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ABSTRACT
We generalize Khintchine’s method of constructing totally irrational singu
lar vectors and linear forms The main result of the paper shows existence
of totally irrational vectors and linear forms with large uniform Diophan
tine exponents on certain subsets of R™, in particular on any analytic
submanifold of R™ of dimension > 2 which is not contained in a proper
rational affine subspace
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1. Introduction

11 SINGULAR VECTORS AND UNIFORM DIOPHANTINE EXPONENTS In this
paper we consider uniform rational approximations to n tuples of real num
bers Denote by (x) the distance from = € R to the nearest integer, and for
= (r1,...,2,) ER" and y = (y1,...,yn) € R" let

def def def
(@)= (1), (@a), 2l = max |ag], 2 y= 2+ +20yn.
1<j<n
A vector € = (&1,...,&,) is called singular if for every ¢ > 0 the system of
inequalities
(11) g€l < et™'/", 0<g<t

has an integer solution ¢ for any sufficiently large ¢ Equivalently (in view of
Khintchine’s Transference Principle [18, 7|), £ is singular if for every ¢ > 0 the
system of inequalities

(12) (g-& <™ 0<|ql <t

has a solution q € Z" for any sufficiently large ¢ We note that from Dirichlet’s
theorem, or, alternatively, from Minkowski’s convex body theorem, it follows
that when ¢ =1, for all ¢ > 1 both (1 1) and (1 2) have integer solutions It is
well known that the set of singular real numbers coincides with Q; thus in what
follows we will assume that n > 2

It was observed by Khintchine, see [7, Ch V, §7], that singular vectors form a
set of Lebesgue measure zero One reason why singular vectors are an interesting
object of study is their connection with homogeneous dynamics It was showed
by Dani [10] that £ is singular if and only if the trajectory of a certain lattice
in R™*! constructed from & diverges (i e, leaves every compact subset of the
space of lattices) We will not exploit this connection in the present paper; see
however [24, 34, 11] for generalizations and further discussions In particular,
the Hausdorff dimension of the set of singular vectors in R™ was only relatively

2

" : see also an

recently shown by Cheung and Chevallier [§] to be equal to " ;;

earlier work of Cheung [7] settling the case n = 2

One can also introduce different ‘levels of singularity’ of vectors & € R™ by
considering exponents of uniform Diophantine approximation Namely, one de
fines w(€), the uniform exponent of £ in the sense of simultaneous
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approximation, as the supremum of v > 0 for which the system of inequalities
()| <t77, 0<q<t

has an integer solution ¢ for all ¢ large enough Likewise, &*(£), the uniform
exponent of £ in the sense of dual approximation, is defined as the supre
mum of such v for which the system of inequalities

(g-&<t77, 0<lqll<t
has an integer solution g for all ¢ large enough It is clear that always
(13) o) >1/n and & (€) > n.

In [11] vectors € satisfying &(§) > 1/n (equivalently, &*(€) > n) were called
very singular; clearly very singular implies singular See [11, Theorem 1 3|
for an interpretation of the quantities @(€) and &*(€) in terms of the rate of
divergence of certain trajectories in the space of lattices

12 THEOREMS OF KHINTCHINE AND JARNIK Let us say that £ € R™ is to-
tally irrational if 1,&;,...,&, are linearly independent over Q It is easy to
see that for not totally irrational vectors £ one has

1 .

-1’

in particular, they clearly are very singular On the other hand, it is clear that

w* () =00 and (&) > "

for totally irrational € one has the upper bound
(14) w() < 1.

In a fundamental paper [18] in the case n = 2 Khintchine discovered the phe
nomenon of existence of very singular totally irrational vectors This was later
generalized by Jarnik to the setting of systems of linear forms [16] The following
two theorems constitute a special case of Jarnik’s result

THEOREM A: There exist continuum many totally irrational & € R™ such
that @*(€) = oo

THEOREM B: There exist continuum many totally irrational & € R™ such
that ©(€) =1

Here we should note that in the case n = 2 Khintchine deduced Theorem B
from Theorem A by means of a transference argument However, for n > 2
Jarnik proved Theorem B directly, without using transference In fact, the
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transference argument from Jarnik’s paper [15], which can also be found in the

monograph by Cassels [7, Ch V, §2, Thm II], when applied to Theorem A gives

1

a weaker conclusion @w(§) >~

Further results, generalizations and applications are discussed in Cassels’
book [7] and in a survey by the second named author [26] We note that Khint
chine’s method was used by Dani [10] and later by the third named [34] to
exhibit rapidly divergent trajectories of diagonalizable semigroups on homoge
neous spaces of higher rank semisimple Lie groups

13 APPROXIMATION ON MANIFOLDS AND FRACTALS A recurrent theme in
Diophantine approximation is the introduction of restrictions on the vector &,
for instance by imposing a functional dependence between its components, or
restrictions on the digital expansion of its coefficients In other terms, one is
interested in the Diophantine properties of vectors £ which are known to lie in
a certain subset of R™, such as a fractal or a smooth submanifold See [3]| for
history and references, and [22, 21, 20] for developments utilizing dynamics on
the space of lattices, and in particular quantitative non divergence estimates

