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Abstract. We consider the question of how well points in a quadric hypersurface M C R can
be approximated by rational points of Q4 N M. This contrasts with the more common setup of
approximating points in a manifold by all rational points in Q%. We provide complete answers to
major questions of Diophantine approximation in this context. Of particular interest are the impact
of the real and rational ranks of the defining quadratic form, quantities whose roles in Diophan-
tine approximation have never been previously elucidated. Our methods include a correspondence
between the intrinsic Diophantine approximation theory on a rational quadric hypersurface and the
dynamics of the group of projective transformations which preserve that hypersurface, similar to
earlier results in the non-intrinsic setting due to Dani (1986) and Kleinbock—Margulis (1999).
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1. Introduction and motivation

Classical theorems in Diophantine approximation theory address questions regarding the
way points x € R? are approximated by rational points, considering the trade-off between
the height of the rational point — the size of its denominator — and its distance to x; see
[13,49] for a general introduction. Often x is assumed to lie on a certain subset of RY,
for example a smooth manifold M, leading to Diophantine approximation on manifolds.
This area of research has experienced rapid progress during the last two decades, owing
much of it to methods coming from flows on homogeneous spaces.

It was observed in [11,17,18] that all sufficiently good rational approximants to points
on certain rational varieties must in fact be intrinsic — that is, they are rational points
lying on the variety itself. These results, in part, have motivated a new field of intrinsic
approximation, which examines the degree to which points on a manifold or variety can
be approximated by rationals lying on that same subset. Questions about the quality of
these approximations were raised already by Lang [40] and Mabhler [43]. Following some
recent results on quadric hypersurfaces [26, 27, 50] and a comprehensive treatment of
Diophantine approximation on spheres [34], this paper seeks to fully explore the topic of
intrinsic approximation on quadrics. One of the most novel and important aspects of our
work is an elucidation of the role of the Q-rank and the R-rank of the defining quadratic
form (see Definition 3.3). It turns out there are qualitative differences between the intrinsic
approximation theories of forms with different rank pairs, highlighting the importance of
rank, rather than the dimension of the hypersurface. In particular, we will see below that
our Dirichlet-type theorem, Theorem 5.1, is independent of the dimension d, but changes
depending on whether the Q-rank and R-rank are equal or different. We remark that
[34] considers only the case where both ranks equal 1; therefore the dependence on the
ranks is not explored there, and significant new ideas have had to be developed in the
present paper.

Convention 1. The symbols <, =, and < will denote asymptotics; a subscript of +
indicates that the asymptotic is additive, and a subscript of x indicates that it is multi-
plicative. For example, A <x g B means that there exists a constant C > 0 (the implied
constant), depending only on K, such that A < CB. Furthermore, A <4 x B means that
there exist constants Cy, C, > 0 so that A < CyB + C,. In general, dependence of the
implied constant(s) on universal objects such as the manifold M will be omitted from the

notation.

Convention 2. For any ¢ > 0, we let
1
Ve(q) = q_c
Convention 3. The symbol <1 will be used to indicate the end of a nested proof.

Glossary of notation. For the reader’s convenience, we summarize a list of notations and
terminology in the order that they appear in the sequel.
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M

Q

H

BA(y,M,Q, H)
WA, M,Q, H)
AW, M,Q,H)
Hstd

HRs LR, A
Codiam(I")

a complete metric space

a countable subset of M

a height function

the set of badly approximable points
the set of well approximable points

the set of yr-approximable points

the standard height on projective space
a quadratic form on R4*!

the light cone of Q

a nonsingular rational quadric hypersurface
the real rank of O

the rational rank of Q

a quadratic polynomial with integer coefficients on R4

the nonsingular rational quadric hypersurface
associated to Q ¢

the set of yr-approximable points on Mg

the set of badly approximable points on Mg

the exceptional quadratic form

the symmetric, bilinear form associated to Q

Y120 Re;

the remainder of the form Q after normalizing

the reverse of the matrix ¢

¢
livi—om
L ¢
8diag(e™10,...,e"Im—1)
Fot
Ig4
o

minge Ao} ||pll

minpeanLo~{0} [Pl

{g€SLy,,(R): Qog =R}

the space of Q-arithmetic lattices

the space of all lattices in RZ+!

the stabilizer of A under the action of O(Q)
the homogeneous space O(Q)/0(Q; A)
projections O(R) — Mg and O(R) — Qpg,a,
the set of primitive vectors of A

Haar measures on O(R) and Qg A,

the diameter of the quotient space Span(I")/T"

(Section 1)
(Section 1)
(Section 1)
(Section 1)
(Section 1)
(Section 1)
(Section 2)
(Section 2)
(Section 2)
(Section 2)
(Section 2)
(Section 2)
(Section 2)

(Section 2)
(Section 2)
(Section 2)
(Section 2)
(Section 3)
(Section 3)
(Section 3)
(Section 3)

(Section 3)

(Section 3)

(Section 3)

(Section 3)
(Section 3)
(Section 3)
(Section 3)
(Section 3)
(Section 3)
(Section 3)
(Section 4)
(Section 4)
(Section 4)
(Section 5)
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Nu (T) #([r] € P& N M : Hy([x]) < T} (Section 6)
SA.z {xeX :Alx) >z} (Section 7)
DA(2) 1 (Sa,z), the tail distribution function of A (Section 7)
(p(C)(x) maXgisty (x/,x)<C P(x") (Section 8)
@(c)(x) Mingigy (v, x)<C P(X") (Section 8)
P a parabolic subgroup of G (Section 8)
op the modular function of P (Section 8)
A a maximal Q-split torus (Section 8)
0 the sum of the positive roots of A,

counted with multiplicity (Section 8)

1.1. General terminology and basic problems in metric Diophantine approximation

In order to review some known facts and state our theorems, let us first introduce basic
notations which we will follow throughout the paper (some of it has been introduced in
a different context in [23]).

Definition 1.1. By a Diophantine triple, we will mean a triple (M, @, H), where M is
a closed subset of a complete metric space (X, dist), @ is a countable subset of X whose
closure contains M, and H is a function from @ to (0, 0c0).

Definition 1.2. Say that a nonincreasing' function ¥: (0, 00) — (0, 00) is a Dirichlet
function for (M, @, H) if, for every x € M, there exist Cx > 0 and a sequence (r,){°
in @ such that

Ty — X and dist(r,, x) < Cyy (H(ry,)). (1.1

If Cx can be chosen independent of x, then we call Y uniformly Dirichlet.

When v is a Dirichlet function, it is often important to understand whether a faster
decaying function can also be Dirichlet. We formalize this thought in the next definition.

Definition 1.3. A Dirichlet function ' is optimal for (M, @, H) if there is no function ¢

which is Dirichlet for (M, @, H) and satisfies 1‘2(();)) — 0as x — oo.

It turns out that the optimality of i is under some fairly general assumptions equiva-
lent to the existence of so-called badly approximable points. This notion deserves a special
definition.

Definition 1.4. If (M, @, H) is a Diophantine triple and if ¥: (0, c0) — (0, 00), then
a point X € M is said to be badly approximable with respect to i if there exists ¢ > 0
such that, forall r € @,

dist(r,x) > ey (H(r)).
The set of such points will be denoted BA(y, M, @, H), and its complement will be
denoted WA (v, M, @, H) (the set of well approximable points).

I'The approximating functions ¥ will be assumed to be nonincreasing throughout the paper.
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If BA(y, M, @, H) # @, then it is easy to see that ¥ is an optimal Dirichlet function
for (M, @, H).2 Note also that @ N M is always contained in WA(y, M, @, H).

Definition 1.5. Also, we will let

Ay, M,Q, H) := {x € M : there exist infinitely many r € @
with dist(r,x) < ¥ (H(r))}

= limsup(B(r, ¥ (H(r))) N M)
re@
be the set of yr-approximable points. Note that
WA, M. Q. H) = (@nM)U [ |Aley. M. Q. H).

>0
We can now list a few basic general problems one can pose, given a Diophantine triple

(M,Q,H).

(1) Find a Dirichlet function for (M, @, H). Even better — find an optimal one; determine
whether or not it is uniformly Dirichlet.

(2) Find a function v such that BA(y, M, @, H) # @. Even better — do it for a Dirichlet
function, thus proving it to be optimal. In the latter case, determine how big is the set
BA(Y, M, @, H), e.g. in terms of its Hausdorff dimension.

(3) Given a function ¥ and a measure on M, what is the measure of A(y, M, @, H)?
This measure could be a Riemannian volume on M if the latter is a manifold or, more
generally, the Hausdorff measure relative to some dimension function. A special case
of the last question is a determination of the Hausdorff dimension of A(y, M, @, H).
Note that, since A(y¥, M, @, H) is a limsup set, the easy direction of the Borel-

Cantelli lemma shows that, for any measure p on M, if the series

Y w(B@y(HD) N M) (1.2)

re@nNU

converges whenever U is a bounded subset of X, then one has u(A(y, M, @, H)) = 0.
The hope is that for “nice” measures the (much harder) complementary divergence case
can be established. Also, in general, it is not clear how to explicitly decide for which func-
tions v the sum (1.2) converges or diverges; for that, one often needs extra information
concerning the number of points of @ satisfying a given height bound.

1.2. Diophantine approximation in R¢

In the classical Diophantine approximation setup, one has X = M = R4, @ = Q%, and
H(r) = Hgy(r) := q, wherer = p/q is written in reduced form (1.3)

(this will be referred to as the standard height).

2See [23, Theorem 2.6] where this is stated under the assumption that M = X; one can check
that the latter assumption is not necessary for the argument. Furthermore, the converse is true
assuming the o-compactness of M ; see [23, Proposition 2.7].
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Dirichlet’s theorem asserts that, for all x € R and T > 1, there exists p/q € Q¢ with
q < T satisfying
C
dist(2,x) < ——. (1.4)
q qT'/e
where C > 0 is a constant depending on the choice of the norm on R . A corollary is that
¥1+1/4 is uniformly Dirichlet for (R, Q¢, Hyg) (1.5)

(see Convention 2). Note that, when the distance is given by the supremum norm on R¥,
one can take C = 1 in (1.4), and thus Cx = 1 in (1.1). (It is clear that the property of
being Dirichlet or uniformly Dirichlet does not depend on the choice of the norm.)

On the other hand, it is well known that, for all d, the set

BA; = BA(l//l_H/d, Rd» Qd’ Hgq)

of badly approximable vectors in R? is nonempty (see e.g. [47,49]), implying the opti-
mality of ¥/14/4 as a Dirichlet function for (R4, Q4, H). Indeed, Schmidt [49] showed
that

BA, has full Hausdorff dimension in Rd, (1.6)

generalizing a result of Jarnik [31], who proved the case d = 1 of (1.6). We shall refer
to (1.6) as the Jarnik—Schmidt theorem. Note that, together, Dirichlet’s theorem and the
Jarnik—Schmidt theorem solve problems (1) and (2) above for the case of the Diophantine
triple (R?, Q?, Hyy).

Resolving problem (3) gives rise to theorems of Khintchine and of Jarnik—Besicovitch.
For convenience, let us denote A(y, R4, Q4. Hyq) by Ag(¥). If A is Lebesgue measure
on R?, it was proven by Khintchine [33] that, if ¥ is nonincreasing’, Ay (V) is either
null or conull depending on whether the series Z;ozl g% 1 (g)? converges or diverges.
More generally, for 0 < s < d, one can replace A with #°, the s-dimensional Hausdorff
measure, and get the Jarnik—Besicovitch theorem [5, 32]: #5(A4(¥)) is either O or co
depending on whether the series ZZO=1 g% (q)* converges or diverges.

2. Main results

Convention 4. Throughout the paper, propositions which are proven later in the paper
will be numbered according to the section they are proven in.

We now consider the main setup of the paper, namely that of intrinsic approxima-
tion. One way to do it is to take X = Rd, choose a submanifold M of Rd, and let
Q= Qd N M and H = Hgq as in (1.3). However, we have chosen a different approach:
state and prove the main results of the paper for submanifolds of projective spaces. This
way, in most cases, statements of results and their proofs become more natural and trans-
parent; see Remark 2.1 below.

3The monotonicity assumption is not needed if d > 1; see [25].
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Let ]P’Hg denote the d-dimensional real projective space, and let 7: R4 +1 < {0} — Pﬂg
be the quotient map 7 (x) := [x] so that [tx] = [x]. The distance on Pﬂg will be given by
the formula dist([x], [y]) = min(|ly —x||, |y + x|) (|Ix]| = |ly|| = 1). For a subset S of
R4+, we let [S] = (S ~ {0}). With some abuse of notation, let us define the standard
height function Hgy: ]Pé — N by the formula

Hy([p]) = |Ipll, where p is the unique (up to a sign)
primitive integer representative of [p].

Here and elsewhere, | - || represents the max norm.

Remark 2.1. To see the difference between results for affine and projective spaces, note
thatif ,;: RY — Pg is given by the formula ¢4 (x) = [(1,x)] and if B € R is a bounded
set, then (4| p is bi-Lipschitz and

Hya(1g(r)) <x.p H(r) forallr e Q¢ N B. (2.1)
In particular, the Diophantine triples

Tu = (M, Q% N M, Hyq),
Tproj = (Ld(M), Pé N Ld(M), Hstd)

are “locally isomorphic”. However, both the bi-Lipschitz constant and the implied con-
stant of (2.1) depend on the chosen bounded set B. Thus concepts which are robust under
point-dependent multiplicative constants will not be affected by the transformation. For
example, whether or not a function is Dirichlet will be the same for the triples T,¢ and
Thoroj» but it is conceivable that a function could be uniformly Dirichlet for the triple Tpyo;
but not for the triple Ty

Because of this difference, it is perhaps worthwhile to give a justification for why
we are stating our results in projective space rather than affinely. The simplest answer to
this question is that the projective statements are closest to how the results are actually
proven. Moreover, in those cases where projective statements cannot be reformulated as
affine statements, we feel it is important to keep the full strength of the projective theorem.
To give a simple example, consider the classical Dirichlet theorem. By examining its
proof, we can deduce that

Y141/4 is uniformly Dirichlet for (Pﬂ‘é, P&, Hgg). (2.2)

This result is stronger than the classical (1.5), in the sense that simply translating (1.5)
to projective space along the lines indicated above does not yield (2.2), while translating
(2.2) to affine space yields (1.5) at least on the unit cube [0, 1]¢, and applying translations
recovers the full force of (1.5).

To guide the reader, we have included affine corollaries after most of the main results.
Each affine corollary can be deduced from its corresponding result together with Re-
mark 2.1. We omit those affine corollaries which would merely be restatements of the
theorems with Pﬂg replaced by R¢.
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In the following theorems, we fix d > 2 and let Q be a nonsingular (see Defini-
tion 3.2) quadratic form on R4*! with integer coefficients. (See Remark 2.8 for a dis-
cussion of the singular case.) Denote by

Lo :={xeR¥*!: 0(x) =0} (2.3)

the light cone of Q, and let Mg = [Lo]. Manifolds Mo of this form are called nonsin-
gular rational quadric hypersurfaces.

We will denote by pgr the R-rank of Q, defined as the dimension of any maximal
totally isotropic (with respect to Q) subspace of R4*!. Similarly, pgp will stand for
the Q-rank of Q, i.e. the dimension of any maximal totally isotropic rational subspace
of R4+1, Clearly, pr > pq; see Section 3.2 for more details. To avoid trivialities, in our
theorems, we will make the standing assumption that pg > 1 or, equivalently, that

Pg N Mg # 0. 2.4)

Note that Meyer’s theorem states that (2.4) is satisfied as soon as d > 4 and Mo # 0.

