ABUNDANCE OF DIRICHLET-IMPROVABLE PAIRS
WITH RESPECT TO ARBITRARY NORMS

DMITRY KLEINBOCK AND ANURAG RAO

ABSTRACT. In the paper [AS| of Akhunzhanov—Shatskov the two-dimensional Dirichlet
spectrum with respect to Euclidean norm was defined. We consider an analogous defini-
tion for arbitrary norms on R? and prove that, for each such norm, the set of Dirichlet
improvable pairs contains the set of badly approximable pairs, hence is hyperplane ab-
solute winning. To prove this we make a careful study of some classical results in the
geometry of numbers due to Chalk—Rogers and Mahler to establish a Hajés—Minkowski
type result for the critical locus of a cylinder. As a corollary, using a recent result of the
first named author with Mirzadeh [KM], we conclude that for any norm on R? the top
of the Dirichlet spectrum is not an isolated point.

1. INTRODUCTION

For a pair of real numbers x = (1, z2), the authors of [AS] considered the quantity

2
co(x) := limsup ¢ (11?;21& dista(gx, Z2)> (1.1)

t—o0

where disty denotes the distance function with respect to the Euclidean norm. Equivalently,
ca2(x) is the infimum of ¢ > 0 such that the system

{uqx—pua </t

lq <t,

where || - ||2 is the Euclidean norm on R2, has a nontrivial integer solution (p,q) for all
large enough t > 0.

The main result of [AS| was a description of the so-called Dirichlet spectrum with respect
to the Euclidean norm on R?:

Dy = {ea(x) 1 x € R} = [0,2/\/5}. (1.2)

Note that the set-up described above is a Euclidean modification of the classical set-up
of improving Dirichlet’s Theorem initiated by Davenport and Schmidt [DS]. There the
distance disto, with respect to the supremum norm is used in place of disty in (1.1).
It is worth pointing out that, to the best our knowledge, the complete structure of the
supremum-norm analogue of (1.2), that is the set
2
Doo i= {co(x) : x € R2}, where ¢ (x) := limsup ¢ - (min distoo (g%, Z2)> , (1.3)
t—00 1<q<i
is not clear. What is known though is that Dy, is a subset of [0,1] containing both
endpoints, that 1 is not an isolated point of D, and that the set of Dirichlet-improvable
pairs
DI, = {x € R* : e5(x) < 1}
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has measure zero but nevertheless it is quite big: namely |DS, Theorem 2| it contains the
set of badly approximable pairs

2
BA = {x € R?: liminf ¢ < min dist(qx,ZZ)> > 0} .
t—00 1<q<t

The latter set is known to be of full Hausdorff dimension; this was proved in [S] by showing
that BA is a winning set of Schmidt’s game, and later upgraded to an even stronger
hyperplane absolute winning property, see [BEKRW].

In this paper we show that BA is also a subset of the set of Fuclidean Dirichlet-
improvable pairs

DI, :— {x ER?: ea(x) < 2/\/5} .

Moreover, the same is true if the Euclidean norm is replaced by any norm. Namely, for a
norm v on R? and x € R? let us define

2
¢y(x) = limsup ¢ - (min disty(qx,Z2)) and ¢, := sup ¢, (x), (1.4)
1<q<t

t—o0 x€R2

where dist, is the distance function induced by v. Our main result is as follows.
Theorem 1.1. For any norm v on R?, the set

DI, = {X e R?: c(x) < c,,}
contains BA (hence is hyperplane absolute winning).

Note that it has already been proved in [KR] that for any norm v the Lebesgue measure
of DI, is zero.

Theorem 1.1 can be used to derive a corollary concerning the Dirichlet spectrum with
respect to an arbitrary norm v on R?, defined similarly to (1.2) and (1.3) as

D, :={c(x):x € RQ} .
It is a subset of [0, ¢,] containing both of the endpoints.
Corollary 1.2. ¢, is an accumulation point of D,,.

The structure of this paper is as follows. In the subsequent section we show that the set
DI, can be identified with a set of three-dimensional unimodular lattices having a certain
dynamical property. This property is that of avoiding a certain compact subset L, of the
space of all unimodular lattices in R? under a diagonal flow. More precisely, L, is the
critical locus (see §2) of the norm 1 on R? given by

n(x1, xe, x3) := max{v(xi, z2), |x3|}. (1.5)

The next two sections are then justifiably spent on a detailed study of the work [CR1, CR2]
of Chalk—Rogers in order to establish a structure theorem for these critical loci. The
resulting structure allows us to apply the argument implicitly contained in the paper of
Davenport and Schmidt to conclude the proof of Theorem 1.1 in §5. Corollary 1.2 is then
derived from Theorem 1.1 with the help of a recent result—a solution of a special case
of the Dimension Drop Conjecture—due to the first-named author and Mirzadeh [KM].
Several open questions are mentioned at the very end of the paper.