As far as singular vectors on fractals or manifolds go, only a few results have
been known until recently Davenport and Schmidt [12, Theorem 3] proved that
almost all vectors of the form (z,2?) are not singular This was later extended
to other manifolds [1, 2, 13, 5] Recall that a smooth submanifold of R™ is
called nondegenerate if at its Lebesgue almost every point partial derivatives
of its parametrizing map up to some order span R"; if M is connected and
real analytic, this is equivalent to not lying in any proper affine subspace (we
define real analytic manifolds in §3) Using quantitative non divergence results
obtained in [21], two of the authors in [24, Theorem 1 1] generalized the results
of Davenport and Schmidt, proving that the intersection of the set of singular
vectors with any smooth nondegenerate manifold has measure zero They also
showed that on a large class of fractal sets, the set of singular vectors has
measure zero with respect to the Hausdorff measure on the fractal

A natural question to ask is whether the above intersection is in fact nontriv
ial, that is, not contained in the set of totally irrational vectors

The only examples of curves on which nontrivial singular vectors have been
exhibited are rational quadrics in R? such as the parabola {(z,7?) : € R}
This was done by Roy [30, 31] His result for the parabola was optimal, in the
sense that he exhibited the least upper bounds for the sets {&(€)} and {&*(€)}
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where € runs through all totally irrational vectors of the form (z,2%) Optimal
results for quadric hypersurfaces in R™ were very recently obtained by Poéls and
Roy [29, 28], complementing upper estimates for uniform Diophantine exponents
found earlier by two of the authors [23]; see §1 7

For a quite general class of higher dimensional real analytic manifolds this
question was addressed in [24, Theorem 1 2|:

THEOREM C: Let S be a connected real analytic submanifold of R™ of dimen
sion at least 2 which is not contained in any proper rational affine subspace
of R™ Then there exists a totally irrational singular vector £ € S Moreover,
one can find uncountably many such & with

15) s> Lty 2

n(n2—1) n  n(mn2-1)

This was actually done in the context of weighted approximation, see §1 5
The ‘moreover’ part was not written explicitly in [24], but can be easily derived
from [24, Corollary 52 and Remark 54] However, the proof given in [24]
contains a gap, and one of the goals of the present paper is to rectify it by

providing a complete proof of a stronger statement We will discuss the gap in
the proof at the end of §4

14 THE MAIN RESULT We now formulate a general result, which extends
Theorem A to quite general subsets S C R™, and from which a stronger version
of Theorem C follows The conditions on S will be phrased in terms of its
intersections with rational affine hyperplanes If m = (mg,my,...,m,) € Z"+!
is a primitive vector, we will denote by Ay, the hyperplane

(16) Amde{EER”:Zmigimo},
=1
and write
def
(17) [Am| = [[(m1,...,mp)]|.

We will also work with a generalized version of the uniform exponent for dual
approximation Let ® : Z"~{0} — R, be a proper function, that is

(18) the set {q € Z" : ®(q) < C} is finite for any C' > 0.
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In accordance with ® we define the following irrationality measure function:
def .
19 t) = min -&).
(19) vae®™ | min (-9

For example, for ®(g) = ||q|| the function ). ¢ can be used to define the uni
form exponent of £ in the sense of dual approximation:

(1 10) @*({) = sup{y : h?i}solip tV’L/J||.||7£(t) < OO}

Recall that S C R™ is called locally closed if there is an open set W such
that S =S NW The following is our main result

THEOREM 1 1: Let S C R™ be a nonempty locally closed subset, let { L1, Lo, ...}
and {LY, L}, ...} be disjoint collections of distinct closed subsets of S, each of
which is contained in a rational affine hyperplane in R™, and for each i let A;
be a rational affine hyperplane containing L; Assume the following hold:

(a)
(111) U LiUU L;={xz€S:x is contained in a rational affine hyperplane}.
i J
(b) For each i and each T > 0,
L, = U L;N Lj.
‘Aj|>T

(c) For each i, and for any finite subsets of indices F, F' with i ¢ F, we
have

(112) Li:Li\(ULkU U L’,).

keF k'eF’
(d) U, L; is dense in S
Then for arbitrary ® : Z" — Ry satisfying (1 8) and for any non increasing

function ¢ : Ry — Ry, there exist uncountably many totally irrational £ € S
such that g ¢(t) < p(t) for all large enough t

An application of Theorem 11 to ®(q) = ||g||, in view of (1 10), immediately
produces

COROLLARY 1 2: Let S C R™ for which there exist collections {L;}, {L}, { A}
satisfying the conditions of Theorem 11 Then there exist uncountably many
totally irrational € € S such that O*(€) = 0o



Vol 245, 2021 SINGULAR VECTORS ON MANIFOLDS AND FRACTALS 595

From this, a standard transference argument from [15] and [7, Ch V, §2,
Thm II] readily gives