Moreover, if d = 2 or 3, the Hasse—-Minkowski theorem (e.g. [7, Theorem 1 on p.61])

allows one to determine computationally whether (2.4) is satisfied for any given quadratic

form Q; cf. [7, Chapter 1, Section 7, in particular the remarks on the top of page 62].
For the affine corollaries to our theorems, we consider a quadratic polynomial

Qaffl Rd — R

with integer coefficients, and we let Q: R4+ — R be the projectivization of Q g, that is,
the unique homogeneous quadratic polynomial (i.e. quadratic form) Q on R¢*1 such that
0(1,x) = Q,q(x) for all x € R¢. Then Mo, the zero set of Q, is equal to L;l (Mop).
We call Mg, a nonsingular rational quadric hypersurface whenever Mg is. Note that it
may be the case that Mg is singular due to “singularities at infinity” rather than singular-
ities at finite points; in this case, we still consider the hypersurface Mg, to be singular
despite its having no “singular points”.

The problem of intrinsic approximation on Mg was implicitly considered by Drufu
in [18] where the Hausdorff dimension of sets Aps,, () was computed. (Drufu actually
studied ambient approximation on My and, generalizing an earlier result of Dickinson
and Dodson [17, Lemma 1], showed that it reduces to intrinsic approximation if v is
assumed to decay fast enough.) The case Q(x) = x% 4+ xj — xg was recently con-
sidered in [34].* One of the theorems from the latter paper asserts” that there exists C > 0
(possibly depending on d) such that, for all [x] € Mg and for all T > Ty, there exists
[r] € P& N Mg with

Hyq([r]) =T and  dist([r], [x]) < (2.5)

C
VHua(T'

4The article [34] is written in the affine setup; specifically, the manifold S~ € R¥ is dis-
cussed. Since this set is compact, Remark 2.1 gives an exact correspondence for Diophantine results
in S?~1 and those in (8471 = My.

SMoshchevitin [46] has recently provided an elementary proof of this assertion for the case
Mg, = SZ. His proof gives an explicit value for the constant C appearing in (2.5).
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In particular, it follows that v/ is uniformly Dirichlet for intrinsic approximation on Mg.
It was also shown in [34] that

(i) ¥ is optimal — moreover, BAys,, (1) has full Hausdorff dimension,
(i) for any ¥: N — (0, co) such that

the function g — g (¢) is nonincreasing,

the Lebesgue measure of Az, () is full (resp. zero) if and only if the sum

o0
> q @
g=1
diverges (resp. converges).

The last statement was also shown to imply, via the Mass Transference Principle of
Beresnevich and Velani [3, Theorem 2], a similar statement for Hausdorff measures.

In the present paper, we generalize all the aforementioned results to the case of arbi-
trary quadric hypersurfaces.

Theorem 5.1 (Dirichlet-type theorem for quadric hypersurfaces). Let Mg C ]P’H‘{f be a
nonsingular rational quadric hypersurface with pg > 1. Then
(i) the function Vry is Dirichlet for intrinsic approximation on Mg.
(i1) 1 is uniformly Dirichlet if and only if po = pRr.
(iii) The following are equivalent:
(A) po=pr =1
(B) (“Strong Dirichlet”) There exist C, Ty > 0 such that, for all [X] € Mg and for
all T > Ty, there exists [r] € ]P’é N Mg such that (2.5) holds.

(C) The set
{[x] € Mg : there exist C, Ty > O such that, for all T > T,
there exists [r] € ]P’é N Mg satisfying (2.5)}
has positive Ay, -measure.

Affine Corollary. Let Mg, € R? be a nonsingular rational quadric hypersurface with
po = 1. Then
(i) the function vy is Dirichlet for intrinsic approximation on Mg ;.
(ii) If po = pR, then Yy is uniformly Dirichlet on compact subsets of Mg .
(iii) The following are equivalent:

(A) po=pr =1

(B) (“Strong Dirichlet”) For every compact set K € Mg, there exist C,To > 0

such that, for all x € K and for all T > Ty, there exists v € Q4 N Mg, such
that

C

vV Hstd (1‘) T

Hga(r) < T and dist(r,x) < (2.6)
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(C) The set

{x € Mg, : there exist C, Ty > 0 such that, forall T > Ty,
there exists v € QY NM g, satisfying (2.6)}

has positive A Mo, -measure.

As for the optimality of Theorem 5.1, as stated above, it suffices to show that the set
BAwm, = BAum, (V1)

of intrinsically badly approximable points of Mg is nonempty. It follows from the Cor-
respondence Principle below (Lemma 4.2) that points in BAp,, correspond to bounded
orbits of some dynamical system (cf. Corollary 4.3). Then the results of [35] imply the
following theorem.

Theorem 4.5 (Jarnik—Schmidt for quadric hypersurfaces). Let Mg C }P’Hg be a nonsin-
gular rational quadric hypersurface. Then dim(BAy,) = dim(Mg). In particular, the
Dirichlet function V1 is optimal.

(No changes needed for the affine corollary.)

Using the methods of [38], one can strengthen the conclusion of this theorem to say
that BAys, is winning (in the sense of Schmidt). This conclusion also follows from
a much more general theorem in [21] which applies to all nondegenerate manifolds
and asserts that the set of intrinsically badly approximable points is hyperplane absolute
winning (see [9] for the definition).

Before stating the analogue of Khintchine’s theorem for intrinsic approximation on
quadric hypersurfaces, let us introduce the following definitions, which will be used in
Sections 6-9.

Definition 2.4. Call a function v regular if, for every (equivalently, for some) C; > 1,
there exists C > 1 such that, for all ¢1, ¢»,if 1/Cy1 < ¢g2/q1 < Cy, then

1/C = ¥(q2)/¥(q1) = Ca.
This may be stated succinctly as follows: g1 <x g2 implies ¥ (g1) <x ¥ (q2).

Definition 2.5. The exceptional quadric hypersurface is the hypersurface Mo, C Pﬂ%
defined by the exceptional quadratic form

Qo(x0, X1, X2, X3) = X0X3 — X1X2. 2.7

If a quadratic form Q:R* — R is conjugate over Q to Qg, we will write Q ~ Qo. We
remark that Q ~ Qy holds if and only if Q is a rational quadratic form in four variables
for which pg = pr = 2 (see Lemma 3.6 for more detail).

The hypersurface Mg, which we study in detail in Section 9, has very interest-
ing properties for intrinsic Diophantine approximation. Note that if O ~ Qy, then the
intrinsic Diophantine theory on Mg will be more or less the same as the intrinsic Dio-
phantine theory on Mg,,. Specifically, the rational equivalence between Q and Q¢ defines
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a diffeomorphism between Mg and Mg, which sends rational points to rational points
and preserves heights up to a multiplicative constant.

Theorem 6.3 (Khintchine-type theorem for quadric hypersurfaces). Let Mg C ]P’]g be
a nonsingular rational quadric hypersurface with pg > 1. Fix y: N — (0, 00), and sup-
pose that Y is regular and that the function q — q(q) is nonincreasing. Then Ay, (V)
has full Lebesgue measure if the series®

{ZmN Td=lyd=I(T), Q= Q,, o

Yrean T?loglog TY*(T),  Q ~ Qo,
diverges; otherwise, Ay, () is Lebesgue null.

(No changes needed for the affine corollary.)

The appearance of two cases in Theorem 6.3 is due to nontrivial relations among the
collection of sets defining A Mo, that are not present when Q ~ Q. A discussion of these
relations, and their implications, is given in Section 9 (see particularly Remark 9.3).

Using the Mass Transference Principle of Beresnevich and Velani [3, Theorem 2],
one can deduce the divergence case of the Jarnik—Besicovitch theorem for quadric hyper-
surfaces (Theorem 6.4). Combined with the convergence case (Corollary 6.2), this gives
a complete analogue of the Jarnik—Besicovitch theorem when Q ~ Qy, and a slight dis-
crepancy between the convergence and divergence conditions in the exceptional case. This
discrepancy, however, does not affect the computation of the Hausdorff dimension of the
set of intrinsically V. -approximable points for all ¢ > 1, Ay, (¥ ); namely, Theorem 6.4
immediately implies

: d—1
dim(Ap, (Ye)) = — (2.8)
See Section 6 for a detailed discussion.

Remark 2.7. Let H? denote the d-dimensional hyperbolic space. Given a quadric hyper-
surface Mg C Pfé satisfying pg = pr = 1, there exists a lattice I" C Isom(H?) and
a diffeomorphism ®: JH? — Mg such that if Pp C OH is the set of parabolic fixed
points of I', then ®(Pr) = Pé N M. This correspondence allows one to deduce the case
po = pr = | of all the results of this subsection as consequences of known theorems
about Diophantine approximation of lattices in Isom(H¢); see Section 3.4 for more detail.

Remark 2.8. In the above theorems, the form Q is always assumed to be nonsingular
with integer coefficients. The latter assumption may be made without loss of generality
since, if Q is a quadratic form which is not a scalar multiple of any quadratic form with
integer coefficients, then P& N Mg is not dense in Mg; cf. Remark 5.11. On the other
hand, the nonsingularity assumption does involve a loss of generality. In Theorem 5.1,
the singular case can be deduced from the nonsingular case; cf. Remark 5.9. However,
this is not the case for Theorem 6.3. The use of the nonsingularity assumption appears
unavoidable in Theorem 6.3 since, if Q is singular, then the associated algebraic group
O(Q) is not semisimple.

Here and hereafter, 2V stands for {2 : n € N}.
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The structure of the paper. In Section 3, we recall the necessary preliminaries from the
theory of quadratic forms. In Section 4, we state and prove the Correspondence Princi-
ple, which relates intrinsic Diophantine approximation on a nonsingular rational quadric
hypersurface M with dynamics on a certain space of arithmetic lattices. This correspon-
dence is similar to the one developed for ambient approximation by Davenport—Schmidt
and Dani; see [14-16,36,37] and generalizes the one used in [34]. In particular, we prove
(Corollary 4.3) that [x] € BAy,, if and only if a certain trajectory on the corresponding
homogeneous space is bounded.

In Section 5, we prove Theorem 5.1 (Dirichlet for quadric hypersurfaces). In Sec-
tion 6, we use [37, Theorem 1.7] to reduce Theorem 6.3 (Khintchine for quadric hyper-
surfaces) to a statement about Haar measure on the space of Q-arithmetic lattices (Propo-
sition 8.9). In Section 8, we use the generalized Iwasawa decomposition [39, Proposi-
tion 8.44] and the reduction theory for algebraic groups [41, Proposition 2.2] to prove
Proposition 8.9, thus completing the proof of Theorem 6.3. Finally, in Section 9, we ana-
lyze in detail the exceptional quadric hypersurface Mg, and explain intuitively why the
converse to (the naive application of) Borel-Cantelli does not hold for intrinsic approxi-
mation on this hypersurface.

3. Preliminaries on quadratic forms and lattices

3.1. Orthogonality and nonsingularity

Let V' be a vector space over R, and let @: V' — R be a quadratic form. We denote by
B¢ the unique symmetric bilinear form on V satisfying

0(x) = Bo(x,x) forallxe V.
We remark that Bg may be written explicitly in terms of Q via the formula

Qx+y) - 0(x) -0

5 .
Definition 3.1. Two elements x,y € V are Q-orthogonal if Bg(x,y) = 0. The set of
all vectors which are Q-orthogonal to a given vector x will be denoted x*, and for any
ScCV,weletS+:= MNies xt.

Bg(x,y) =

Definition 3.2. The quadratic form Q is called nonsingular if, for every x € V ~ {0}, we
have x* G V or, equivalently, if the map x — Bg(x,-) is an isomorphism between V
and V*.

Note that a form Q is nonsingular if and only if its corresponding hypersurface Mo
is nonsingular as a manifold. Indeed, recall that Mo = [Lg], where L¢ is the light
cone of Q defined in (2.3). Then My is nonsingular if and only if Lo ~ {0} is non-
singular, which in turn happens if and only if VQ(x) # 0 for all x € Lo ~ {0}. Since
VQ(x) = 2Bg(x,-), we have VQ(x) = 0 if and only if x* = R¢*!. Thus My is non-
singular if and only if x* G R?*! for all x € L. Since x* = R4*+! implies x € Lo,
this proves the assertion.
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3.2. Totally isotropic subspaces; rank and renormalization

Throughout this subsection, fix K € {R,Q} and d > 1, and let Q: R4*1 — R be a non-
singular quadratic form whose coefficients lie in K. We say that a subspace £ € R4*!
is a K-subspace if E has a basis consisting of elements of K¢+ or, equivalently, if E is
defined by equations whose coefficients lie in K. (In the literature, it is sometimes said
that E is defined over K.)

Definition 3.3. A subspace E € R4+ is rotally isotropic if Q|g = 0. It is known (see
e.g. [19, Corollary 8.12]) that any two maximal totally isotropic K-subspaces of R¢*1
have the same dimension. This common dimension is called the K-rank of Q and is
denoted by pk.

It turns out to be convenient to conjugate totally isotropic subspaces to canonical
subspaces, namely to subspaces of the form

m—1
Lm:=) Re. (3.1)
i=0

By choosing the right conjugation map ¢, we may also guarantee that the conjugated
quadratic form R = Q o ¢ has a particularly nice form. We make this rigorous as follows.

Definition 3:fl. Form < d%, a quadratic form R is m-normalized if there exists a qua-
dratic form R on R4+172m guch that

R(X) = XoXg + X1X4—1 + ** + Xm—1Xd—mt1 + R(Xms -, Xd—m).
The quadratic form R will be called the remainder of R.

Proposition 3.5. Ler E € R4 ™1 be a totally isotropic K-subspace of dimension m. Then

m < %, and there exists ¢ € GLg41(K) such that
() ¢ YE)= L, and

(i) R := Q o ¢ is m-normalized.
Proof. Since Q is nonsingular, we may identify E* with R+!/EL via the map
x+ Et = Bo(x,-)|E. (3.2)

Let (f;)7! be a K-basis for E, and let (f;,_, + E*)"! be its dual basis. Inductively,
define fg_; € f/, . + E* by letting

i—1
1
fai =1f =) Bo®y ;. fap)fj — 50, )f:.
j=0
Direct calculation shows that Bo (fz—;,f4—;) = 0 for j <i. Thus E; := Zl'-"z_ol Rfy_;
is also a totally isotropic K-subspace of R¢*+!. Note that, by construction, £, is isomor-
phic to E* via the map (3.2). Since E is totally isotropic, E € E+ and thus E N E, = {0}.
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Let E3 = E+ N E;- = (E + E»)*. Since Q|E+E, is nonsingular, we have
(E + E2) N E5 = {0}
and thus RY*! = E @ E, @ E5. It follows that
dim(E3) =d + 1 —dim(E) —dim(Ey) =d + 1 —2m,

and in particular m < (d 4+ 1)/2. Let (f; )d " be a K-basis for E3, and let ¢ be the
(d + 1) x (d + 1) matrix whose columns are given by fy, ..., f; so that ¢(e;) = f; for
i =0,...,d. Then ¢ € GLy+1(K) by the above-mentioned decomposition

R = E® E, ® Es.
Parts (i) and (ii) follow immediately. ]

Note that it follows from the above proposition that pg is always less than or equal
to d+1 . Also, if Q has coefficients in Q, then pg > d— unless pg = pr. Indeed,
w1thout loss of generality, suppose that Q is pg- normallzed and let O be the remain-
der of Q. If pg # pr, then Q represents zero over R. Since Q is a quadratic form
ind + 1—2pg variables, if d + 1 —2pg > 5, by Meyer’s theorem, Q represents zero
over Q. This would contradict the definition of pg. So d + 1 —2pg < 4; rearranging
gives pg > %.