Acknowledgements. We wish to thank Jinpeng An for making an observation that
helped us strengthen our main result, and Nikolay Moshchevitin for bringing the work
[AS] to our attention and for asking a question that led to Corollary 1.2.
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2. A DYNAMICAL RESTATEMENT

As promised, we describe how Dirichlet-improvability is related to dynamics and how
the constant ¢, of equation (1.4) is related to critical lattices. This is a special case of the
uniform Diophantine approximation problem discussed in [KR|. For n € N and a norm 7 in
R™, let A, be the infimum covolume over all lattices in R™ intersecting the unit norm ball
B, (1) € R™ trivially. This is called the critical determinant of the norm 7. The constant
A, is positive and is actually attained by a lattice. These facts follow from the Minkowski
convex body theorem and Mahler’s compactness criterion respectively.

For us it will be convenient to work with unimodular (covolume one) lattices; we will
denote by X, the space of all such lattices in R™. Clearly X,, can be identified with the
homogeneous space SL,,(R)/SLy,(Z) via g — ¢gZ™. Then one can define the critical radius
of the norm 7 as follows:

ry :=sup {r : AN By(r) = {0} for some A € X, }.

It is clear that we have r, = A, n
Moreover, for r > 0 let us define

Ky(r):={A € X, : AN B, (r) = {0}}.
Obviously we have the containment
r <ry = K,(r1) DI, (r2),
and it follows from the definition of r, that
r<r = IK)(r) =2, (2.1)

and

r <1, = K,(r) has non-empty interior. (2.2)

Thus, {ICy(r) : 0 <r <7y} is a family of compact neighborhoods of the set
Ly = Ky (),

which is called the critical locus of n.

Now let us specialize to n = 3. For x € R? let us define

1 0 1
Ax i=ux-Z% € X3, where ux := | 0 1 zo | € SL3(R). (2.3)
0 0 1
The flow of interest here is given by the one-parameter subgroup
e/2 0 0
ag 1= 0 e/2 0 . (2.4)
0 0 e*

Recall that we started with a norm v on R?, and let us take n of the form (1.5).
Then a standard argument usually referred to as the Dani correspondence gives the next
proposition. It is a special case of a general correspondence described in [KR, Proposition
2.1]; we include the elementary proof for the sake of keeping the paper self-contained.

Proposition 2.1. For v and n related via (1.5) and ¢ > 0 the following are equivalent:

(i) ev(x) <e¢;
(ii) there is an r < c'/3 such that for all sufficiently large s, asAx & Kp(r).
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Proof. Say (i) holds. Then for any ¢,(x) < d < ¢, the system

< (d/t)'V?
<t

has a nontrivial integer solution (p,q) for all sufficiently large t. Equivalently, for suffi-
ciently large ¢,
(d/t)'/? 0 0
Ax N 0 (d/)V? 0 |- By(1) # {0}
0 0 t
t

By substituting In -7 for s, we see that for all sufficiently large s,

asAx N B, (d173) £ {0}.

Choosing d < r® < ¢ we see that (ii) is true.
Now say that (ii) holds. By defining ¢ via the equation In % = s, we may trace backwards
in the implications above to see that the system

{V(qx —p) < (r3/t)l/?

lq| <t

has a nontrivial solution for all sufficiently large t. Thus we have that c,(x) <73 < ¢, and
hence (i) holds. O

In view of (2.1) we have ¢,(x) < rj for all x. Moreover, an application of the above
3
777
that ¢, (x) = rf’] for Lebesgue almost all x. See [KR, Proposition 3.2| for additional details.

It follows that ¢, = r% = A, L This last fact and another application of Proposition 2.1
show that

proposition with ¢ =, in view of (2.2) and the ergodicity of the as-action on X3, shows

Corollary 2.2. x € DI, if and only if the forward as-orbit of Ax eventually avoids an
open neighborhood of L,; that is,

{asAx 1 s > so} N L,y = @ for some so > 0. (2.5)

Thus our main result is reduced to proving that any x € BA satisfies (2.5).

3. THE CRITICAL LOCUS OF A CYLINDER: RESULTS OF CHALK—ROGERS AND MAHLER

Let us now slightly change our definitions of critical determinant and critical locus so
that they now refer to objects corresponding to a convex symmetric bounded domain rather
than a norm.

For a convex symmetric bounded domain B C R", we say a lattice A in R"™ is B-
admissible if

BnA={0}.