COROLLARY 1 3: Let S be as in Corollary 12 Then there exist uncountably

many totally irrational £ € S such that @(§) > ',
We note that the above corollary gives a stronger statement than Theorem C,

n?41 1

since the exponent n(n?—1) = n=1 — n(n1+1)

than !
e

appearing in (1 5) is strictly smaller

1

15 APPROXIMATION WITH WEIGHTS One advantage of the general setup of
Theorem 1 1 is the possibility to extend our results to approximation with
weights The weighted setting in Diophantine approximation was initiated by
Schmidt [33] and became very popular during recent decades; see, e g, [19]

Consider
(113) s=(s1,.--.,8,) € (0, 1)", s14+---+s, =1,
and put
def def .
(114) p= lIéljaSXn sj, 0= 1I§Ilj1£n Sj.

Then introduce the s-quasinorm ||-||, on R"™ by

def 11/s;
ol s o[/

1 1

n't i

Clearly ||z||, = ||lz|" when s = ( ) Now we define the weighted uni-
form exponent @4(€) for simultaneous approximation as the supremum

of those « for which the system of inequalities
[(@)lly <t™™, 0<qg<t

has a solution ¢ € Z; for all ¢ large enough, and the weighted uniform
exponent @} (£) of a linear form £ as the supremum of those « for which the
system of inequalities

(@& =<t 0<lqll, <t"
has a solution g € Z" for all ¢ large enough Analogously to (1 3) and (1 4), for
totally irrational £ one always has

1

GO zn md | <a@s .



596 D KLEINBOCK, N MOSHCHEVITIN AND B WEISS Isr J Math

Now, in order to construct vectors with large weighted exponents all one
needs is to apply Theorem 1 7 to the function

def 1/n
D5(q) = [lall )",

observing that one has

~ K

wi(€) def sup{~ : limsupt?vq, ¢(t) < co}.
t— o0
This way we arrive at

COROLLARY 1 4: Let S be as in Corollary 12, and let s be as in (1 13) Then
there exist uncountably many totally irrational £ € S such that &} (€) = 0o

Exact transference theorems for the weighted setting were obtained quite re
cently Improving on a paper by Chow, Ghosh, Guan, Marnat and Simmons [9],
German [14] proved a transference inequality which in particular states that

A % Ak 1
ws(f) =0 = ws(&) > TL(]. . 5)3
where § is defined in (1 14) This leads to the following

COROLLARY 1 5: Let S be as in Theorem 1 1, let s be as in (1 13), and let ¢ be
as in (1 14) Then there exist uncountably many totally irrational £ € S such
that @s(€) >, 5

16 APPLICATIONS TO MANIFOLDS AND FRACTALS We now describe two
classes of subsets S C R"™ for which the assumptions of Theorem 11 can be
verified The first application involves certain product subsets of R™ Recall
that a subset of R is called perfect if it is compact and has no isolated points

THEOREM 1 6: Let n > 2 and let Sy,...,S, be perfect subsets of R such that
(115) QN Sy, is dense in Sy, for each k € {1,2}.

Let S = H?:1 S; Then there are collections {L;}, {L’}, {A;} satisfying the
hypotheses of Theorem 11 In particular, the conclusions of Theorem 1 1 and
Corollaries 12 15 hold for S

For example, the above theorem applies to products of one dimensional limit
sets of rational iterated function systems such as the middle third Cantor set and
its generalizations Thus as a special case we see that a Cartesian product of two
copies of Cantor’s middle thirds set contains uncountably many totally irrational
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singular vectors The question of determining the Hausdorff dimension of the set
of singular vectors in this fractal was raised in the recent paper [6] of Bugeaud,
Cheung and Chevallier, and an upper bound was obtained by Khalil [17]

As a second application, let us consider real analytic submanifolds

THEOREM 1 7: Let S be a connected real analytic submanifold of R™ of di
mension at least 2 which is not contained in any proper rational affine subspace
of R* Then there are collections {L;}, {L’}, {A;} satisfying the hypotheses
of Theorem 11 In particular, the conclusions of Theorem 1 1 and Corollaries
12 15 hold for §

17 OPTIMALITY OF EXPONENTS One may wonder whether it is possible to
strengthen the conclusion of Corollary 1 3 and, for S as in Theorem 1 1, con
struct totally irrational € € S with @(€) = 1, thereby obtaining an optimal
result identical to the conclusion of Theorem B restricted to S However, this
is not the case To explain why, we give two examples First of all we refer to
the paper [23], where it is shown that for hypersurfaces of the form

S={{cR": f(§) =1} CR",
where f is a homogeneous polynomial of degree s such that
#{zeQ": f(z) =0} < o,

one has

sup W) <Hp-1,s,

totally irrational £€S

where H,,_1 ¢ < 1 is the unique positive root of the equation

d 2 k
l—z=2z- ( )
z I’Z 8_1
k=1

In particular for any totally irrational € on the unit sphere
{(x1,...,2p) 23+ +22 =1} CR"

one has w(§) < H,,_1, where H,,_1 = H,_1 2 is the unique positive root of the
polynomial 2™ + - - - + x — 1. More general results for quadric hypersurfaces, as
well as the optimality of the aforementioned bound, were very recently proved
by Poéls and Roy in [29]
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In addition to that, in §5 below we show that in the case when S is a so called
badly approximable affine subspace of R™, the value w(€) is uniformly bounded
away from 1 for any totally irrational £ € S

