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Abstract

In this paper we consider mathematical modeling of the dynamics of self-organized
patterning of spatially confined human embryonic stem cells (hESCs) treated with
BMP4 (gastruloids) described in recent experimental works (Warmflash in Nat Meth-
ods 11:847-854, 2014; Chhabra in PloS Biol 17: 3000498, 2019). In the first part of
the paper we use the activator-inhibitor equations of Gierer and Meinhardt to iden-
tify 3 reaction-diffusion regimes for each of the three morphogenic proteins, BMP4,
Wnt and Nodal, based on the characteristic features of the dynamic patterning. We
identify appropriate boundary conditions which correspond to the experimental setup
and perform numerical simulations of the reaction-diffusion (RD) systems, using the
finite element approximation, to confirm that the RD systems in these regimes pro-
duce realistic dynamics of the protein concentrations. In the second part of the paper
we use analytic tools to address the questions of the existence and stability of non-
homogeneous steady states for the reaction-diffusion systems of the type considered
in the first part of the paper.
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1 Introduction

During embryonic development, patterns of cell fates are established under the control
of diffusible molecules known as morphogens. Simultaneously, cells divide and tissues
are reshaped so that the embryo also acquires its physical form. While some models
consider these as separate processes, with cell fate patterning preceding physical mor-
phogenesis, others treat both of these aspects, as well as possible interactions between
them Glover et al. (2017), Mercker et al. (2013). In the mammalian embryo, it is clear
that growth, cell fate patterning, and the assumption of form all occur simultaneously,
and the complexity of this process, as well as the difficulty of observing it in utero,
have made both experimental and theoretical studies challenging.

Recently, several labs have developed an alternative approach based on embryonic
stem cells (ESCs) and several models have been developed in which ESCs in vitro
mimic aspects of embryonic patterning reviewed in Fu et al. (2021), Liu and Warm-
flash (2021). In this study, we consider an experimental model in which human ESCs
(hESCs) are grown in confined geometries and differentiated by application of the
signaling factor BMP4 Warmflash et al. (2014), Etoc et al. (2016), Heemskerk et al.
(2019), Chhabra et al. (2019). In this model, the cells are patterned into extraembry-
onic fates and the three embryonic germ layers, endoderm, mesoderm, and ectoderm,
under the control of BMP, Wnt, and Nodal signals, the same set of pathways which pat-
tern the mammalian embryo at this stage Arnold and Robertson (2009). This model
represents a considerable simplification of the in vivo process as the hESC colony
remains the same size and shape throughout the process so overall tissue growth and
physical morphogenesis do not need to be considered. Moreover, cell tracking experi-
ments have shown limited cell movements which cannot explain the cell fate patterning
Chhabra et al. (2019), and therefore chemotactic processes can also be neglected when
modeling these processes. Finally, while some mechanical influences on cell fate may
be present Muncie et al. (2020) these appear to function by influencing the chemical
signaling pathways, which are strictly required for pattern formation Fu et al. (2021),
Etoc et al. (2016), Chhabra et al. (2019). Thus, in this paper we consider the process
by which chemical signaling pathways pattern hESC colonies but do not treat physi-
cal morphogenesis, chemotaxis, or the influence of mechanical signaling as these are
limited or not present in the experimental system under consideration.

The use of reaction-diffusion (RD) systems to model the evolution of chemical
patterning in the developing organism started with the seminal work of Turing (1952),
who observed that in some cases the homogeneous distributions of chemicals with
coupled reaction rates are not stable, and upon small perturbations give rise to sizable,
non-homogeneous patterns of chemicals. Cells at the peaks of these patterns can then
differ from the remainder of the cells in their cell fates, growth rates, or morphogenetic
movements. That is, the morphological patterning is a consequence of prior chemical
“pre-patterning.”

This approach have been extensively developed over the years, see for example
Koch and Meinhardt (1994), Gierer and Meinhardt (1972), Raspopovic et al. (2014),
Nakamura et al. (2006), Glover et al. (2017). This framework has been extended
various settings including time-dependent domains due to growth of cells, Crampin
et al. (1999) and Van Gorder et al. (2021). Other mechanisms of morphogenesis such
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as of mechanical, mechanochemical and chemotaxis types had been developed, see
for example Murray et al. (1983), Murray (1989), Mercker et al. (2013), Brinkmann
et al. (2018), Maini et al. (2006), Hillen and Painter (2009).

These models take into account not only chemical but also mechanical properties of
treated cell samples, such as, for example, the motion of chemical in the sample induced
by the growth of cells. However, as noted above, such effects can be neglected in the
specific experimental system that we are modeling, and so we confine our approach
here to RD models of chemical systems.

In this paper we will discuss the patterning of hESC colonies based on the recent
experimental findings by Warmflash et al. (2014), Chhabra et al. (2019) and Heemskerk
et al. (2019). In a typical experiment, a spatially confined colony of cells is treated
with BMP4 (bone morphogenetic proteins) which leads to differentiation of cells into
the three embryonic germ layers: endoderm, mesoderm, and ectoderm, surrounded
by an outer ring of extraembryonic cells. Collectively, these studies have shown that
this process does not fit into the Turing paradigm of patterning, or into the other
mechanisms mentioned above.

It has been established in earlier works, see for example Arnold and Robertson
(2009), that BMP4 results in expression of Wnt and Nodal proteins that are essential
for formation of germ layers.