We denote by d(A) the covolume of a lattice A, and by A(B) the infimum covolume over
all B-admissible lattices and refer to it as the critical determinant of B. The (nonempty
compact) set £(B) denotes the set of B-admissible lattices having covolume exactly A(B),
and we refer to it as the critical locus of B. To reconcile it with the previous notation, if

B is the unit ball with respect to a norm 7, then £, = ﬁE(B) consists of lattices in

(B)
L(B) scaled so that their covolume becomes equal to 1. Our goal is to prove a theorem
which gives the structure of £(B) when B is a cylindrical convex symmetric bounded

domain in R3.
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Let B be a convex symmetric bounded domain in R?. Let v be the Minkowski norm
associated to B. Let C = Cp be defined as the cylinder B x [—1,1]. We can also write C
as

C = {(z1,22,23) : v(x1,22) < 1, |x3] < 1}. (3.1)
We fix notation 7, 7_ for the projections from R? to the z3-axis and the (z1,x2)-plane
respectively.

It is a well-known fact that

A(B) = A(Cp). (3.2)
In fact, it is very well known; around the 1940s three independent proofs appeared. Mahler
in [M1] gave a proof for the cylinder over the disc, which was based on a (non-lattice)
packing result for discs in a polgyon. This packing result admits a generalization (due
to Fejes-T6th) which settles the issue for arbitrary cylinders. See [C, §1X.5.4| for the
theorem of Fejes-T6th as well as the following section for the application to cylinders.
Another argument was given by Yeh in [Y] and was based on results of Minkowski on the
configuration of critical lattices for three-dimensional domains.

The argument we discuss here is given by Chalk and Rogers in [CR1|. It so happens that
this argument is especially convenient for making a precise description of £(C') in terms
of £(B). We need to make a preparatory study of the argument therein before giving the
proof of the following theorem.

Theorem 3.1. Let B C R? be a convex symmetric bounded domain which is not a paral-
lelogram, and let C = Cp. Then the critical locus L(C') is the union of the two sets

100 v |0
010 0 |73:M7Z*e L(B) (3.3)
* x 1 0 0 1

and
1 0 = M 0
0 1 =« 0 |Z3:MZ*c L(B) . (3.4)
00 1 00 |1

The critical locus for cylinders over parallelograms and, more generally, for parallelopi-
deds in R™ is the content of the Hajés—Minkowski theorem. See [H]| for the proof. A more
expository treatment is given in [SS].

Theorem 3.2. If C is the unit ball for the supremum norm on R3, the critical locus L(C)

is the union of manifolds

P A (3.5)

O O =
S~ ¥
— % %

over all 3 x 3 permutation matrices P.

The following lemma appears as Lemma 1 in [CR1]. We write out the entire proof since
we need an explicit form of the deformation, see (3.9) below, appearing therein.

Lemma 3.3. Let C be as in (3.1). Then, given any critical lattice A of C, there is a path
of C-critical lattices A(t) with A(0) = A, and with A(1) having three linearly independent
points satisfying

v(r_(%) <1, |mye(x)] = 1. (3.6)
In particular, three independent lattice points on the top of the cylinder can be found.
Moreover, this path is given by {LiA}, where Ly is a smooth family of lower triangular
unipotents having (2,1) entry zero.
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Proof. Let A be C-critical. Then A must contain three independent points on the boundary
OC" for if the points of ANOC were contained in a plane, |L, Theorem 7.8] would enable us
to construct an admissible lattice of smaller covolume, a contradiction. So, let p1, p2, P3
be any three independent points in A N JC. Let n be the number of linearly independent
points of A N OC satisfying (3.6). Clearly n cannot be 0, for otherwise it would permit a
contraction in the vertical direction. In each of the cases n = 1,2, we show that a shear
can be applied to obtain a lattice A’ with 3 independent points on OC' satisfying (3.6).

Say n = 1. Among the three independent points p; in A N dC, we can assume without
loss of generality that p; satisfies (3.6) and that pg, ps satisfy

v(r—(x)) =1, |me(x)] < 1. (3.7)
Let q1, g2, qs be any basis for A. This gives us an integral 3 x 3 matrix M with
[Pt P2 P3]=|a1 @ a3 |M

from which we can write
A=[aq q q3]Z°=[p1 p2 ps |M'Z°
Consider the continuous family of lattices
A(t)=[p1 p2 ps+tes |M'Z° (3.8)

where es is the third standard basis vector in R®. Writing P = [ P1 P2 P3 ] and

Q= [ qi1 92 g3 ], we see that M~1 = P~1'(Q, whence the lattice A(t) can actually be
written as

At)=[p1 p2 p3+tes | P'QZ°
1 0 0 (3.9)
- 0 1 0 A,
t(Pil)gl t(Pil)gg 1 +t(P71)33

where the constants on the bottom row indicate the corresponding entries in the matrix
P~!. Without loss of generality, we assume that the covolume function

d(A(t)) = |1+ t(P")33] d(A)

has nonpositive derivative at 0, i.e. (P~1)33 < 0. (If this is not the case, the argument
continues by considering —t instead of ¢.) Let 7 be the largest (possibly infinite) real
number such that

0 <t <7 implies A(t) is C-admissible.
By the assumption on the derivative of the covolume, A(¢) must actually be C-critical for
all 0 < ¢t < 7. So, the covolume function is constant in this (possibly singleton or even
infinite) interval. We consider cases wherein 7 is either infinite or not.

