
-����.��#��/�+���
�
�����0�!%%����!�������%!�����0�����!�
�����	

)))��!��0���
���%�#
!%�
��
&����!�1�0��#!�
��2&����!�+���3�%����

����	
���
���������	��
���

�

��������
�������������	����������������

���  !!!"
���#������"��� ��� ����$%

&�������'�����!�
������
(���)��������	����
������
��*��
	���
�+������'���
�,�����	��
���
!����������������������	���������
�������
!��-
����*���

��������.�����'���/��������0*���/�1���
*����2�'�
��3�*���4������5��'�

6����
��
������
�����������	
��
�
������������������	��������������
����������������	������
� !  "#�$%���&�&������'����
����(#��)*�������+**������&���
�����+
����,�	���
���
��-�����+�
����
'�����*
���*����
&&����+������*����&�	����'��.�
�
���������&*+����/	���	���
+	
������01%#
2!32!4!5!46678!43 !  3 !889: 

6�����-�
��
������
������������	

��
����
�������
���������������������

����
��������
��	���� !�������

"��#
��$����!��
%��������
��&����!��

'��
%���(
�)�	���

*
�)����!����!��
%����

*
�)�+����#!�,��!�!

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2022.2044672
https://doi.org/10.1080/08993408.2022.2044672
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2022.2044672
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2022.2044672
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2022.2044672&domain=pdf&date_stamp=2022-03-09
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2022.2044672&domain=pdf&date_stamp=2022-03-09


“I remember how to do it”: exploring upper elementary 
students’ collaborative regulation while pair programming 
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ABSTRACT
Background and Context: Students’ self-e!cacy toward comput-
ing a"ect their participation in related tasks and courses. Self- 
e!cacy is likely in#uenced by students’ initial experiences and 
exposure to computer science (CS) activities. Moreover, student 
interest in a subject likely informs their ability to e"ectively regulate 
their learning in that domain. One way to enhance interest in CS is 
through using collaborative pair programming.
Objective: We wanted to explore upper elementary students’ self- 
e!cacy for and conceptual understanding of CS as manifest in 
collaborative and regulated discourse during pair programming.
Method: We implemented a $ve-week CS intervention with 4th 
and 5th grade students and collected self-report data on students’ 
CS attitudes and conceptual understanding, as well as transcripts of 
dyads talking while problem solving on a pair programming task.
Findings: The students’ self-report data, organized by dyad, fell 
into three categories based on the dyad’s CS self-e!cacy and 
conceptual understanding scores. Findings from within- and 
cross-case analyses revealed a range of ways the dyads’ self-e!cacy 
and CS conceptual understanding a"ected their collaborative and 
regulated discourse.
Implications: Recommendations for practitioners and researchers 
are provided. We suggest that upper elementary students learn 
about productive disagreement and how to peer model. 
Additionally, our $ndings may help practitioners with varied ways 
to group their students.
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1. Introduction

Students’ initial experiences and exposure to computing as well as socio-cultural percep-
tions around gender and computing in#uence their attitudes toward computer science 
(Jepson & Perl, 2002; Mejias et al., 2019). Research suggests that consistent and high- 
quality experiences with computer use both in- and out-of-school likely inform students’ 
interest in and self-e!cacy for computing. Prior studies have shown that initial, low 
quality experiences may prove boring (see, Goode, 2010; Moyer et al., 2018) or deleterious 
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to one’s self-e!cacy (Lishinski et al., 2016) and that these experiences a"ect students’ 
participation in related tasks and courses, and the likelihood that they will pursue a 
degree program in CS or a career related to computing (e.g. Cassel et al., 2007; Mitchell 
et al., 2009; Yardi & Bruckman, 2007). Moreover, a lack of access to early and frequent 
computing activities may in#uence students away from considering studying computing 
in the future (see, Tran, 2018).

One strategy employed to provide high-quality, engaging programming experiences, 
especially among girls and historically underrepresented minorities, is through the use of 
pair programming (McDowell et al., 2006; Porter et al., 2013). This collaborative approach 
to learning computer programming has been shown to result in higher self-e!cacy, in 
part, because the stereotype of solitary programmers is attenuated and the two pro-
grammers engage in supportive discussion of their thinking (L. L. L. L. Werner et al., 2004). 
In fact, Zhong et al. (Zhong et al., 2016) found that pair programming improved young 
students’ sense of partnership and collaboration. Pair programming has primarily been 
studied with high school and university-aged students (e.g. Missiroli et al., 2016; Williams 
et al., 2000), but there is a growing interest in applying it with younger students since 
collaborative learning strategies are regularly used in elementary classrooms (e.g. Gillies & 
Boyle, 2010).

The verbal interchange between students is both seen as a central facet of e!cacy of 
this strategy and a means of eliciting data for a better understand of how and why it may 
be e"ective. Pair programmers’ collaborative discussions are a focal point here as we are 
particularly interested in how students’ discourse over the course of a programming 
activity may illuminate individual and pair learning strategies. These strategies are driven, 
in part, by cognitive regulation on the part of the programming pair. An individual’s ability 
to regulate their learning signi$cantly predicts their group’s regulation (Panadero et al., 
2015). Moreover, when groups utilize more regulatory strategies, they often perform 
better on their academic tasks (Janssen et al., 2012).

There is longstanding interest in the relationship of academic self-e!cacy, prior knowl-
edge, and learning outcomes (Hinckle et al., 2020). Far less work has been done in this 
area with younger students in computer science or how these a"ective and cognitive 
factors may in#uence the collaborative regulatory dynamics inherent in pair program-
ming. Although studies with older students indicates that individual regulatory ability 
predicts group regulatory ability (Panadero et al., 2015), less is known about whether this 
holds for younger students or the impact of similar or di"ering levels of prior knowledge 
and self-e!cacy within the dyad.

2. Literature review

2.1. Theoretical framing: collaborative regulation of learning

Learning is often a social activity, and through talking with others, students’ individual 
cognitive capacities are recruited, constructed and re$ned (Mercer et al., 1999). As such, it 
is important to consider how students regulate themselves and others in group learning 
tasks, to what extent individual regulation in#uences group regulation (Panadero et al., 
2015), and how group processes in#uence an individual’s acquisition of self-regulated 
learning skills (Hadwin & Oshige, 2011).

2 J. VANDENBERG ET AL.



Research into how students collectively engage in academic regulation emphasizes 
student interactions and #uctuations in group member in#uence, in particular in task 
performance and their related social processes. For example, dyadic social processes were 
monitored by group members more so than task processes on an inquiry-based compu-
ter-supported collaborative learning (CSCL) activity (Saab et al., 2012). This $nding implies 
that regulating the (social) collaborative process is paramount to, and perhaps facilitates, 
e"ective task performance. In partial contrast, Janssen et al. (2012) found that groups 
devoted approximately 35% of their time to planning and monitoring their task and 30% 
of their time to social processes – both creating a shared understanding and social 
support – however, only the regulation of social processes contributed positively to 
group performance.

Students’ discourse gives insight into what they think, what they want, and how they 
make sense of tasks (Johnstone, 2017; Potter, 1998). Students’ own words while engaged 
in a programming activity can be especially informative when we also consider students’ 
self-reported self-e!cacy toward CS and their performance on a CS assessment. This 
follows because of $ndings around prior experience likely fosters both conceptual under-
standing and self-e!cacy (Schunk, 1995), which can lead to better academic regulation 
(Bradley et al., 2017; Pajares, 2002). This better academic regulation tends to promote 
better learning outcomes (Schunk & Zimmerman, 2012), which then leads to higher 
conceptual understanding and self-e!cacy, thus completing the virtuous cycle.