The evidence accumulated in Chhabra et al. (2019) indicates that fate differentiation
occurs not after the formation of stable patterns of BMP4/Wnt/Nodal, but concurrently,
during the propagation of signaling waves of Wnt and Nodal, while the Turing-type
process assumes that chemical gradients form and the information in these is then
used to drive cell fate patterning. Additionally, the terminal, stable distributions of
these proteins do not correspond (decisively) to the location of the germ layers. For
example, Wnt and Nodal signaling, which synergize to generate mesendoderm, both
spread into the middle region where ectoderm forms. We mention in passing, that the
distributions of proteins do tend to non-homogeneous, almost radial, steady states.
Moreover, as noted above, Chhabra et al. (2019) performed a series of experiments
ruling out the cell motion and cell growth as effective mechanisms of morphogenesis.
The later facts points strongly in favor of a RD system as the correct mathematical
model.

We summarize below some of the characteristic features for the dynamics of dis-
tribution of proteins during the patterning, obtained in Chhabra et al. (2019) and
Heemskerk et al. Heemskerk et al. (2019), that we address in this paper.

(1) Initially high and uniform over the entire domain, BMP4 signaling activity evolves
into a region of high activity near the boundary and low activity in the middle and
central parts of the domain;

(2) BMP4 activity at the boundary initiates waves of Nodal and Wnt that move into
the interior towards the center of the domain;

(3) propagation of the Nodal wave proceeds independently of BMP4 (and Wnt), after
a certain activation period;

(4) distributions of BMP4, Wnt and Nodal activities tend to steady states, by the end
of the experiment, with the peaks at the boundary, middle of the domain and the
center of the domain, respectively. The difference between the peak value of Wnt
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and its value at the center is smaller than the difference between the peak value
and the values near the boundary. The final distributions of all proteins appear to
be radial, non-homogeneous steady states.

While the understanding of all mechanisms is far from being complete, an effort
was made to generate dynamics consistent with (1)—(4) in the framework of activator-
inhibitor RD systems. Tewary et al. (2017) developed a RD model model that produces
realistic patterns of BMP4, with realistic dependence on parameters, such as the size
of the cell colony. However, due the fact that the reaction part of the model is linear,
the model requires selection of matching boundary and initial conditions, that do not
reflect the state of the problem at the beginning of the experiment. For example, it
was assumed that BMP4 inhibitor does not diffuse from the sample boundary, and,
initially, peaks at the center of the sample. Thus, the model is partially “exogenous”.

Chhabra et al. (2019) addressed the mathematical modeling of dynamics described
in part (3) of the above list. In this model, BMP4 acts as an activator for Wnt, which
in its turn activates Nodal. The key assumption is a reaction term in the equation for
Nodal, that incorporates a threshold parameter, depending on the concentration of
Nodal, that switches production from being Wnt dependent to auto-catalytic. Other
assumptions include structurally different mechanisms of activation/inhibition for Wnt
and Nodal.

The analysis of RD systems in the above mentioned papers relies on the numerical
solutions of the corresponding systems of PDEs.

The purpose of the present paper is to develop closed form models based on the
classical Gierer-Meinhardt activator-inhibitor system, see Egs. (4) and (5) below, that
reproduce behaviors (1)-(4). By the closed form we mean, a solution to an initial-
boundary value problem where the initial and boundary conditions reflect the actual
experimental setup.

In particular, we assume that all substances can diffuse off the colony edge, and use
“Newton’s law of cooling” with appropriate background values of the substances.

In the first part of the paper, using numerical simulations, we show that realistic
dynamics of the proteins can be obtained by choosing suitable reaction coefficients
in a activator-inhibitor system. The dynamics of BMP4 is best described by a system
with a single, stable node, to which we will refer as type 1 system, see Sect. 2. The
dynamics of Wnt and Nodal systems fit to the patterns produced by type 2 systems,
which have a stable node, a stable focus and a saddle point in the phase plane. More-
over, we show that different behaviors of Wnt and Nodal, as described in (5), can
be attributed to the size of the reaction coefficients alone. This is due to a general
fact that scaling reaction coefficients in a RD systems, which leaves the phase portrait
unchanged, while retaining the same diffusion coefficient, results in a different dynam-
ics and, in particular, in different steady states. Thus, we provide another explanation
of phenomenological properties (1)—(4) based on the dynamical differences between
structurally similar systems of PDEs. The analysis can be useful in obtaining estimates
of the ranges of the reaction coefficients that distinguish BMP4, Wnt and Nodal at the
level of activator-inhibitor systems.

In the second part of the paper we address the stability property in part (4). The
main mathematical difficulty comes from the fact that the RD models (equations
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+ boundary conditions) in question do not have, in general, homogeneous steady
states. Thus, linearizing equations on a constant state, and solving for eigenvalues and
eigenfunctions does not provide meaningful information, because the constant states
are not solutions, the fact that sometimes is overlooked in biological literature. The
growth of oscillations should be measured with respect to a proper steady state, which,
in this case is non-homogeneous.

This leads us to the following problems that we address in this paper: (a) determining
if solutions asymptotically converge to a steady state, and (b) finding conditions under
which such steady states are stable.

There are local in time, unique, classical solutions to RD systems in the Hélder
space C2+142/2 a5 was proved by Ladyzenskaja et al. (1995) for a more general
system of parabolic equations. Estimates on the max norm of the solution are needed
to extend solutions for all times ¢ > 0. This was done by Rothe (1984) for activator-
inhibitor systems with zero Neumann boundary conditions, which does not apply in
our case. Moreover, the estimates obtained in Rothe (1984) depend on the diffusion
coefficients, which greatly complicates the asymptotic analysis. We note here, that the
special structure of the activator-inhibitor equations does not allow the application of
the theory of invariant regions of Chueh et al. (1977), another well-known technique
for the asymptotic analysis, see for example a book of Smoller (1983).

Our approach is to rely on the maximum principle for the parabolic equations to
obtain the uniform in (x, r) estimates of the solution. The application of this method
places some restrictions on the coefficients of the RD system. The key point here is
that the bounds are independent of the diffusion coefficient.