(a) T = +oo. Every A(t) with ¢t > 0 is C-critical. Note, in this case, since the covolume
is constant, we must have (P~1)33 = 0 in (3.9). Choosing t¢ appropriately, we have
p1 and ps + tpes (which belong to A(t)) satisfying (3.6). The crucial observation
here is that

A(to) = L(to)A (3.10)
where L(t) is a curve in the lower triangular unipotents with (2,1) entry 0.

(b) 7 < oo. Consider A(7), which is C-critical. Suppose we have no lattice point of
A(7) satisfying (3.6) and not proportional to p;. Choose p > 0 so that every lattice
point in A(7) p-close (in some fixed norm || - ||) to C' is actually in the closure C.
Write

A(T) = N(1)Z*, A(r+¢)=N(r+¢e)Z?
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where N (-) is the product of matrices appearing in the formula (3.8). Let § > 0 be
such that for all £ € [0, 6], we have that d(A(7 4+ ¢)) > A(C)/2 and that

(N(t+¢e)ue C withu € Z*) implies (|[N(7+¢e)u— N(r)ul| < p). (3.11)

Now if we have ¢ in this range, and a nonzero point N(7 + ¢)u lying in C, then
(3.11) and the definition of p show that N(7)u € C. Since A(7) is C-admissible,
N(7)u is in 0C. By the assumption on A(7) at the start of this case, we see that

either 71 (N(7)u) < 1, or N(7)u = +£p;. (3.12)

The second eventuality is prevented since, by definition of N(-), we would then
necessarily have N (7 +¢)u = £pq, contrary to N(7+¢)u lying in C. Thus we are
in the first case where 7 (N (7)u) < 1, and this implies that v(7_(N(7)u)) = 1.
This is again a contradiction, since 7_ (N (7 + e)u) = 7_(N(7)u), and N(7 + €)u
was presumed to be in C.

What this shows is that A(7+¢) must be C-admissible for every ¢ in [0, ], which
is again incompatible with the definition of 7. Thus A(7) must have more than
n = 1 independent points satisfying (3.6). Moreover, just as in equation (3.10), we
have

A(T) = L(7)A,
where L(t) is a curve in the lower triangular unipotents with (2, 1) entry zero.

We can now assume that the C-critical lattice A has two independent points on 9C
satisfying (3.6). The argument repeats almost identically taking pi,p2 to satisfy (3.6)
and ps satisfying (3.7). The only change in the course of this repetition is that the two
eventualities in (3.12) become

either 7 (N(7)u) < 1, or N(7)u € spang{p1, p2}- (3.13)
And the second eventuality is again prevented by the definition of N(-) and the assumption
that N(t +e)ue C. 0

Lemma 3.4. The lattice A(1) in Lemma 3.3 has at least one point satisfying
v(r_(x)) <1, |m(x)] = 1. (3.14)

Proof. This is true more generally. Let A be C-critical. If A has no points satisfying (3.14),
a contraction in the vertical direction would produce a C-admissible lattice with smaller
covolume. O

We also need the following technical lemma from [CR1, Lemma 2|. Our statement here
swaps out the strictly convex assumption for something that will be more convenient for
our application.

Lemma 3.5. Let B be a conver symmetric domain in R2. Suppose p1,p2,p3 are three
non-collinear points of B with at least one being in B. Moreover, assume that the interior
of a segment joining any two of the p; is in B. Let A be the lattice

Z(p2 — p1) + Z(p3 — p1)-
Then RZ = A + B.

Proof. Given any q € R? we can adjust by an element of A, to write 0 as

0=q+u(pz —p1) +v(ps — p1), with 0 <w,v <1

Without loss of generality we can assume that u and v instead satisfy 0 < u, v and u+v < 1.
Indeed, if this is not the case, one can proceed with the argument by using —q instead,
and by noting that B is symmetric.



8 DMITRY KLEINBOCK AND ANURAG RAO

Let r = p1 — q. If r =0, then, since one of the p; is in B, we see that one of
q,9+ (P2 — p1),9+ (P3 — P1)
is also in B. If r # 0, we proceed by writing
r=pi+u(p2 —p1) +v(ps —p1) = (1 — u—v)p1 + upz + vp3.