Another consequence of Proposition 3.5 is a nice characterization of quadratic forms
rationally equivalent to the exceptional quadratic form Qg defined in (2.7). Recall that the
determinant det(Q) of a quadratic form Q: R4+ — R is the determinant of the linear
map ¢o: R4 — (R9+1)* = R4*! defined by x > Bo(x,-).

Lemma 3.6. The following are equivalent for a rational quadratic form Q in four vari-
ables with pg > 1:

» 9~ Qo;
(i) po = pr =2;
(iii) det(Q) is a square of a rational number.

Proof. Note that, for any ¢ € GL4(R), it holds that det(Q o ¢) = det(Q) det(¢)?. In par-
ticular, if Q1 and Q», are equivalent over QQ, then det(Q;) is a square if and only if
det(Q>) is. Thus the implication (i) = (iii) follows immediately upon calculating that
det(Qo) = 1/16.

For the implication (iii) = (ii), suppose that det(Q) is a square. By Proposition 3.5,
we may without loss of generality assume that Q is 1-normalized. In this case, we have
det(Q) = —(1/4) det(Q) where Q is the remainder of Q. By the well-known canonical
form of quadratic forms, we may without loss of generality assume that

O(x) = a1x? 4 a»x?  for some a;,a; € Q.

Then —det(Q) = —aya, is asquare. Thus b := (0,a,, /—aiaz,0) € Q*, and Rey + Rb
is a totally isotropic subspace of dimension 2, proving that pg = 2.
Finally, (ii) = (i) is a straightforward consequence of Proposition 3.5. ]
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A convenient fact about m-normalized quadratic forms is that any element of GL,, (R)
extends to an element of SL; 41 (R) which preserves every m-normalized quadratic form.
Specifically, given a quadratic form R: R¢*! — R, let

O(R) ={g e SLF,,(R): Rog = R}.
Then a direct computation yields the following.
Observation 3.7. Fix m < d+1 and ¢ € GL,,(R). Define the reverse of the matrix ¢
to be the matrix whose (7, ])th entry is equal to the (;m — j, m —i)th entry of ¢!, and

denote this matrix by ¢ Visually, ¢ is ¢! flipped along the northeast-southwest dlagonal
Let
¢

go=| laviom | (3.3)
¢

Then g4 € O(R) for every m-normalized quadratic form R.

Next, for each m < % andt € R™, let

e~

e_tmfl

8t = gdiag(efto,,..,eftmfl) = Id+1—2m . (34)

etm—]

e’o

Of particular importance will be the case m = 1, in which case

g = i | (3.5)

A simple computation immediately yields the following observation, which will turn
out to be quite useful.

Observation 3.8. Forz > 0 and x € R4+1,
dist(x, £1) < [[g: X, (3.6)

where £1 is as in (3.1).

3.3. The space of lattices; Mahler’s compactness criterion

As stated in the introduction, our main tool for proving theorems concerning intrinsic
approximation on My is a correspondence principle between approximations of a point
in Mo and dynamics in the space of lattices. We will describe this correspondence prin-
ciple in Section 4 below, while here we introduce the space of lattices which we are
interested in, namely the space of Q-arithmetic lattices.
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Definition 3.9. Fix a quadratic form Q:R?+! — R. A lattice A € R4*! is Q-arith-
metic if Q(A) C Z. (Symmetrically, we may also say that Q is A-arithmetic.) The set of
Q -arithmetic lattices will be denoted by €2 ¢, while the set of all lattices in R+ will be
denoted by 24.

Observation 3.10. A quadratic form is Z¢ ™ !-arithmetic if and only if its coefficients are
integral.

Clearly, Q¢ is preserved by the action of O(Q). If A € Qg is fixed, we denote its
stabilizer by O(Q; A) and its orbit by Qo . We will implicitly identify Qg A with the
homogeneous space O(Q)/O(Q; A) via the map gO(Q; A) — gA. This automatically
endows Qo A with a topological structure and, since O(Q) is unimodular and O(Q; A)
is discrete, a Haar measure, which we will denote by g A.

Viewing ¢ A as a homogeneous space could conceivably give it a different topology
than viewing it as a subset of €24, which has its own topology from its identification with
GL441(R)/GLg41(Z) coming from the map g GLg41(Z) — g(Z%*"). Fortunately, it
turns out that these topologies are identical.

Proposition 3.11. The inclusion map Qg n — 24 is proper and continuous when both
spaces are endowed with the topologies coming from the identification with their corre-
sponding homogeneous spaces. Consequently, the topology on Qg  is unambiguous.

Proof. The continuity of the inclusion map follows directly from the continuity of the
inclusion map from O(Q) to GLy41(R). Let us show that the inclusion map is proper.
Let (A,){° be a sequence in 29 A converging to a point Ay € Q4. Then there exist

GLg+1(R) > gn — g0 € GLg+1(R)

such that A, = g,,(Zd'H) for all n > 0. This implies that, foralln > 1, Q, := Q o g, is
a Z4* ! arithmetic quadratic form, and Q, — Qg := Q o go. Since the space of Z¢*1-
arithmetic quadratic forms is discrete (being identical to the space of quadratic forms
with coefficients in Z), we have Q, = Q for all sufficiently large n. (Thus a posteri-
ori Qg is Z4H -arithmetic, or equivalently Ao € Qg.) For n satisfying Q, = Qo, we
have hy, 1= gngy"' € O(Q); in particular, Ag = ;' (An) € Qg ,A. On the other hand,
Ay = hpAg and h, — ho = id; this implies that A, — A¢ in the topology on Q¢ A
coming from its identification with the homogeneous space O(Q)/0(Q; A). |

We now recall Mahler’s famous compactness criterion and deduce an analogue in the
context of quadratic forms. For A € Q4, let
8(A) :== min . 3.7
(A):=_min [p] (37)
Theorem 3.12 (Mahler’s compactness criterion [42, Theorem 2]). A set S C Qg is pre-
compact if and only if § is bounded from below on S, and the covolumes of all lattices
in S are uniformly bounded from above.

For A € Qg, let

So(A) = i .
oM)=__ min_Ipl
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Welet8g(A) =oc0if AN Lg ~ {0} = 0.
Observation 3.13. If we let

1ol = |Bo (x.y)l,

max
IxlI=llyll=1
then min(8g, 1//||Q|) <8 < dp.

Proof. Forp € A~ Lo, |lpll = vIOm)I/121 = 1/ V12l u

Corollary 3.14 (Analogue of Mahler’s compactness criterion). Fix A € Qg. Then a set
S C Q. is precompact if and only if § g is bounded from below on S.

Proof. By Observation 3.13, §¢ is bounded from below on S if and only if § is bounded
from below on S. But by Theorem 3.12, since the covolumes of all lattices in 2, A are
the same, § is bounded from below if and only if S is precompact in the topology of Q4.
By Proposition 3.11, this occurs if and only if S is precompact in the topology of 29 a.
(Here we use not only the fact that the topology on Q24 is the one induced from 24, but
also the fact that the inclusion map is proper, and consequently ¢ A is closedin Q4.) =

3.4. Relation to Kleinian lattices

In this subsection, we describe the relation between the intrinsic Diophantine approxima-
tion of a quadric hypersurface Mg satisfying pgo = pr = 1 and the approximation of
points in the boundary of d-dimensional hyperbolic space H¢ by parabolic fixed points
in a lattice I' € Isom(H?) which depends on the quadric hypersurface Myg. Since the
latter situation is well-studied, this correspondence can be used to immediately prove the
theorems of Section 2 in the case pg = pr = 1. (However, our proofs of the theorems of
Section 2 in the general case are not dependent on assuming pr > 1, so this subsection
can be skipped without any loss of generality.)
Let 0:R4*! — R be a quadratic form with integer coefficients satisfying

po = pr = L.

Then the signature of Q is either (d, 1) or (1,d). Without loss of generality, we will
suppose that its signature is (d, 1). The hyperboloid model of hyperbolic geometry is the
set

HY :={x e R : 0(x) = -1}

with the Riemannian metric Q|ga (its positive definiteness is guaranteed by the fact that
the signature of Q is (d, 1)). The hyperbolic distance is given by the formula
coshdist(x,y) = |Bo(Xx,y)|.

Note that, by Sylvester’s law of inertia, up to isometry, the space (H¢, dist) does not
depend on Q, but only on d. For the equivalence of the hyperboloid model with other
standard models of hyperbolic geometry, see e.g. [12]. The boundary of H¢, denoted
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9H, is defined to be the boundary of [H¢] in P. Observe that 9H? = M. A horoball
in H is a set of the form
(xe H? : By(zx) > 1},

where z € HY, [r] € oHY,t € R, and By denotes the Busemann function
B(z,x) = lim [dist(y, z) — dist(y, x)].
[y]—[r]

Such a horoball is said to be centered at the point [r]. The isometry group of H¢ is given
by
Isom(H¢%) = O(Q).

Since Q has integer coefficients, the subgroup
I':=0(0:Z) :=0(Q) NGL4+1(Z)

is a lattice in O(Q) (see [6, Theorem 7.8]). Let Pr C 9H4 denote the set of parabolic
fixed points of I".

We now state the relation between intrinsic approximation of Mg and approximation
of dH? by Pr.
Proposition 3.15. The following statements hold.
(1) There exists a T -invariant disjoint family of horoballs (H [r])[r]e]pé nM such that, for

each [r] € IP’& N Mg, Hyy is centered at [r] and

Haa([r]) =x ™ Hir), (3.8)

where z € H? is fixed.
(i) P4 N Mg = Pr.

Using Proposition 3.15, one may translate [52, Theorems 1 and 4], [51, Theorem C],
and [44, Theorem 2] (see also [24] and the references therein for subsequent generaliza-

tions) into the context of quadratic forms, yielding the results of Section 2 in the case
po = pr = l. Details are left to the reader.

Proof of (i). Fix ¢ > 0, and for each [r] € IPg_) N Mo, let
Hy = {xe HY : |Bo(x,1)| < &},

where r is the unique primitive integral representative of [r]. The fact that Hq is a horoball
centered at [r] follows from the following well-known formula for the Busemann function
in the hyperboloid model:

|Bo(x,1)|
|Bo(y. )|
Since P& N Mo and Q are both invariant under I, the collection (H[r])[r]epg»m Mg 18

clearly I'-invariant. Next, we will show that the collection (H[r])[r]e]pé NMo is disjoint
for e sufficiently small. Indeed, suppose x € H[y;1 N H|,], and apply g € O(Q) such

By (x,y) = log
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that g(x) = w, where w € H¢ is fixed. Then |Bo(w, g(r;))| < e, where r; is the prim-
itive integral representative of [r;]. On the other hand, since Q has signature (d, 1) and
Q(w) = —1, we have

|[Bo(w,r)| <x ||| forallre Lg. (3.9)

Thus ||g(r;)|| <x & and so |Bg(r1,r2)| <x [|Q]&?. Thus |Bg(ry,r2)| < % for ¢ suffi-
ciently small. On the other hand, Bo(r;,12) € Z/2 since Q has integer coefficients, so
Bo(ri,rz) = 0. Since pg = 1, this implies [r;] = [r2].

As the horoballs (H r])[r]e]pd nM, are disjoint open subsets of the connected set H4,
there exists z € H? ~ U[r Hpy. Now fix [r] € ]P’d N Mg, and we will demonstrate (3.8).
Letting x € dH(, be arbitrary, we calculate

pist@Hy) — 8@ _ |BQ(Z»1')|_
&

Combining with (3.9) yields (3.8). [

Proof of (ii). Suppose that [r] is a parabolic fixed point of ', say g([r]) = [r] for some
parabolic g € I'. Then the line representing [r] is precisely the set

(xeRIT: g(x) = x},

which is a rational subspace of R¢*+1. Consequently, [r] € ]P> nMm Q

Conversely, suppose that [r] € ]P’d N Mg. As above, we ﬁxz e H? ~ U Hy. Since
the collection (H r])[r]epd NMo 18 F invariant, this implies g(z) ¢ Hy for all gel.In
particular, [r] cannot be a conical limit point of I" (see e.g. [8, Section 3.2] for the def-
inition). But since I is a lattice, every point of dH is either a conical limit point or
a parabolic fixed point (e.g. [8, Section 4]). Thus [r] € Pr. |

4. The correspondence principle

In this section, we introduce the correspondence principle alluded to in the introduction.
It is an intrinsic approximation analogue of the so-called Dani correspondence for ambient
approximation [14—-16,36,37]. A special case can be found in [34, Theorem 1.5].

Fix d > 2, and let Q: R¢*! — R be a nonsingular quadratic form with integer coef-
ficients. Suppose that pg > 1. By Proposition 3.5, there exists a matrix ¢ € GL;z41(Q)
such that R := Q o ¢ is pg-normalized. Let A, = ¢~ '(Z4*"). Note that A, is com-
mensurable with Z4 11 and that A . € Q g. Moreover, the Q-ranks of Q and R are iden-
tical, and the same goes for the R-ranks, so denoting these ranks by pg and pr will not
cause ambiguity.

Consider the maps 71: O(R) — Mg and m,: O(R) — QR a, defined by

m1(g) = ¢ o g([eo)),
ma(g) = g ' As = (po ) (29T).



L. Fishman, D. Kleinbock, K. Merrill, D. Simmons 1064

Now fix g € O(R), and let

[x] =m1(g) and A =ma(g). (4.1)
The first version of the correspondence principle gives a relation between the following
entities:

(A) Rational points in Pé N Mg which are close to [x].

(B) Points in A, N Lg which are close to &£1. Here A, denotes the set of primitive
vectors of A, and £; = Reg is as in (3.1).

(C) Pairs (,q), where q € g; Ay N Lg is close to {0}.

Lemma 4.1 (Correspondence principle, form 1). Let g, [X], and A be as in (4.1). Then

(i) the map p — ¢ o g([p]) is a bijection between Ay N L g and ]Pé NMgp.

(ii) Fixp € Apr N LR, and let [r] = ¢ o g([p]). Then

dist(p, £1)

Il

In particular, if ¥: (0, 00) — (0, 00) is a regular function (cf. Definition 2.4), then
dist([r], [x]) dist(p, £1)
v o Hu(r) % Tipllv (Ipl)’

In each case, the implied constant can be made independent of g if g is constrained
to lie in a bounded subset of O(R).

(iii) Fixp € A N Lg ~ {0} such that |po| = ||p||, i.e. | po| = dist(p, £1). Fort > 0,

dist([r]. [x]) =<x.q and  Hya([r]) =x.¢ [Ip]- (4.2)

(4.3)

. Il
max(dist(p. £1), =+ ) < llg: ()]
€ Ipll e dist(p, 561)2)

<x maX(diSt(p, £1), 7, Ipll 4.4)

~

In particular, letting t (p) = log(||p||/dist(p, £1)), we have

g @) =x dist(p, £1). (4.5)

Proof. Part (i) is straightforward. Regarding part (ii), formula (4.2) is perhaps elucidated
by the calculation

dist(p, £1)

dist([r], [x]) = dist(¢ o g([p]). ¢ o g([eo])) =x,g¢ dist([p]. [eo]) =x il

Hyq([r]) = [[¢ o g =x.¢ IIPIl-

Formula (4.3) follows from (4.2) together with the regularity of v; as Hyq([r]) <x,¢ [Pl
we have ¥ o Hyq([r]) <x,¢ ¥ (|pl), and (4.3) follows upon combining with the first part
of (4.2).

