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Abstract 
On 26 March 2020, a M 5.0 earthquake occurred in the Delaware Basin, Texas, near the 

border between Reeves and Culberson Counties. This was the third largest earthquake recorded 
in Texas and the largest earthquake in the Central and Eastern United States since the three M 
5.0-5.8 induced events in Oklahoma during 2016. Using multi-station waveform template 
matching, we detect 3,940 earthquakes in the sequence with the first event in the area occurring 
in May 2018. The M 5.0 earthquake sequence occurred on a ENE (~082°) normal fault dipping 
~37° towards the south. The earthquake caused 6 mm of oblique surface deformation, and 
geodetic slip inversion suggests slip was isolated above 6 km depth. We find that the sequence 
was most likely induced by nearby wastewater disposal operations, and seismicity rates in the 
region surrounding the M 5.0 will likely continue to increase in the future if disposal operations 
continue unaltered. 

1. Introduction 
Dating back to at least the 1920s, earthquakes have been associated with human activities 

in Texas (Frohlich et al., 2016). Documented cases of induced seismicity in Texas include 
earthquakes associated with hydrocarbon production (e.g., Pennington et al., 1986), 
waterflooding (e.g., Davis & Pennington, 1989), injection of supercritical CO2 (e.g., Gan & 
Frohlich, 2013), wastewater disposal (WD) (e.g., Hornbach et al., 2015), and hydraulic fracturing 
(HF) (e.g., Fasola et al., 2019). The Permian Basin, located in western Texas and southeastern 
New Mexico, is the largest petroleum-producing basin in the United States. Much of this 
production has occurred within the Delaware Basin, a sub-basin in the western portion of the 
Permian Basin. The seismicity rate in the southern Delaware Basin increased by orders of 
magnitude over the past decade as a result of both increases and changes in industry operations 
(Frohlich et al., 2019; Skoumal et al., 2020). The majority of this seismicity is most likely due to 
WD with a lesser contribution due to HF (Skoumal et al., 2020). On the basis of these findings, 
Skoumal et al. (2020) concluded that both the seismicity rate and number of M > 3 earthquakes 
would likely continue to increase if the industrial operations in the Delaware Basin were to 
continue unaltered. 
 At 15:16:27 on 26 March 2020 (UTC), a M 5.0 earthquake occurred in the Delaware 
Basin, ~60 km northwest of the city of Pecos (Figure 1a). In the three months preceding the M 
5.0 event, the National Earthquake Information Center (NEIC) identified four M > 3 earthquakes 
within ~3 km of the M 5 epicenter, including a M 3.8 ~6 hours before the mainshock. The 26 
March 2020 M 5.0 event is the third largest earthquake recorded in Texas. The two larger 
earthquakes recorded in Texas, the 1931 MLg 5.8 and 1995 M 5.7 events, were both tectonic, 
naturally occurring earthquakes (Frohlich & Davis, 2002). Based on felt reports, three M ~5.0-
5.5 earthquakes have been suggested to have occurred in the Texas Panhandle in 1925, 1936, and 
1948, although there is insufficient evidence to conclude if any of them were probably associated 
with hydrocarbon production (Frohlich & Davis, 2002). Only four M ≥ 5.0 earthquakes have 
been previously associated with fluid injection activities in the Central and Eastern United States, 
all of which occurred in Oklahoma (e.g., Keranen et al., 2013; McNamara et al., 2015; Yeck et 
al., 2016, 2017). If the West Texas M 5.0 was induced by fluid injection activities, it would be 
among the largest injection induced earthquakes in the world (e.g., Keranen & Weingarten, 
2018). 
 The location of the 26 March 2020 M 5.0 earthquake is near seismicity that had 
previously been found to be induced by wastewater disposal (Skoumal et al., 2020) (Figure 2a). 
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Additionally, disposal wells in this area induced earthquakes from more than 25 km away to the 
west due to far-field effects (Skoumal et al., 2020). For the past several years, there have been 
wastewater disposal, hydraulic fracturing, and hydrocarbon production within 10 km of the M 
5.0 epicenter. 
 This study principally seeks to better characterize the 26 March 2020 M 5.0 sequence, 
identify the cause of the earthquakes, constrain surface displacement using interferogram-based 
slip model, and to forecast seismicity in the area using physics-based models. 
  

 
Figure 1. a) Map of western Texas showing seismicity and industry operations during 2014-
2020 showing the location of the 2020 M 5.0 mainshock (star). b) Cumulative number of M ≥ 3 
earthquakes and their corresponding cumulative seismic moment for seismicity shown in a). 
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Figure 2. a) All seismicity reported in the ComCat and TexNet catalogs are represented by 
crosses. WD wells are represented by triangles, with filled triangles indicating the wells used in 
rate-state seismicity modeling. Lines indicate previously mapped faults (Ruppel et al., 2008). All 
earthquakes within the rectangle were used in the template matching routine. The earthquakes in 
the western portion of the map were previously found to have been induced by far-field (>25 km) 
effects from WD wells that may have also induced the M 5.0 earthquake (star). b) All of our 
relative relocations of the M 5.0 template matched catalog and moment tensors from the NEIC 
catalog. The line represents the trend of the sequence determined from our application of FaultID 
to the epicenter locations. 
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2. Methods 

2.1 Earthquake Detection 
All seismicity in the ANSS Comprehensive Earthquake Catalog (ComCat) and Texas 

Bureau of Economic Geology TexNet earthquake catalogs in a ~150 km2 area around the M 5.0 
earthquake (Figure 2a) is used in a multi-station waveform template matching routine. Two 
template matching approaches are considered using different networks. The first approach uses 
newer, local stations to characterize seismicity since 2017. The second uses a longer-running 
array that is located farther from the seismicity, but allows earthquakes to be characterized since 
2000. 