By the assumptions on u, v, this means that r is in the convex hull of p1, p2, p3.

a+ (ps — p1)
'

P11 e

/ q+ (P2 — p1)
\\

Since the latter is contained in the union of convex hulls formed with any two of the p;
along with 0, we may write, using two distinct indices i, j, that

r = sp; +tp; where 0 < s,tand 0 < s+t < 1.
Note the strict inequality which will be used later. Using this along with the facts
a=p1—r, g+ (P2—P1)=pP2—Tr, 4+ (P3—P1) =PpP3 — T,
we end up with the two containments
(1—s)pi +t(—pj) €Eq+A and s(—p;)+ (1 —t)p; € q+A. (3.15)

Since
(I=s)+t)+ (s+(1—-1) =2,

one of the two points in (3.15) must belong to the convex hull of some triple of points
£pi, Fp; and 0. The conditions on s,t, the symmetry of B, and the assumption on the
segments joining p;, p; implies that the relevant point is in B unless s or ¢ is equal to 1.
In the latter case, using the assumption that one of p1, p2, p3 is in B, we can adjust either
of the containments in (3.15) by an element of A to show that q € B+ A. This completes
the proof. O

At this point in [CR1]| the corresponding forms of Lemmata 3.3 and 3.5 are used to show
(3.2) whenever B is strictly convex. Then, by approximating arbitrary convex domains by
strictly convex ones, one gets the equality of critical determinants without assuming strict
convexity. This approach however fails to provide the needed information on the critical
locus of Cg. Thus for the proof of Theorem 3.1 we need to make use of additional results
of Mahler regarding convex symmetric domains in R2.
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Theorem 3.6 ([C|, §V.8.3). Let A be B-critical, where B C R? is a conver symmetric
bounded domain. Then one can find three pairs of points +p, +q, tr of the lattice on OB.
Moreover these three points can be chosen such that

p=q-r (3.16)
and any two vectors among p,q,r form a basis of A.
Conversely, if p,q,r satisfying (3.16) are on OB, then the lattice generated by p and q

is B-admissible. Furthermore no additional (excluding the siz above) point of A is on OB
unless B s a parallelogram. O

A convex symmetric bounded domain in R” is said to be irreducible if every properly
contained convex symmetric domain has smaller critical determinant. We make use of the
following lemmata concerning irreducible domains in R2.

Lemma 3.7 (]M2]|, Lemmata 5 and 9). Assume B C R? is not a parallelogram and is
irreducible. Then:

(i) for each p € OB there is exactly one B-critical lattice containing p;
(ii) for each B-critical lattice A and each q,r € OB N A, all points of the line segment
between q,r different from q,r are interior points of B. [

Non-parallelogram irreducible domains also have continuously differentiable boundaries.

Lemma 3.8 ([M3]|, Theorem 3). For B C R? not a parallelogram and irreducible, the
boundary OB is a C' submanifold of R%. O

Given two critical lattices of such a domain we have the following configuration of their
points:

Lemma 3.9 ([M2|, Lemma 6). Suppose that B is not a parallelogram, A is B-critical, and
letp; :i=1,...,6 be the points of A contained in OB, labelled in a counter-clockwise order.
Let A; denote the open segment of OB between p; and pir1. If A is another B-critical
lattice distinct from A, then each A; contains exactly one point of A'. O

Lemma 3.10 ([M2], Theorem 1). Every convex symmetric bounded domain B C R? con-
tains an irreducible D with A(D) = A(B). O

4. THE CRITICAL LOCUS OF A CYLINDER: COMPLETING THE PROOF OF THEOREM 3.1

We now have everything needed to deduce Theorem 3.1.

Proof of Theorem 3.1. 1t is readily verified that each of the sets in (3.3) and (3.4) is in
L(C). We need to check the reverse inclusion. Next, if B is not irreducible, we can
apply Lemma 3.10 to obtain an irreducible D C B with A(D) = A(B). More is true:
since B is not a parallelogram, a simple application of Minkowski’s convex body theorem
shows that D is not a parallelogram either. We have the inclusion £(B) C £(D) and also
the inclusion of the corresponding cylinders C'p C Cp, which again induces the reverse
inclusion £(Cg) C L(Cp).

It is then elementary to observe that L£(B) (resp., £L(Cp)) is exactly the set of B-
admissible (resp., Cp-admissible) lattices in £(D) (resp., L(Cp)), see [KRS, Lemma 3.1].
So assuming the theorem is true for C'p, it is easy to observe that the set of C'g-admissible
lattices in £(Cp) is exactly what our theorem claims is £(Cp). Thus we can (and will)
assume for the remainder that B is irreducible. Let A be C-critical. We deal with two
cases, the first being that when A has three independent points satisfying equation (3.6).
In this case, we can assume that we have three independent points p1, p2, p3 € ANAJIC all
satisfying

(%) =1 (4.1)
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and, by Lemma 3.4, with p; satisfying (3.14).
Lemma 4.1. The points m—(p1),7—(p2), 7—(P3) satisfy the hypotheses of Lemma 3.5.