We proceed to the proof of (iii). The first inequality of (4.4) is an immediate con-
sequence of the definition of g,. To show the second inequality of (4.4), let q = g;(p),

’
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and write q = (¢o,...,qq4). Then |q1],...,|qa—1| < dist(p, £1), while |go| = ||p||/¢’.
To bound |g4|, we use the fact that q € L g, which means that

R(Q) = qoqa + R(q1,- . qa—1).

where R is the remainder of R. Rearranging, we have

[R@1.--.qa-0)| _ IRI- 1141, - qa-D)|?
190 B 90
dist(p, £1)?> ' dist(p, £1)?
= . | ]
|90l Il
The second version of the correspondence principle depends on v: (0, 0o) — (0, 00),
and may be stated as follows.

lga| =

~ X

Lemma 4.2 (Correspondence principle, form 2). Let g, [x], and A be as in (4.1), and
assume that [X] is irrational (equivalently, that A N £1 = {0}). Let ¥: (0, 00) — (0, 00)
be a regular function such that the map q — q(q) is nonincreasing and tends to zero.
Then

liming dist([r], [x]) .. . dist(p, £1)
1im in —_— < m —_—
Wk Vo Ha(r) %Y l>kol oIV (IRl
[rlePgNMo PEARNLR

—t
= liminf —————.
VS Y (efSr(gi)
Proof. The first asymptotics follows directly from (i) and (ii) of Lemma 4.1. Using the
function W(q) := gy (q), the second asymptotics can be rewritten in a more convenient

(4.6)

form: di ¢ 5 A
t(p, ..
lim inf m = lim me. 4.7
YR () J1) i—oo W(e'Sr(g:A))
PEAprﬂLR

To demonstrate the < direction of (4.7), for each 1 > 0, choose p; € A, N Lg such that
8r(g:A) = [g+(p:) |- Then by (4.4), we have

dist(p;, £1) < Sr(g:A) and |p;|| < e'Sr(g:A)

and thus .
dist(p;, £1) - Sr(g:N)
Y(llp) T W(e'Sr(g:A))

Here we have used the fact that the function W is nonincreasing. Next, suppose we have
a sequence fx — oo such that

(4.8)

I e
_— <
oo Y (e BR(gA)
Since ¥(g) — 0 as ¢ — oo, it follows that §g(gs, A) — 0. In particular,

dist(ps, . £1) — 0.
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Since A N &£ = {0}, this implies that the set {p,, : k € N} is infinite. Combining with
(4.8) yields the < direction of (4.7).

To demonstrate the 2 direction of (4.7), suppose that px € Ay N Ly is a sequence
such that [pg] — [eo]. For each k, let tx = t(px) be defined as in (iii) of Lemma 4.1.
Since [px] — [eo], we have 7 — o0. On the other hand, by (4.5), we have

SR(E N) = g1 (i)l =x dist(pg, £1).
" SR(gy N) Sx e dist(pr. £1) = [lpk .

and so .
Sr(gyA)  _  dist(pr, £1)
~ X
W(e'dr(gy A)) Y(llpx D
Letting k — oo finishes the proof. ]

The next corollary is a direct analogue of Dani’s correspondence between bounded
orbits and badly approximable vectors/matrices [ 14, Theorem 2.20].

Corollary 4.3. Let g, [x], and A be as in (4.1). Then the following are equivalent.
(A) [x] is intrinsically badly approximable, i.e. [X] € BAp,,.

(B) inprAﬂLQ\{O} dlSt(p7 :61) > 0.
(C) The orbit (g: )0 is bounded in Qp.

Proof. Clearly, all the above statements are false if [x] is irrational. Otherwise, let € be
the class of all regular functions ¥ such that the map ¢ + g¥(g) is nonincreasing and
tends to zero. Then (A) is equivalent to the assertion that the left-hand side of (4.6) is
positive for all ¥ € €, (B) is equivalent to the assertion that the middle of (4.6) is positive
for all ¢ € €, and (C) is equivalent (by Corollary 3.14) to the assertion that the right-hand
side of (4.6) is positive for all ¢ € €. ]

Remark 4.4. It is somewhat annoying that Lemma 4.2 requires the assumption that
q¥(q) — 0 as ¢ — oo, so that the Dirichlet function ¢ = v is ruled out. (If we were
allowed to use ¥ = 1, then the proof of Corollary 4.3 could be made even simpler —
just consider ¥ = ; rather than all functions ¥ € €.) However, this assumption is nec-
essary, as can be seen as follows. Arguing as in [34, Proof of Corollary 3.5], one can
show that there exists C > 0 such that §g(A) < C for all A € Qg a,. (Indeed, other-
wise, one can take a sequence A, € Qg A, with §g(A,) — oo; such a sequence cannot
have a convergent subsequence, yet it is precompact in view of Corollary 3.14.) This C is
a uniform upper bound on the right-hand side of (4.6) when ¥y = ;. However, we know
that, when pg # pr, then there is no uniform upper bound on the left-hand side of (4.6);
this follows from Theorem 5.1 (ii) below. Thus the left- and right-hand sides cannot be
asymptotic.’

7A closer analysis shows that, when ¥ = 1, the left- and right-hand sides of (4.6) are not
necessarily asymptotic even when both of them are close to 0.
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Using Corollary 4.3, we can now prove Theorem 4.5.

Theorem 4.5. Let Mg C IP’]I’é be a nonsingular rational quadric hypersurface. Then we
have dim(BAy,) = dim(My). In particular, the Dirichlet function Y is optimall.

Proof. First observe that BAy, = Mg if pg = 0; thus it suffices to consider the case
pg = 1. Let BAq, C Qg denote the set of lattices in £2 g whose orbit under the g; flow
is bounded. By [35, Theorem 5.2], we have dim(BAgq ;) = dim(§2g). On the other hand,
by Corollary 4.3, we have 8 := 7, ! (BAq,) = 7y ! (BAumy ).

Since 7, is a fibration whose fibers are isomorphic to Stab(A ), the set

B = ;' (BAq,) € O(R)

has the same local structure as the product BAg, x Stab(A«) € Qg X Stab(A4). Now,
since Stab(A «) is a manifold, its Hausdorff dimension and upper box dimension are equal.
(We refer to [20, p.38] for the definition of upper box dimension.) So, by [20, Corol-
lary 7.4], we have dim(A x Stab(A «)) = dim(A) + dim(Stab(A)) forall A € Qg. Tak-
ing the cases A = BAq, and A = Qg and using the fact that Hausdorff dimension is
a local property, we have

dim(8B) = dim(BAg,,) + dim(Stab(A«)),
dim(O(R)) = dim(R2r) + dim(Stab(A«)).
A similar argument gives
dim(8) = dim(BAyy,, ) + dim(Stab([eo])),
dim(O(R)) = dim(Mp) + dim(Stab([eo])).
Thus, since dim(BAg ) = dim(£2g), we have dim(BAy,) = dim(Mg). ]

Under the assumption that g1 (¢) — 0 as ¢ — oo, Lemma 4.2 can be used to dynam-
ically describe the sets Aps,, (¥) and WAps,, (V).

Corollary 4.6. Let v:(0,00) — (0, 00) be a regular continuous function such that the
map q v qy(q) is nonincreasing and tends to zero, let ry (1) := e~ "y~ 1(e™") (this is
well defined for large enough t), and let

A(ry,QRr,A,) :={A € QRr.A, : 6R(g:A) < ry(t) for an unbounded set of t > 0}. (4.9)

Then, for every compact set K C O(R), there exists C > 0 (depending on ¥ and K )
such that

7 (AMe (W/C) N K S 7y (Alry, Qr,A.)) N K S a7 (Amp (CY)) N K.

Consequently, if g, [x], and A are as in (4.1), then [x] € WAp, (¥) ~ (]P’é N Mp) if and
only if
A € WA(ry. Qr.A.) o= [ | Alery. Qr.a.)

>0
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Proof. Given g € O(R) and [x], A as in (4.1), write C([x]) for the left-hand side of (4.6)
and write C(A) for the right-hand side of (4.6). Then

Cx) <a = [x] e App(@y) = C(X]) =«
and

C(A) <1 = A €A(ry,Qra,) = C(A) <L

The conclusion follows. The “consequently” part follows from the regularity of i and the
elementary computation rey (1) = ey~ 1(e™ /¢). [

In applying the correspondence principle, the following observations happen to be
useful.

Observation 4.7. There exists a compact set X C O(R) such that 7, (K) = Mp.

Proof. This follows from the facts that Mg is compact, O(R) is locally compact, and 7y
is open and surjective. ]

We remark that the corresponding assertion is not true for m, since 2g A, 1s not
compact by Corollary 3.14.
Now let g and g, A, denote Haar measures on O(R) and Qg ., respectively.

Observation 4.8. The measures® A Mo and m1[pR] are mutually absolutely continuous.
The measures (g, A, and w2 [ r] are mutually absolutely continuous.

We remark that Corollary 4.3, the ergodicity of the g;-action on Qg A, , and the above
observation allow one to conclude that the set BAyy,, is A Mo -null. This is a special case
of a more general Khintchine-type result — namely Theorem 6.3.

5. A Dirichlet-type theorem

In this section, we prove the following.
Theorem 5.1 (Dirichlet-type theorem for quadric hypersurfaces). Fixd > 2, and let Mg
be a nonsingular rational quadric hypersurface in ]P’]f{f with pg > 1. Then
(i) ¥ is Dirichlet for intrinsic approximation on Mg.
(i1) 1 is uniformly Dirichlet if and only if po = pRr.
(iii) The following are equivalent:
(A) pg = pr = L.
(B) There exist C, Ty > 0 such that, for all [X] € Mg and for all T > Ty, there
exists [r] € IF’(g_) N Mg such that

C

VHa (DT

8Note that the measures 1 [ g] and 72 [ g] are not o-finite; in fact, they are {0, co}-valued.

Ho(r) < T and dist([r], [x]) < (5.1)




Intrinsic Diophantine approximation on quadric hypersurfaces 1069

(C) The set

{[x] € Mg : there exist C, Ty > 0 such that, for all T > Ty,
there exists [r] € ]P’é N Mg satisfying (5.1)}

has positive Ay, -measure.

Except for the forward direction of (ii) (i.e. uniformly Dirichlet implies pg = pRr),
which we will prove separately (see p. 1075), all of these results are consequences of the
following theorem together with the correspondence principle,’ namely Lemma 4.1 (i), (ii)
and Observations 4.7 and 4.8. Details are left to the reader.

Theorem 5.2. Fix d > 2, and let R be a nonsingular quadratic form on R4+ with
po > 1 which is pg-normalized. Fix A € Qg commensurable to 72+, Then

(i) forall A € Qg ., there exists Cn > 0 such that
dist(p, £1) < Ca 5.2)

holds for infinitely many p € A N Lg ~ {0}.
(i1) If po = pr, then the constant Cy in (5.2) can be made independent of A.
(iii) The following are equivalent:
(A) po=pr=1
(B’) There exist C, Ty > 0 such that, for all A € Qg A, and for all T > Ty, there
existsp € AN Lg~{0} with ||p|| < T such that

dist(p, £1) < C @. (5.3)

(C) The set

{A € QRr,A, : there exist C, Ty > 0 such that, for all T > Ty,
there exists p € A N Lr ~ {0} satisfying ||p|| < T and (5.3)}

has positive |LR A, -measure.

Proof of (i). We require the following preliminary result.

Lemma 5.3. Let Q be a nonsingular quadratic form on R+, and fix A € Q o satisfying
AN Lg~{0} #@. Then
Span(A N Lg) = R+,

9However, the correspondence principle cannot be used to deduce Theorem 5.2 from Theo-
rem 5.1 (or similarly, Theorem 6.5 from Theorem 6.3), due to the lack of an analogue of
Observation 4.7 for mp. Similar considerations prevent the forwards direction of Theorem 5.1 (ii)
from being deduced from an appropriate analogue in the space of lattices.
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Proof. After applying a matrix (namely one whose columns form a basis of A), we may
without loss of generality assume that A = Z4¢*!, The assumption A N Lo~{0} #9
will then imply that pg > 1, and by applying Proposition 3.5, we may without loss of
generality assume that Q is 1-normalized and A is commensurable with Z4+!, Then,
clearly,

roeo,7geq € AN Lg for some nonzero ro,7qg € Q. 5.4

On the other hand, foreachi = 1,...,d — 1, we have
e + Q(ej)eg —ey € Lg

by direct calculation. Since A is Q-arithmetic and commensurable with Z4*+1_ it follows
that
ri(e; + O(ei)eo —eg) € A

for some nonzero r; € Q; hence, in view of (5.4), e; € Span(A N Lyo). <

For t > 0, let g, € O(R) be as in equation (3.5). Applying Corollary 3.14 to the
lattices (g;A)s>0, we see that one of the following two cases holds.

Case 1: There exists a sequence ¢, — oo and a sequence g, (A N Lg) 3 g4, (pn) — 0.
In this case, for all sufficiently large n, (3.6) implies that p, satisfies (5.2). If the set
{p» : n € N} is infinite, this completes the proof. Otherwise, there exists p € A such that
p, = p for arbitrarily large n. In particular, we have 8in, (p) — O for some increasing
sequence (nx){°. Comparing with (3.5), we see that p € &£;. Since the vectors np (n € Z)
all satisfy (5.2), this completes the proof.

Case 2: There exists a a sequence t, — 00 such that g;, A — AeQ R.A - In this case,
by Lemma 5.3, we have ANLg ¢ £+, where ch' denotes the set of vectors Q-orthogo-
nal to e; as in Definition 3.1. Thus we may fix p € AN Lg~ .ECJ- Since g;, A — A
there is a sequence g, A > g1, (pn) — P. Let Ca = 2||p||; then for all sufficiently large n,
(3.6) implies that p,, satisfies (5.2). If the set {p, : n € N} is infinite, this completes the
proof. Otherwise, there exists p € A such that p, = p for arbitrarily large . In particular,
e« dist(p, :ﬁf—) — dist(p, cf(‘ill) # 0 for some increasing sequence (1 ){°. This is clearly
a contradiction. ]

Proof of (i1). We first need to define the codiameter of a discrete subgroup.

Definition 5.4. The codiameter of a discrete subgroup I' € R4+!, written Codiam(T"),
is the diameter of the quotient space Span(I")/T.

We require the following lemma.

Lemma 8.11. There exists C; > 0 such that, for every A € Qg a,, there exists a totally
isotropic A-rational'® subspace V. C R+ of dimension po satisfying

Codiam(V N A) < C;.

10A subspace V C R4+ is A-rational if Span(ANV)=V.
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The proof of Lemma 8.11 requires reduction theory, so we delay its proof until Sec-
tion 8.

Let C; be as in Lemma 8.11. Fix A € Qg ... For each ¢ > 0, applying Lemma 8.11
to the lattice g; A € Qg A, yields a totally isotropic g;A-rational subspace V; C RA+1
of dimension pq satisfying

Codiam(V; N g;A) < Cy. (5.5)

At this point, we divide the proof into two cases.
Case 1: £1 C V; for some ¢t > 0. In this case, since the set

S :={xeg (V) :dist(x,£1) < Cy}

has infinite volume in the vector space g_;(V;), by Minkowski’s theorem, it contains
infinitely many lattice points p € A N S. Note that each such pisin L since V; is totally
isotropic. On the other hand, (5.2) is clearly satisfied (with Cx = C; independent of A).
This completes the proof.