Then, we use the energy-types estimates for L? norms of the solution and its time
derivative to identify a suitable stability condition that implies the exponential decay of
the norm of the time derivative. Further analysis required to bound the spatial gradient
of the solution in L? norm, with an upper bound, independent of time. The later fact
allows us to extract a strongly convergent sequence u(x, t,) with 7, — oo, whose
limiting point is a steady state solution of the activator-inhibitor system. Here, u is
a solution vector u = (u, v). Finally we show that such steady state, ug, is the limit
of the u(x, ¢), at t — oo. The stability condition mentioned above, for given source
terms f(x), g(x), size of the domain §2 and the diffusion coefficient w restricts the
size of the initial data max g, |ug|. This condition defines the basin of attraction for the
steady state, i.e., there is a ball B in L®, centered at zero, such the steady state g
belongs to B and for any initial dataug € L™ N C2* solution u(x, 1) converges to
that steady state.

2 RD models of activator-inhibitor type

We consider an activator-inhibitor RD system

) (D
0V — yAv = —cv +du”, 2)

o — uyAu = —au +
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where 1, |4y are positive diffusion coefficients, a, ¢ > 0 are rates of decay and b, d
are positive reaction coefficients. This system was introduced by Gierer and Meinhardt
(1972). The inhibitor enters the first equation through the factor (1 4+ v)~!, where we
added 1 to avoid infinitely high rates when the level of the inhibitor v is small. This is a
natural assumption in the experiments described in Warmflash et al. (2014), Chhabra
et al. (2019).

Here we denote by f(u, v) and g(u, v) the right-hand side of Egs. (1) and (2).
There is a single fixed point (stable node) (g, vo) = (0, 0), if b>’c < 4a’d. When
b%c > 4a%d there are three fixed points (0, 0), (u1, v1), (42, v2) where

ch +/(cb)? — 4a%cd b

=—u—1. 3
~da V2= 3)

U2 =

In this case (0, 0) is a stable node, as the gradient matrix is

du,v) | 0 —c |’

At other two points, the gradient matrix can be computed to be equal to

a(f’g)_ a —%
du,v) | 2du —c |’

where u is evaluated at a fixed point. Thus, we obtain the values of the trace and the
determinant of the gradient matrix as

2da?

trace =a —c¢, Det= u—ac,

These values determine the type of each fixed point. Substituting the values for u; »
from (3) we find that Det = =+ /(ac)? — 4dca*b=2. This gives a saddle point, when
the value of the determinant is negative. The remaining point is either a stable focus
(a < ¢),acenter (a = c), or an unstable focus (a > c). For the non-linear system (1),
(2), the last two possibilities result in motion characterized by oscillations. This type
of motion is not observed in the experiment discussed in this paper, so we assume
that a < c¢. The null clines for different values of the decay/reaction coefficients are
sketched in Fig. 1, which we use to distinguish the corresponding RD systems as type
1 and type 2.

We will use system (1), (2) to model the dynamics of BMP4 and its inhibitor Noggin.
To study the signaling waves of Nodal and Wnt we will use a source term f (x) in the
activator equation that models the influence of BMP4 on production of Wnt:

bu?

o — pyAu = —au + + f(x), 4)
1+v

0V — Uy Av = —cv +du’. (@)
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g=0

o} o
u u

Fig. 1 Null clines for the reaction dynamics. Left plot is type 1 reaction with a single fixed point O (stable
node). Right plot is type 2 reaction with a stable node O, sable focus A, and saddle B. Arrows show the
direction of the flow field

Here u is the concentration of Wnt and v the its inhibitor DKK. In the numerical
simulations we will assume that f (x) is concentrated near the boundary of the domain
which reflects the experimentally observed distribution of BMP. The activation of
Nodal occurs through BMP — Wnt — Nodal signaling pathway. We will model
this by a simplifying to BMP — Nodal signaling, and using Eqs. (4) and (5), with a
different set of reaction coefficients, to model the dynamics of Nodal and its inhibitor
Lefty.

As we will show in by numerical simulation, the system of BMP4 and its inhibitor
has a better fit into the reaction system of type 1, see Fig. 1, while the systems for Wnt
and Nodal are better described by type 2 dynamics.

The initial data correspond to the high initial concentration of BMP4 and low
(zero) concentrations of other chemicals, in accordance with experiments described
in Warmflash et al. (2014).

To complete the model, we need to postulate boundary conditions for chemical
concentrations. It should be emphasized that the boundary conditions are the integral
part of the solution, that plays an important part in the way the dynamics proceeds.
According the experimental setup, the chemicals can diffuse from the domain of a cell
sample, the intensity of this “leaking” being proportional to the difference between
the boundary concentration of the chemical and the “background” concentration. For
BMP4 it is reasonable to take the background concentration at the fixed level u that
equals to the initial concentration of BMP4. For other chemicals in question, the
background concentration is zero. This is so-called “Newton’s law of cooling.” It is
expressed as

9
M hyGi—u), hy >0,
on

where 7 is the external, unit normal vector at d§2. Similarly, for the inhibitor,

v
— = — hyv, hy > 0.
on
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Table 1 Dimensionless reaction

and diffusion parameters for the bmp4/noggin wii/dkk nodal/lefty
activator-inhibitor RD systems a 7776 7776 31.104
(1), (2) and (4), (5), used in
numerical simulations b 7176 1944 71.76

c 71.76 194.4 71.76

d 77.76 97.2 38.88

Hu 3.8 3.8 3.8

oy 19 19 19

hu 172.8 172.8 172.8

hy 172.8 172.8 172.8

We note that an earlier works on mathematical modeling of hESC development
such as Tewary et al. (2017), used ad hoc boundary conditions, not consistent with
the experimental setting. An alternative way to deal with the boundary, is to embed
the reaction domain into a larger domain where chemicals can only diffused, and
postulate, for example, no-flux boundary conditions on the larger domain, as was done
by in Chhabra et al. (2019). The reason being that, the precise form of the boundary
conditions on the larger domain should have minimal effect on the domain where the
reaction takes place. It should be noted here that this approach may lead to a different
patterning on the reaction domain, see Krause et al. (2020).