To examine students’ discursive collaborative regulation, we previously designed, 
piloted, and re$ned a framework (Vandenberg et al., 2021; Vandenberg, Tsan, Zakaria et 
al., 2020); (see, Table 1) that included components of regulation frameworks by Hadwin et 
al. (2005) and Janssen et al. (2012), and a social talk framework by Kumpulainen and 
Mutanen (1999). The design and re$nement process occurred largely because the existing 
frameworks included elements not relevant to the population or contexts under study.

Table 1. Collaborative regulation of learning framework.
Dimension Code (k) Definition Examples
Task Planning the 

task (.84)
Discussion of the task, how to complete it, deciding which 

strategies to employ, responsibilities students will take on
Let’s start by picking a 

background.
Monitoring task 

progress (.90)
Discussion of performance and progress, specific mention of 

strategies being used to approach the task, mentions of 
time

The glide block worked 
better last time, so 
let’s try that.

Evaluations of 
task progress 
(.78)

Review of performance and progress, includes appraisals of 
task difficulty

That was harder than I 
thought it would be.

Social Collaborative 
(.82)

Actively engaging with partner, attempts to maintain 
symmetrical contributions

Let’s change it so she 
says “hello” for longer, 
don’t you think?

Agreement (.78) Acknowledgements and affirmations, most often in 
response to a partner’s contribution

Oh yeah!

Tutoring (.82) Asking for or offering help/assistance Hey, how do I add 
another sprite?

Disagreement 
(.84)

Social or academic conflict I’ll delete it if you write 
that in there.

Confusion (.73) Failure to understand the partner or the task, often 
accompanied by a question

What are you talking 
about?

Individualistic 
(.90)

Working independently with no clear attempt to involve the 
partner

[these examples often 
looked like self-talk in 
proximity to another]
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2.2. Assessing young students’ CS self-e!cacy and conceptual understanding

There is an established link between students’ self-e!cacy for a content area and their 
performance in that area (Brosnan, 1998; Lishinski et al., 2016). In a study with six year old 
students, even brief experiences with programming have the potential to enhance not 
only their individual technology motivation and interest, but such experiences also 
reduce students’ perception that programming is only for boys (Master et al., 2017). 
These $ndings are important as they support the links between interest, self-e!cacy, 
and intentionally designed experiences, all of which, Bandura et al. (1999), increases 
students’ e"ort and contributes to higher achievement. Less is known about how a 
student’s outcome expectancy and self-e!cacy interact in a collaborative context and 
how these may contribute to the student’s individual and group regulatory performance.

There is limited work on assessing upper elementary students’ self-e!cacy towards CS, 
coding or programming in particular. In fact, there are, to date, only three published, 
validated instruments for 4th and 5th grade students whose underlying constructs are 
interests, attitudes, or self-e!cacy. Kong et al. (2018) developed a 15-item 5-point Likert- 
scale survey that queries students on programming meaningfulness and impact, and 
creative and programming self-e!cacy. They also assessed if programming interests were 
related to these four factors; they found that students with more interest in programming 
found it to be more meaningful and impactful and had higher self-e!cacy. Moreover, 
boys had higher interest than girls. Mason and Rich (2020) developed a 24-item 6-point 
Likert-scale survey that queries students on what they call attitudes toward coding that 
comprises students’ coding con$dence and interest, the perceived utility of coding, and 
students’ perceptions of coders and social in#uence. They found that when students self- 
report high interest in coding, they have greater coding self-e!cacy, supporting research 
in other subject areas (e.g. Grigg et al., 2018; Sheldrake, 2016). Of note, gender di"erences 
in coding attitudes were small, although statistically signi$cant, and the authors suggest 
that younger students may have less exposure to gender bias in coding. This interest in 
young students’ coding attitudes is also taken up by Vandenberg et al. (2021a). This 11- 
item 5-point Likert-scale survey queries 4th and 5th grade students on the two psycho-
logical factors of self-e!cacy and outcome expectancy toward CS, coding in particular. 
These factors are empirically connected; individuals are motivated by their beliefs in their 
capabilities to complete a speci$c task (self-e!cacy) and that completing that task will 
produce a desired outcome (outcome expectancy; Bandura et al., 1999). We found that 
boys had statistically signi$cantly higher CS self-e!cacy and outcome expectancy than 
girls and that there were no statistically signi$cant di"erences by race/ethnicity.

As noted earlier, prior experience and its associated knowledge development also 
in#uences regulatory processes (Schunk & Zimmerman, 2012). Regarding CS conceptual 
understanding, as with measuring the a"ective domain, there has been minimal work 
done with developing and validating instruments appropriate for upper elementary aged 
students. Román-González et al. (2017) created a largely block-based assessment for 5th 
through 10th grade students, which emphasizes computational thinking rather than 
explicit computer science concepts. Another instrument, developed for 10 to 14 year 
old students, used block-based coding in Alice as a way to score students’ computational 
thinking in a performance assessment, rather than a more traditional multiple-choice 
instrument (Werner et al., 2012). Most recently, Vandenberg et al. (2021b) validated a 

4 J. VANDENBERG ET AL.



measure appropriate for upper elementary students that utilized mostly block-based 
programming language and which targets core CS concepts, such as loops, conditionals, 
variables, and algorithms. It is this instrument that we used in our work.

2.3. Pair programming

In CS education, collaborative work often takes the form of pair programming. 
Traditional pair programming entails two students working on a single computer, 
each student has a designated role – the driver who has control of the input devices 
and the navigator who strategically guides the work (Williams et al., 2000). Both 
programmers are expected to talk continuously about their work, engage in collabora-
tive problem solving, and to switch roles after a set amount of time or portion of the 
task has been completed. This pedagogical con$guration has been used in industry 
(Canfora et al., 2007), in undergraduate classes (Williams et al., 2000), and in high school 
(Missiroli et al., 2016). As interest in CS education has moved to earlier grades, there is a 
growing interest in using pair programming with younger students (e.g. Denner et al., 
2014; Shah et al., 2014; Tsan et al., 2020). Research suggests that the pair programming 
approach may be particularly helpful for females (Werner et al., 2004) and may increase 
pair programmers’ con$dence in, and enjoyment of programming (McDowell et al., 
2006).

2.4. Epistemic network analysis

Close study of the collaborative work of pair programmers inevitably means structured, 
systematic analysis of their discourse. Although qualitative methods of coding and 
analyzing dialogue have long been used in this type of research, typically relied on 
manual processes of linking individuals’ talk temporally and across members of the 
group. Newer methods have emerged that provide unique and powerful insights into 
the discursive dynamics of dyads. Epistemic Network Analysis (ENA) is a mixed methods 
and data visualization technique for modeling and analyzing the temporal connections 
in qualitatively tagged discursive data within and across individuals. This modeling is 
based upon quantifying the co-occurrence of codes/tags within a conversation. This in 
turn generates a weighted network of co-occurrences and related visualizations for each 
unit of analysis. ENA permits researchers to compare these networks visually, statisti-
cally, and qualitatively by analyzing networks concurrently. ENA was originally devel-
oped to explore the interdependence of cognition, culture, and discourse (Sha"er et al., 
2016); use of the technique assumes that connections in the tagged discourse – spoken 
or typed – are meaningful. That is, temporally adjacent statements are likely cognitively 
linked. Others have used ENA to explore university students’ design thinking 
(Arastoopour et al., 2016), surgical residents’ speech and inclusion of error checklists 
(Ruis et al., 2018), and socioemotional group interactions in an online STEM education 
course (Wang et al., 2020).

ENA, coupled with self-e!cacy and prior knowledge data, provides us a particularly 
powerful approach to look at the role of these a"ective and cognitive dimensions in 
regulatory processes of collaborative programming. The self-e!cacy and prior conceptual 
understanding data on individuals allows us to set up groupings of homo- and 
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heterogenous dyads to be studied in depth using ENA. As noted, ENA provides us tools to 
systematically compare and contrast these di"erent dyadic groupings. This work will be 
guided by the following research questions.