To characterize recent seismicity, template matching is performed using stations 
US.MNTX, TX.PECS, and TX.VHRN (hereafter, the “MPV stations”) between 28 March 2017 
and 1 May 2020. Template waveforms begin 5 s prior to their respective P-wave arrival time and 
are 30 s in length. Data are filtered between 5-15 Hz in the same manner as previous template 
matching work in the Delaware Basin (Skoumal et al., 2020). 

To characterize seismicity prior to March 2017, a second template matching approach is 
also performed using the nine single-component seismometers in the TXAR array between 28 
April 2000 and 1 May 2020. The TXAR array is located in Lajitas, Texas, near the Texas-
Mexico border. Although the array is relatively far (~260 km) from the seismicity of interest, the 
array is extraordinarily sensitive and was previously used to identify seismicity throughout the 
Permian Basin with F-K analysis (Frohlich et al., 2019). The TXAR template waveforms begin 5 
s prior to their respective P-wave arrival time and are 60 s in length. As the TXAR array has a 
lower sampling rate of 20 samples/s, data are filtered between 2-10 Hz in the same manner as 
Frohlich et al. (2019).  

In both template matching approaches, successful detections are defined as matches that 
exceed 15 times the daily median absolute deviation (MAD) of the network normalized cross-
correlation coefficients, a previously demonstrated conservative threshold (e.g., Skoumal et al., 
2014).  

For newly identified earthquakes, we estimate their magnitudes by comparing the 
unnormalized correlation coefficient between the new event and their respective template 
earthquake following the approach of Schaff & Richards (2014). This magnitude estimate is 
defined as: 

���� = ���	
��
��� ⋆ ��/�� ∙ ���     (1) 
where ★ represents cross-correlation, centered dot (·) is the dot product, and � and � represent 
the waveforms of the template and detected earthquake, respectively. For a given event, we 
calculate the median ����value for all channels that are used to detect it. For template 
earthquakes identified by both the NEIC and TexNet, we give preference to magnitudes reported 
by the NEIC. 

2.2 Earthquake Relocation 
 As TexNet does not publicly disclose their phase picks, we manually re-identify phase 
arrivals for the 130 earthquakes in TexNet catalog within our study area (Figure 2a). Absolute 
earthquake locations are determined using NonLinLoc (Lomax et al., 2000) with a 1-D velocity 
model previously developed by Savvaidis et al. (2019) for the Delaware Basin (Table S1). We 
assumed that uncertainties in a priori information (e.g., phase arrival pick times and theoretical 
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arrival times) are Gaussian and independent of one another, which permits calculation of the 
posterior probability density function (PDF) for hypocenter parameters using the OctTree 
sampling algorithm (Husen and Smith, 2004). Using the station residuals produced by 
NonLinLoc, the location routine is repeated a second time with weighting the stations by those 
residuals to produce absolute locations. 

We propagate our manual phase picks through our template-matched catalog by cross-
correlating a 5 sec window encompassing each manual phase pick with the matched waveforms. 
If the normalized cross-correlation coefficient exceeds 0.7, an “automated” phase pick time is 
assigned to the newly detected event. Using the manual and automated phase picks, the phase 
arrivals are correlated against the template-matched catalog to produce differential times and 
cross-correlation coefficients. Relative earthquake locations are determined using GrowClust 
(Trugman and Shearer, 2017) using the lag and correlation coefficients between event pairs. For 
the cluster merging in GrowClust, we define a maximum station distance of 100 km and a 
maximum root mean square (rms) differential time residual of 0.2 s. GrowClust’s nonparametric 
uncertainty estimation algorithm is used to determine location uncertainty by considering 100 
bootstrap iterations. 

Using our relocated earthquake catalog, we attempt to estimate the primary fault 
orientation of the M 5.0 sequence. To determine the fault plane in a quantitative, reproducible, 
and rapid manner, we applied the FaultID algorithm (Skoumal et al., 2019; Cochran et al., 2020). 
The FaultID algorithm iteratively spatially clusters earthquakes. Within each cluster, models that 
represent possible trace(s)/plane(s) to describe the seismicity are evaluated. The output of 
FaultID consists of the location and orientation for each seismogenic fault. Here, we treat our 
relocated earthquake catalog as a single spatial cluster as input to FaultID. As the earthquake 
depths are poorly constrained (see Section 3.1 Improved Earthquake Catalog), we end up fitting 
the seismicity to a vertical plane. We compare the optimal model with the moment tensors 
reported by the NEIC to validate the orientation of the fault, and this fault is then used as the 
basis for our geodetic slip inversion. 