2. Proof of Theorem 1.1

The idea of the proof goes back to Khintchine’s original argument [18] and has
appeared in many incarnations in work on the subject; see [26] for a survey We
retain the notation and assumptions of the theorem; that is,

e S C R" is a nonempty locally closed subset;
. Ldéf{Ll,Lg, S L déf{L’l, 5, ...} are disjoint collections of distinct
closed subsets of S such that conditions (a) (d) of Theorem 1 1 hold;
o &:7"~ {0} — Ry is such that (1 8) holds;
e ¢ : R, — R, is non increasing
Also for a rational affine hyperplane A; as in the statement of the theorem
we let m; € Z"! be a primitive vector so that A; = Ay,,, where the notation

and normalization are as in (1 6)

Proof of Theorem 11 Let

Rt {€ € S : 3o such that V¢ > to, Yo e(t) < p(t) and € is totally irrational},

and suppose by contradiction that B is at most countably infinite = Write
B ={b1,bs,...} (in case B is finite, this is a finite list) Let W be an open
subset of R™ for which S = SNW Put Uy =W, qo =0, pg =0,i =0
and ®(0) = 0 We will show that for each v € N there is a bounded open
set U, C W, and an index i, € N, such that, with the notation

the following conditions are satisfied:
(1) s#SNU, CU,—1
(2) iy > i1 and ®(q,) > P(q,—1) for all v € N
(3) For all k < v, U, is disjoint from Ly U L}, U {by}
(4) For all v € N and all £ € U, we have
€ qv—1 — po-1] < (2(gv))-
(5) Forallv e N, U, NL;, # .
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To see this suffices, take a point

21) gesSn( =St

This intersection is nonempty since the right hand side of (2 1) is by (1) an
intersection of nonempty nested compact sets, and the equality between both
sides of (2 1) follows from the fact that for v > 2, the sets U, are contained
in W We will reach a contradiction by showing that both £ ¢ B and £ € B
By (3), € is not equal to any of the b; and hence £ ¢ B Also by (3), £ is not
contained in any of the sets in the collections £, £, and thus by (1 11), £ is
totally irrational The function ¢ is non increasing by assumption, and so is
the irrationality measure function ¢ — g ¢(t), as follows from its definition
(19) The properness condition (1 8) guarantees that ®(q,) — oo as v — o
By (2), for any ¢ > ¢ d:efq)(ql) there is v with ¢ € [®(g,), P(g,+1)] and by (4)
we have

Vae(t) < vae(P@y) < (qv-&) < lav - & —pul < p(P(gv+1)) < p(2).

This shows that £ € B

Note that when utilizing the above properties, we did not require property (5)
However we will use it for constructing the sequences U,,, 1,

The inductive construction starts with =1 Choose i,"% min{ieN: L, # o},
which exists in view of hypothesis (d), and define 5 to be some open set
containing a point in L;, and such that &4 C W Then (1) and (5) follow from
this choice, and properties (2) (4) hold vacuously for v =1

Now suppose we have constructed Uy, and iy with the required properties for
k=1,...,v, and we explain the construction for v +1 Let ¢ =4, By (5) for
k =v we have U, N L; # @ By hypothesis (b) there is an infinite subsequence
of indices j such that along this subsequence,

(2 2) Uu,NL;N Lj 7é @ and |AJ| —j—o00 OO.

For each such j, write A; = Am;, m; = (p},q;) Then by (17), along this
subsequence we have ||g}|| — oo, and hence by the property (1 8) of ®, we can
choose j > i so that ®(q}) > ®(¢g,) We then set i,1 = j. This choice ensures
that (2) holds for v + 1 Let

&LeU,NL;NL;.
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The point €; belongs to L; and hence satisfies €1 - ¢, = p, By continuity, we
can take a small neighborhood V C U,, around &7, so that for all £ € V we have

I€-q0 —pul < p(P(gu+1))-

This is the inequality in (4), for v + 1
Since §; € Lj = L;,,, we have VN L;, ., # &, so we can apply hypothesis (c)
to find that there is

geLnvs |J (LeUL,U{be}).
k<v+1

Furthermore, we can take a small enough neighborhood U, 11 of € so that

Uppr CUy, and Uy N | (L UL U{b}) = 2.
k<v+1
With these choices U, 11 and i,41 will also satisfy (1), (3) and (5) Thus we
have completed the inductive construction

With Theorem 1 1 in hand, it is easy to complete the

Proof of Theorem 16 Recall that we are given S = H?Zl S;, where Sy,...,S,
are perfect subsets of R satisfying (1 15) Let eq,...,e, be the standard base
vectors, and let {A;} be the collection of all rational hyperplanes which are
normal to one of e1, €3 and have nontrivial intersection with S (where each of the
rational hyperplanes appears exactly once) That is, each of the hyperplanes A;
is of the form