Proof. The assumptions on the points p; ensure that the 7_(p;) are in B. These assump-
tions also ensure that m_(p1) is in B. It remains to show that the open segment joining
m_(p2) and 7_(p3) is contained in B. Since B is irreducible, we see from Lemma 3.7 that
the only way this fails is if we have a B-critical lattice A’ with two points q1,q2 € A'NIB,
each distinct from 7_(p2) and 7_(p3), such that one of the segments of B connecting q;
to qo contains both 7_(p2) and 7_(p3) but no other point of A’.

In light of Theorem 3.6, we see that the six points of A’ N 9B are

di, 92, 92 — 41, —q1, —d2, qi — 2. (4.2)

Since q1 — q2, q1, q1 + q2 are collinear and similarly with q; and qs swapped, the segment
of OB joining q; and qs must lie in the convex hull, call it T, of q1, q2 and q; + q2. In
particular, using the assumptions on A’ along with Lemma 3.7, both 7_(p2) and 7_(p3)
must belong to the interior of 7. See the diagram (4.3) below for clarity.

qz q1 + q2
q2 —qi1 e

—qze eq1 — Q2

The sum T + (—T) of the magenta triangle is the pink hexagon.

The Minkowski sum 7+ (—T) is the convex hull of the set of pairwise differences of
the vertices of T' (that is, the differences of the points qi, q2 and q; + q2) which is
contained in B. Moreover, 7_(p2) — 7_(p3) actually belongs to the convex open set
interior(T") + ( — interior(7T)), which in turn is contained in B.

Since p2 and p3 are in A, and since they both satisfy equation (4.1), the above discussion
shows that the open segment joining 7_(p2) and 7_(p3) cannot contain points of 9B
without contradicting the C-admissibility of A. Thus the lemma is proved and we may
apply Lemma 3.5. U

Given any p € A, there exists u € Z such that the point p — up; satisfies

e ()] < 1/2. (1.4)
By applying Lemma 3.5 to the three points 7_(p;), we see that there exist v, w € Z such
that

m_(p —up1) —v(7—(p2) — 7~ (p1)) — w(7—(p3) — 7—(p1)) € B.
Since A is C-admissible, this along with (4.4) shows that we actually have
p —upi —v(p2 — p1) — w(p3 — p1) = 0.

Thus we have

A=[p2—p1 pPs—p1 p1 %"



DIRICHLET-IMPROVABLE PAIRS AND ARBITRARY NORMS 11

Equation (4.1) says that all the points p; are on top of the cylinder, so that we are in the
case where

1 0 =« 0
A=|o0 1 « Mg | 23
00 1 00 |1

with MZ? being B-admissible. On the other hand, since A(C) < A(B), we must have
d(MZ?) < A(B). From the definition of A(B) we get that d(MZ?) = A(B) so that it is
actually B-critical. Thus we have shown A is in the set (3.4).

We now turn to the case where A has fewer than three independent points satisfying
(3.6). B is still assumed to be irreducible. As in Lemma 3.3, we construct a path of
C-critical lattices

L(t)A, te]0,t1]

of the form (3.8). Precisely, L(t) is lower triangular unimodular with (2, 1)-entry zero and
t1 is such that L(t1)A has three linearly independent points satisfying (3.6), but no such
triple exists for ¢t < t1. We analyze the lattice L(¢1)A and the configuration of points lying
on the top of the cylinder.

To fix notation, let

1 0 0
L= 0 1 o0]. (4.5)
ta tf 1

Now suppose we have the points p(t) € L(t)A N OC with
T4 (p(t)) <1 fort <ty, and 7y (p(t1)) = 1.
We can assume p(0) = (p1,p2,p3) € A, and p(t) = L(t)p(0). Precisely,
p(t) = (p1, p2, t(ap1 + Bp2) + p3).
For later use we record here that

(p1,p2) - (@, B) == (ap1 + Bp2) > 0.

Now take three linearly independent points p1, p2, ps of L(t1)A on top of the cylinder
while fixing p; := p(¢1). Note that by Lemma 3.4 we can assume that po satisfies

v(m—(x)) < 1.

Applying Lemma 3.5 exactly as in first case dealt with above, we arrive at the conclusion
that lattice in R? generated by m_(p2 — p1) and 7_(p3 — p1) is B-critical. Thus L(t1)A is
again of the form
*
L(t1)A = M x| Z°
00 1

with MZ? being B-critical. Our goal now is to show that L(#;)A contains the point (0,0, 1).
This would enable us to write

0 1 00 0
L(t))A = M 0 |7 orrather A=|0 1 0 M 0 |z°,
001 x % 1 001

which would show that A is in the set (3.3).

