)x+
ω̂

xn−1
= 1 ⇐⇒ g(x)

def
= (1− ω̂)xn − xn−1 + ω̂ = 0.

The polynomial g(x) in the interval x ≥ 1 has the unique root Gn. Hence

x ≥ Gn ⇐⇒ (1− ω̂)xn − xn−1 + ω̂ ≥ 0.

Moreover, since

max
1
n≤z≤1

(z(1− z)n−1) =
1

n
·
(
1− 1

n

)n−1

,

we have

ω̂(1− ω̂)n−1 ≤ 1

n
·
(
1− 1

n

)n−1

.

Therefore g( 1
1−ω̂ · n−1

n ) ≤ 0, and we deduce that

Gn ≥ 1

1− ω̂
· n− 1

n
.
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Now (5.10) leads to

(1 − ω̂)ωn − ωn−1ω̂ + ω̂n+1 ≥ 0.

The function

f(y)
def
= (1− ω̂)yn − yn−1ω̂ + ω̂n+1

increases when y ≥ ω̂
1−ω̂ · n−1

n . Since ω ≥ ω̂ ·Gn ≥ ω̂
1−ω̂ · n−1

n , we deduce from

(5.9) the inequality

(1− ω̂)wn
s,n − wn−1

s,n ω̂ + ω̂n+1 ≥ 0

which immediately gives (5.6).
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