2.3 Geodetic slip inversion using InSAR data 
Coseismic surface deformation can elucidate slip distributions and place further bounds 

on the nucleation depths of earthquakes independently of the hypocentral locations derived from 
seismic data. If significant surface displacements are observed, inverting for slip may aid our 
understanding of the M 5 earthquake. 

Measurements of surface displacement come from interfering European Space Agency 
Sentinel 1 satellite synthetic aperture radar (SAR) data. We process Sentinel SAR images into 
differential interferograms using the SRTM DEM (Farr et al., 2007) to remove topographic 
phase. We then filter the interferograms, unwrap them, and convert them to line-of-sight (LOS) 
displacement using standard procesing pratices. To increase the signal-to-noise ratio, we stack 10 
interferograms (Table S2, S3) spanning the time of the earthquake: five in an ascending satellite 
path and five in a descending satellite path. We reduce the number of data points using the 
quadtree windowing method (Jónsson et al., 2002) and a model-based windowing scheme 
(Lohman & Simons, 2005; Wicks et al., 2013). The model-based resampling requires two 
iterations. First, we construct a forward model of the deformation fields to calculate quadtree 
windows for resampling the observed data. After inversion for a deformation source using these 
windowed data, we then calculate new quadtree windows using the model found through 
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inversion. The observed LOS interferograms are then resampled again, and the final model is fit 
to these data. 

The reduced stacked interferograms are used to invert for slip on a single, planar fault 
surface that is constrained by our FaultID results and the NEIC moment tensor solution 
(described in Section 3.1 Improved Earthquake Catalog) for the mainshock (strike 082° and dip 
37°) (Figure 2b). While we assign the fault geometry, we do not impose any hypocentral depth 
and allow slip to freely vary along the prescribed surface. We constrain the geodetic slip 
inversion model solutions by prescribing that all slip on the fault is in the dip-slip direction 
(normal faulting sense) and that no strike-slip nor opening can take place. The inversion for dip-
slip only is carried out as we seek to understand whether a simple slip model can offer 
independent verification of the hypocentral depth and the subsequent slip. We do not constrain 
the total geodetic moment and we do not impose any specific hypocentral depth in the solution. 
We solve the resulting inverse problem using a nonnegative least squares solver (Murray and 
Langbein, 2006). We use standard geodetic inversion methods by solving a non-negative least 
squares problem while applying spatial Laplace smoothing on the triangular mesh (Murray and 
Langbein, 2006). We select the smoothing parameter (γ) based on the reduction in data and 
model misfits by cross-validating γ (Wahba, 1990) (Figure S1). For each value of γ we estimate 
the residuals at the randomly omitted data points and sum those for all observations to arrive at 
the cross validation of sum of squares (CVSS). 

2.4 Induced seismicity rate modeling 
We use numerical modeling to better understand the proposed connection between 

wastewater disposal and the observed rates of induced seismicity, and to forecast future 
seismicity rates. Fluid pressure changes due to injection are an important factor controlling 
induced seismicity by bringing faults closer to failure (e.g., Shapiro & Dinske, 2009), but 
earthquake rates that lag injection rates could also be explained by transient earthquake 
nucleation effects (Dieterich, 1994; Segall and Lu, 2015). With rate-and-state dependent friction, 
earthquake rates are related to (1) the preexisting state of stress and pore fluid pressure acting on 
the faults, (2) changes in the rate of Coulomb failure stresses felt by the faults, and (3) the 
frictional response of the rock. The non-linear relationship between stressing rates and seismicity 
rates offers a mechanism for the differences between the histories of injection and seismicity 
seen in the Delaware Basin over multiple timescales. 

In neighboring Oklahoma and Kansas, as well as elsewhere in Texas, the Dieterich-type 
earthquake nucleation model fits the observed injection induced seismicity rates quite well 
(Norbeck and Rubinstein, 2018; Zhai and Shirzaei, 2018; Zhai, et al., 2019). In Fort Worth, 
Texas, seismic activity resulting from injection persists long after operations cease (e.g., Ogwari, 
et al., 2018). To test whether the rate-and-state model holds for our region of interest, we adopt 
the approach of Norbeck and Rubinstein (2018) to model the seismicity rates from wastewater 
disposal volumes alone. This approach treats the disposal reservoir as a confined, fluid-saturated 
porous medium wherein the effects of compressibility of a fluid-saturated medium determine the 
stress changes at seismogenic depths caused by the addition of injected fluids. While formations 
like the interbedded shales (e.g., Wolfcamp, Barnett, Woodford) and the basement may inhibit 
the vertical migration of fluids, treating the reservoir as a confined system is a modeling 
simplification. The true degree to which vertical flow is restricted is unknown but could be 
determined with pore pressure measurements that currently do not exist in the public domain. 
The assumed response of the fluid-rock system is a gross simplification of both the geologic 
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complexity and the physics relating poroelastic deformation and fluid pressure changes to fluid 
injection (e.g., Segall and Lu, 2015), but the general approach is supported by studies that utilize 
physical models of injection in Oklahoma (e.g., Barbour, et al., 2017; Goebel, et al., 2017; Zhai 
and Shirzaei, 2018; Langenbruch, et al., 2019). 