3. Research questions

Guided by the literature above, we set out to answer the following questions:
1. How do dyads’ individual self-e!cacy and conceptual understanding scores in#u-

ence collaborative regulated discourse?
1a) How do individuals within dyads with similarly high self-e!cacy and conceptual 

understanding scores collaboratively regulate their learning?
1b) How do individuals within dyads with similarly low self-e!cacy and conceptual 

understanding scores collaboratively regulate their learning?
1c) How do individuals within dyads with mixed self-e!cacy and conceptual under-

standing scores collaboratively regulate their learning?

4. Method

The purpose of this study is to explore how students’ collaborative regulatory discourse 
di"ered based on CS self-e!cacy and CS conceptual understanding within dyads of pair 
programmers. Students’ scores on two self-report measures, taken at the outset of the 
study, sorted them into High, Low, and Mixed dyadic categories. We then tagged students’ 
collaborative discourse using an academic and social regulation framework to discern how 
these di"erent categories manifest in students’ collaborative talk. Using Epistemic Network 
Analysis (ENA) to visually and qualitatively model dyads’ discourse, we study whether High 
and Low dyads spoke and academically regulated in ways anticipated by their individual 
psychological dispositions. Prior literature provides little guidance as to how we would 
expect Mixed dyads to regulate. Thus a more exploratory approach will be used to provide 
additional insight into how young students collaborate in such pairings.

4.1. Participants and context

Consented participants included 60 4th and 5th grade students (out of a total of 76 
students in both grades) from a school in the southeastern United States. The school’s 
socio-demographic data included 75% White/Caucasian, 10% Black/African American, 
5.5% Multiracial, 6.5% Latinx/Hispanic, 3% Asian, with 4% of the student population 
deemed low-income and 51% of the students identi$ed as female. The educational 
theme of the school centered around global education and awareness in addition to 
project-based learning. In alignment with others’ ENA work (Bressler et al., 2019) with 
similarly aged student and in acknowledgement of the qualitatively-intensive analysis, we 
analyzed 24 students, organized into 12 dyads; these dyads were selected based on 
recorded audio quality and completion of all of the instruments.

The students attended weekly technology classes and learned a series of block-based 
coding lessons, as guided by their technology teacher. The intervention was designed to 
incorporate $ve total lessons for each group of students. The lessons instructed students 
on foundational CS concepts such as how to use conditionals, loops, and variables. The 
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teacher paired the students based on her assessment of who might work well together, 
and the students retained these partnerships over the duration of the study. As part of 
their participation in the study, all students completed several self-report surveys. The E- 
CSA (Vandenberg et al., 2021a) and ECSCA (Vandenberg et al., 2021b) were administered 
pre-intervention to assess their knowledge, self-e!cacy, and outcome expectancy com-
ing into the study. Table 2 presents the students’ pseudonyms and relevant data for the 
following analysis.

4.2. Instruments

4.2.1. Elementary-Computer Science Attitudes (E-CSA) (self-efficacy items)
This 11-item 5-point Likert scale survey intended for upper elementary use queries 
students on their self-e!cacy and their outcome expectations for learning CS, coding 
more speci$cally, and was adopted from the middle grades version developed and 
validated by Rachmatullah, Wiebe, et al. (2020). Based on a previously validated ques-
tionnaire, this version underwent revision and validation through cognitive interviewing 
(Vandenberg, Tsan, Boulden et al., 2020) to ensure appropriate wording for young 
students and has undergone con$rmatory factor analysis and item response theory- 
Rasch analysis for establishing validity and reliability (Vandenberg et al., 2021a). The CS 
self-e!cacy subscale consisted of 4 items (α = .812) and the CS outcome expectancy 
subscale consisted of 7 items (α = .838). For our analysis, we only used the students’ 
answers to the subscale containing the 4 self-e!cacy items. These include statements 
such as, “I am good at $xing code”. Students were then organized into high-low cate-
gories via a median split.

Table 2. Participant pseudonyms and status indicators.
Dyad Number Pseudonym E-CSA Self-Efficacy Status E-CSCA Status Dyad Status
1 Melanie high high High
1 Poppy high high High
2 Mila high low Mixed
2 Nathan low low Mixed
3 Max low low Low
3 Joshua low low Low
4 Samantha low high Mixed
4 Andi high low Mixed
5 Rylee low high Mixed
5 Amber high low Mixed
6 Phoebe low low Mixed
6 Kylie high high Mixed
7 Emma high low Mixed
7 Malachi high low Mixed
8 Louis low high Mixed
8 Ashley low high Mixed
9 Sahil low high Mixed
9 Ezra high low Mixed
10 David high low Mixed
10 Leo low low Mixed
11 Allegra high low Mixed
11 Chloe high low Mixed
12 Alaina low low Mixed
12 Arden low high Mixed
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4.2.2. Elementary-Computer Science Concepts Assessment (E-CSCA)
This 18-item multiple choice assessment intended for upper elementary use queries 
students on their knowledge of foundational CS concepts such as loops, conditionals, 
and variables and does so using mostly block-based language. Based on a validated 
middle grades version that assessed the same concepts (Rachmatullah, Akram et al., 
2020), the elementary version’s results (Vandenberg et al., 2021b) indicate psychometri-
cally sound items with no statistically signi$cant item bias by gender or grade. Item 
response theory (IRT) analysis indicated an appropriate range of item di!culty for the 
target ages, thus capable of di"erentiating between a range of abilities. We used the 
students’ scores on the assessment to organize them into high-low categories via a 
median split (Table 2).

4.3. Procedure and analysis

We used a mixed methods design (Creswell & Clark, 2017) to our work. Our data included 
quantitative student self-report scores and qualitatively coded student transcripts. 
Moreover, we used ENA to create visual network models, with both quantitative and 
qualitative information.

Dyads were video and audio recorded each time they collaboratively programmed. We 
used Open Broadcaster Software (https://obsproject.com/) to align the dyads’ webcam 
video, their audio (gathered through headsets attached to the laptop), and their screen 
capture. The videos, approximately 40 to 50 minutes in length, were transcribed verbatim 
and qualitatively tagged using the collaborative regulation of learning framework (see, 
Table 1). The videos were selected from the second or third day of the intervention; 
thereby providing the students time to acquaint themselves with their partner and to 
learn certain CS concepts. The task most of the students analyzed here focused on was 
user input, or coding a sprite to query the user and then use that information to respond. 
The number of discursive moves made by the dyads ranged from 431 to 1,020, with an 
average across the 12 dyads of 712 moves.

Each task-related utterance a student made was tagged with one code from the Task 
Regulation dimension, as the students demonstrated which phase of the regulation cycle 
they were in, and at least one code from the Social dimension, as the students used their 
language to communicate for speci$c purposes, such as to disagree or express confusion. 
The $rst author trained a second researcher on the framework and, after resolving 
misunderstandings of the codes, they dual coded 25% of the dataset (three transcripts/ 
videos). Kappas were computed on each category (see Code column in Table 1 for 
individual category kappas), ranging from a low of .73 in the Confusion category to a 
high of .90 in both the Monitoring and Individualistic categories. An overall kappa of .82 
and agreement of .96 was reached (McHugh, 2012). Having established acceptable kappa 
and in adhering to the literature on dual coding at minimum 20% of the data (Syed & 
Nelson, 2015), the $rst author then proceeded to solo code the remainder of the 
transcripts/videos.