To this end, we need to take careful stock of the various moving parts occurring in the
deformation of A. The reader is advised to stare at diagram (4.6) for a minute before
reading on.
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From Lemma 3.8, let T" be the tangent line to (B + 7 (pl)) at zero. Note that, by
Theorem 3.6 and Lemma 3.7, the intersection

OB N (m_(p1) + 0B)

consists of exactly two points r; and ro which generate the unique critical lattice of B
containing 7_(p1). Let A; and Ay denote the open arcs of 7_(p;1) + OB joining the
origin and r; and ry respectively. By Lemma 3.9, any B-critical lattice distinct from the
one containing m_(p;) is determined by its intersection with A; — 7_(p;) and uniquely
determines a second point in Ag—m_(p1). Moreover, by Lemma 3.7, these two hypothesized
points in A; — 7_(p1) and Ay — 7m_(p1) cannot both lie on the tangent 7' — 7_(p;1) to B
at —m_(p1).
All of this information is neatly summarized in the diagram below.

T

(4.6)
(o, B)
Q@ is determined by this line
Are the g; above a possible configuration for the points 7_(p2) and 7—(p3)?
We can finally prove
Lemma 4.2. Write A’ to be the B-critical lattice
Zr—(p2 — p1) + Z7—(p3 — P1)-

Then the origin belongs to the grid

7 (p1) + A, (4.7)

Proof. There are two possibilities for the B-critical lattice A’. It is either the B-critical
lattice containing 7_(p1), or it contains a point on each of the open arcs A; —m_(p1). The
conclusion of the lemma holds in the first case.

So, for sake of contradiction, we assume the second. Let q; — 7_(p1) and q2 — 7—(p1)
denote the two points of A’ on the open arcs A; — m_(p1). Then q; and gy are in A; and
As respectively. Moreover, these points are in the grid (4.7) and hence are the images of
points in the C-critical lattice L(t1)A that satisfy

v(m—(x)) <1 and 7y () = 1.

Now the vector (a, ) occurring in the deformation (4.5) determines an open half-plane @
by the inner-product condition

(a, B) - (x,%) > 0.

Since L(t)A is C-admissible for 0 < ¢ < t1, we see that both q; and g2 must satisfy
(a, B) - (%, %) < 0.

That is, 7—(p1) € @, and q; and g2 must belong to the closed half-plane Q°.
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Let A be the set of boundary points of B + m_(p1) contained in Q¢. We have just seen
that q1, q2 and 0 are in A, whereas 27_(p1) is not. Since 0 is in the boundary of @, and
since q; and g9 are in different components of the complement of the line determined by
m_(p1), we have that A must actually be a straight line.

This is a contradiction to Lemma 3.7 since, as noted above, q; and gy cannot both belong
to the tangent line 7. Thus we necessarily have that 7_(p1) € A’, and the conclusion of
the lemma holds. g

From this lemma and the fact that each of the p; is on top of the cylinder, that is,
satisfies equation (4.1), we see that (0,0,1) does indeed belong to L(t1)A. This concludes
this final case of the theorem. O

Example 4.3. The critical locus of the cylinder over the unit disc is given by the union
of two compact submanifolds (cf. [M1]):

cos(t) —sin(t) 0 1 1/2 0
sin(t) cos(t) 0 0 v3/2 0|Z:z,y,tcR (4.8)
T Y 1 0 0 1
and
cos(t) —sin(t) = 1 1/2 0
sin(t) cos(t) 'y V3/2 0 |Z3:z,yteR . (4.9)
0 0 1 0 o0 1
Each is the orbit of a subgroup of SL3(R), and the same is true for their intersection.
Letting v stand for the Euclidean norm in R?, on scaling each lattice above by

A;l/s _ (\/§/2>—1/3’

we get the critical locus £, associated to the norm (1.5). As mentioned before, this
normalization is done to ensure that the critical locus consists of unimodular lattices.

o

5. THE INTERACTION OF THE CRITICAL LOCUS AND THE FLOW

In order to use the results of the previous sections for the proof of our main result, it
will be convenient to introduce the following two subsets of Xj:

x* % 0 * % ok
Z, = x % 0 [2*) and Z_:= w o« ok | Z3
* k% 0 *x x

In words, Z, (resp., Z_) consist of lattices having a nonzero vector on the xs-axis (resp.,
on the (x1,x2)-plane).
Now observe that a combination of Theorems 3.1 and 3.2 readily produces the following

Proposition 5.1. Let 1 be the norm on R3 of the form (1.5). Then its critical locus Ly
15 contained in Z4 U Z_.