We restrict this analysis to the WD wells shown in Figure 2a. WD occurred beginning in 
2013 with volumes generally increasing over time (Figure 3). For eight of the 30 WD wells, we 
lacked between 1-8 months of the most recent disposal volumes prior to the M 5.0 earthquake 
(Figure S2). To fill in those gaps, we assume injection rates continue at constant rate equal to the 
average of the previous six months. As disposal rates have generally increased over the past five 
years, this likely provides a conservative (i.e. smaller) estimate for the actual injected volumes. 
The injected volumes at month m, Δ��, are used to calculate reservoir pressurization rates 
following Norbeck and Rubinstein (2018): 

��� = Δ��/�β ⋅ � ⋅ ��      (2) 
where � is the closed reservoir volume, β is the sum of fluid and pore compressibility for 
variable confining pressure, and � is the fraction of the bulk volume � occupied by pore space 
(porosity). The quantity β ⋅ � is therefore equivalent to the bulk compressibility under variable 
pore fluid pressure (Zimmerman, et al., 1986, Equation 2). We assume the reservoir has a 
uniform thickness and extends across the model domain; thus the pressurization rate is assumed 
to represent upper bounds on rates of Coulomb failure stress changes at seismogenic depths ���): 

�� ≅ ���      (3) 
Following Segall and Lu (2015), the Dieterich (1994) type seismicity response behaves 
according to the ordinary differential equation: 

!"
!# =

"
#$
% &&�'
� − )*      (4) 

where ��
 is the background stressing rate and +, is the characteristic relaxation timescale; the 
number of earthquakes r is given by ) ⋅ -
, where -
 is the background seismicity rate. The 
characteristic timescale +, determines the time evolution necessary for - → -
; it is also related 
inversely to the background stressing rate and directly related to the direct effect parameter in the 
rate-and-state friction equation (/) multiplied by the effective normal stress (0): 

+, = /0/��
      (5) 
We first solve this problem numerically using adaptive time-stepping to obtain a timeseries for 
), and then we resample using linear interpolation to get monthly values, )�. 

This model relating seismicity rate changes to injection volumes is appealing in its 
simplicity and flexibility: the expression governing the evolution of seismicity rates is agnostic 
to the mechanism by which �� is calculated, and its solution represents seismicity rates in a finite 
crustal volume. For instance, while Norbeck and Rubinstein (2018) used the simplified reservoir 
compressibility model adopted here, Zhai and Shirzaei (2018) calculated �� from a fully-coupled 
poroelastic model of injection in a layered halfspace (e.g., Barbour, et al., 2017) based on the 
method of Wang and Kümpel (2003). Relatively few parameters are needed to solve for ), and 
all of them are related to physical properties of the subsurface rather than from a statistical 
calibration. We use previous studies (Table 1) to set the bounds for these parameters, and use 
non-linear inversion to solve for parameters that minimize the sum of squared residuals between 
the model and the observed seismicity rates. 

To forecast future seismicity, we consider six cases of future injection to inform the 
optimized seismicity model: (1) constant-rate injection equal to the assumed average rate in the 
six-months prior to the 2020 M 5 earthquake, (2) a constant reduction in rate by 50% over 5 
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years, (3) a constant reduction by 75%, (4) a parabolic reduction in rate by 50%, (5) a parabolic 
reduction in rate by 75%, and (6) a complete shut-in (i.e. no further injection) of all wells. All of 
these scenarios optimistically involve no further increases in disposal volumes to evaluate the 
potential efficacy of mitigation actions. 

 

Figure 3. Monthly reported wastewater disposal volumes (lines) in the region around the M 5 
sequence (Figure 2a) compared with earthquake magnitudes (crosses) above the magnitude of 
completeness.   

3. Results & Discussion 

3.1 Improved earthquake catalog 
 Using the 130 earthquakes from the TexNet and NEIC catalogs as templates, our 
improved earthquake catalog using the MPV array contains 3,940 earthquakes while the TXAR 
array located much farther from the sequence away produces a catalog with 785 earthquakes 
(Figure 4). The results from both template matching applications display nearly identical 
temporal earthquake patterns with the first earthquake identified in both catalogs on 22 May 
2018 (Figure 4b). While template matching is a powerful technique for identifying seismicity 
similar in character (i.e. similar location and mechanism) to a known earthquake, it cannot 
efficiently identify events that are dissimilar to previously identified earthquakes. We conclude 
that there was no notable (M ≳ 1) seismicity that closely resembles the earthquakes identified in 
the M 5 sequence between April 2000 and May 2018. However, seismic sequences along other 
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faults in the area that remained below the TexNet magnitude of completeness (MC ≈ 1.7) are 
likely not fully represented in our catalogs. 
 

 
Figure 4. a) Magnitudes of earthquakes versus time in our improved catalog. b) Cumulative 
number of events detected from template matching using the MPV and TXAR arrays. The 
processing using the TXAR network extends back to 28 April 2000, but no events were found 
prior to 22 May 2018. 
 