The qualitatively tagged transcripts were then imported into ENA along with necessary 
metadata, including dyad number, pseudonyms, the individual students’ high/low status 
based on their scores on the E-CSA (self-e!cacy) and the E-CSCA, and overall dyad status. 
The individual student scores were assigned a high or low status designation determined 
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by a median split of all the students’ data (see, Table 2). Dyad Status was determined by 
comparing the individual members of the dyads’ CS self-e!cacy status (low or high) and 
conceptual understanding status (low or high). Dyads where both members achieved 
high on both instruments were deemed High Dyad Status (n =1). Low Dyad Status was 
ascribed to those dyads where both members achieved low status on both instruments 
(n =1); Mixed Dyad Status was applied to the remaining dyads whose members had a mix 
of high and low scores on the two instruments (n =10). We then created a series of ENA 
models hierarchically organized by the dyads’ collective performance on the two 
instruments.

To answer our research questions, we created our models using the following informa-
tion. The units of analysis were all lines of data associated with a single value of Dyad 
Status subsetted by Dyad and by individual Student. By hierarchically organizing our units 
in this way, we could visually compare the three types of Dyad Status: Low, Mixed, and 
High. That is, we could analyze how the dyads’ regulated discourse di"ered according to 
their dyadic self-e!cacy and performance status.

Next, we made determinations about how ENA would make connections within 
the students’ dyadic discourse. Our data were segmented into turns of talk, wherein 
everything a single student said was bracketed on either side by what was said by 
their partner. These turns of talk could be brief utterances such as “huh?” to longer, 
multi-sentence statements that included task relevant and irrelevant responses. 
Temporal proximity in students’ discourse likely indicates meaningful connection 
(Siebert-Evenstone et al., 2017). Connections within the networks are determined 
by creating a scanning window for the co-occurrence of tags in the current state-
ment and within a set number of previous lines, in our case the window was 8 lines 
(or 8 turns of talk). We settled on this window length because qualitative analysis of 
the pairs’ discourse for rates of connections indicated they often conversed at length, 
suggesting a larger window size would capture the richest connections. Our ENA 
model included the following tagged collaborative regulation categories (from Table 
1): Planning, Monitoring, Evaluation, Collaborative, Agreement, Tutoring, 
Disagreement, Confusion, and Individualistic. In each network model, each node 
represents a collaborative regulation category. A dimensional reduction via a single 
value decomposition (SVD) algorithm was used to rotate the model, similar to what 
occurs in principal components analysis, so that the x-axis explains the greatest 
variance among the units and the y-axis explains the second greatest variance 
(Arastoopour et al., 2016). Our model had co-registration correlations of 0.99 
(Pearson) and 0.99 (Spearman) for the $rst dimension and co-registration correlations 
of 0.96 (Pearson) and 0.96 (Spearman) for the second.

We analyzed the resulting normalized models according to the node size, edge (or line) 
thickness, and node placement. Node size indicates the frequency of the corresponding 
collaborative regulation category that occurred relative to all category co-occurrences. 
Edge thickness, which appears both as width and color intensity, indicates the relative 
frequency of the connected collaborative regulation categories, or nodes. ENA places 
nodes using an optimization routine that minimizes the distance between the represen-
tative point of the network and the centroid of that network model (Sha"er et al., 2016). 
Thus, a centroid “summarizes the network as a single point in the projection space that 
accounts for the structure of connections in the speci$c arrangement of the network 

COMPUTER SCIENCE EDUCATION 9



model” (Sha"er et al., 2016, p. 16). In our models, the dyad centroids are represented as 
unconnected squares, with red denoting High, blue denoting Mixed, and purple denoting 
Low, and each represent the mean of all dyads within that group.

Because we were interested in looking at the role inter- and intra-dyad di"erences 
in self-e!cacy and content knowledge might play in regulatory discourse while pair 
programming, median splits with E-CSA (self-e!cacy) and the E-CSCA (content 
knowledge) scores were used to form analysis groupings. This approach was driven 
by empirical connections between student self-e!cacy and CS knowledge or experi-
ence (Beyer & Haller, 2006; He & Freeman, 2010; Hinckle et al., 2020), and these two 
constructs and regulation (Moos & Azevedo, 2008; Pintrich, 2000; Zimmerman, 2000). 
Based on the prevailing literature, we anticipated that students would largely score 
similarly on both measures – high or low on both. However, of the 24 students under 
analysis, 15 had mixed scores. Therefore, we started by creating the mixed dyad 
group, comprising 10 dyads with both inter- and intra-di"erences in self-e!cacy and 
knowledge scores. As the next step, we start our analysis by closely examining the 
mixed cases to see what patterns and thematic groupings emerge within this group-
ing. Prior work shows that these mixed dyads may provide more insight into how 
self-e!cacy and prior knowledge a"ects discursive patterns while collaborating (cf., 
Denner et al., 2014; Mohamed, 2019).

5. Findings

The nodes within ENA permit us to compare several networks and to ascribe 
meaning to where dyads’ centroids reside in the model, relative to the nodes. 
Figure 1 displays singular, extreme cases of High and Low dyads. That is to say, 
one dyad has each member score as high on both instruments, noted as the red 
High square in the $gure, and one dyad had each member score as low on both 
instruments, noted as the purple Low square in the $gure. We begin our $ndings 
by providing a within-case report for each of these extreme cases. Table 1 provides 
our codes, de$nitions, and examples.

5.1. Extreme cases: high to low

5.1.1. High: dyad 1
Dyad 1 students, Poppy and Melanie, collectively uttered more co-occurring statements 
tagged as Monitoring and Collaborative, Monitoring and Agreement, Collaborative and 
Agreement, and Monitoring and Tutoring. Collaborative regulation researchers main-
tain that students’ use of task-regulating behaviors (e.g. monitoring) contributes to 
e"ective collaboration (Janssen et al., 2012; De Jong et al., 2005). Excerpts from the 
students’ work demonstrate how the two smoothly move from collaboratively agreeing 
on their problem-solving approach to questioning the other’s strategy to talking 
through their individual desires to resolving minor disagreements, such as in the 
excerpt in Table 3.
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In this excerpt, Melanie, who is navigating, encourages Poppy, the driver, to clean up 
the code so it appears neater. Poppy initially resists, but after Melanie asks to “just try it”, 
Poppy realizes that the “jumbled” code blocks are not simply messy looking but that they 
are not permitting the program to run how the girls desired.

Figure 1. ENA network diagram of high and low dyads displaying high dyads in red and low dyads in 
purple.

Table 3. High dyad: excerpt 1.
Student (Driver or 
Navigator) Utterance

Melanie (N) Oh, we need to put a space in, in front of . . . I wonder if we should do a say [block] . . . Wait, 
why’d you put that?

Poppy (D) Oh.
Melanie (N) Back space and then space. I wonder if we should do that on another line so that, like another 

say, so that it’s not like, so awkward ‘cause it’s like all in one, you know?
Poppy (D) [reading the code] What’s your name? PM, enter. Hello, PM. Nice to meet you.
Melanie (N) I think we should do like-
Poppy (D) No, I think, I think, I think it’s good like this ‘cause it, ‘cause-
Melanie (N) But it’s all jumbled, I feel. I feel like it could just be a little neater.
Poppy (D) Hm.
Melanie (N) What do you think?
Poppy (D) Should we do it? I feel like we should-
Melanie (N) Can we just try it and then-
Poppy (D) Hello, PM, then it would go off. Then it would say nice to meet- [runs the code]
Melanie (N) Yeah.
Poppy (D) . . . you. Yeah, I guess that would work.
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Grounding, or seeking shared understanding of the task goal or next steps, is essential 
for collaboration and to prevent unproductive con#ict (Erkens et al., 2006; Jeong & Hmelo- 
Silver, 2016). In Poppy and Melanie’s discourse, grounding occurs through their use of 
Tutoring and Agreement statements, in particular. The Tutoring statements, as noted in 
Table 4, were often simple requests for clari$cation and task-related assistance so the two 
could remain grounded.