(23) Ai:{feR":Ski :Zl }, where p; €Z, q; €N are coprime, and k; € {1,2};

K2

note that necessarily we have 5:’ € Sk,

For each i define L; def g NA;, and let {L;} denote the collection of non empty

intersections SN A, where A is a rational affine hyperplane, and the set L’ does
not appear in the list {L;} We claim that with these choices, hypotheses (a) (d)
of Theorem 1 1 are satisfied

Indeed, (a) is obvious from the definition, and (d) follows from (1 15) For (b)
and (c), suppose for concreteness that k; = 1 Then it follows from (2 3) that

24) Li:{ﬁeRn:glzzjandngSjVj7él}.
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Let £ € L; and let p;/q; be a sequence of distinct rationals in Sy satisfy
ing p;/q; — & Such a sequence exists since Sy is perfect and the rationals are
dense in Sy Let

Ljdéf{feR":@:pj}ﬂS.

Then it is clear from (2 4) that L; N L; contains elements £; such that £, — &,
and such that &; differs from £ only in the 2nd coordinate Also |A4;] = ¢; —
and so for any T' > 0, £ is an accumulation point of the sets L; N L; with
|A;| > T This proves (b) To show (c), note that because Ss,...,S, are
perfect, the intersection of the set (2 4) with an arbitrary open subset of R"™
cannot lie in a union of finitely many proper affine subspaces of R™ different
from A;; hence (1 12)

3. Real analytic submanifolds

Let k < n, and let / C R* be open We say that f : i/ — R” is real ana-
lytic immersion if it is injective, each of its coordinate functions f; : Ud — R
(i=1,...,n) is infinitely differentiable, the Taylor series of each f; converges
in a neighborhood of every x € U, and the derivative mapping d, f : R¥ — R®
has rank £ By a k-dimensional real analytic submanifold in R” we mean
a subset M C R™ such that for every £ € M there is a neighborhood V C R™
containing &, an open set &/ C R¥, and a real analytic immersion f : 4 — R"
such that VN M = f(U). By a real analytic curve (resp , surface) we mean a
connected one dimensional (resp , two dimensional) real analytic submanifold
A mapping h : M — R™ is real analytic if for any &, f,U{ as above, each
coordinate function of ho f : U4 — R™ is infinitely differentiable and its Taylor
series converges in some neighborhood of f~1(£)

The crucial property which distinguishes real analytic submanifolds from
smooth manifolds, and follows easily from definitions, is the following
Let M1, M3 be real analytic submanifolds (where we equip them with the topol
ogy inherited from the ambient space R™) Then, if the intersection My N M,y
has nonempty interior in M, then this intersection is open in Mj; and thus,
if additionally M; is connected and My is closed, then M; C M,
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A subset N' C M is called semianalytic if it is locally described by finitely
many equalities and inequalities involving real analytic functions, i e , for every
&y € N there is an open neighborhood U containing €y such that

NNU={&eMnNU:Vi, hi(€) =0 and Vj, h;(€) > 0},

for finitely many real analytic functions h;,h; on M NU For background on
the geometry of analytic and semianalytic manifolds we refer the reader to [4]
and the references therein In particular, the reader may consult [4] for the
definition of the dimension of a semianalytic set

We will need to decompose semianalytic subsets into analytic submanifolds
In this regard we have the following (see [4, §2]):

PROPOSITION 3 1: Let N' C M be a semianalytic subset of a real analytic
submanifold M C R™ Then any connected component of N is semianalytic,
and N has a locally finite presentation as a disjoint union of sets N1, Na, ...,
each of which is a connected analytic submanifold of dimension at most dim N,
and such that

(31) i#5, NinN; #2 = dimN; > dim ;.

It will be easier to work with real analytic surfaces than with manifolds of
higher dimension The reason for this is that in this case it will be possible to
describe a stratification as in Proposition 3 1 in topological terms

PRrROPOSITION 3 2: Let S be a bounded real analytic surface, and let A be an
affine hyperplane such that S ¢ A Denote by F the set of points £ € SN A
for which there does not exist a neighborhood U of € such that UNSN A is a
real analytic curve Then F' is finite, the number of connected components of
(§NA) N\ F is finite, and each of these connected components is a real analytic
curve

We will refer to the connected components of the set (SN A) \ F as the
one-dimensional basic components of SN A

Example 3 3: Let n = 3, let S be defined by
S=A{(z,y,xy) : x,y € (-1, 1)},

and let
A={(z,y,0): z,y € R}.
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Then ANS is the union of a vertical line {x = 0} and a horizontal line {y = 0}
in the plane A, intersecting at the origin (0,0,0) The set F defined in Propo
sition 3 2 consists of the origin, and the one dimensional basic components are
four open intervals (two horizontal and two vertical) in A