Case 2: £1 € V; for all ¢t > 0. Fix ¢t > 0. Note that if V; C é‘if—, then V; + £ is
a totally isotropic vector space of dimension pg + 1 = pr + 1 > pRr, a contradiction.
Thus V; € $f‘. Fix a unit vector v, € V; which is perpendicular to V; N If‘ with respect
to the Euclidean quadratic form £;41 = Zg xiz. By (5.5), there exists g;(p;) € Vy N g: A
satisfying ||g;(p;) — 2C1Vv;|| < Cy. Then (3.6) implies that p,, satisfies (5.2), Cp = 3C;
independent of A. If the set {p; : ¢ > 0} is infinite, this completes the proof. Otherwise,
there exists p € A such that p; = p for arbitrarily large /. However, for all #, we have
g(p)eVi~(ViN éﬁf‘) =V~ Jﬁf—, and thus p ¢ :ﬁf-. This implies that ||g;(p)| — oo,
a contradiction. ]

Proof of (iii). For the purpose of this proof, we introduce a new system of coordinates on
R*+! Forx € Rt Jet
H(x) = |xol. W) =[(x1,....xg-0l, LX) = |xal.
We will think of the letters H, W, and L as being short for “height”, “width”, and
“length”, respectively. Note that, fort € R,
H(gix)=e"H(x), W(g:x)=W(x), L(gx) =e'L(x).

In other words, for # > 0, applying g; decreases height and increases length while leaving
width fixed. Moreover,

[[x|l = max(H (x), W(x), L(x)),
dist(x, £1) = max(W(x), L(x)).
If x € Lg, then B 5
HX)LX) = [R(x1.....xg-D)| < |RIW? (). (5.6)
where R is the remainder of R.
We will now rephrase the Diophantine condition on a lattice A € Qg A, described

in (B’) and (C’) of Theorem 5.2 (iii) as a dynamical condition on the same lattice A.
Precisely, we have the following observation.
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Observation 5.6. Fix C, Ty > 1 with Tp > C?2, and fix A € 2R, A,. Then we have that
= 2= 3).
(1) Forall 7 > 1 log(Tp), there exists q € g/A N Lg ~ {0} satisfying

lq =C and W(q) < v CH(q).

(2) Forall T > Ty, there exists p € A N Lg ~ {0} with ||p|| < T satisfying (5.3).
(3) For all t > log(Ty), there exists q € g: A N Lg ~ {0} satisfying

lgll < C?max(1,|[R]) and W(q) < C/H(q).

(1)= (2). FixT > Ty, and lett = log(T/C) > %log(To). Letqe g;,ANLg~{0}be
asin (1),andletp = g—;(q) € A N Lg ~ {0}. Then

T
<eé|q| < =C=T.
Ipll < e'llall = C

To demonstrate (5.3), we bound W(p) and L(p). First of all,

H H
W(p) =W(q) < yCH(q) = C% = C,/%"). (5.7)
On the other hand, we have
L C Cc?
=20 ¢ ¢

T/C ~T/C T

CZ
L(p) = VL(p)vL(p) < \/L(p),/? —C /@_

Combining with (5.7) demonstrates (5.3). <

which implies

(2) = (3). Fix 1 > log(Tp), and let T = e’ > Ty. Let p € A N Lg ~ {0} be as in (2),
andletq = g;(p) € g:A N Lg ~ {0}. Then

H(@=e¢"Hp) <e'T=1
On the other hand, (5.3) is written in terms of height, width, and length as

max(H (p), W(p), L(p))
= .

and since T > Ty > C?2, the case where the maximum is W(p) or L(p) cannot occur.

Thus
max(W(p). L(p)) = C |/ 2.

max(W(p), L(p)) < C\/
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In particular,

H
wia) = wp) = [P = ¢ G

Since q € Lg, (5.6) gives

W@ g @
H(q) — H(q)

Thus ||q|| = max(H(q). W(q). L(q)) < max(1,C, C?|[R])) < C? max(L, || R])). <

L(g) < ||R] = C?||R|.

For each C > 0, consider the set

Fc :={A € Qg,a, :thereexists q € A N Lg ~ {0} such that
lall = C, W(q) = VCH(q)}.

Then (B’) and (C’) of Theorem 5.2 (iii) are equivalent to the following conditions, respec-
tively.

(B”) There exists C > 0 such that, forall A € Qg a, andforallz > C, g;A € F¢.
(C”y The set

{A € Qpg,A, : there exists C > 0 such that, forallt > C, g;A € F¢}

= | liminf g, (Fc)
—>00
C>0
has positive (g, A, -measure.
Now (B”) is clearly equivalent to the following.
(B”) There exists C > 0 such that Fc = Qg a,.
We claim that (C”) is also equivalent to (B””). Indeed, it is clear that (B”") implies (C").
Conversely, if (C”) holds, then by Moore’s ergodicity theorem [1, Theorem II1.2.1],"" the
set Fc has full ug A, measure, where C is large enough so that the (g;)-invariant set
liminf;_, o g—; () has positive measure. But since F¢ is closed, this implies (B”).
To complete the proof, we must show that (B”) is equivalent to (A).

Proof of (A) = (B"). Since pr = 1, the remainder R does not represent zero over R,
Le. it is either positive definite or negative definite. Without loss of generality, suppose
that it is positive definite. Then v R is a norm on ]R{d_l, so there exists K > 0 such that

~ 1
R(x) > sz(x) forall x € R4,

1f ¢ = 3 and pg = 2, then the group G = O(Q) is not simple (being isomorphic to O(2, 2)),
so one should use [1, Theorem III.2.5] rather than [1, Theorem III.2.1]. Note that the fact that
the group (g¢);eRr is totally noncompact in G follows from the inequality (7r;)’(z) # 0 proven on
p- 1083 of the present paper.
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Then, for all x € Lpg,
W2(x) < KR(x1,...,xq-1) = —Kxoxqg = KH(X)L(x), (5.8)

providing an asymptotic converse to (5.6).

Let C; > Obe asin Lemma 8.11. Fix A € Qg A, ,and we will show that A € F¢, k.
Indeed, by Lemma 8.11, there exists q € A N Lg ~ {0} satisfying ||q|| < C;. Then (5.8)
gives

W(q) < vKH(q)L(q) < VC1KH(q),
demonstrating that A € F¢, k. <

Proof of (B") = (A).

Claim 5.7. We may without loss of generality'? suppose that R is pgr-normalized and
that Ax N Epy = 24T N Ly,

Proof. Let Eg be a A -rational totally isotropic subspace of R¥*! of dimension pg.
Let Er D Eqg be a totally isotropic subspace of R4*1! of dimension pg. By Propo-
sition 3.5, there is a matrix ¢; € GLy4+1(R) such that R’ := R o ¢; is pr-normalized
and ¢71(ER) = £ - In particular, T := ¢71(Ax N EQ) € £ pg- Let ¢ € GL, (R)
send I" to Z4+1 N &£ - Let g4, be defined by equation (3.3) so that g4, € O(R’). Then
g(;; (T)=Z4t1'N&,,. Lettingp = ¢; o g;zl, wehave 91 (A« N EQ) =Z9T1 N &,
or equivalently ¢ "1 (Ax) N £,y = Z9T N Ly, Let A, = ¢~1(A+), and observe that
R' = Ro¢. Then R’ is pr-normalized and A}, N £, = Z¢T1 N &,,. On the other
hand, both conditions (A) and (B"”) are unaffected by replacing R and A . with R’ and A/,
respectively. <

Now suppose (A) fails, i.e. pr > 1. Fix¢t > 0,and lett = (¢, ...,¢) € RPQ. Then
At = gtA* € QR,A*.
Claim 5.8. If p € A; N L satisfies |p|| < ¢'/2||R|), thenp € Ty := A; N £ gy

Proof. For eachi =0,..., pg — 1, we have ¢; € Z¢T1 N £po S Ax N Lg, and thus
gi(e;) = e 'e; € A; N Lg. Since A, is R-arithmetic, we have

7
Br(p. gi(e)) € X (5.9)

On the other hand,

t

e _ 1
[Br®-ge| < IRI- Il lsiell < IRN(57)e ™ = 5

Combining with (5.9), we see that

BRr(p. gi(e;)) = ¢ "Br(p.¢;) = 0.

12Here we abandon the assumption that A x is commensurable to 74+1,
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It follows that the A;-rational subspace &£,, + Rp is totally isotropic, and so, by the
maximality of pg, we have p € £ . <

Now let ¢; € O(& ) satisty ¢, (I';) N £1 = {0}, where &, is the Euclidean metric
on RPR_ Such a choice is possible since by assumption pr > 1. Let g4, be given by (3.3)
so that g4, € O(R) NO(E441). Let A} = gg, A;.

Let

Yy = Ig

so that
y(Fc) = {A € Qg a, : there exists q € A N Lg ~ {0} such that
lall = C. W(q) = vCL(q)}.

We claim that, for all C > 0, there exists ¢ > 0 such that A} ¢ y(F¢); in particular,
Fc S Qg Indeed, fix C and ¢, and suppose we have q = g¢,(p) € A; N Lg ~ {0}
with ||p|| <x [lq]| < C and W(q) < /CL(q). If ¢ is large enough (depending on C),
then by Claim 5.8, we have p € I'; and thus q € &£, ~ &£1. In particular, L(q) = 0, but
W(q) > 0. This is a contradiction. Thus ¢ & Qg a, forall C > 0,s0 (B”) fails. <

This completes the proof of Theorem 5.2. ]
We complete the proof of Theorem 5.1 by demonstrating the forwards direction of (ii).

Proof of Theorem 5.1, forwards direction of (ii). Let Vg be a maximal isotropic Q-sub-
space of R4*! and Vg a maximal isotropic R-subspace of R4*! such that Vg S Vk.
Then [Vg] & [VR]. By contradiction, suppose that vy is uniformly Dirichlet. This is
equivalent to the existence of a constant C > 0 such that, for all [x] € Mg, there exist
infinitely many r € Z4+1 N L g satistying

dist(r, £1) < C, (5.10)

where £ = Rx.

Fix [x] € [VR] ~ [Vo] € M. Since [x] ¢ [Vo], only finitely many r € Vg N Z4+!
can satisfy (5.10), so there exists r € Z4+1 N Lo ~ Vg satisfying (5.10). Let x be the
projection of r onto £[,] so that

Ix —r|| = dist(r, £1) < C. (5.11)

Letby,...,b, be a basis of Vg N 721 Since Vg is totally isotropic and x € Vg, we
have Bg(x,b;) =0foralli =1,..., pg. Thus

|BQ(r»bl)| = |BQ(X_r7bl)| » 1
o
< 1Bl - Ix—rl- Ib; || = N := [ C[|Boll Max 1] |.
and so, since Q is Z¢ ! -arithmetic,

2:= (Bo(r,b))’% " € (—N,...,N}PO.
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On the other hand, since r ¢ Vg, the maximality of Vg implies that Vg + Rr is not
isotropic (it is clearly a Q-subspace). Thus Bo(r,b;) # O forsomei = 1,..., pg, i.e.

z#0.
Choose real numbers cq,...,c 0 linearly independent over Q, and let

PQ
s = Zcib,’ € Vo.

i=1

Let
[Xm] — [s]  with [x] € [Ve] ~ [Vo].

For each m, let r;,, X;;, and z,, be defined as above, with the additional stipulation that
Ity || = m (this is possible since there were infinitely many possible choices for r,).
Then, for each m € N, we have

|Bo (tm,S)| = |2Zm - ¢|,
where ¢ = (ci)fSO_I.Thus
|Bo(tm.s)| € {|z-¢|:z€{=N,..., N}’ ~{0}},

which implies |Bg (ry, s)| > ¢ for some ¢ > 0 independent of m. Let t,, = £ X ||/ |Is]l;
since [Xp] — [s], we have

after choosing the appropriate & signs to define #,,. Now

etm < |Bo(Xm, tmS)|
= |Bo(tm — Xm, tmS)| (since X, 8 € VR)
= |BQ(rm — X, tmS — Xpm)| + |BQ(rm — X, Xm)|

1
= |Bo(tm — Xm, tmS — Xm)| + ElQ(rm) — 0(xm) — Q(Cm — Xm)|
1 .
= |Bo(Xm — Xm. tmS — Xm)| + §|Q(rm —xm)| (since Iy, X, € Lo)
1
<101 I = Xl 1S = Xl + 5 m = X

C
< CIQI(5 + lims = xul). (by (5.11)

Dividing by t,,, we have

a contradiction. [
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Remark 5.9. The hypothesis of nonsingularity can be dropped from parts (i) and (ii) of
Theorem 5.1 if the hypothesis that Pd N Mg # 9 is replaced by the stronger hypothesis
that Z¢+1 intersects Lo ~ (IR‘”I)l

Proof. Any singular quadratic form is conjugate to a quadratic form Q:R4+! — R of
the form

Q(X(),...,Xd) = Q(x0’~~~’xm)’

where Q is a nonsingular quadratic form on R™*! for some m < d. In particular, we
have Lg = L§ x R4~ Note that the hypothesis on Q guarantees that ]P”” NMg # 0.

Fix [x] € M and a representative x = (x),x)) € L. Suppose ﬁrst that x( £ 0,
and let 1Y € Z"™+1 N L be such that

dist(r®, Rx(V) < Cpny. (5.12)

Then there exists ¢ € R so that [[r®) — x| < Cxmy. Choose r® € Z4~™ 5o that
[¥® —x@| < 1. Then

1D, @) — x| < Cpoy + 1. (5.13)

Now, by Theorem 5.1 (i) applied to Q there exist infinitely many r() e Z"+1 N Lo
satisfying (5.12); thus there exist infinitely many pairs (r, r®) satisfying (5.13).

On the other hand, if xX() = 0, let r(') = 0, and for each 7 € R, choose r® satisfying
[r® —x®| < 1; then (5.13) holds. Letting ¢ — oo, there exist infinitely many pairs
(M, r®) satisfying (5.13).

Finally, if pgo = pr. then by using Theorem 5.1 (ii) in place of Theorem 5.1 (i), the
above argument shows that the implied constant is independent of x. ]

Remark 5.10. The same technique cannot be used to remove the nonsingularity hypoth-
esis from Theorem 6.3 below. Indeed, if we suppose that [x(V)] e Ay mp for some v,
then C»7 will be replaced by CHgyq([r])y o Hya([r]) in (5.13), but the second term
(namely 1) will not be changed. Thus the overall bound is no better than if we did not
know that [x(V] € Ay.Ms-

Remark 5.11. The hypothesis that Mg is rational certainly cannot be dropped from
Theorem 5.1. Indeed, Theorem 5.1 (i) implies that the set }P’d N Mg is dense in Mg when-
ever M is a nonsingular rational quadric hypersurface in IP’d satisfying ]P’d NMg # 9.
By contrast, if Q is a quadratic form which is not a scalar multlple of any quadratlc form
with integer coefficients, then ]P’(g N Mg is not dense in Mg.