In this excerpt, the girls were tasked with building code such that a user would be 
given options of letters to select and, upon selecting one, a written response would 
appear in addition to an image, in this case fruit. Poppy is the driver again and receives 
tutoring assistance from Melanie in the form reminders of needing to use a loop, which 
one to use, and why that loop block is necessary.

5.1.2. Low: dyad 3
Dyad 3 students, Max and Joshua, o"ered more co-occurring statements that included 
Planning. That is, Planning and Collaborative, Planning and Disagreement, Planning and 
Confusion, and Planning and Tutoring. Collaborative regulation research often reports 
that students rarely plan (Järvelä & Hadwin, 2013), so these consistent co-occurring 
statements that include Planning are intriguing. However, upon closer examination of 
the dyad’s transcripts, in conjunction with watching their video, the boys seldom pro-
gressed beyond the planning stage of the task as they intermittently sang songs, engaged 
in o"-task conversations about popular YouTube videos, and, after discovering the 
decibel scale for the research audio collection, made loud noises to get the scale to “go 
red”. They only focused on their coding task when they saw an adult nearby or when their 
teacher sat and took them through the lesson step-by-step.

The boys’ use of Tutoring statements largely revolved around exclamations for help 
(ie., “Max! Help me!”) and questions such as “Max look, I need help, where do we go now?” 
and “Can you help me?” A brief excerpt that includes Planning, Tutoring, Confusion, and 
Disagreement statements appears in Table 5.

Table 4. High dyad: excerpt 2.
Student (Driver or 
Navigator) Utterance
Melanie (N) So we need to use a loop.
Poppy (D) But which?
Melanie (N) Oh this one- points at the screen If space key pressed-
Poppy (D) Okay.
Melanie (N) This is-
Poppy (D) So, if space key pressed, this happens. And then you need to put that in a loop.
Melanie (N) Space key pressed.
Poppy (D) So pick three letters. How about A, M, and T?
Melanie (N) Okay.

. . . . . . the girls debate which fruits to represent the letters during which time Poppy references 
class time ending soon

Melanie (N) But we need to work, but, okay, so we need to put this in a loop but we need to make it so this 
changes every time.

Poppy (D) Eh, that’s hard.
Melanie (N) But for now, let’s try it.
Poppy (D) Say “mango” for 2 seconds
Melanie (N) Wait. It needs to like ask [the user] something-
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Following this excerpt, the boys engage in o"-task banter interrupted twice by Joshua 
asking Max for help. Joshua drags one block to the scripting area during this $ve-minute 
time period, after which Joshua states, “Okay, we’re going to start”. The teacher appears in 
the video and guides the two toward selecting the next block which is intended to ask the 
user their name. The boys then begin to chant “what’s your name?” and make nonsense 
sounds repeatedly.

The two only engaged in Monitoring behaviors once during the almost 42-minute 
coding session. That excerpt appears in Table 6, with co-occurring Confusion and 
Disagreement utterances. It is important to note that Max, as driver, is the only one 
interacting with the programming environment at the beginning of this excerpt.

For the remaining 20 minutes of the coding session, the boys worked without adult 
assistance only twice; once they worked to change what the sprite said and the other time 
they changed the sprite’s size. However, three times, adults intervened for a total of 
9 minutes and 37 seconds. Of the $ve tasks the students were expected to complete, the 
boys correctly completed two and both were done with adult assistance.

5.2. Mixed dyad status

The remaining 10 dyads comprise the Mixed Status. Noted previously, there is minimal 
literature to guide how young students’ individual CS self-e!cacies and performance may 
in#uence their collaborative and regulated discourse, so we explored these dyads for 
patterns to see what $ndings emerged. The following ENA model (see, Figure 2) displays 

Table 5. Low dyad: excerpt 1.
Student (Driver or Navigator) Utterance
Joshua (D) Max! Help me!
Max (N) Dude, you’re the driver.
Joshua (D) I don’t know how to do this.
Max (N) Wait. What are we supposed to do?
Joshua (D) Reading the directions on the screen Create a program that takes- that takes . . .
Max (N) Okay.
Joshua (D) Reading the directions on the screen . . . in your user’s name and greets them.
Max (N) So the first thing we do- You go to the costumes
Joshua (D) Wait. I don’t know. Is it-?
Max (N) Today . . . Begins talking about a YouTube challenge video

Table 6. Low dyad: excerpt 2.
Student (Driver or 
Navigator) Utterance

Max (D) This is- I don’t get this. So I put all of these in the if [block]?
Joshua (N) Inaudible (not wearing headset)
Max (D) So all of them in? Oh- just the say [block].
Joshua (N) Inaudible (not wearing headset)
Max (D) If-
Joshua (D) Shifts laptop toward himself, becomes audible, and assumes the Driver role I know, I know.
Max (N) Answer is right. Answer is right. Answer.
Joshua (D) Pretends to remove the codeblocks Max just added No, no dang.
Max (N) Dude. Stop. Dude.
Joshua (D) What, dang? Just kidding.
Max (N) I’m so confused.
Joshua (D) Opens a new window and Google searches “I’m so confused” and both boys laugh
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these dyads. Here, our analysis made use of patterns we saw when we explored the scores 
the individuals within the dyads earned (Table 2). For example, students within dyads 2 
and 10 each had one member who scored high on self-e!cacy and low on conceptual 
understanding and the other who scored low on both measures. After exploring the data 
to identify patterns, we found three distinct groups: one in which one member has high 
self-e!cacy (ie. dyads 2 and 10), one in which the students have opposite scores (ie., 
dyads 4, 5, and 9), and one in which the students are both high in self-e!cacy and low in 
conceptual understanding (ie., dyads 7 and 11). The remaining dyads (6, 8, and 12) did not 
form a clear group, although at least one member of the dyad had high conceptual 
understanding. Table 2 provides individual and dyad status information.

We now explore the three main groups, in particular their similarities in terms of 
regulated collaborative discourse. Moreover, we present additional network models that 
visually highlight the nature of these mixed groups’ discourse.

5.2.1. Mixed: dyads 2 and 10 (one student with high self-efficacy)
Dyad 2 (Mila and Nathan) and 10 (David and Leo) each had one member who scored high 
on the self-e!cacy measure, Mila and David, respectively. The two dyads share some 
commonalities in their use of collaborative discourse (see, Figure 3) – they both have 
frequent co-occurrences that include Disagreement, Confusion, and Tutoring. We have 
conceptualized disagreement in our work as both social and academic con#ict. Dyad 2 
engaged in more social disagreements, whereas dyad 10 had more academic, or task- 
based, con#icts.

Figure 2. ENA mixed dyad network diagram displaying mixed dyads in blue, high dyads in red, and 
low dyads in purple.
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Dyad 2ȸs (Mila and Nathan) social disagreements largely centered around Nathan 
telling Mila to shut up ($ve times) and him resisting either the switch to being the 
navigator or to taking input from Mila when he was driver, as seen in Table 7.

An excerpt from David and Leo, demonstrating their use of the disagreement utter-
ances, appears in Table 8. The goal of the activity was to have Alonzo (the sprite) put on 
sunglasses when the sun appeared and to remove them when the clouds appeared.

In this case, the boys disagreed about whether they had completed the activity and, 
upon realizing they had not, how to code Alonzo correctly. Immediately after this 
exchange, Leo changed the subject and began pretending to be an airline pilot, leaving 
David to complete the work alone.

5.2.2. Mixed: dyads 4, 5 and 9 (students with opposite scores)
This group includes dyads whose individual members have opposite scores on a measure 
– –where one was low, the other was high. A qualitative exploration of this groups’ 
transcripts revealed intriguing instances of Tutoring, although this network (see, 
Figure 4) is visually similar to the prior network. Because tutoring was conceptualized as 
both requesting and o"ering of task-related assistance, we found it bene$cial to examine 
which dyads and who within the dyad made which type of tutoring statement.