The integrated locations of our relocated earthquake catalog for the M 5 sequence extend 
across the Reeves and Culberson County border (Figure 2b). As the nearest seismometer is ~25 
km from the sequence (much greater than the hypocentral depth), the depths of the relocated 
earthquakes are poorly constrained with average vertical uncertainties for the sequence of 10.1 
(±4.2) km (Figure 5). As a result, the dip of the fault plane cannot be resolved by applying 
FaultID to the earthquake hypocenters. However, by only considering the epicenters of the 
events as was done in previous work (Skoumal et al., 2019), the fault trend can still be identified. 
The resulting trend suggests an ENE fault with an azimuth of N81°E. This is in good agreement 
with the strike of the nearby moment tensors, and allows us to confidently characterize the 
correct nodal plane with an approximate strike: 082°, dip: 37°, and rake: -109°. 

The horizontal uncertainty from our analysis is similar to NEIC’s (2.4 and 2.5 km, 
respectively). Constraining the depth of the M 5 mainshock is important for our understanding of 
the sequence, but the NonLinLoc results suggest that the earthquake can be explained by a wide 
range of depths of 8.7 (±6.4) km. As the nearest seismometer is more than a focal depth away 
from the event, TexNet’s reported depth uncertainty of 1.9 km is likely underestimated. Despite 
the complex geology and velocity structure in the Permian Basin, our use of a simple one-
dimensional velocity model (Table S1) severely limits the accuracy of hypocentral parameters. 
The three-dimensional velocity model for the Delaware Basin in development (Rathje et al., 
2018) was unavailable at the time of this writing; however, such a model could be used to 
provide greater insight into the hypocentral locations of the events when it becomes available. 
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Figure 5. Differences in the reported location of the 2020 M 5.0 hypocenter. a-c) Hypocentral 
location uncertainties (lines) and covariate scatter clouds (dots) of the M 5.0 determined in our 
study using NonLinLoc compared with locations reported by the NEIC and TexNet. Note that 
the TexNet uncertainties may be underreported. d) Seismometers utilized in our location of the 
M 5.0 are shown as triangles. The region represented in a) is shown as a filled rectangle. 

3.2 Geodetic slip inversion  
The stacked interferograms reveal maximum LOS surface displacement of 6 mm 

centered around the epicenter. Uncertainties in the LOS surface displacement for the descending 
path are as high as 1.5 mm in the epicentral region (Figure S3). Given the relatively large 
uncertainties in hypocentral location estimated from our relocated catalog, we use the geodetic 
slip inversion to further constrain the depth of the M 5.0 earthquake. Our slip model shows 
smoothly varying slip over an area about 14 km along strike and 6-8 km down dip to a depth of 
~6 km (Figure 6). The maximum slip is ~1.2 cm and the total geodetic moment is 1.71×1016 Nm, 
which is equivalent to M 4.8. The resulting slip distribution suggests that the coseismic surface 
displacement is related to shallow slip, extending from about 2 km to 6 km depth. Geodetic slip 
inversions using InSAR data have been shown to overestimate source depths (Pederson et al., 
2003; Funning et al., 2005), which suggests that the hypocentral depth is likely shallower than 



A
cc

ep
te

d 
A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

the maximum likelihood estimate of hypocentral depth (8.7 km) from our analyses, but still 
within our uncertainty estimate. 
 Generally, a M 5 with normal mechanism at crustal depths greater than 6 km is unlikely 
to generate observable surface deformation. As the observed oblique surface displacement is as 
large as 6 mm and well outside of the noise, this finding supports a relatively shallow (< 6 km) 
hypocenter. This finding aids our understanding of the M 5 and the factors that lead to its 
occurrence (described in Section 3.4 Cause of the M 5.0 Sequence) 
 
 

 
Figure 6. Ground deformation and kinematics of the 2020 M5 event. a) Line-of-Sight (LOS) 
displacements from stacked interferograms after a quadtree decomposition on irregular spatial 
tiles shown by filled circles at each tiles’ centroid. The arrow indicates the LOS direction. The M 
5.0 epicenter is represented as a star. b) Resulting slip distribution is on a planar fault striking 
082° and dipping 37°. Hypocenter of the M 5.0 earthquake is shown as a star. 

3.3 Induced seismicity rate modeling 
Our observational and slip inversion analyses suggest WD likely induced slip within the 

sedimentary strata (see Section 3.4 Cause of the M 5.0 Sequence). With this understanding, we 
seek to investigate how the nearby WD well operations related to the observed increase in 
seismicity. Additionally, we consider how operational decisions at these WD wells might 
influence future earthquake occurrence by modeling the influence that disposal wells have on 
seismicity rate in the area around the M 5.0 sequence. 

Like with any model, the rate-state seismicity results are subject to uncertainties in the 
input parameters. We run sensitivity results to test a broad spectrum of seismicity responses 
(Table S2). At low /0 (≲0.1 MPa), the response more closely resembles the injection history, 
with the seismicity rates primarily controlled by the background stressing rate. At higher values 
of /0, the response is smoother and does not share much resemblance with the injection 
timeseries. Increasing the bulk compressibility �3 decreases the Coulomb stressing rates and 
effectively minimizes the seismicity response, especially when background stressing rates are 
low.  