Proof of Proposition 3 2 Write Sy dfs NA, a semianalytic subset of S Clearly
dim Sy < 2 and we claim that dim Sy # 2 Indeed, if this were to hold then Sy
would be open in S, but also closed since A is a closed subset of R™ By
connectedness this would imply S C A, contrary to assumption

Thus dim Sy <1 We treat separately the cases dim Sy = 0 and dim Sy = 1
If S has dimension 0, then each of its connected components is a real analytic
submanifold of dimension 0, ie, Sy is a discrete subset of S Moreover Sy is
finite, since the collection described in Proposition 3 1 is locally finite and S is
bounded, and by definition F' = Sy

If dim Sy = 1, then by Proposition 3 1 (and using again that S is bounded) we
can write Sy as a disjoint union Fy U F}, where Fj is a finite set of points and F;
is a finite union of disjoint real analytic curves N; Such a stratification is not
unique, but we choose one so that the cardinality of Fj is as small as possible
We claim that with this choice, Fy = F and the real analytic curves N; are the
connected components of Sp \ F’

To see this, note that since the A are real analytic curves, any point in any
one of the N; cannot belong to the set F, so F C F,. Suppose if possible that
there is some € € Fy \ F' Since & ¢ F, it is not an isolated point of Sy Thus, if
we denote by F} (€) the collection of curves AV; for which & € N, then F(€) # @

Let 1 be the connected component of Sy \ F' containing & Then 7 is a real
analytic curve By the connectedness of n and property (3 1), any N; in the
collection F}(€) must be contained in n Since £ is a smooth point of n, ie,
there is a neighborhood W of £ such that W NSy, = W N, it follows that F;(€)
consists of two real analytic curves AV;, N; such that the union v 4f AU {€}UN;
is also a real analytic curve contained in 7 We can therefore modify Fyy and F,
by replacing Fy, F; respectively with

Fo~{¢§} and FiU{{}=F Uy~ (N, UN;).

But this contradicts the minimality of Fp, showing that Fy = F' Since by (3 1)
any boundary point of any N; is in F, the A; are open and closed as subsets of
So N\ F' Thus they coincide with the connected components of Sy \ F’
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In order to be in a position to apply Proposition 3 2 we will need the following

ProposiTioN 3 4: Let k > 2, and let M C R™ be a connected k dimensional
real analytic submanifold which is not contained in a proper rational affine
subspace of R™ Then M contains a bounded real analytic surface which is not
contained in a proper rational affine subspace of R™

Proposition 3 4 is proved by induction on the dimension k, the base case k = 2
being obvious For k > 3, the deduction of case k from case k — 1 follows from
the observation that any proper affine rational subspace of R™ is contained in
a rational affine hyperplane, and from the following For each k& we denote

LY (0,1)* the open unit k dimensional cube

LEMMA 3 5: Suppose that for k > 3, M is a k dimensional real analytic sub
manifold which is the image of I}, under a real analytic immersion f : I, — R™
Suppose also that M is not contained in any rational affine hyperplane Then
there exists a € (0, 1) such that the analytic manifold f.(I;_1), where

(3 2) fa:Ik_1—>Rn, fa(ml,...,xk_l)dZCff(ml,...,.’L‘k_l,a),

does not belong to any rational affine hyperplane

Proof of Lemma 3 5 (and hence of Proposition 34) If the conclusion of the
Lemma is not true, then for any a € (0,1) there exists a rational affine hy
perplane A containing the image of the function (3 2) This means that

(33) U AmnM) =L

where the union is taken over all primitive vectors m € Z"*! and A,, is the
rational affine hyperplane defined via (1 6) This is a countable union of closed
subsets of I so by the Baire category theorem, one of them has nonempty
interior That is, there is a nonempty open subset U C I and mg such that
fUU) C Am, That is, M N Ay, has nonempty interior in M By analyticity
and connectedness of M we then have M C Ay, contrary to hypothesis

4. Proof of Theorem 1.7

We first explain informally the main difficulty in the proof and the idea that
allows us to overcome it As was mentioned above, the intersections of real ana
lytic submanifolds with affine hyperplanes are semianalytic sets, but they need
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not themselves be real analytic submanifolds This makes it tricky to verify
the hypotheses of Theorem 11 To deal with this, we first pass to the case in
which § is a surface and is not contained in a proper rational affine hyperplane
This means that the intersections S N A can be described by Proposition 3 2
Moreover, for some affine hyperplanes A, the sets SN A can be taken to satisfy a
transversality condition which implies that they are real analytic curves Specif
ically in the proof below, the L; will be closed real analytic curves, while the L}
will be basic one dimensional components of one dimensional semianalytic sets
We now proceed to the details of the argument