Dyad 4ȸs Samantha and Andi made tutoring-tagged statements that fell into both 
categories of requesting and o"ering assistance. Samantha had low self-e!cacy and high 
conceptual understanding, whereas Andi had high self-e!cacy and low conceptual 

Figure 3. ENA mixed dyad network diagram displaying mixed dyad group with 1 high self efficacy 
member (in green) compared to high dyads (in red).
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understanding. Twice Samantha sought help, seemingly from an adult in the room, 
without directly requesting it (ie., “Um, we need help” and “I need help again” said loudly 
enough for an adult to hear, but without saying their name). In the exchange in Table 9, 
Andi has just become driver and Samantha is o"ering very explicit help. The statements 
about colors refer to the coding categories, such as Motion, Sound, or Variables.

Rylee and Amber are students in Dyad 5. Rylee scored low on self-e!cacy and high on 
conceptual understanding, whereas Amber had high self-e!cacy and low conceptual 
understanding. Rylee used slightly more tutoring and monitoring statements than Amber, 
and like Samantha in Dyad 4, she generally o"ered very direct help to her partner, such as 
in the excerpt in Table 10.

Sahil and Ezra were dyad 9. Sahil scored low on self-e!cacy, but high on conceptual 
understanding, whereas Ezra had high self-e!cacy and low conceptual understanding. 
Ezra drove the dyad’s tutoring statement usage. Twice, he requested help (ie., “how do we 
make him smaller?” and “What are we supposed to do on task three?”); however, the bulk 
of his tutoring-tagged utterances fell into the category of o"ering assistance to Sahil. One 
such exchange appears in Table 11.

Table 7. Mixed dyad: Mila and Nathan.
Student (Driver or 
Navigator) Utterance
Nathan (N) No, okay, okay, okay, three, okay, so press, press that. Press that.
Mila (D) Press what?
Nathan (N) Press the, that.
Mila (D) Oh, this? You can’t see it, Nathan.
Nathan (N/D) Damn it. Takes control of the laptop
Mila (N) Uh, it’s my turn.
Nathan (D) Just freaking kill this guy [the sprite].
Mila (N) Hey, it’s my turn.
Nathan (D) Um, can we just freaking kill this guy somehow? How’d you throw him to the trash can?
Mila (N) Oh, I think I know how to do it.
Nathan (D/N) Yeah, do it, then. Pushes laptop back to Mila
Mila (D) I actually don’t, but I just wanted the computer. Wait, where’s the mouse? What the- oh, 

whoa.
Nathan (N) Tries to take the laptop back, but Mila resists. Do you want me to try- no, don’t move it, over 

there. Oh, yes, kill that guy.
Mila (D) Stop it.
Nathan (N) No, make it, make it, like, right there.
Mila (D) Okay.

Table 8. Mixed dyad: Leo and David.
Student (Driver or Navigator) Utterance

David (D) Wait, what? How did he switch to . . . How did he get sunglasses?
Leo (N) Oh, we did it.
David (D) No, we didn’t.
Leo (N) Yeah, we did. It’s . . . You only need to modify [Alonzo], so put your-
David (D) Oh, I know what I did.
Leo (N) If block inside. If the sun is out, [Alonzo] puts on glasses.
David (D) Yeah, Leo, look, you can’t put that in there and if you do it like that-
Leo (N) Well then, [Alonzo] doesn’t . . .
David (D) Yeah, [Alonzo] is brainless.
Leo (N) . . . Dude, just grab the sunglasses and put them on.
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In this instance, Ezra attempts to help Sahil by telling him where to go next (Sounds), 
despite Sahil not requesting such assistance. Sahil clari$es his coding logic, to which Ezra 
responds that he wanted to complete that code. Immediately after this exchange, Ezra 
shifted his attention to a classmate.

Figure 4. ENA mixed dyad network diagram displaying mixed dyad group with individual students 
with opposite scores (in yellow) compared to high dyads (in red).

Table 9. Mixed dyad: Samantha and Andi.
Student (Driver or Navigator) Utterance
Samantha (N) Yeah. Okay, so now, um, go to the clear, clear . . .
Andi (D) What, like, what, um-
Samantha (N) It’s, like, teal.
Andi (D) Oh, so, pen?
Samantha (N) Um, yeah, clear.
Andi (D) Oh, stop it. There we go.
Samantha (N) Okay, now it’s point in direction.
Andi (D) Yeah, but-
Samantha (N) And that’s blue.
Andi (D) And that’s blue, like, look . . . Motion?
Samantha (N) Yeah.
Andi (D) And what is it?
Samantha (N) Um, point and direction.
Andi (D) Point . . . Oh.
Samantha (N) And it’s 90.
Andi (D) Which is already 90, so that’s perfect.
Samantha (N) Okay, so go to . . . It’s the same thing. Go to X100.
Andi (D) So I have to do the numbers?
Samantha (N) Yeah.
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5.2.3. Mixed: Dyads 7 and 11 (both students have high self-e"cacy and low conceptual 
understanding

Dyads in this group had members who scored high on the self-e!cacy measure, but 
low on the conceptual understanding instrument. The most commonly tagged utterances 
across the two dyads included Confusion, Individualistic, and Disagreement (see, 
Figure 5).

Dyad 7ȸs Emma and Malachi’s disagreements seemed to largely stem from Emma’s 
confusion and Malachi’s working individualistically, without the input of Emma. Fifteen 
times across the coding activity, Emma asked “what are you doing?” or “wait, what?” or 
“then what?” An excerpt (Table 12) demonstrates how the two are trying to recall the 
steps their teacher took when modeling the concepts.

Allegra and Chloe, in Dyad 11, show similar patterns as Dyad 7. In their case, Allegra 
utters more confusion-tagged statements, whereas Chloe utters more disagreement- 
tagged statements. In their excerpt (Table 13), the girls are trying to complete the $rst 
user input activity.

6. Discussion

This study was driven by the knowledge that student academic regulation is important for 
collaborative functioning and that both prior conceptual understanding and self-e!cacy 
are likely to in#uence group dynamics in general and collaborative regulation in 

Table 10. Mixed dyad: Rylee and Amber.
Student (Driver or Navigator) Utterance
Rylee (N) I remember how to do it. Who should we use, though?
Amber (D) And just do, let’s just do Alonzo since it’s easy, you know.
Rylee (N) Okay.
Amber (D) I don’t like it but-
Rylee (N) Make him 75, though.
Amber (D) (laughs) No, I wanna make, can we make him giant?
Rylee (N) Move him over, though.
Amber (D) Yeah.
Rylee (N) So we can fit the words.
Amber (D) The words will fit-
Rylee (N) No, hit move. Hit move.
Amber (D) Hold on. Where?
Rylee (N) Tap arrow. Like . . .
Amber (D) Oh. There.
Rylee (N) Yeah, that’s good.

Table 11. Mixed dyad: Sahil and Ezra.
Student (Driver or Navigator) Utterance
Ezra (N) Sounds.
Sahil (D) No, move and then makes sounds. You have to move first.
Ezra (N) Move what?
Sahil (D) Um, the guy.
Ezra (N) But I wanna move him.
Sahil (D) You are not the driver (laughs)
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particular. Here the context was a rapidly emerging instructional strategy – pair program-
ming in elementary classrooms. As such, we utilized validated measures of conceptual 

Figure 5. ENA mixed dyad network diagram displaying mixed dyad group with high self efficacy and 
low conceptual understanding (in dark blue) compared to high dyads (in red).