3 Numerical simulations

Simulations are performed for RD systems written in scaled variables, using the val-
ues of coefficients of the magnitude typically occurred in experimental studies, see
Appendix for details. In particular, the computational domain is a disk of radius 1,
and time ¢ is measured in days. The values of parameters for system (1), (2) for
BMP4/Noggin, and system (4), (5) for Wnt/DKK and Nodal/Lefy, used in the simu-
lations, are listed in Table 1.

The parameters are selected is such a way that RD system for BMP4 is of type
1, and the systems for Wnt and Nodal are of type 2. Reaction coefficients for Nodal
system differ by a factor of 0.4 from the corresponding coefficients for Wnt system,
which means that the phase portraits for the reaction dynamics are identical in both
cases.

The source term f(x) in (4) is set to be supported near the boundary of the disk:

(670 |x| > 0.85,
S = {0 x| < 0.85.

Finally, the background state u is set to 3 for BMP4, as well as the initial values for
BMP4. All other chemicals have zero initial values, and zero background states.

We will show below that behaviors 1.-4., listed in the Introduction, are captured
by the RD models described here. The exact timing of different phenomena described
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below does not necessarily correspond to experimentally observed values. That would
require more precise estimation of the parameters of the model. Our main goal is to
establish that qualitatively correct behavior is produced by the model.

3.1 Terminal concentrations of proteins

The numerical simulations show that concentrations of all three proteins approach
radial, steady state profiles by + = 1 day. Figure 2 shows 2d and 3d plots of con-
centrations of the proteins at + = 3 days. BMP4 is concentrated at the boundary of
the domain. Wnt peaks in the middle section, but takes comparable values at the cen-
ter, and Nodal peaks at the center but somewhat extends to the middle section of the
domain.

The appearance of steady states was identified when the change between the suc-
cessive iterations of the numerical solution became less than 10~° units, over a period
of time of 1 day.

To illustrate the difference between three different diffusion-reaction regimes we
map the radial cut of each protein and its inhibitor in the phase plane on Fig. 3. Point
B indicates the values at the boundary of the disk and point C represents the values at
the center. The plots also show the stable fixed point, S, for the corresponding reaction
dynamics. BMP4 starts at non-zero value at the boundary due to the influence from
non-zero background state b and then moves towards zero, according to the reaction,
as one moves to the center of the disk. Point S is a stable focus for Wnt/DKK and
Nodal/Lefty pairs, however the reaction coefficients are stronger in Wnt system than
in Nodal system. This results in the radial profile of Wnt/DKK being “bent” in the
direction of the reaction. This property results in maximum of Wnt to be located in
the middle of the disk, whereas Nodal has maximum at the center.

3.2 Signaling waves of Wnt and Nodal

Figure 4 shows the evolution of concentrations of Wnt and Nodal as functions of
time. In both cases, the concentration first increase near the boundary, where f(x)
is supported and then they move toward the center. This behavior corresponds to the
“signaling waves” of the proteins described in Introduction.

3.3 Effect of inhibition of BMP4

Figure 5 shows the effect of inhibition of BMP4 at time indicated by the variable z. on
the shape of the final concentration at time # = 3 days. That is, term f (x), describing
the influence of BMP4 in (4), is set to zero for t > f..

The simulations show that there is a critical time ¢y with the property that if BMP4
is inhibited prior to 7o the system converges to zero steady-state, but when BMP4 is
inhibited after £y the system proceeds autonomously to a non-homogeneous, non-zero
steady state. For Wnt dynamics #( is estimated to be between 0.001 and 0.005 days,
and for Nodal, between 0.005 and 0.01 days, the difference is due to the difference in
the magnitude of the reaction coefficients.
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3.4 Dependence on parameters

For small variations of parameters given in Table 1 the numerical simulation produce
qualitatively similar results, indicating that the problems are stable. That is, the terminal
steady state concentrations are stable. This property is lost when the larger variations.
We performed the numerical simulation of BMP/Noggin dynamics with large gap in
diffusion coefficients, by selecting i, = 1 um?/sec and p, = 55 um?/sec, (instead
of w, = 11 um?/sec, and p, = 55 um?/sec used previously), while keeping all
other parameters.

Figure 6 shows 2d and 3d plots of non-radial profile of BMP4 at time ¢ = 3 days.
The non-radial perturbations start to develop from a radially symmetric profile at the
time about + = 0.2 days. Note that, due to the radial symmetry of equations, the
problems has a unique, classical, radially symmetric solution if the initial data have
this property, but the numerical solution deviate from it significantly.

A possible explanation of this phenomenon is that the problem has an unstable
radially symmetric steady state to which the system moves from its initial values.
Small deviations from radially symmetry due the numerical approximation lead to
the growth of perturbations shown on the figure. That is, this is the case of Turing
instability.

Interestingly, the instabilities appear to be restricted to the boundary, and further
simulations (not shown here) produce a different number of peaks, with further varia-
tions in the diffusion coefficients. This non-homogeneous profile might, in principle,
be associated with the formation of the outer ring of germs in a cell colony. Fur-
ther investigation of a coupled BMP4-Wnt-Nodal system is needed to clarify if this
behavior bears some significance in actual biological processes.