In order to make more quantitative interpretations for this region, we use sensitivity tests 
and prior studies to choose both a starting model and upper and lower bounds for a non-linear 
least-squares optimization using a box-constrained, quasi-Newton method (Byrd, et al., 1995). 
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From this optimization we obtain the background stressing rate (ṡ0), background seismicity rate 
(r0), bulk compressibility (3��, and a rate-and-state parameter (/0); since the parameters / and 
0, as well as � and 3, are inseparable (see Equations 2 and 5), we fix 3 to estimate �, and use 
both laboratory-derived relationships (Blanpied, et al., 1998) and inferred gradients of effective 
normal stress in Texas (Lund-Snee and Zoback, 2016) to estimate /.  

The optimized inverse solution shows very good agreement with the observed increase in 
seismicity over time (Figure 7). The specific coefficients we obtain are tabulated in Table 1. The 
observed earthquake rate can be matched using a background earthquake rate of roughly 1 M ≥ 
MC event every 31 years and a background stressing rate of 23 kPa/yr; together these suggest a 
regional strain rate between the values measured by Anderson (1986) and Calais, et al (2006), 
around 10-10 yr-1 (see Supplemental Material). The optimal value of �3 is 6.3×10-10 Pa-1, which 
means that if the fluid bulk modulus is 2.3 GPa (e.g., water), and the solid bulk modulus is 
between 10 and 30 GPa (e.g., between sandstone and granite; Wang, 2000, Appendix C), the 
representative porosity is likely between 0.12 and 0.14; if, however, the fluid bulk modulus is 3.3 
GPa (e.g., water at high confining pressure), the porosity is likely between 0.16 and 0.19. 

 

 
Figure 7. Rate-and-state seismicity model based on wastewater disposal volumes in proximity to 
the 2020 M 5.0 earthquake (Figures 2 and 3). (a) Modeled seismicity rate changes () = -/-
; 
Equation 4) compared to observed annual seismicity rates (M ≥ MC), on logarithmic scales, with 
disposal volumes. After the last reported disposal volume, the model represents a forecast 
assuming injection operations cease (i.e. shut-in). (b) Scatter plot of modeled rate, based on the 
value of R multiplied by r0, the best-fitting background rate from the optimization (1 event every 
31 years), as a function of observed rate. (c) Model residuals that have been normalized to unit 
variance (standardized): May and September of 2019 (filled circles in (a)) are the months with 
the highest and lowest observed rates of earthquakes compared to the rate-and-state seismicity 
model, respectively. 
 

The optimal value of /0 is 0.83 MPa. Lund-Snee and Zoback (2016) used their estimates 
of the state of stress in Texas to identify the plausible range of stresses and pore pressures for 
some recent earthquakes in Snyder, Texas (1978 M 4.5, 2011 M 4.4), and Timpson, Texas (2012 
M 4.8, 2012 M 3.8). For reference, the earthquakes in Snyder, near the Cogdell oil field, are the 



A
cc

ep
te

d 
A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

closest events to our study region. Lund-Snee and Zoback (2016) reported the effective normal 
stress gradients in the case of high and low (hydrostatic) pore pressure, which are reported to be 
7 and 11 MPa/km for Snyder, and 5 and 14 MPa/km for Timpson, respectively. At the mean 
earthquake nucleation depth (7.3 km; Figure 8), these gradients give a range of effective normal 
stress for the region (045) of 51 to 80 MPa, and 37 and 102 MPa, respectively; thus, the range of 
/0/045 is 0.010 to 0.016, and 0.0081 to 0.023, respectively. Lockner (1998) reported that 
Westerley granite at room temperature shows behavior consistent with / = 0.008 over a wide 
range of confining pressures, but Blanpied, et al. (1998) showed that under hydrothermal 
conditions the parameter A shows a temperature dependence, with /�9� = 0.02127 − 3/9 for T 
< 543°K (270°C) and /�9� = 0.17838 − 88.14/9 for T ≥ 543°K. We tested three representative 
geothermal gradients for the Permian Basin from Ruppel et al. (2005), namely a low estimate of 
22°C/km (low), the most commonly estimated 25°C/km, and a high estimate 29°C/km, finding 
that earthquake nucleation depths are largely consistent with the T<270°C frictional regime. 
Furthermore, the value of / at mean earthquake depths is tightly constrained to be ~0.015 
(Figure 8), differences in rock type notwithstanding. Hence, while / plausibly varies between 
0.0081 and 0.023, we assume it is in closer agreement with the hydrothermal estimate; in that 
case the effective normal stress is 55 MPa for an average gradient of ~7.5 MPa/km. 
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Figure 8. Estimates of the friction direct effect parameter A with depth from local stress 
gradients and rock constitutive relationships. Thick and thin lines show the  value of /0 from our 
optimized seismicity rate model scaled by the effective normal stress gradients inferred from 
earthquakes in Snyder and Timpson, Texas, respectively (from Lund-Snee and Zoback, 2016); 
red and blue lines show the results for gradients based on scenarios of high and low pore 
pressure at fault reactivation. The filled region is based on the hydrothermal response of wet 
granite (Blanpied, et al., 1998) at three characteristic geothermal temperature gradients for the 
Permian Basin (Ruppel et al., 2005). The point on the left, at 0.008, is representative of granite at 
room temperature (Lockner, 1998). The histogram on the bottom shows the density of 
earthquake depths in this region, and the circles and squares show estimates at the mean 
earthquake depth. 
 