Table 12. Mixed dyad: Emma and Malachi.
Student (Driver or Navigator) Utterance

Emma (N) No, it did so- she did something-
Malachi (D) Oh, no, it’s just an if.
Emma (N) No, it was an if else.
Malachi (D) No, it was just an if.
Emma (N) Oh yeah, it was just an if, I think. I don’t know.
Malachi (D) It is. Trust me. I’m smart.
Emma (N) Okay. Okay.
Malachi (D) I talk-
Emma (N) It’s fine, Malachi. It’s fine. And then . . .
Malachi (D) Di- di- di- di-
Emma (N) And then what? I can’t remember.
Malachi (D) Um, I know. We do, uh, operate right? Uh . . .
Emma (N) What are you doing?
Malachi (D) Um, um, this.
Emma (N) No, it’s supposed to say your name, not, like . . . Just keep working. Leave it there.
Malachi (D) Just watch. Um, okay, right, no. It’s, um . . .
Emma (N) What are you doing?
Malachi (D) Sensing, that’s right.
Emma (N) That one, yes.
Malachi (D) No, it’s this one.
Emma (N) Wait what are we doing?
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understanding and self-e!cacy to cluster students into high, mixed, and low dyadic 
groupings, after which their collaborative discourse was closely examined for discursive 
patterns. These patterns are discussed further here, by the three sub-research questions.

6.1. How do individuals within dyads with similarly high self-e!cacy and concep-
tual understanding scores collaboratively regulate their learning?

The one High dyad (both members had high self-e!cacy and conceptual understand-
ing) readily engaged in grounding through question-asking. A brief excerpt appears in 
Table 14. Here the girls are deciding how their sprite will ask the user their name.

Such incremental grounding occurs when the participants must determine each 
other’s meaning, understanding, or expectations in order to move forward together 
(Brennan, 1998). In this case, the girls talked through how they envisioned the sprite 
saying hello. Moreover, they two made consistent use of each other’s knowledge, 
sometimes acknowledging that they did not know the answer or the correct next 
step but moving ahead with “let’s just try it”. Otherwise, they sought adult assistance 
twice during the coding activity. The $rst time, the girls could not $nd a certain 
block, but by the time the teacher appeared, they had found the correct block and 
had moved on. The other time, a researcher was walking by as Melanie said “we 
don’t understand it really” which prompted the researcher to stop and assist. In 
many ways, this dyad works and speaks in ways we would anticipate for students 
with high self-e!cacy and understanding of the task; they collaborate well, are 

Table 13. Mixed dyad: Allegra and Chloe.
Student (Driver or 
Navigator) Utterance
Chloe (N) No, no it has to say . . . ”hello world”, in the “hello”
Allegra (D) In the “hello”?
Chloe (N) Yes.
Allegra (D) I can’t get this. Why is it not . . .
Chloe (N/D) I know that I’m not supposed to do this but can I try? They switch roles
Allegra (N) Yeah, just . . . yeah. There I just . . . Four, let’s just make it . . .
Chloe (D) No she said two. Just click the green flag. And see what’s happening, what is your name, 

Allegra?
Allegra (N) You have to say “hello Allegra”
Chloe (D) Hello. No, no, no.
Allegra (N) Yes we do. We have to say “hello Allegra”.
Chloe (D/N) Oh my goodness, that is not what we are supposed to do, trust me. Go to “green”. Chloe 

relinquishes the laptop to Allegra
Allegra (D) Aren’t you going to try this?
Chloe (N) It will work, but not the way you want it to.
Allegra (D) I am just, I am just going to try.
Chloe (N) It will work, but not the way we want . . . are supposed to.

Table 14. High dyad: grounding excerpt.
Student (Driver or Navigator) Utterance
Melanie (D) And then how do we want to say that, what’s your name?
Poppy (N) Just like hello.
Melanie (D) Well no, but like how do we want to say, “Hi”?
Poppy (N) Oh, do you wanna be like French or-
Melanie (D) You can say, “Bonjour”. We can say, “Hi, Hello, Hola”. What do you wanna do?
Poppy (N) Hm. I’m not sure. Maybe hola. Oh, or we could do all of them.
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balanced in their use of asking for help and simply learning from mistakes, and both 
o"er and receive tutoring considerately. They are also willing to take risks and to 
learn from those ventures.

6.2. How do individuals within dyads with similarly low self-e!cacy and conceptual 
understanding scores collaboratively regulate their learning?

The one Low dyad, Max and Joshua, (both members had low self-e!cacy and conceptual 
understanding) were regularly o"-task and worked on task only when externally regulated by 
an adult. When an adult was near or sitting with them, their discourse shifted to focus more so 
on the teacher; that is, the student who was driving interacted with the teacher who talked as 
though they were navigator, often leaving the student navigator silent. There were instances 
in which the boys sought their partner’s assistance. Joshua asked or demanded Max help him 
a total of 10 times during the coding activity. No such appeals came from Max to Joshua, and 
in response to the 10 requests for assistance, Max either ignored them and changed the 
subject (e.g. “What’s up guys. Back to the kitchen. We’re always cooking some videos”.) or 
de#ected responsibility (e.g. “Dude, you’re the driver”.). Neither of the boys explicitly asked for 
teacher assistance, but it was given when it became apparent that the boys were struggling. 
The Low dyad behavior aligns in ways we would expect for students with low self-e!cacy and 
low conceptual understanding. We are unaware if they completed the self-report measures 
with $delity; as such we are left to question if they lacked interest in the tasks but could have 
worked better on more engaging activities, or if they needed more explicit modeling from the 
teacher, or if other in-system supports would have helped. We posit that a dyad with 
matching low self-e!cacy for and conceptual understanding of a topic may not make an 
ideal partnership. At minimum, they likely need additional support from the teacher and/or 
system.

6.3. How do individuals within dyads with mixed self-e!cacy and conceptual under-
standing scores collaboratively regulate their learning?

The Mixed dyads presented three clear sub-groupings. The $rst (dyads 2 and 10) 
featured one student in each dyad with high self-e!cacy and low conceptual under-
standing and the other student with low scores on both measures. These dyads had 
more co-occurrences of Monitoring and Disagreement. However, how disagreement 
appeared in their discourse di"ered. Dyad 2 had more social disagreement, including 
the rude command to “shut up” when an idea was shared. In this case, the student with 
the high self-e!cacy, Mila, rarely started the disagreements and was the one being told 
to shut up. Dyad 10ȸs disagreements were more academic, or task-based, and the 
student with the low self-e!cacy, Leo, often changed the subject right after a disagree-
ment occurred. Con#ict is challenging for most students, perhaps especially so for those 
engaged in a new learning activity and where they may have little experience from 
which to pull. Here we see students with low self-e!cacy engaging in either aggressive 
o"-task behavior or task avoidance when asked to engage. Students of this age (9 to 11) 
likely lack con#ict resolution skills and this may be why we see them defaulting to 
demands to shut up or the shifting of topics (Johnson et al., 1994). Because of this, we 
believe curricular support around the value of disagreeing with a partner (ie., to learn of 
di"erent perspectives or problem solutions) ought to be implemented and modeled 
(Okada & Matsuda, 2019).
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The next Mixed dyad grouping included students with opposite scores from their partner. 
Dyads 4, 5, and 9 each had one high self-e!cacy and low conceptual understanding student 
and one low self-e!cacy and high conceptual understanding student. The discursive 
commonality among these dyads was their use of Tutoring and Monitoring statements. 
Two of the three dyads (4 and 5) used tutoring to both request and o"er assistance, whereas 
dyad 9 saw one student (Ezra, with high self-e!cacy) almost exclusively o"er assistance to 
his partner, who did not reciprocate. In all cases, however, the o"ering of assistance generally 
appeared as directives. In other words, the students were telling their partner exactly what to 
do next, step by step. We hypothesize that, despite one student having higher conceptual 
understanding of the CS concepts needed for the task, students of this age struggle with 
sca"olding learning for others such that the other student can engage in a supported, 
inquiry process. In fact, Webb et al. (1995) found that the amount of elaboration one student 
o"ers another while peer tutoring predicts the level of constructive activity the tutee carries 
out in response. That is, when a peer tutor explained how to complete a task in a supportive 
fashion, the tutee was more likely to work constructively on the problem. Utilizing peer 
modeling during the teaching of concepts is one way to familiarize students with seeing one 
another as instructors. Additionally, prompts or sentence starers such as “when did we see 
something like this before?” may help engage both students in the inquiry process.