4 Existence and stability of steady-state solutions

One of the main features of the models considered in this paper and experimental
works cited in the introduction is the formation non-homogeneous steady-states of the
chemical concentrations. Moreover, these steady-states appear to be stable, as none
of the Turing-type instabilities are observed in the experimental setting, see Chhabra
etal. (2019). In this section we address the question of existence of stable steady-state
solutions. The results that we prove below, apply to RD systems in the form:

bu?

ou — uAu = —au + + f(x), (6)
14+
v — nAv = —cv+du2+g(x), (7)
with the Direchlet boundary conditions
ulx,t) =0, vix,t) =0, (x,1) €082 x[0,+00), (8)
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Fig.2 Steady state concentrations of BMP4, Wnt and Nodal at time t = 3 days

and initial conditions
u(x,0) =up(x), vx,0) =vo(x), xes2. )

The boundary conditions (8) can be seen as a limiting case of the boundary con-
ditions from Sect. 2, when the rates of cooling h,, h, — —+00, i.e., there is high
rate of transfer of chemicals to or from the background state. This simplification is
due to certain limits of applicability of the analytical tools that we use in the proof of
Theorem 1 below.
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Fig. 3 Radial sections of three pairs of activator-inhibitors in the phase plane. The plots show the values
of bmp4/noggin, wnt/dkk, and nodal/lefty from the boundary B to the center of the colony C, when the
concentrations reach steady states, at # = 3 days. On the top plot, S is the stable node for the reaction
dynamics. On the middle and bottom plots, S is a stable focus with counterclockwise rotation. Plots also
show velocity fields of each reaction system
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Fig.4 Signaling waves of Wnt and Nodal. Plots represent radial profile of the proteins at increasing moments
of time 7. Initial concentrations are zeros for both proteins
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Fig.5 Effect of BMP inhibition at time #, on the terminal concentrations of Wnt and Nodal. Concentrations
with 7. = 3 correspond to no inhibition of BMP4. Plots show switching from a zero steady state to a non-zero
state, when the activation time of BMP4 exceeds certain threshold value, but it is inhibited afterwards

BMP4 BMP4

1

10 10
0.8

9 9
0.6

8 | A 8
0.4

7 7
0.2 \

6 6

>

5 5
02

4 4
04

3 3
0.6

2 . 2
0.8 .

1 1

R 0.
-1 05 0 05 1

X

o

Fig. 6 Instabilities in BMP4/Noggin dynamics. The figure shows 2d and 3d plots of the result of the
numerical simulation of concentration of BMP4 at + = 3 for the diffusion coefficients /4y, = 1 and
Hnog = 55 and the colony size of 500uum

We would like to mention the well-known method of invariant regions by Chueh
et al. (1977), for establishing time asymptotic behavior of solutions of reaction-
diffusion systems does not apply to the present problem. The latter method applies to
reaction-diffusion systems in the form

ou
vl DAu = F(u,t), (10)

where u € R”, (x,t) € £2 x [0, 400), D is n x n, diagonal matrix with non-negative
entries, and the vector source term F € R”. The system is supplied with the zero-flux
boundary conditions

9
8—” —0, (x,1)€dR x [0, +00).
n
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For the method to work the must have bounded invariant regions in order to establish
bounds on supremum norm of |u(x, t)|. Next, the method relies on the fact that time
asymptotic behavior of solutions of (10) can be compared with the solution of the
system of ODE:s:

du_F( 0
ar

meaning that the limiting behavior of (10) is a homogeneous (constant in x) state.

If we look at the system (6), (7), we see that the right-hand side explicitly depends
on x through functions f(x) and g(x). The boundary conditions (8) differ as well.
Thus, in general, the steady-states of the problem (6), (7) and (8) are non homogeneous
(non-constant). Moreover, and this is a major obstacle, it can be shown that system
(6)—(7) does not have invariant regions either, so that the uniform estimates must be
obtained by other means.

4.1 Main theorem

We will use the standard notation for the spaces of continuous, Holder continuous
functions, as well as L? spaces. For definitions, we refer readers to Ladyzenskaja
et al. (1995). Norms in L?(£2) space will denoted by [|ull,, 1 < p < oo. We let
Or =2 x 0, T)yand I'T = (2 x {t=0}) U (082 x [0, T)), for T > 0.

Now we state our main result, that we will be proved below.

Theorem 1 Let §2 be an open, bounded, set with C 2+a boundary and a € (0, 1).
Let f(x), g(x) € C*(82) be non-negative functions, ug, vo € C>T(2), uy, vy €
C*+*(382), and necessary compatibility conditions between the initial and boundary
values hold. Then, there exists a unique classical solution of (6)—(9) on §2 x [0, 00).
Moreover, forany T > 0, u, v € C>T%1%/2(0Q 1Y and the following properties hold.

(1) u(x,t),v(x,t) are non-negative and bounded above with a constant independent
of x,t, and t.

(2) There is Cs—a polynomial in positive powers of || ol o, 10 lloos | flloo and || g1l so,
independent of |, such that if inequality

Cs, < nC(£), (11)

holds, for a certain C(82) > 0 depending only on §2, then, there exists a steady-
solution (us(x), vs(x)) of (6), (7), and

Am flu(x, ) —us (Ol 2 + llvlx, ) = v ()2 = 0.

(3) Under condition (11), there is a ball B = B(f, g, u) C L°(£2) such that fro
any initial data uig, Vo € B, verifying the neccessary compatibility conditions, the
corresponding classical solution (it, V) converges to the steady-state (ug, vs), that
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Aim (s 1) = us (Ol + 100x, 1) = v ()2 = 0.
In particular, (ug, vy) is asymptotically stable.

4.2 Proof of main theorem

The proof is given below in a series of lemmas, where (u, v) is a local, classical
solution of the problem. We will make a repeated use the of the maximum principle,
that can be found, for example, the book by Evans (2010).