Using the same model and parameters, we can look forward in time to forecast seismicity 
for six injection volume reduction scenarios. The forecast results (Figure 9) suggest that the 
earthquake rates would reduce in cases where total wastewater disposal rates are reduced by 
more than 50% of their present rate. The parabolic reductions in rate (scaling as 1/+?) are more 
effective at reducing seismicity rates at early times, but over very long times they approach the 
results for the linear reductions (scaling as 1/+). This is because both scenarios reach the same 
total injection rate and the seismicity rate reaches a steady-state that is proportional to the 
stressing rate. Both linear reduction scenarios and the weaker parabolic reduction scenario cause 
transient increases in seismicity rate before they reduce (e.g., Segall and Lu, 2015), because they 
represent relatively strong departures from the manner in which reported disposal rates were 
changing prior to the M 5 earthquake.  The generally sluggish reduction in seismicity rates, even 
for the vigorous reduction scenarios, is primarily a consequence of the background stressing rate 
��
 being much smaller than the rate-and-state parameter /0, and thus the characteristic 
relaxation time (Equation 5) becomes very long.  

Our future-injection scenarios do not consider the transient effect of poroelastic coupling 
that may influence rates considerably, especially in certain faulting regimes (i.e., Segall and Lu, 
2015; Fan et al., 2019). A key parameter that determines the strength of coupling is the value of 
Biot’s effective stress coefficient (@) in the rock layers. According to Zimmerman, et al., (1986), 
a lower bound for @ is given by the porosity and the Poisson’s ratio (A): 

@ = 	BCB?D�	E?C�
F�	EC�      (6) 

Based on the optimized porosity estimate, @ must be greater than 0.41 (for the improbable case 
where A = 0), but is more likely between 0.61 and 0.80 for A = 0.25 and A = 0.4. This is the 
range generally expected for more compliant and permeable rock types such as sandstone 
(Wang, 2000). These estimates indicate a strong possibility that poroelastic coupling related to 
rapid changes (whether increases or decreases) in disposal rate will further influence seismicity 
rates in the Permian Basin. A poroelastic coupling effect was previously inferred leading up to 
the 2016 M 5.8 Pawnee earthquake, where the seismicity seen prior to the mainshock was related 
to the change in wastewater disposal rates over a relatively short time period (Barbour et al., 
2017). The long decay of induced seismicity rates in the Dallas/Fort Worth area (Ogwari et al., 
2018) is an indication that the slow decay times forecasted for this area of the Permian Basin is a 
plausible outcome that cannot be discounted. 
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Table 1. Optimized seismicity model parameters determined for this study versus those used in 
other induced seismicity work in Texas, Kansas, and Oklahoma. Parentheses indicate calculated 
or inferred values. 

 Delaware Basin North Central 
Texas 

Oklahoma and 
Southern 
Kansas 

West and 
Central 

Oklahoma 

Oklahoma 
(2016 M 5.8 

Pawnee) 

Parameter 
[Units] Description Optimal values 

from this study 

Zhai and 
Shirzaei 
(2018) 

(Norbeck and 
Rubinstein, 

2018) 

(Zhai, et al., 
2019) 

Barbour, et 
al., 2017) 

β [1/GPa] Total 
compressibility (0.33-0.52) - 0.32 - - 

ɸ Porosity (0.12-0.19) - 0.12 - - 

β ɸ [1/GPa] Bulk 
compressibility 0.0629  (0.0384) - - 

ṡ0 [kPa/yr] Background 
stressing rate 0.0234 0.01 0.7 0.01 0.1 

A Direct effect 
parameter (0.0081-0.023) 0.003 0.0065 0.003 0.003 

σ [MPa] Effective 
normal stress (36-102) 35 50 22 20 

Aσ [MPa] Rate-and-state 
parameter 0.828 (0.105) (0.325) (0.066) (0.06) 
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Figure 9. Forecasts of increases in seismicity rate () = -/-
; Equation 4) for ~30 years after the 
M 5.0 earthquake considering various injection volume reduction scenarios. All scales are 
logarithmic. The optimized rate-and-state seismicity model is shown prior to the M 5, as well as 
the observed earthquake rates scaled by r0 (circles). After the M 5 shows the results of applying 
the optimized model (Table 1) to six different future-injection scenarios (see Supporting 
Information). Constant: hold steady at average levels from the past six months. Shut-in: cease all 
injection completely. LR: linear reduction in rates over time. PR: parabolic reduction in rates 
over time. 

3.4 Cause of the M 5.0 Sequence 
HF-induced seismic sequences have extremely strong temporal correlations during the 

periods of stimulation activity (e.g., Skoumal et al., 2018), and seismicity is frequently limited to 
within a few km from the stimulation stage (e.g., Schultz et al., 2020). The vast majority of 
earthquakes in the sequence are unlikely to be associated with HF as stimulations were either not 
occurring or were > 10 km from the events. At the time of the M 5.0, no known stimulations 
were being performed within 10 km of the epicenter although one well was undergoing flowback 
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at the time of the M 5.0. While we cannot exclude these operations from having any influence on 
the occurrence of the M 5.0, they are unlikely to be the primary cause of the observed seismicity.  