The $nal Mixed dyad group included two dyads (7 and 11) in which both students had 
high self-e!cacy and low conceptual understanding. The discursive features of this group 
included the use of Confusion, Disagreement, and Individualistic-tagged statements. In both 
dyads, one student o"ered more confusion-tagged statements, which contributed in some 
way to the disagreements and/or their partner opting to work individualistically. Knowing 
that self-e!cacy tends to predict performance, we are intrigued by this group and their 
collaborative discourse. We are left to question how accurately the students completed the 
self-e!cacy measure, or if their understanding of coding (referenced in the measure) was 
incongruous with either the conceptual understanding measure or the coding activity, or 
both. Additionally, we posit that having two students with high self-e!cacy, but low 
conceptual understanding may not make for a productive pairing. While they may have 
the motivation to work through the task, the lack of collective core knowledge does not 
provide the foundational tools needed to resolve the confusion and work towards a solution 
path. Their overall level of confusion may have been mitigated by classroom or in-system 
supports, such as reminders of task goals or work previously completed (see, Weinstein et 
al., 2000). Additionally, students need to learn the value of collaboration and, when asked for 
example, “what are you doing?” they need to realize this may mean their partner no longer 
has a shared understanding of goals and they are no longer collaborating e"ectively.

7. Conclusions

In this study, we examined upper elementary student pair programmers’ scores on two 
self-report measures (CS self-e!cacy and CS conceptual understanding) in addition to 
their collaborative discourse, tagged using an academic and social regulation framework. 
The dyads’ scores on the measures grouped them into High, Low, and Mixed status 
categories. We then used ENA to visually model and qualitatively examine the three 
dyadic categories. Results indicate that the High and Low categories spoke to one another 
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in ways expected, given their CS self-e!cacy and conceptual understanding scores. 
However, the Mixed category provided insight into how 4th and 5th grade students’ 
self-e!cacy and understanding of a domain interact as they collaborate.

Self-e!cacy is a predictor of performance, with positive estimates of one’s competence 
likely bolstering e"ort and contributing to higher achievement (Bandura et al., 1999). 
Maladaptive, or inaccurate, estimates of one’s e!cacy, however, can be problematic as 
they may lead to a lack of awareness of when to seek help and when to apply appropriate 
learning strategies (Bandura et al., 1999). Our study extended $ndings at the individual level 
to the dyadic level that groups who were uniformly high or low in both measures performed 
much as expected. Panadero et al. (2015) report on the empirical relationship between 
individual and group regulation, such that higher individual regulation predicts higher group 
regulation. Our $ndings partially support this work. Using discourse markers as evidence of 
both social and task regulation, our High and Low dyads regulated themselves well and 
poorly, respectively. More interesting were the mixed dyads. The subgroup where both were 
high in self-e!cacy but low conceptual understanding (7 and 11) paralleled $ndings found 
at the individual level that some base level of foundational knowledge is necessary regard-
less how motivated one might be (Baek, Xu, Han & Cho, 2015). The hope that complemen-
tary pairings of high/low scores (4, 5, and 9) might, as a dyad, make up for de$cits of their 
partner, had mixed $ndings. This subgroup reinforced prior literature that both task and 
social regulation play important roles with these young students (Hadwin et al., 2010; 
Zimmerman, 2000). As also seen in the last sub-group (2 and 10), low self-e!cacy seems 
to be tied to anti-social regulatory behavior, to the detriment of task-related discourse. The 
$ndings with these Mixed dyads indicate that although there may be one individual whose 
regulatory behaviors are optimal, they may not be su!cient to positively drive the dyadic 
regulation. This may be a feature of the students’ age in our study or working in pairs. 
Additional research is needed to unpack this dynamic with a larger, more diverse population.

Our $ndings may support the work of others such as Okal et al. (2020) who found that 
the younger the students are in a coding education intervention, the more likely they are 
to report statistically signi$cant di"erences in self-e!cacy (Okal et al., 2020). Therefore, 
the earlier students are exposed to programming through mastery experiences, the more 
their self-e!cacy will be positively a"ected (Mazman & Altun, 2013; Resnick et al., 2009). 
The students in our study all participated in the same weekly intervention at school, but 
may have had di"erent at-home and out-of-school experiences that in#uenced their 
interest in and self-e!cacy for CS. E"orts to improve low student self-e!cacy are varied. 
Crippen and Earl (2007) found that students in an online Chemistry class had improved 
self-e!cacy and performance when provided a worked example and the requirement to 
self-explain. This type of intervention would be straightforward and appropriate to 
integrate into a CS setting, especially one that uses pair programming where students 
are expected to talk through their thinking.

8. Limitations and future directions

Regarding students’ assessment of their capabilities to successfully complete certain CS- 
speci$c actions, we were struck by the $nding that the only High group was made up of 
girls and the only Low group was made up of boys. Although these pairings work against 
the prevailing literature that boys are generally overcon$dent in their assessment of their 
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capabilities (Beyer et al., 2003; Cheryan et al., 2009) and that they tend to perform better 
than girls in CS (Kallia & Sentance, 2018), the small sample of only two dyads prevents us 
from drawing broad conclusions. We do believe that this is worth exploring further with 
this young age group, however. Both self-e!cacy and CS conceptual understanding 
played a role in shaping dyadic regulation and discourse. They did not have to be equally 
distributed within the dyad for the task to move forward, although how it unfolded and 
who bene$ted was mixed and nuanced. Our $ndings point to the potential for both 
teacher and systems to provide supports that help $ll gaps in both self-e!cacy and 
conceptual understanding in ways that moves the work forward and builds these two 
dimensions in students.

Our study was limited in sample size and diverse socio-demographic characteristics 
and our $ndings need to be interpreted with respect to these limitations. Future research 
could utilize this analysis approach with a larger and more diverse sample. Moreover, 
analyses around students’ prior experiences in programming are important to incorpo-
rate. Lastly, we were unable to gather complete post-intervention data due to the COVID- 
19 pandemic; this study would have bene$ted from a thorough pre-post analysis of both 
the students’ CS Attitudes and their CS conceptual understanding.

Lastly, personality di"erences may have in#uenced not only the students’ individual 
performance on the CS conceptual understanding assessment, the ways he or she self- 
assessed their CS e!cacy, and their experience while collaboratively coding, but it may 
also have a"ected the pair’s ability to engage in problem-solving. In particular, Pietarinen 
et al. (2019) found that if students report feeling con$dent, they were far more likely to 
actively participate, collaborate with, and support their group members than if they were 
feeling less con$dent, or insecure. We believe that some of the di"erences we saw in our 
groups likely hinge on the individual students’ belief in their ability to complete the CS 
work as it is in tension with their beliefs about their partner’s capabilities. In other words, 
one student’s high self-e!cacy might not be enough to overcome the lack of support and 
disinterest in the task a partner may have o"ered. As such, pairing students by similar 
collaboration interests or self-e!cacy may be a consideration for future research (see, 
Campe et al., 2019). It is essential for students to appropriately assess their abilities, as 
inaccurate understanding can prevent students from seeking assistance. Computer 
science is one subject area that can easily provide such feedback to students as they 
can run their code and immediately know the accuracy of their work. Future work may 
consider expanding on Roll et al.’s (2011) $nding that a self-assessment tutor improves 
students’ accuracy. Similarly, future e"orts in learning analytics may consider the use of 
on-screen prompts to guide students’ collaborative discourse.
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