Lemma1 Let w € C2(Q71) N C(Qr) be a function that satisfies,
ow — pAw < (=) —kw,
where w, k > 0. Then,

max w(x, t) = max w(x,t),
or I'r

or, if the inequality is reversed,

min w(x, t) = min w(x, t).
or I'r

Since f(x), g(x) > 0, it follows from this lemma that u(x,¢) and v(x, t) are
non-negative functions. We proceed with uniform upper bounds.

Lemma2 There is C > 0, depending on a, b, ¢, d, max ugp, max vy, max f(x) and
max g(x), but not ., such that

max wu(x,t), max v(x,?)
(x,0)eQr (x,0)eQr

< C (lluollco, lvollco: 1 flloos lglleo) » 12)

where C is polynomial function of its arguments, with positive coefficients, and is
independent of 4.

Proof Let Z be a solution of the ordinary differential equation,

WZ=—aZ—|flco,

with initial condition Z(0) = 0, ie., Z(t) = (e~ — 1) M= Setting ii(x,r) =
u(x,t) + Z(t) we find that

A A . b(ai—2)*
ot — pAu = —ait + —————+ f(x0) — | fllo
14+v
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< A+b(’2_z)2 (13)
< —au Tro
As for v, we have,
Qv —pAv=—cv+di—2)>+gx) > —cv+d@i — Z)°. (14)

Let ¢ be a smooth, non-increasing function that will be chosen later. For function
¢ (v(x, 1)) we obtain

Hp (V) — nAP (V) + g (V)|VV[* + cvg’ (v) — d(@ — Z2)*¢'(v) < 0.
Adding the last equation to (13) we get,
¥ (i + ¢ (v) — 1 (Al + AP (v)) + ¢ (V)| VVI* + ait + cvd/ (v)

—(—2)? <L + d¢>’(v)> <0.

1+v
We will select p = — %ln(l + v), so that
A A N bc v
(i + o) — nA(d+ () < —ali+ ¢(v) +ad(v) + T
< —a(+ ¢()) + anéaxln(l + ), (15)

for some « depending on a, b, ¢, d. Let W be a solution of

oW = —aW —i—arréaxln(l +v),
T

with initial condition W(0) = 0, i.e., W(¢) = oy maxg, In(1 + v) (1 — e“”) , with
a1 = o/a. Subtracting equation for W from (15), we obtain:

W(a+oW) —W)—pA(@+ow) —W) < —a(i+e¢w) —W).
Now, using the maximum principle (1) we obtain
max(# + ¢ — W) = max | max (it + @), max(Z() + ¢ (v) — W (¢
nax(i + ¢ — W) (WO}< #). max(Z(1) + § () (>)>
< , Z(0 < .
< max (n}%x up m(azlx(uo + Z0) + ¢0)> < m(;zlx uo
Therefore, for any (x, ¢) in the domain Qr, it + ¢ — W < maxg, ug, or,

b
u(x,t) < 7 In(1 +v(x, ) +W(@) < m:zzlx ug + o In(1 —|—rrg12ax v), (16)
T
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for some «» depending ona, b, ¢, d.
Consider now Eq. (14).

dv — pAv = —cv+d(i — Z)* + g(x)

—cv+d <mélxuo 4+ o In(1 + IléaX v) + ||fﬁ) + llglloo-

IA

Using a maximum principle again we get

d
max v < max vg + — (max ug + a2 In(1 + max v) + ||f&) —|| lloo-
or 2 2 or a

By the elementary properties of function In(1+-v), we find that max g, v is bounded
by a polynomial with positive coefficients in variables of max ug, max vy, || f|lccs
llglloc- The corresponding estimate for max g, u follows from this and (16). O

Now, the global existence follows.

Lemma 3 The unique, local, classical solution (u, v) can be extended for all times
t > 0.

Proof We will use the following characterization of maximal time of existence T of
a local solution, from Rothe (1984), theorem 1, page 111. It is proved there that if
T < —+oo then the max—norm over x of (u(x,t), v(x,)) grows without bound as ¢
approaches 7. But this can not happen due to the estimates derived above in (12).
Therefore, the contradiction leads us to conclude that the classical solution in fact
exists for all times ¢ > 0. O

To show that the classical solution (u, v) of the reaction-diffusion system settles on
a steady state it sufficient to show that the time derivative of the solution converges to
zero. We will use an energy-type estimate to establish this fact. The proof makes use
of the Poincare’s inequality that we state for a reference below.

Lemma 4 Let 2 be a bounded, connected, open subset of R" with a C' boundary 9 2.
Let 1 < p < oc. Then there exists a constant C, depending only on n, p and S2, such
that for any integrable function u with Vu € LP(§2) and zero trace on the boundary
082,

lullLr2) < C(82, p)IVullLr(s2)- (17)
Proof can be found in Brezis book Brezis (2001).
Lemma5 Forallt € [0, T], T > 0, it holds:

d
= (3 4 10013 + 42 2) = €0) (a3 + w13 ) =
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where Cy = Cg(max g, u, maxgp, v) is a polynomial function of its arguments, and is
independent of u, and T, and C(S2) is the reciprocal of constant C(S2,2) from the

Poincare’s inequality. If the stability condition
Cy < uC(82)

holds, then

llur e, 13 + llo(x, 1|3 < e~ HHCED=Cor (””O”zcz(g) + ||UO||2Cz(_Q)> -0,

ast — +00.
Proof Taking time derivative of both sides of the equation for u (1), we get,

u u M2 Ut

Oty — AUy = —au; + 2b — .
Uy — AUy t (1 +v) (1+v)2

Multiply with u, and integrate over the domain to get,

> u Juy|?
Uity dx — u;Auy dx = —a |us|” dx + 2b dx
2 2 2 2 (I1+v)

M2 Ur Vg
—b / — dx.
2 (I1+v)
Using integration by parts,
1d
2dt Jo

2 u |’/‘t|2 u? Ur vy
= —a lus|= dx 4+ 2b ———dx —b —2dx.
2 2 (I1+v) o (1+v)

|u,|2dx—u/ u;Vu,~nd0—|—,u/ |Vu,|2dx
r Q

(13)

We will use Young’s inequatlity, uniform bounds on « and v, and Poincaré’s inequality
(17) with p = 2 applied to the function d,u (notice, that d,u equals to zero on the
boundary of the domain) to get the next result. The constant C(§2,2)~! from that

inequality will be abbreviated to C($2).