Proof. Let B := B, (1/A11,/3>, and recall that we have the equality A, = A,. Note that
if g € GL3(R) and if D is any domain, we have

A(gD) = |det(g)|A(D) and L(g9D) = gL(D). (5.1)
Using the matrix
10 0
g=]01 0 |, (5:2)
00 A
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we see that

9B, (1/A}/3) =B x[-1,1].
Suppose that B is not a parallelogram. Then by Theorem 3.1,

0 *
M M
L, = 0 7?: MZ* € L(B) » | * 73 : MZ? € L(B)
x x| A8 00 |4

This finishes the proof in this case, since the sets in the right hand side of the above
equation are contained in Z; and Z_ respectively.
In the remaining parallelogram case we have B, (1 / A,l/ 3) = ¢gC, where g is a linear
. 0
transformation of the form 0 |, and C is a ball for the supremum norm in
00 *
R3. Theorem 3.2 implies that every lattice in £(C) contains at least one vector from the
standard basis of R3; hence £(C) C Z, U Z_. Since g leaves both the (21, x2)-plane and
the xs-axis invariant, it also preserves the sets Z; and Z_, which, in view of (5.1), finishes
the proof of the proposition. O

We are now ready for the

Proof of Theorem 1.1. Recall that x € R? is badly approximable if and only if the orbit
{asAx : s > 0} is bounded (see |D, Theorem 2.20]). Take x € BA and let £ C X3 be a
compact set containing {asAx : s > 0}. In view of Corollary 2.2, we need to prove that
the forward as-orbit of Ay eventually avoids an open neighborhood of £,. Suppose that it
is not the case, that is, we have a,, Ax = A € L, for some sequence s, — co. In view of
the preceding proposition we are left to consider two cases.

Case 1. A € Z,. Since the z3-axis is a contracting eigenspace for as for s > 0, it follows
that the forward as-trajectory of A is divergent, which implies that

{s > 0:asA € K} is bounded. (5.3)

By continuity of the action and in view of (5.3), there is a & € N and an open
neighborhood V of A such that as VN K = @. This implies that as, +s,,Ax ¢ K for
large enough m, a contradiction.

Case 2. A € Z_. In this case, since the (z1,z2)-plane is a contracting eigenspace for ay for
s < 0, the backward as-trajectory of A is divergent, That is,

{s < 0:asA € K} is bounded. (5.4)

Again by continuity of the action and in view of (5.4), there is a neighborhood V
of A and s < 0 such that a,V N K = @. This implies that there exist infinitely
many k for which asys, Ax ¢ K. The flow time s + s; will eventually be positive,
contradicting the fact that the forward orbit of Ay is contained in K.

O

Proof of Corollary 1.2. Suppose, to the contrary, that ¢, is an isolated point of D,. This
means that there exists ¢ < ¢, such that ¢, (x) < ¢ for all x € DI,,. Proposition 2.1 then
implies that there exists r < r,, where 7 is again defined via (1.5), such that

DI, C {x € R? : aguy - Z* ¢ KC,)(r) for all sufficiently large s}. (5.5)

The exceptional sets similar to that in the right hand side of (5.5) were recently investigated
in [KM], where, in particular, the so-called Dimension Drop Conjecture was solved for the
as-action on X3. More precisely, since KC,(r) has non-empty interior, in view of [KM,
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Theorem 1.2] the set in the right hand side of (5.5) has less than full Hausdorff dimension,
which contradicts Theorem 1.1. O

We end the paper with a few remarks and questions.

Remark 5.2. Let B C R" be a bounded convex symmetric domain, and let Cz C R**!
be the cylinder over it. It would be natural to attempt to obtain a structure theorem for
L(Cp) similar to Theorem 3.1. However, even the equality of critical determinants is not
known in this generality. The only higher-dimensional example known to the authors can
be found in [W]: it establishes (3.2) for the special case of B being a Euclidean ball in R3.

Remark 5.3. Corollary 2.2 suggests that one can consider a Diophantine condition on x €
R? equivalent to the forward a,-orbit of Ay eventually avoiding some open neighborhood of
L,,, where 7 is an arbitrary (not necessarily cylindrical) norm on R3. This variation on the
theme of improving Dirichlet’s theorem has been thoroughly explored in [KR| in a much
more general set-up of m x n matrices. In particular, the full Hausdorff dimension (and,
even stronger, the hyperplane absolute winning property) of the sets of lattices avoiding
the critical locus has been established in several special cases, such as: an arbitrary norm
on R? [KR, Theorem 1.3] and the Euclidean norm on R™*" [KR, Theorem 3.7]. In both
cases a connection with badly approximable matrices is no longer clear, and the proof is
based on results from [AGK]| of the first named author with An and Guan. Whether or
not a similar full dimension or winning result holds for an arbitrary norm on R™" is an
open question.
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