As hydrocarbon production is spatiotemporally related to WD activities, it is difficult to 
isolate the individual contributions of each type of operation. However, previous conservative 
stress estimates between 2007-2017 in the Delaware Basin found production to have resulted in a 
~0.5 kPa hydrostatic pressure change (Skoumal et al., 2020), much smaller than the changes 
associated with atmospheric pressure loading or solid earth tides measured in deep disposal 
reservoirs (e.g., Barbour et al., 2019). The only other industrial operation that we are aware of 
that could explain the seismicity is WD. 

The rates of injected fluid in the Delaware Basin are comparable to peak disposal rates 
during ~2014-2016 in the seismogenic areas of Oklahoma (Figure 10). While there are many 
other factors beyond injected volume that influence the hazard of induced seismicity that must be 
taken into account, this provides a relative understanding of the scale of operations in the 
Delaware Basin and the challenge of finding an economic solution to the issue.  

In the Delaware Basin, most WD wells inject into the shallower Delaware Mountain 
Group while a smaller number of wells inject into the deeper Devonian, Silurian, and Ordovician 
rocks. Beneath the Delaware Mountain Group are multiple shale formations that are commonly 
targeted for unconventional hydrocarbon development. The tight association between these 
injection data and seismicity rates suggests that the major mapped fault immediately to the 
northeast of the M5 sequence (Figure 2a) is a barrier to horizontal flow, which could help 
explain the spatial distribution of induced earthquakes in the region. There is also the possibility 
for the interbedded shale formations to restrict vertical flow of shallower WD, potentially 
helping to insulate deeper fault structures from shallow injectors. Near the M 5.0 sequence, the 
majority of wells are injecting into the Delaware Mountain Group at ~1-2 km deep (Figure 3). 
Only two WD wells in our selected area injected into the deeper Silurian at depths of ~4.8 km. 
However, the two Silurian injectors are both high-rate wells, and one of these Silurian wells 
exceeded 2 million BBLs/month. Of the ~32,000 WD wells active since 2007 in Texas, only 15 
wells in the entire state have had a larger monthly injection rate. These Silurian injection wells 
are within 1 km of the Precambrian basement (~5.5 km depth) (Ruppel et al., 2008). While the 
proximity of injection to a critically stressed fault is the primary factor controlling the likelihood 
of injection-induced seismicity (Skoumal et al., 2018), WD wells with similar, high-rate injection 
have been found to have increased associations with induced earthquakes (e.g., Scanlon et al., 
2019). 

Deeper, mature faults in crystalline rock that are induced to slip have been suggested to 
be associated with greater increases in hazard than faults within sedimentary strata (Kozłowska 
et al., 2018). Injecting fluids in proximity to the Precambrian basement increases the likelihood 
of induced seismicity (Skoumal et al., 2018) and was found to be the primary factor controlling 
induced seismicity in Oklahoma (Hincks et al., 2018). Based on surface deformation modeling, 
we find that slip during the M 5 mainshock was concentrated primarily at shallow depths, which 
suggests that the host fault may have breached the disposal formation. Similar findings of 
basement faults intersecting disposal formations have been documented in Oklahoma (Barnhart, 
et al. 2018; Kolawole, et al., 2019) and NE Texas (Magnani, et al., 2017). Future work could 
determine the role that both the shallow and deep injectors have on the stability of such faults in 
the Delaware Basin, as they likely represent an important component in designing an effective 
strategy for seismic hazard mitigation. In Oklahoma, seismicity rates declined following 
reductions in disposal volumes and shifting disposal from the basal Arbuckle to shallower 
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formations (Langenbruch & Zoback, 2016; Norbeck & Rubinstein, 2018; Dempsey & Riffault, 
2019); similar efforts in the Delaware Basin might have a similar efficacy. 

 

Figure 10. Monthly injected volumes for 30x30 km regions in the Delaware Basin compared 
against the 30x30 km region with largest injection volume located in Northern/Central 
Oklahoma. Only areas in the Delaware Basin with >5 million BBLs/month of disposal volume 
are shown. 

4. Conclusions 
Our earthquake catalog of 3,940 earthquakes indicate events in the area around the M 5.0 

earthquake began several years prior to the mainshock. Our relocated catalog is consistent with a 
ENE (~082°) normal fault dipping ~37° towards the south. Using InSAR-derived surface 
deformation, we invert for the kinematics of the M 5.0 rupture and conclude that the slip, and 
possibly the hypocenter, of the mainshock earthquake occurred at depths < 6 km. This relatively 
shallow depth is consistent with the depths of nearby WD wells, which are located at depths < 5 
km. Our forecasts for the area around the M 5.0 indicate seismicity rates will likely continue to 
increase in the future, and similar scenarios may apply elsewhere in the Delaware Basin. The 
rates of injected fluid in regions of the Basin are comparable to peak disposal rates in Oklahoma 
during ~2014-2016 that led to widespread seismicity. If industry operations in the Delaware 
Basin continue unaltered, it is possible that additional M ≥ 5.0 earthquakes may be induced in 
the future. Understanding the mechanisms and operations responsible for the seismicity at a 
higher level of granularity will aid in mitigating this future seismic risk; however, the current 
coverage of seismometers on a local scale is sparse throughout much of the Delaware Basin, 
which limits the reliability of routinely determined earthquake locations and depths. 
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