Proof. Let m:R — Q be a Q-linear map, and let R: R?*! — R be the unique quadratic
form so that R = 7 o Q on Q4+, Then, for r € Q¢*!, O(r) = 0 implies R(r) = 0;
thus P& N Mg € Mg. If P4 N Mg is dense in Mg, then Mg € Mg, and so Q is
a scalar multiple of R. But R has rational coefficients and is therefore a scalar multiple of
a quadratic form with integer coefficients. ]
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6. Khintchine-type theorems and counting of rational points

Recall that, in the classical setting, the convergence case of Khintchine’s theorem fol-
lows directly from the Borel-Cantelli lemma combined with estimates for the number of
rational points whose height is less than a fixed number 7. So, in the case of intrinsic
approximation, one must find upper bounds on expressions of the form

Ny (T) = #{[r] € B§ N M : Hya([r]) < T},
where M C Pﬂ‘é is an arbitrary manifold. Such bounds have been considered extensively
in the case where M is algebraic in [10]. We will pay special attention to the following
result due to D.R. Heath-Brown. Recall that Q is a rational quadratic form in d + 1

variables, dim(Mg) = d — 1, and Qy is the exceptional quadratic form on R* defined
in (2.7).

Theorem 6.1 ([30, Theorems 5, 6, 7, 8 and remarks afterwards]). Let Mg C Pﬂ‘é be
a nonsingular rational quadric hypersurface with pg > 1. Then

T4, Q ~ Qo,
T?logT, Q ~ Qo.

In order to clarify the relation between the above paraphrased version of Heath-
Brown’s results with the original theorems, we make the following comments.

(1) Theorems 5, 6, 7, and 8 in [30] provide asymptotics with an error term for the
weighted sum

Ny (T) =x { (6.1)

N(F,w) = N(F,w, P) := > w(P~'x),
x€Z4+1NF~1(0)
where F is a rational quadratic form in d + 1 variables, and w a function on R¢*+! which
is required to be ©>°. However, to estimate Nas, (T), one must let w = I pg(,1). Since
wo = 1p(,1) can be approximated from above and below by € functions w, in a way
such that the singular integrals oo (F, w,) approach o (F, wg) € (0,00) as n — oo,
[30, Theorems 5, 6, 7, and 8] will still hold for wg = 1pg(o,1), but without an estimate on
the error term; namely, we have
N(F,wo, P) 1
P—oo leading term

for each result in [30]. In Theorem 6.1, we have stated only the weaker conclusion that
the left-hand side is bounded from above and below (in lim sup and lim inf, respectively).

(2) According to [30, Theorems 5, 6, 7, and 8], the number of integer vectors on
quadric hypersurfaces Q ~'(0) of R4+ inside the ball of radius 7" is up to a multiplicative
constant asymptotically equal to

71 ifd > 4 [30, Theorem 5],
T? ifd =3and Q ~ Qg [30, Theorem 6],

T2 logT ifd =3and Q ~ Q¢ [30, Theorem 7],
TlogT ifd =2 [30, Theorem 8].

(6.2)
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Note however that our goal is to count rational points on Mg, which correspond to prim-
itive integer vectors on Q~1(0). The relation between counting primitive vectors and
counting all lattice vectors is clarified in [30] after the theorems are stated. In particu-
lar, [30, Theorems 5, 6, and 7] lead to equivalent results for counting of primitive vectors,
which the only change is that the leading term is divided by a constant. However, the
situation with [30, Theorem 8] is different: in view of [30, Corollary 2], for the count of
primitive integer vectors, the factor log 7" in the last line of (6.2) disappears.

(3) In [30], it is shown that the modified singular series o * is positive and finite if and
only if the equation Q = 0 has nontrivial solutions in every p-adic field. Since the forms
we deal with satisfy IP’& N Mg # 9, the equation Q = 0 has nontrivial solutions over Q,
and so certainly over every p-adic field.

For any nonincreasing function ¢: N — (0, co), we may write

Amo() Slimsup | B([rl.y/(T)).
T merdnmg
Hga([rD)=<2T

Combining with (6.1) and using the Hausdorff—Cantelli lemma [4, Lemma 3.10], one can
immediately deduce the following corollary.

Corollary 6.2. Suppose that Mg C Pﬁ is a nonsingular rational quadric hypersurface
with pg > 1. Fix a positive s < d — 1, and let y: N — (0, 00) be nonincreasing. If the
series

{ZTezN T4=1ys(T), Q ~+ Qo, 6.3)

Yren T?log TY*(T), O ~ Qo,
converges, then J°(Ap, () = 0.
The case s = d — 1 corresponds to Lebesgue measure.
Based on the above, one would expect that Khintchine’s theorem for quadric hyper-

surfaces would state that the converse of Corollary 6.2 holds when s = d — 1 (possibly
with some additional assumptions on ). However, we instead have the following.

Theorem 6.3 (Khintchine-type theorem for quadric hypersurfaces). Let Mg C ]P’]l‘é be
a nonsingular rational quadric hypersurface with pg > 1. Fix Y: N — (0, 00), and sup-
pose that  is regular (see Definition 2.4) and that the function q — q¥(q) is non-
increasing. Then Apy, (V) has full Lebesgue measure if the series

> rean T 47T, 0 ~+ Qo,
Y reon T?loglog Ty 2(T), Q ~ Q.

diverges; otherwise, Ay, (V) is Lebesgue null.

(6.4)

In other words, whenever Q ~ Qy, the above intuition is correct: Theorem 6.3 then
says that, when Q ~ Q, the converse to the standard Borel-Cantelli argument holds
for the collection of sets defining Aps,, (). On the other hand, the series (6.4) does not
agree with (6.3) when Q ~ Qy, and so, philosophically, there is some nontrivial relation
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between the sets appearing in the definition of AMQ0 (¥). A description of this relation
is given in Section 9 (see in particular Remark 9.3), where an elementary proof of the
convergence case of Theorem 6.3 for the manifold Mg, is given.

Using the Mass Transference Principle of Beresnevich and Velani [3, Theorem 2], one
can immediately deduce the following.'?

Theorem 6.4 (Jarnik—Besicovitch theorem for quadric hypersurfaces). Fix0<s <d — 1.
Let Y: N — (0, 00) be regular, and suppose that g — g%~y (q) is nonincreasing. If the
series

6.5
Y repn T2 loglog TYS(T). O ~ Qo (6.)

diverges, then J°(Ap, (V) = oo.

{ZmN T4=1y3(T), 0 ~ Qo.

This, in particular, computes the Hausdorff dimension of the set of 1.-approximable
points of Mg; see (2.8).
It follows from Corollary 6.2 that, for Q ~ Q, convergence of (6.5) implies

H* (Amgo (V) = 0.

However, in the case of the exceptional quadratic form Qy, there is a discrepancy between
(6.5) and the series (6.3) appearing in Corollary 6.2, and the former may converge, while
the latter diverges. In this case, we do not know the value of J* (A, (¥)). However,
the coarser Hausdorff dimension result (2.8) holds regardless. For reasons explained in
Remark 9.3, the authors conjecture that Theorem 6.4 remains true if (6.5) is replaced
by (6.3).

Note also that if g2 (g) — 0, then all ¥-good rational approximations of points in
Mg are intrinsic, meaning that Az, (W) =Az(¥) N Mg (see [18, Lemma 4.1.1]). Con-
sequently, for such 1, Theorem 6.4 may be rephrased in terms of ambient approximation.
The rephrased result has been proven in the case Qu(X) = x? + x2 by Dickinson and
Dodson [17, Theorem 1], and in the case where Q ~ Q¢ by Drutu [18, Theorem 4.5.7]. 14

Note that Theorem 6.3 is analogous to the main result of [28], the difference being that
we are considering intrinsic approximation and the authors of [28] are considering a spe-
cific type of extrinsic approximation. Also, it is likely that the techniques of Drutu [18]
can be used to prove Theorem 6.3 in the case Q ~ Qg via the use of ubiquitous systems
as considered in [2]. On the other hand, Drutu’s methods do not apply to the exceptional
quadric hypersurface Mg, (cf. footnote 14). We opt to use the machinery of Kleinbock
and Margulis [37] to establish Theorem 6.3.

13The dimension s > 0 may be replaced by a dimension function f; we omit the statement for
brevity.

14 Although the hypothesis O ~ Qg does not appear explicitly in Drufu’s theorem, it is required
by her standing assumption that the lattice I" is irreducible (cf. [18, Section 2.5,Section 4.5]) since,
when Q ~ Qyg, I is reducible (see p. 1083).
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Theorem 6.3 can be deduced directly from the following theorem together with the
correspondence principle (Corollary 4.6 and Observation 4.8). As before, details are left
to the reader.'”

Theorem 6.5. Fix d > 2, let R be a nonsingular pg-normalized quadratic form on
R+ and fix Ay € Qg commensurable to 2+, Let y: (0, 00) — (0, 00) be a contin-
uous function, and suppose that g — q(q) is nonincreasing. Let ry: (0, 00) — (0, 00)
and AR(Y) = A(ry, QRr,A,) be defined as in Corollary 4.6; see (4.9). Then Ar () has
full measure with respect to g A, If (0.4) diverges; otherwise, Ar () is null with respect

10 LR, A -

The proof of Theorem 6.5 will occupy Sections 7 and 8.

7. Proof of Theorem 6.5 modulo a volume computation

In the current section, we reduce Theorem 6.5 to a statement about the asymptotic behav-
ior of the measure (g, A, . Namely, we will deduce Theorem 6.5 as a corollary of one of
the main results of [37], which we now recall.

Definition 7.1. Let (X, disty) be a metric space, let u be a (finite Borel) measure on X,
and let A: X — R be a continuous function. For each z € R, let

Saz={x€X:A®X) 2z} and Pa(z) = u(Sa.c),

where @4 is called the fail distribution function of A. We say that A is distance-like if
(D A is uniformly continuous, and
(II) P is regular (see Definition 2.4).

Let G be a connected semisimple center-free Lie group without compact factors, and
let I' € G be alattice. By [48, Theorem 5.22], one can find connected normal subgroups
G1,...,Gy < G such that G is the direct product of Gy,...,Gy, I := G; N T is an
irreducible lattice in G; for each i = 1,...,£, and ]_[f=1 I'; has finite index in I". Of
course, if T is irreducible, then we have £ =1, Gy = G, and I'; = T. Let 7y,..., 7y
denote the projections from G to the factors G;.

Theorem 7.2 ([37, Theorem 1.7 (a)]). Fix G,T',Gy,..., Gy as above. Let g denote the
Lie algebra of G, and let 7 € g be an element of a Cartan subalgebra of g. Suppose that
(7;) (z) #O0foralli = 1,...,L. (If G is simple, this just amounts to saying that Z 7 0.)
Let X = G/ T, let ux be normalized Haar measure on X, let distg be a right-invariant

131t is helpful to notice that the convergence/divergence of the series (6.4) is unaffected by the
substitution ¥ — C, where C > 0 is a constant. Also, the fact that the assumption ¢ (g) — 0
appears in Corollary 4.6 but not Theorem 6.3 can be remedied by the observation that BAps,, has
measure zero, which follows either from applying Theorem 6.3 to any function ¥ satisfying the
hypotheses and such that the series (6.4) diverges, or by the argument at the end of Section 4.
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Riemannian metric on G, let disty be the quotient of distg by T', and let A: X — R be
a distance-like function.'® If (z4){° is a sequence in R, then

px ({x € X : e"™(x) € Sa,z, for infinitely many t € N})

_ 0 le?o:l DA(zr) < 00,
L if Z(:i] Da(zy) = o0.

Remark 7.3. In [37, Theorem 1.7 (a)], " is assumed to be irreducible, and z is simply
assumed to be a nonzero vector in a. However, in [37, Section 10.3], the authors of [37]
describe how to modify their proof to include the case where I" is reducible. Incorporating
those modifications leads to the above theorem.

For the purposes of this paper, it will be more convenient to deal with the following
“continuous” version of Theorem 7.2.

Theorem 7.4. Let G,T',a,z, X, ux, A be as in Theorem 7.2. If z: (0, 00) — (0, 00) is
nondecreasing, then

Ux ({x € X : e"(x) € Sa_z() for arbitrarily large t > 0})

_ {0 if Y72, ®aoz(t) < oo,
1 lfz(tx;l DA oz(t) = oo.
Proof of Theorem 7.4 using Theorem 7.2. Let zt(l) = z(t), and let zl(z) =z(t)— C for
some C > 0. To complete the proof, it suffices to demonstrate the following:
i >, CIJA(Zz(i)) < oo ifand only if )72, ®a 0 z(t) < oo,
(i) e"(x) € Sa,z» for infinitely many ¢ € N implies e’*(x) € Sa () for arbitrarily
large t > 0, and

(7.1)

(iii) if C is large enough, then we have that e’*(x) € Sa () for arbitrarily large ¢ > 0
implies e'%(x) € Sa,z? for infinitely many ¢ € N.
Indeed, (i) follows from the fact that ®, is regular (since A is assumed distance-like),
and (ii) is obvious, so we turn to (iii). Suppose that e’*(x) € Sa () for some 7, and let
t' = |t]. Then
distx(et/z(x), e'(x)) < C;

for some constant C; > 0; since A is uniformly continuous, there exists C = C, > 0

independent of 7 so that |A(e’%?(x)) — A(e'*(x))| < C,. On the other hand, since z is
. . t'z

nondecreasing, z,;” < z(f) — C; it follows that e’ *(x) € SA,ZEZ). [

4

16We remark that whether or not A is distance-like is independent of the choice of the right-
invariant Riemannian metric distg since any two such metrics disty, dist, satisfy dist; =<x dists.
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Let O(R)¢ denote the identity component of O(R). We claim that Theorem 6.5 fol-
lows from applying Theorem 7.4 with

G = O(R)o, I' = O(R; Ax) N O(R)o,
X =G/T =Qgrna,, A=—logd, wheredisasin(3.7),
-1
d (7.2)
—_ — = 0 _ N d
z 9 8t =0 d—1 | an

z(t) = —logry(1).
Obviously, the verification of this claim consists of two parts: showing that the hypotheses

of Theorem 7.4 are satisfied, and showing that Theorem 6.5 follows from the conclusion
of Theorem 7.4.

Verification of the hypotheses. The verification of hypotheses is mostly a consequence of
well-known facts; we leave the details to the reader, proving only the following state-
ments.

(1) (71)'(z) # 0 for alli. To see this, note that the group G is isomorphic to O(p, ¢)o,
where p = pr and ¢ =d + 1 — pr. Now O(p, q)o is simple as long as p +¢q >3
and (p.q) ¢ {(4.0).(2.2).(0.4)};if (p.q) € {(4.0).(2.2). (0.4}, then O(p, g)o is only
semisimple. In our case, we have 1 < p <g and p+¢g=d + 1> 3, so G is simple
unless p = g = 2. If G is simple, there is nothing to prove, so assume that p = g = 2.
Then, by Proposition 3.5, G = O(2, 2) is conjugate in SL4(R) to O(Q¢)o, where

Qo(X) = xox3 — x1X2
is the exceptional quadratic form; moreover, it is readily seen that
0(Qo)o = SL2(R) x SL2(R),

where G x H denotes the set of all matrices of the form g ® h, where g € Gandh € H.
(See the “product structure” of Mg, described in Section 9). Write

G = $(SLa(R) x SLa(R))
for some matrix ¢ € SL4(R). Then the factors of G are given by the formulas'’
G1 = ¢SL2(R) x 1), Gz = ¢(I x SLa(R)).