Proof of Theorem 1 7 By Proposition 3 4 we can assume that S is bounded,
connected and two dimensional Let {A;} be the collection as in the proof
of Theorem 1 6, that is, the A; are the affine rational hyperplanes normal to
one of the two standard basis vectors e;,e; For each £ € S, the tangent
space 1¢S is a two dimensional affine subspace of R™ passing through £ Recall
that S is not contained in any proper rational affine subspace of R™; thus, by
possibly replacing S with its smaller connected open subset, we can assume that
for every £ € S, the tangent space T¢S is not normal to either of e;,e; This
implies that we can view S as a graph of a smooth function over its projection to
the two dimensional space Vis def span(er, ez) = R? This implies furthermore
that for each 7 and each £ € SN A,;, the intersection T¢S N A; is a transversal
intersection, that is, an affine subspace of dimension one By taking S smaller,
we can ensure that its projection to the plane V5 is an open bounded convex
set Now define L; dfon A; (where we only take those indices i for which L;
is not empty) Each L; is closed as a subset of S, and by the implicit function
theorem it is a real analytic curve Since the projection of S on Vjs is convex,
each L; is also connected

Having defined the collections {L;},{A;} we now define the collection {L}
For any rational affine hyperplane A for which § N A is nonempty, we have
by Proposition 3 2 its one dimensional basic components There are at most
countably many such sets {v;} where each 7, is a real analytic curve whose
closure y; satisfies that v; \ ~y; consists of at most two points We take

def .
{L5} = {v : Vi, v & Li}.

We claim that with these choices, conditions (a) (d) of Theorem 1 1 are satisfied
(note that as a real analytic submanifold of R™, S is locally closed)
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Properties (a), (b), (d) are straightforward Indeed, since each L; is a con
nected real analytic curve, the condition v; ¢ L; is equivalent to v; ¢ L; Also
the sets ; contain all points of S which belong to rational affine hyperplanes
but not to one of the hyperplanes A; Thus we have (a) For (d) note we
can apply the projection to the plane Vs, since § is a graph over this plane
By construction, the projections of the L; form a dense collection of horizontal
lines and a dense collection of vertical lines In particular (d) holds For (b)
we continue to work in the plane Vo For every point £ on (say) a horizontal
line ¢ C V32, which is the projection of some L;, there is a sequence of intersec
tion points £; of £ with vertical lines such that §; — £ and §; is contained in
spaces A; A computation similar to the one used in the proof of Theorem 1 6
shows that along this sequence, we have |A;| — oo, and (b) follows

For (c) we argue as follows Let F, F’ be as in statement (¢) The set L; is a
real analytic curve and for each k € F', L; N Ly, is either empty or consists of a
single point Now let k' € F’, and suppose by contradiction that L}, N L; has
nonempty interior, relative to the topology on L; Then, since L}, is the closure
of a real analytic curve v with v \ ~ consisting of at most two points, L; N~y
also has nonempty interior relative to L;, and, since the dimensions are both
equal to one, v N L; also has nonempty interior relative to the topology of ~
Since L; is closed and + is connected, this means that v C L;, contradicting the
definition of L,

We close the section by commenting on Theorem C and its proof given in [24],
which, as was mentioned in the introduction, contained an error Since in this
paper we prove a strengthening, namely Theorem 17, we do not rewrite the
proof of [24] completely Rather we explain the gap in the proof and sketch how
it can be fixed

Theorem C is derived in [24] from an abstract result [24, Theorem 5 1],
which is similar to Theorem 1 1 (abstracting Khintchine’s classical argument)
The statement of [24, Theorem 5 1] involves two countable lists X7, Xo, ...
and X7, X/}, ... of closed subsets of a subset X of a Lie group The appli
cation deals with a real analytic submanifold S C R™ of dimension at least
two, embedded in the group SL,1(R) In order to conclude that S contains
totally irrational singular vectors &, and to obtain a bound on their associated
parameter w(€), some conditions on the sets Xi,Xé must be checked One of
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these is the following transversality condition:
(41) for every 4,7, X; = Xi; \ X

(which is analogous to hypothesis (¢) of Theorem 1 1) The argument given in
[24] defines the X;, X’ as connected components of the intersection of S with
rational affine hyperplanes It is then erroneously claimed that (4 1) holds

for these choices Indeed, with the notations of Example 3 3, set A; def 4

and A def (0,y,2) : y,z € R}. Then X7 = SN Ay is the union of two lines

intersecting at a point, and X{ = SN A} is one of these lines So (4 1) fails

It is possible to rectify the proof by adapting some of the arguments we used
in the proof of Theorem 1 7; namely, by replacing S with a two dimensional
real analytic submanifold, and adjusting the definitions of the sets X, X/ using
the notion of basic components We leave the details to the reader

5. Badly approximable subspaces

In this section we give upper bounds for the exponent & () for points € € A in
case when an s dimensional affine subspace A of R™ is badly approximable To
define the latter property, we identify R™ with the affine subspace

R} := {x = (z0,21,...,2,) € R"T: 9 =1}
and consider the affine subspace
A¥ U e R 2o =1, (21, ...,2,) € A}.
Let us define the linear subspace
Ly dﬁfspanA C R