1d

—— |ut|2dxs<—ucm)+co)/ lur)? + |v,|? dx,
2dt Jo 2

where ¢ has polynomial dependence on max u, max v. Similarly, for v,

1d

—— | | dx < (—uC(2) +Co)/ | + v dx.

2dt Jo 2

1d

—— |l o dx <2(—p C(82) +Co)/ lue* + v dx.
2dt Jo 2
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Now the statement of the lemma follows from the last inequality and uniform bounds
from lemma 2 O

When uniform estimates from lemma 2 are substituted into function Cy in lemma 5,
condition (18) defines the range of L norms of admissible data || fllco, I|€llcos
llolloos llvolloo- We can state this in another way, by saying that if f and g are
such that stability condition (11) holds with ug = 0 and vg = 0, then there is a ball
B = B(f, g, u) C L>®(82), centered at zero such that the same condition (11) holds
for any ug, vo € B. In the remaining part of the proof we will assume this condition.

Next we will obtain bound on the gradients of Vu, Vv.

Lemmaé6 Foranyt > 0,

ufg (1@, 0P + Vo, D) dx < CUIf oo, Iglloos luollc2. vollc),

with a positive C, independent of time.

Proof We multiply for u by u, and integrate by parts to get,

f |u,|2dx—u/ u;Vu -ndo
2 r
+M/ Vu-Vutdx=—a/ uuy dx
2 Q

2
+b/ Y dx+/ FOuy dx.
o 14+v Q

Using boundary condition on u#; and uniform bounds on « and v from lemma 2,

/|u 1? dx + 1d |Vul? dx
o ! MZdl‘ o

2
:—a/ uu, dx+b/ “ Uy dx+/ f(x)uy dx
2 2 l+v 2

< (co+ ||f||oo)/;2 [us| dx = crllugll2,

with an appropriate cg. Similarly, for v, we get,

1d
/lezl2 deerE/Q Vo> dx < cillv 2

Adding the last two inequalities we get,

d
“E/Q ('V”|2 + |Vv|2) dx < c1 (luel2 + llvell2) -
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We integrate this inequality in time from O to ¢, use exponential decay estimate on
llutll2, llve]l2 from previous lemma, together with uniform bounds on u and v to get:

M/ <|Vu(x,t)|2+ |Vv(x,t)|2> dx
2
su/ (1Vuo? + IVuol?) dx
2
t
+c1/ (lurll2 + llurlla) de < C,
0

with some C > 0, as stated in the lemma. O

Let u(x,t), v(x,t) be the solution from the previous section. Let #, be a non-
decreasing sequence of time converging to +o0o. Consider sequences of functions
{u,(x) = u(x,t,)} and {v,(x) = v(x,t,)}. From the estimates of u, v and their
gradients, it holds that there is C independent of n such that

lunllz = €, lvall2 = C,
[Vuplz2 = €, [IVupll2 = C.

We will need the following compactness result, the proof of which can be found in
chapter 5 of Evans book Evans (2010).

Lemma 7 Assume £2 is a bounded open subset of R", and 982 is C'. Suppose 1 <
p < n. Then, there is a compact embedding

WP (2) cc L1(R2), (21)

np
n—p-
Since £2 is a bounded set it follows this theorem that both sequences are pre-compact
in L2(£2). This means that there is a subsequence of {r,}, that we still label by 7, and
two functions u, v € W2(£2) such that

foreach1 < q <

lim u, =ug;, lim v, = v
n—00 n—00

in L? norm. From the convergence in norm, it follows that a further subsequence can
be extracted such that u, and v, converge to u; and vy almost everywhere in 2.
Moreover, since L2(£2) is a reflexive space and Vu,, Vv, are from bounded sets,
there is still further subsequence such that

Vu, - Vug, Vv, — Vg,

weakly in L2(£2).
Moreover, from Lemma 5 it follows that

ut(xatn)_>07 vl(xstn)_>0
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in L2 norm.
Now we pass to the limit in the equations.

Lemma 8 The limiting pair of functions (uy, vy) is a classical solution of the system
of equations:

bu?
+ 9
14 vy !

—mAvy = —cvg + dvf + g.

—nAuy = —aug +

Proof Let w(x) be a smooth test function, equal to zero on the boundary 9£2. From the
original reaction-diffusion system, considered at times ¢t = #,, we obtain the following
integral relations:

/u,(x,t,,)a)(x)dx +/L/Vun -Vo(x)dx

bu%
=/(—aun+ = +f(x)) o(x) dx,

Un

/vt(x,tn)w(x)dx+M/an~Va)(x)dx :/(—cvn +dv,2,+g(x)>w(x)dx.

Passing to the limitin each term of these equations, using above compactness properties
we obtain that

bu?
uw [ Vuy-Vodx = —aug + + f|wdx,
1+ v

,u/Vvs-dex=f<—cvs~|—dvsz+g)wdx.

i.e, (us, vy) is a weak solution. As a pointwise limit of u(x, t,), v(x, t,,), (us, vy) take
boundary values u;, and vp,. By the well know regularity results for elliptic equations,
it follows that uy, vy € C2T%($2), and it is classical solutions of the same system. O

Now we prove the following.