The tangent spaces are given by the formulas g; = ¢ (sl (R) x 1), g2 = ¢ (I x s[,(R)).
Now any element of either of these tangent spaces has eigenvalues A, A, —A, —A for some
A € R. On the other hand, the eigenvalues of z are 1,0,0, —1. Thus z ¢ g1, g». It follows
that (7r;)’(z) # 0 for all ;.

(2) A is uniformly continuous. To see this, fix g € G and A € X; then forallr € A,
we have ||gr| < | g]l - |Ir]l, where | g|| is the operator norm of g. Taking the minimum
over r € A ~ {0} gives 8(gA) < ||g|l6(A), or equivalently A(A) < A(gA) + log|g]||.

7If T is irreducible, then there will actually be only one factor, namely G, and so, as before,
there is nothing to prove. (In fact, this happens if and only if pg = 1.)
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A symmetric argument gives
A(gA) < A(A) +1log|g7!.
Since log||g||, log|lg~!|| < distg(id, g) for all g, it follows that
A is 1-Lipschitz. (7.3)

(3) @ is regular. This will be a consequence of the following asymptotic formula for
® A (z), whose proof will occupy Section 8, and which we will make further use of below.

Proposition 8.9. For z large enough,

—(d-1)z

e , R~ Qo,
Pa(z) Xx . Qo
ez, R ~ Q.

This completes the verification of the hypotheses of Theorem 6.5. ]

Completion of the proof. First, we rewrite (7.1) using (7.2):

{o if 320 da(—logry(r)) < oo,

1 if 3772, @a(—logry (1)) = oo
= LR, A, ({A € QR A, &t € S_10g5,—10gry (r) fOr arbitrarily large 7 > 0})
= ura, ({A € Qroa, : 8(g:A) < ry(¢) for arbitrarily large 1 > 0})
= UR, AL (AR(Y)).

So, to complete the proof, it suffices to show that the series

> ®a(—logry (1)) (7.4)
t=1

is asymptotic to (6.4). First of all, by Proposition 8.9, we have

(74) =y Z?il rW(t)d_l’ R ~ QOv
s ry () (=logry(1)). R~ Qo.
Let
n = {0, R ~*~ Qo, (75)
I, R~ Q.

Then we can write both (6.4) and (7.4) in a uniform manner:

(6.4) = Z T4 og" log Ty 4~ 1(T),

Te2N

(74) =x Y ry ()71 (= log ry. (1))".

t=1
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Since ¥ is regular, each of these series is asymptotic to its corresponding integral, that is,
o0
(6.4) <4 x / (2%)? 1 log" log(2*) w41 (2%) dx,
0

(7.4) <4 x / - o ()47 (= log ry (1))" dt.
0

Let U(T) = T9 !log" log T. In the following integrals, we omit the finite limit of inte-
gration since it is irrelevant for determining whether or not the integral converges. The
reader should think of the finite limit of integration as being some arbitrarily large number.

6 = [ @) o g2y 20

o0 dT
=y [ T4 ' og" log de_l(T)T

= /Oo Ry “4=1(T) Tssz) (letting T = W™(R))

oo
= / Y4 H(WTY(R))dR. (since U(T) =x T (T))
We shall now resort to the following lemma.

Lemma 7.6. Let f:[c,00) — (0, 00) be a strictly decreasing continuous function. Then

o0 f(e)
/ S(x)dx +cf(c) = /0 £ (x) dx.

Proof. The regions whose areas are represented by these integrals are congruent to each
other via the map (x, y) — (¥, x). <

Applying this lemma with f = ¥4~ o U~!, we continue our calculation:
(6.4) =4 /\p(w—l(uﬁ))dU (by Lemma 7.6)
0
o0
= / Wy e ™))e @V dr  (letting U = e~ @~11)

= /oo rI,,(t)“'_1 log" log(y~(e™")) dt.

Comparing with (7.4), we see that we have proven Theorem 6.5 in the case n = 0, and
also for all functions ¥ satisfying

loglog 1 (e™) =4 x —logry(t). (7.6)

Remark 7.7. For the remainder of the proof, we could require n = 1 and thusd — 1 =2
to simplify notation somewhat. However, we prefer to keep the original notation.
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For each ¢ > 0, let ¥ . be defined by the equation

1
r‘/’l.c (t) = [_L"
1.€.
il = —
L™ x(=logx)e’
Then

—logry, .(t) = clogt xx logt,
log log Wl_; (e7") = log(t + clogt) =<4 logt.
This yields the following.
Claim 7.8. Fixcy > ¢ > 0. Then Theorem 6.5 holds for any function ¥y ¢, < V¥ < Y1 ¢,.

Proof. We have wl_,gl < w_l < 1#1_,}2 and Piey STy STy ey and thus
loglog v~ (e™") x4 logt =« —logry (1),

i.e. (7.6) holds. <
Remark 7.9. This completes the proof of Theorem 6.5 for the case of most “reason-
able” functions ¥, for example if y can be written in terms of the elementary operations
together with exponents and logs. Such a ¥ is always comparable to every function ¥ .
(see [29, Chapter III]). On the other hand, if ¢; > 715 > ¢ > 0, then (6.4) converges
with ¢ = 1 ¢, but diverges with = Y1 ¢,. If ¥ Sx Y1,¢,, then AR(¢¥) S AR(C Y1)
for some C > 0, implying that ug A, (Ar(¥)) = 0. Similarly, if ¥ Zx V1,c,, then we

have ugr,A,(Ar(¥)) = 1. Finally, if ¥, Sx ¥ <x ¥1,c,. then Claim 7.8 gives the
desired result.

We now proceed to prove the general case of Theorem 6.5, using Claim 7.8. Fix

1
c1>——>cp>c3>0.
e 2 3

Claim 7.10. We can without loss of generality assume ¥ > ¥y ¢,.

Proof. Suppose that the theorem is true for all ¥ > v ¢,, and let ¥ be arbitrary. Let
¥’ = max(y, ¥1,¢,). Note that (6.4) converges for ¢ = ¢’ if and only if it converges
for ¥ = . Applying the known case of the theorem, we have

0, (6.4) converges,

KR.A(AR(Y)) = { 1, (6.4) diverges.

On the other hand, we have

AR(W') = Ar(Y) UAR(WY1,¢,)-

Since the latter set has measure zero, the measures of Ag(y') and Ag () are equal. <
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So, from now on, we assume ¥ > V1 ¢, . If ¥ < 1 ¢, then this completes the proof
(of Theorem 6.5). So we will assume that ¥ (q) > V1 ¢, (g) for arbitrarily large g.

Claim 7.11. Fix T, for which W (T2) > Yr1,¢5(T2), and let Ty < T, be the largest value
Sfor which Yy (T1) < ¥1,¢,(T1). Then
T2 dr
[ tog s Ty T
T 2T
> log(cz/c3)(1—(d—1)02) T, —C logl—(d—l)cz T (7.7)
for some constant C > 0.
Proof. Since g — qv¥(q) is assumed to be nondecreasing, we have
T1V1.e,(Th) = T (Th) = Tay(T2) > Tan 5 (T2).
On the other hand,

so  log® Ty <x log® Ts.

1/[6 (Q) =x c .’
qlogtq

Now
T2 dr
[ T4 log" log Ty{ )} (T)—
T,
™ log"logT dT _ ["t™> log"t log T
o i = T
T 10g 2T T log T t €2 log T
XX logl—(d—l)cz TZ _ logl—(d—l)cz Tl
> log(62/63)(1—(d—1)02) T, —C logl—(d—l)cz Ti. 4
Since the right-hand side of (7.7) tends to infinity as 7> — 00, the existence of infinite-
ly large values of T, for which the hypotheses of the claim are satisfied implies that

® o d=11.n - a—1947
T log" log T min(Y(T), Yr1,c,(T)) - =00

i.e. (6.4) diverges for ¥ = min(y, ¥ ¢,). Thus, by Claim 7.8, we have

1R, AL (ARMINWY, Y1) = 1.
But since Ag(¥) 2 Ar(min(y, ¥1,¢,)), this completes the proof of Theorem 6.5. |

8. Estimating the measure ug .,

In this section, we estimate [ ¢ dug, A, for any function ¢: Qg A, — [0, 00). Our main
tools will be the generalized Iwasawa decomposition (Theorem 8.1) and the reduction
theory of algebraic groups (Theorem 8.4). We first prove a theorem for general algebraic
groups and then specialize to the case G = O(R)p.
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We will need the following notation: if X is a metric space with distance disty, ¢ is
a nonnegative continuous function on X, and C > 0, we define

©(x) = max x’ x) = min x').
v distX(x/,x)SC(p( ) o) distX(x/,x)fc(p( )

Let G be a semisimple algebraic group. Let P € G be a parabolic subgroup, and let
P = MAN be a Langlands decomposition of P. Let g, p, m1, a, and n denote the corre-
sponding Lie algebras. Let K € G be a maximal compact subgroup whose Lie algebra f
is orthogonal to a with respect to the Killing form.

Theorem 8.1 (Generalized Iwasawa decomposition [39, Proposition 8.44]). Let pp be
the modular function of P. Then, given any Haar measures [Lk, [Apr, L4, WN on K, M,
A, N, respectively, the measure g given by

/ ®dug = / pp (@) B(kman) d(jux x sar x a x )k, m. a,n),
G KXMxAXN

where ® is a measurable function on G, is a Haar measure on G.

Now suppose that G is Q-algebraic and that P € G is a minimal parabolic QQ-sub-
group. Let I' € G be a lattice commensurable to Gz.
Definition 8.2. A set ¥ C G is a coarse fundamental domain for T if
I FI =G, and
) #Hy el : FynF #0} < oo

Consider the set

A" :={a € A: Ady|y is contracting}. 8.1)

Here Ad, denotes the adjoint action of a.

Theorem 8.3 (Reduction theory for arithmetic groups, [41, Proposition 2.2] or [45, Theo-
rem 16.9]). There exist precompact open sets My € M and N9 C N and a finite set
F C Gq such that

F 1= KMoA" NoF (8.2)

is a coarse fundamental domain for T'.
Let distg denote a right-invariant Riemannian metric on G. Let X = G/ T, and con-

sider the metric disty (x, x') = mingr—y, g/r=»’ distg (g, g’). We note that disty is a Rie-
mannian metric on X. Let uy denote the normalized Haar measure on X .

Theorem 8.4. There exist C > 0 and a finite set F C Gq such that, for any function
@: X — [0, 00), we have

| or@ ¥ verarmana@ s [odux

feF

o [ @ X ¢ ar T duata),

feF
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Proof. Let My € M, No € N, and F C Gq be as in Theorem 8.3, and let ¥ be given
by (8.2). Let o = KMyA™T Ny so that F = Fo F. Then

| etermdnato s« [ otemduste) sinee h(r) < oo)

}vofeF

Sx / pduy (by (II) of Definition 8.2)

=< / 0(gl)dug(g) (by () of Definition 8.2)
¥

< | > eefTduc(g)
Fo feF

Let ®(g) = > rer (g T) so that
/ P dux = / dug. (8.3)
Fo

Now, by Theorem 8.1,

/ Qdug = / pp(a@)®(kman)d(ug X pip X pa X uy)(k,m,a,n).
Fo KxMyxA+TxNy

(8.4)
Now let

C = max{distg (id, km(ana™")) :k € K, m € My, a € AT, n € No}. (8.5)

Since N is contracted by the adjoint action of AT, the set {cma_1 ca € AT, ne Nylis
precompact and thus C < co. Fork € K, m € My, a € A%, and n € Ny fixed, we have

distg (a, kman) = distg(a, km(ana™")a) < C

and thus
®(kman) = ®(km(ana Y)a) € [D(c)(a), CIJ(C)(a)].
Thus, by (8.4),

/ pp(@)®cy(a) d(uk X pp X pra x pn)(k,m,a,n)
KxMyxAtxNy

< / dduc
Fo

S \/
KxMyxAtxNg

Now, since K, My, and Ny are open and precompact, we have

pp (@)@ (@) d(ug x unm X pa x un)(k,m,a,n). (8.6)

/ pp (@€ (@) d(ux x juar x jia x po)(kom.a.m)
KxMyxAtTxNy

o / pp (@€ (@) djia(a). 8.7)
At

and similarly for ®c). Combining (8.3), (8.6), and (8.7) completes the proof. [
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Next we apply Theorem 8.4 to the case where G = O(R), for some quadratic form
R:R*1 5 R. Suppose that A, is an R-arithmetic lattice commensurable with Z4¢+1
Then X := Qp A, = G/, where I' = O(R; A+); see (7.2). In view of Proposition 3.11,
it is properly embedded into the space 24 of all lattices in R?*+!. We are going to consider
functions ¢: Qg A, — [0, 00) which are restrictions of functions on Q4 satisfying an
additional property defined below.

Definition 8.5. A function ¢: Q4 — [0, 00) is monotonic if
A1 S Ay implies (A1) = @(A2).

Theorem 8.6. Let R:R4*! — R be a po-normalized quadratic form, and suppose that
Ax € Q4 is commensurable with Z4+1. Let

d—1
d-3
s = : € RPQ,
d+1-2pg

There exists C > 0 such that, for any monotonic function ¢: Q24 — [0, 00), we have

/ e Moy (gehy) dt Sy [ ¢ dux 5x/ e 19O (geAy) dt.
teat X teat

We remark that, even though we integrate ¢ over X = Qg a,, it is assumed to be
a function on Q; in particular, the functions ¢(c), ¢(©) are defined with respect to the
Riemannian distance on 24 = GL;4+1(R)/GLg441(Z).

Proof. LetG = O(R)g,and letI" = O(R; Ax) N O(R)o. Then G is a semisimple Q-alge-
braic group, and I' is commensurable with Gz. For t € RPQ, let ®(t) = g¢ be as in (3.4)
so that ®: RPQ — G is a homomorphism. Let A = ®(R”Q). Then the Lie algebra a of A
is isomorphic to R?Q via the map ®’(0). In our notation, we will not distinguish between
a and R?PQ,

Letat ={teRPQ :1g > 11 > -+ > 1py_1 > 0} C a,and let AT = exp(a™). Then
A is a maximal Q-split torus, and At is asin (8.1). Fix a € AT, and let N € G and
P C G be the groups

N:={geG:a"ga™ - 0},

P:={geG:(a"ga )7 is bounded},
i.e. N is the group of elements contracted by AT, and P is the group of elements stabilized
by A*. Then P is a minimal parabolic Q-subgroup of G whose Langlands decom-
position is P = MAN for some reductive group M C P. Moreover, A is given by
formula (8.1). So, by Theorem 8.4, there exist C > 0 and a finite set ' C Ggq such that,
for any ¢: Qg A, — [0, 00), we have

/ +PP(gt) > ey (gufAL) dt Sx / @ dux
t€a

feF X

o B ICTD STV, W)
t€a

feF
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Here we remark that formally Theorem 8.4 produces (8.8) with ¢(c), ¢(©) replaced
by (¢x)(c)- (¢x)'©), respectively, where the latter are defined with respect to the Rie-
mannian distance on X. But since we clearly have ¢(c) < (¢x)(c) and 0 © > (¢x)©,
(8.8) follows.