It is clear that L 4 has dimension s+1 From Minkowski’s convex body theorem
it follows that there exists a constant C' dependent only on n such that for any A
there exists infinitely many integer vectors m € Z"*! such that

dist (L, m)" ™% - |m|*™ < C.
We define A to be a badly approximable subspace if

inf dist(La, m)"* - |[m|*"* > 0.
mezZnt+1{0}

It is clear that badly approximable subspaces exist Moreover, from a famous
theorem of Schmidt [32] it follows that they form a thick set (that is, the set of
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badly approximable subspaces in any non empty open subset of the Grassma
nian of all s dimensional affine subspaces of R” has full Hausdorff dimension)
Indeed, without loss of generality one can parametrize A in the following form:

T S
(51) A={£=<y0+yz>:x€R},

where Y € M,,_; s and yo € R"~° Define
def $ +1

We p = .
n—s

Then it is easy to see that A is badly approximable if and only if the augmented

matrix
(52) Y = yo Y]€ Mp_s511
is badly approximable, that is, if

lall > [(Ya)[| > 0.

Zs+1 {0}
Note that
n—1
(53) wep <1 <= s< 5
Let W, be the unique root of the equation
(54) " — w1+ we )z 4w, =0

in the interval (0, ws p)

PROPOSITION 5 1: Let A be an s dimensional badly approximable affine sub
space of R™ Then:

(i) for any € € A one has
(53) W(€) < Wspn;
(ii) for any totally irrational £ € A one has
(56) W) < Win.

Remark 5 2: In view of (5 3), when £ is totally irrational, the estimate in (i) is
non trivial only if s < ;' 1If s is fixed, then w,,, = O(}) as n — oo, which
shows that for large n the conclusion of Corollary 1 3, that is, the existence of
uncountably many totally irrational £ € S with ©(§) > ni 1+ is close to optimal,
in some sense Statement (ii) gives a slight improvement of this bound
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In particular, we can consider the following examples:

. _ _ . . . ~ _ 2'
(1) if n =4 and s = 1, the inequality (5 5) gives @ <wy 4 = 3;

(2) ifn =2and s = 1, we have w; o = 2; equation (5 4) is now 23— 6x+4=0,
and the inequality (5 6) gives
O<Wia=vV3-1=0.732...;

(3) if n = 3 and s = 1, we have wy 3 = 1, equation (54) has the form
x* — 22 + 1 =0, and the inequality (5 6) gives

O<Wis=054..;

(4) if n=3and s=2, we have wy 3 =3, equation (5 4) is now 23— 36x+27=0,
and the inequality (5 6) gives

w<Wy3=0.759....
Proof of Proposition 51 To prove (i), we will use the following elementary

LEMMA 5 3: If€ € A and A is badly approximable, then there exists a positive ¢
such that for every ¢ € N we have

(57 [(a&)|| = eqme.

From this lemma (5 5) follows immediately

Proof of Lemma 5 3 We will use the parameterization (5 1) Assume the con
trary, that is, for some € = (y, vz ) and any € > 0 there exists m = (2) € Z"

such that
_ [P
o€ —ml = H (o ) 2)

In particular, ||z — p|| < e¢~*™=; thus, if we define q := (3 ), it follows that

—Wn,s

<éeq

(58) lall < Cq for some C = C(z) independent on ¢, p and e.
Note that

qyo +Y(qz) —r = qyo +Y(p+ gz —p) —r=Ya—r+Y(q —p).
where Y is as in (5 2) Hence

Y a)ll < llayo + Y (g2) =7l + [|Y (42 — p)|| < Ceq™ ",
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where C is a constant depending only on Y  Since € was arbitrary and in
view of (5 8), this shows that Y, and hence the subspace A, is not badly
approximable

To prove (ii) we consider the ordinary Diophantine exponent w = w(€), de
fined as supremum of those v > 0 for which the inequality

Kl < ¢

has infinitely many solutions in ¢ € N Tt is clear from (5 7) that for £ € A one

has
s+1
59 < — Wsg n-
(59) we)< 1T =,
Then we apply the inequality

w(§)
510 oy = Ga,
(310) o(€)

where GG,, the unique positive root of the equation

n—1 w

T ("2 42" 3 4+ 1),

1—-w
which is valid for all totally irrational & € R™ This result was proven in [25],
and a short and beautiful proof was given recently in [27]

Note that as ! <& <1, we have G, >1and G, =l ifand only if & = !
We see that G,, is also a root of the simpler equation

(1-)z+ :c:;il =1 g(:z:)déf(l — Q)" - o =0.

The polynomial g(z) in the interval z > 1 has the unique root G,, Hence

> G, = (1—w):13"—:1:"71+d) > 0.

Moreover, since

n—1 1 DN
max (z(1 — 2)"1) = -(17 ) :
l<2<1

T< n n
we have
R oy 1 1yn-1
w(l—w) < . (1 - ) .
n n
Therefore g(, ', - ") <0, and we deduce that

G > 1A.n—1_
—1—-w n
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Now (5 10) leads to

The function
fly) = Q=@ -yl + ot
>

increases when y > | ©. - "1 Since w > @ - Gp @, - "1, we deduce from

(59) the inequality

which immediately gives (5 6)
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