Claim 8.7. For some C' > 0,
3 0 g fAL) Sx 9 (giA). (89)
feF

Proof. For f € F C Ggq fixed, fA4 is commensurable with A, and thus

1
N_A* C fAx ©S NfAy forsome Ny € N.
f

In particular, since ¢ is monotonic,
9O g f M) = 9 DeNs M) = 9O (Npgihs) < ¢ CTEND (giAL),

where the last inequality follows since the distance on €24 is defined via a Riemannian
metric on GLg.1(R). Thus (8.9) holds with C’ = C + logmaxser Ny. <

A similar argument shows that

Z (P(C)(gth*) Zx ‘P(C’)(gtA*)-
feF

Thus (8.8) becomes
[ oreoscranaat s [ oauna,
teat

< / pp (809 € (gA ) dt.
teat

Claim 8.8. pp(g¢) = e S'. (Here and hereafter, s - t denotes Zf’i_@l_l Siti.)

Proof. Tt is well known (see e.g. [39, (8.38)]'%) that pp (g¢) = e~”®, where p is the sum
of the positive roots of A, counting multiplicity.

So, to demonstrate the claim, we must show that p(t) = s-t. One verifies that the
positive roots of A are of the form

Aijx =€ Tef, i <j<pg,
A i=e], i < po,

4

18The sign difference between [39, (8.38)] and the present formula is due to Knapp’s convention
of assuming that 1 is the union of the positive root spaces, while we assume that u is the union of
the negative root spaces (cf. (8.1)).
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with corresponding root spaces

QA j— = R(ej 'e? —€q—i 'e;;_j)s
gl,‘h/‘._'_ = R(ed—j 'e;k —€g—i 'e;)’
~ . d+1-2
g ={x-e —eq_; - 2BR(X.) : (Xpg. ...+ Xd—po) €R t1=2prQy,

In particular, the multiplicity of the root A; ; + is 1, and the multiplicity of the root A; is
(d +1—-2pg). Thus

ro—1 ;-1 ro-1
p= Y Yl +e)+ (e —enl+ Y (d+1-2polef
j=1 i=0 i=0
ro—1 pro-—1
= > Rpo—i—D+d+1-2po)lef = Y [d—2i—l]e}. <
i=0 i=0
This completes the proof of Theorem 8.6. ]

Finally, we use Theorem 8.6 to complete the proof of Theorem 6.3. Recall that A
denotes the function A = —logd: Qg A, — R (cf. (7.2)), where § is defined by (3.7),
and that, for z € R,

Saz ={A € QrA, 1 A(A) > z}.

Proposition 8.9. For z large enough,

—(d-1)z

e . R~ Qo,
DPa(z) := S =

A(2) i= RrAL(SAz) =x {e_zzz, R~ 0o,

Proof. Clearly, §(A) = minpep-{o)||p]| and A = —logd can be extended to Q4 using
the same definition. For each z € R, define

¢z = lipeq :A(0)=z)-

Then the restriction of @, to Qg a, is the characteristic function of Sa , so that
Qa(2) =/ @z ditR A, -
QR.A*

Observe that ¢, is monotonic in the sense of Definition 8.5, with X = Q. Thus, by
Theorem 8.6, there exists C > 0 independent of z such that

/ e (0:)(0) (g dt Sx PA(2) S [ 1 (0:) O (geA ) dt.
teat +

tea

Since A is 1-Lipschitz (see (7.3)), we have

(Qoz)(C) > ¢z;+c and (‘pz)(C) < ¢z:—C,

and so
f(z+C) Sx Palz) Sx f(z—-C),
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where

f(z) = / e Mo, (geMy) dt.
tea™t
Thus, to complete the proof, it suffices to show that

e~@Dz R« Q,,

8.10
e 2%z, R ~ Q. (8.10)

f(2) =x {

Indeed, observe that, for t € a™, the smallest vector in g¢(Z4 1) is g¢(eg) = e "0ey. Thus
A(gtZ4*1) = ty. On the other hand, since A, is commensurable with Z¢*!, we have
%ZdH C Ay € NZ2t! for some N € N, which implies

|A(geAx) — A(thdH)l <logN forallt.
It follows that A(g¢A) <4 ?o, and so

1 to =z
7 d+1 = s — 4
vz (8t ) =x 0 otherwise.

Therefore,
f(z) =« / e Stdt.

to>11 >>tp—1 >0
to>z

Claim 8.10. Forx > 1,

1, R~ ,
/- e—S't dt =x QO
x>tl>-~->t,,@_1>0 X, R~ QO.

Proof. If pg = 1, then the domain of integration is zero-dimensional, making the state-
ment trivial. Thus suppose pg > 2. If d = 3, then Proposition 3.5 implies that R ~ Q.
So if R ~ Qy, then d > 4 and in particular s1 = d — 3 > 0. Since s; > 0 for all i, we
have

/ e Stdt < / e S dg
t1>-~->th_1>0 t1>~-~>th_1>0

s1 rQ—1
_ ! ‘i
< / e P71 Zi=1 dt < oo,
13

demonstrating the upper bound. The lower bound is trivial, so this completes the proof if

R ~ Q.
Now suppose that R ~ Q. Then s; = 0, and

/ e Stdt = / 1ds; = x. <
x>t1>~~->tp©_1>0 x>t1>0
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Let n be given by (7.5) so that

[ e Stdt <, x".
x>t1>~~~>t,,@_1>0

Integrating over 79 > z gives
f(z) <« / e TS0 N dpy = @707 = em(d=DZ 0
0>z

demonstrating (8.10). |

We end this section by proving a lemma which was needed in the proof of Theo-
rem 5.1 (ii), (ii1). Recall the definition of codiameter given in Definition 5.4.

Lemma 8.11. There exists C1 > 0 such that, for every A € Qg a,, there exists a totally
isotropic A-rational subspace V- C R+ of dimension pao satisfying

Codiam(V N A) < C.

Proof. Let G, T, A, A*, N, P, and M be as in the proof of Theorem 8.6. Let My C M,
No € N,and F C Gg be as in Theorem 8.3, and let ¥ be given by (8.2). Then, for every
A € QR A, wecan write A = gA, for some g € . Write

g =kmanf = km(ana Yaf,
where k € K,m € My,a € AT, n € Ny, and f € F. Write h = km(ana™") so that
A = hafA..

We recall (cf. (8.5)) that distg (id, &) < C for some C > 0 independent of A.

Let Vo = £p,, and let V' = h(Vp). We observe that Vj is a totally isotropic a fA -
rational subspace of R¢*! of dimension P, and thus V is a totally isotropic A-rational
subspace of R¢*1 of dimension pg.

Since a is contracting on Vp, we have Codiam(Vy NafA.) < Codiam(Vp N fAL).
On the other hand, Codiam(Vy N fA«) =<x 1 since f ranges over a finite set. Thus

Codiam(V N A) < €6 @M Codiam(Vy NafAs) <x e€.

This completes the proof. |

9. The exceptional quadric hypersurface

Recall that the exceptional quadric hypersurface is the hypersurface Mg, defined by the
exceptional quadratic form (2.7). This hypersurface occupies an interesting place in the
theory of intrinsic Diophantine approximation on quadric hypersurfaces developed in this
paper. To begin with, it has “more rational points than expected”. Specifically, according
to Theorem 6.1,

Nyg, (T) =x T?log T, 9.1)
rather than NMQ (T) <x T2, which holds when Q is a quadratic form on R* which is
not equivalent to Q. Nevertheless, these “extra points” do not appear to affect either the
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Dirichlet- or Khintchine-type theorems of these manifolds in quite the way one would
expect. With regards to the Dirichlet-type theorem, the extra points have no effect at
all, and the optimal Dirichlet function for Mg is always v1, independent of whether or
not O ~ Q. On the other hand, the extra points do affect the Khintchine-type theorem,
but not as expected: they introduce a factor of loglog T into the series (6.4), rather than
a factor of log T" as a naive application of the Borel-Cantelli lemma would predict.

It is natural to ask whether these extraordinary properties of the exceptional quadric
hypersurface are due to special algebraic properties. This turns out to be the case; in
this section, we make this special structure explicit and use this explicitness to derive
elementary proofs both of (9.1) and of the convergence case of Theorem 6.3 for the
manifold Mg, .

We begin by describing the special algebraic property which leads to the results out-
lined above: the manifold Mg, is isomorphic to ]P’ﬂé X ]P’ﬂé, with the isomorphism given
by the Segre embedding ®: Py x Pg — P32 defined by the formula ®([x], [y]) = [x ® y],
or more explicitly,

@([(x0, x1)], [(¥o, yD]) = [(x0Y0, X0y1, X1Y0, X1Y1)]-

Thus Mg, has a “product structure”. This explains why the lattice O(Qo; Z) N O(Qo)o
factors as SL,(Z) x SL(Z); each factor of SL(Z) acts on a different copy of IP’HIR. Note
that the natural metric on Mg, is compatible with the distance inherited from Py under
the Segre embedding.

We also remark that the product structure of Mg, is consistent with its Diophantine
structure. More precisely, the set of intrinsic rationals ]P’é N Mg, factors as ]P’é X ]P’(ED;
moreover, for [p], [q] € P,

Ha(®([p]. [a])) = Haa([p]) - Haa([q))- 9.2)

Remark 9.1. According to formula (9.2), the Diophantine triple

(5" (Mg,). Q% N3 (Mg,), Hya)

is locally isomorphic to the Diophantine triple (R?%,Q2, Hroq) considered in [22]. For
example, applying the affine corollary of Theorem 5.1 to the hypersurface Mg, yields an
alternate proof of the case ® = prod, d = 2 of [22, Theorem 1.2].

We are now ready to begin proving statements about the manifold Mg, by using the
decomposition Mg, = ]P’]llQ X ]P’HIQ. We begin by computing the number of rationals up to
a given height.

An elementary proof of (9.1). It is well known that
#{lpl € Py 0 T/2 < Hua(Ip) < T} =x #{p € Py : Hua([p) < T} = T2 (9.3)
Now, by (9.2),

Nuo, 2N) = #{([pl. [a]) € (P$)? : Haa([p)) - Haa(lq)) < 27}
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I
M=

#{(pL.la) € (Ph)* : 2! < Hyg(lp]) = 2",
0 N
Hqa([q]) = m}

3
Il

2N 2
> () (by (9:3))

[pleP,
2"~ <Hya([p)) <2"

)
X
-

N
=x »_@VT#{[p] € PG 1 2" < Haa([p) < 2"}

n=0
N

< YoMy (by (9.3))
n=0

VAN + 1) =« (27)?1og(2V),

demonstrating (9.1) in the case T € 2N. The general case follows from a standard approx-
imation argument. ]

Next, we give an elementary proof of the convergence case of Theorem 6.3 for the
manifold Mg, . This proof will give insight as to why in this case Theorem 6.3 does not
simply state the converse of the (naive) Borel-Cantelli lemma; cf. Remark 9.3.

Remark 9.2. In the following proof, we will assume that v is regular, but we do not need
to assume that ¢ — g (g) is nonincreasing, as was assumed in the proof of Theorem 6.3.

Proof of the convergence case of Theorem 6.3 assuming Q = Qo. Let A denote normal-
ized Lebesgue measure on Pl and note that A Mo Xx D(A x A). Let

Ay = {([x], MG (]P’]llg)z : there exist infinitely many ([p], [q]) € (]P’(ll)2 such that
dist([p], [x])., dist([q], [y) < ¥ (Hsa([p]) - Ha([a]))}-

Then AMQo () = ®(Ay). So, to prove the convergence case of Theorem 6.3, we should
show that A x A(Ay) = 0, assuming that the series

Y T?loglog TY*(T) (9.4)
Te2N

converges.
For eachn > 0, let

Zn = {[p] € P& : 2" < Hya([p]) < 2"}
By (9.3), we have #(Z,) =<x (2")%2. Now fix 0 <n < N, and let

Ann = B(Zy, CY(2V)) x B(Zn-n,Cy(2V)),
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where C > 0 is a large constant. Since ¥ is regular (as assumed in Theorem 6.3), if C is
large enough, then

Ay Climsup U An.N,

N —o0 0<n<N

and so, by the Borel-Cantelli lemma, if the series

oo N
DD X A)(Anw) 9.5)

N=0n=0
converges, then (A x 1)(Ay) = 0. So, to complete the proof, it suffices to show that
(9.5) <x (9.4).
Fix 0 <n < N. We have
A X ) (An.w) = A(B(Zn, ¥y (2M))) - A(B(ZN-n. ¥ (2"))).
Since A(B([x], p)) =<x r forall [x] € IP’HIQ and 0 < p < 1, subadditivity gives
M(B(Zn. ¥ (2Y)) Sx #(Zn)y V).
However, in some cases, it may be better to simply estimate from above by A(Pﬂé) =1
A(B(Zn. y(2V)) < 1.
Similar bounds hold for A(B(Zx_,. ¥ (2"))). Thus
(A% 2)(An,v) S min(1, #(Zn)y (2Y)) min(1 #(Zy-n) ¥ (2Y))
= min(1, (2")*y (2")) min(1. 2V 7")?y (2Y))
"2y (2N), n <N +log, vy (2N),
= 1 Y2y @Y), n=—log, VY (2N), (9.6)
2M)2y2(2N)  otherwise.

The case N +log, V¥ (2Y) > n > —log, /¥ (2¥) cannot occur (for all but finitely
many N) since ¥ (2%) is less than 1/2% for all sufficiently large N (otherwise, the series

(9.4) would diverge).

Geometrically, note that the first two cases correspond to the bounds on (A x 1)(A4,, )
which result from covering A, » by vertical and horizontal rectangles, respectively, while
the third case corresponds to covering A, y by squares.

Now fix N, and vary 0 < n < N. We have

N LN/2]
DX AnN) =x Y (AXA)(Ann)  (by symmetry)
n=0 n=0
LN +logs /¥ (2N)]
Sx > @)veY)
n=0 LN/2]
+ > @V)?y?(2Y)

n=|N+logy /¥ (2N)]|+1
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= (2N VCT2y o)

+@292N (5 (N + o |y M)
= YR + VYRR o (5o
= PN 08557 )
Thus, for any function ¥ satisfying

1
log(m) <Sx loglogg, 9.7)

we have (9.5) <x (9.4), and thus the conclusion of Theorem 6.3 holds in the convergence
case for such .
To complete the proof, fix ¢ > 0, and let

1
(@) = ——7—
w* q qlog1/2+‘9q

Then v, satisfies (9.7); moreover, (9.4) converges at ¥ = V. Given any function v, let

Y’ = max(Yx. V).

Then, if (9.4) converges at ¥, it also converges at ¥’'. Moreover, v’ satisfies (9.7), so if
(9.4) converges at ¥/, then Ay is a nullset. But since ¢' > v, we have Ay, C Ay, so this
completes the proof. ]

Remark 9.3. There are two important points to be made about the above proof. The first
point is that the calculation (9.6) indicates what the nontrivial relation is which causes
the series (9.4) to differ from (6.3). Indeed, (9.6) shows that if n < N + log, /¥ (2%)
or n > —log, /¥ (2V), then we are better off computing (A X 1)(A,,x) not by simply
adding the measures of the squares

B(-,Cy(2")) x B(-,Cy(2"))
which define 4, v, but by estimating the measure of A4, n in terms of the rectangles
B(-,y(2Y)) xPg or P} x B(-,y(2V)),

respectively. Inside each rectangle, there are many overlapping squares, and this overlap
is what causes the difference in the series.

The second point is that we should not expect there to be a difference in series for
the Jarnik—Besicovitch theorem if s < d — 1. Indeed, the same argument would work up
until the point where inequality (9.7) is required. But when s < d — 1, then the ¥ which
we “expect to see” (i.e. those which are near the boundary of convergence/divergence)
will satisfy

log(@) =x logg
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rather than (9.7). Thus the “refined argument” for the convergence case produces in this
case the same series (6.3).
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