Lemma9 Ast — oo, u(x,t), v(x,t) of the system converges to ug(x), vs(x) in Lo
norm:

lim [Ju(x,?) —us(x)[2 =0, lim [v(x,7) —vs(x)[2 = 0.
t—>00 t—00

Proof Suppose that (u(x, t), v(x, t)) does not converge to (ug, vy) in L? norm. Then,
there is a sequence of times ¢, and € > 0 such that

l(u(x, ), v(x, ;) — (us(x), v5(x))ll2 > €.
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Using the arguments of this section we conclude that there is another steady-state
(15, Ug) and

Il Gas, v5) — (us(x), vs (X)) 2 = €. (22)

Since (uy, vy) and (iy, U5) solve the same system of equations, subtraction corre-
sponding equations, multiplying them by ity — uy and U5 — vy, and integrating over
£2, after simple manipulations we get

(nC(2) — C;)/ lity — us|? 4 |05 — vs|*dx <0,

where Cg and C(£2) as in (18). Since uC(£2) — C; is positive, we conclude that
iis = us and vy = vy. This clearly contradicts statement (22) and the lemma is proved.
O

In the next theorem we show that the steady state (u;, vs) is asymptotically stable.

Lemma 10 Let (u, v) be a classical solution of the reaction-diffusion system (6), (7)
with initial data ug, vy in B(f, g, u) N C** and boundary conditions (8). Then, for
anyt > 0,

e, 1) = us (), v(x, 1) = vz < e X (o (x) = us (x), vo(x) — v ()2,
(23)

where K = 4(uC(82) — Cy).

Proof Let (U, V) = (u — ug, v — vs). Subtracting corresponding equation for (u, v)
and (ug, vg) we get,

2 2
U — pAU = —aU +b [ 2 — s
! 1+v 14v)°

9V — uAV = —cV+d(u2—u2>.

N

As in the proof of lemma 4 we obtain
1 d 2 2 2 2
3% U+ |V|“dx +2(uC(2) — Cs) | [UI*+|V]|*dx <O.
Using Gronwall’s inequality, we get that,
/ UG, D+ Vi, 0 dx < e / [Uo(0)* + [Vo(x)|* dx.
where K = 4(uC(82) — Cy) > 0. The statement of the lemma follows from this. 0O
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5 Conclusions

In this paper we address the mathematical modeling of recent experimental studies
on self-organization of human embryonic stem cells during early stages embryo’s
development. Although several models based on reaction-diffusion equations were
proposed in literature, those results are only partially satisfactory as they either contain
a number of artificial assumptions on the reaction part of the model or use initial and
boundary conditions that do not correspond to the experimental setup.

We showed that an Gierer-Meinhardt system of reaction-diffusion equations, with
properly selected reaction coefficients and supplemented with Robin-type bound-
ary conditions, qualitatively reproduces many of the experimental findings, thus
identifying a proper mathematical framework. In this paper we only present numer-
ical results for circular domains for brevity of presentation. Additional experiments
with domains of irregular shapes, including non-convex domains, were presented by
Bedekar Bedekar (2020). All numerical simulations confirm very good qualitative
agreement between our models and in vitro experiments. Moreover, the model pro-
duces various new phenomena for the reaction-diffusion system under investigation
such as an interesting instability investigated numerically in Sect. 3.4.

The second part of the paper is motivated by the numerical results obtained in the
first part, and addresses the existence of of non-homogeneous steady state solutions that
asymptotically attract solutions of the reactions-diffusion system. In general, this is a
hard mathematical problem, which we were able to address under certain simplifying
assumptions about the system.

With proper ramifications, the model considered in this paper can potentially lead
to important scientific insights into the behavior of the biological system. In particular,
instabilities outlined in numerical experiments performed here warrant careful analyt-
ical investigation. In addition, we can use experimental data to estimate parameters in
the PDE model via a Bayesian approach and use the resulting realistic model to predict
outcomes of experiments in domains of various sizes. We intend to carry out further
investigation of the reaction-diffusion model presented here in subsequent papers.

Acknowledgements The authors would like to thank the anonymous reviewers for providing many valuable
comments on the paper that helped to improve it in many ways.

6 Appendix

We use the following activator-inhibitor system for the dynamics of BMP/Nogin:

2
u
oru — Au = — hpmptt + kpmp ———,
t Mbmp bmp bmpv+v
k
8tv_ﬂn0gAU: _)\nogv'i‘ l}:guz,

where i, v are some reference values for BMP4 and Noggin. The boundary conditions
are
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Table 2 Values for the diffusion

and reaction parameters Parameters Values SI units

Hbmp 11 umz/sec
Hnog 55 ;Lmz/sec
Aomp 9 x 1074 1/sec
Kpmp 9 x 1074 1/sec
Anog 9 x 1074 1/sec
knog 9 x 1074 1/sec

ou _ av

%z bmp(u_u)v %z — pogV.

where 1 is the background value of BMP4, and Hp,p, Hyog are positive numbers. The
initial conditions: u(x, 0) = b, v(x, 0) = 0, which correspond to a cell colony being
treated with high concentration of BMP4. The typical magnitudes of the parameters
are listed in Table 2.

The colony size (radius of the disk) L = 500 um, and a typical experiment takes
up to 3 days (37, T = 86400sec). The experimental data on the values of Hp,, and
H,q are not available. We set them to 1 (um)~'.

Scaling the variables: x — Lx, t — tf, u — uu, v — vv, with u/v = 1, we
obtain a system with non-dimensionless coefficients:

2

MbmpT u
8[14 — > Au = — ()\,bmp‘[)bt + (kbmpT)H_—v,
oo — 21t Ay = —(a Ko T)it2
'tV — 12 v= —( nog)fv +( nogf)u s
with the boundary conditions
au u av
o = HpmpL i uj, n = — HypgLv.

This leads to the system (1), (2) with coefficients h, = HppL, hy = HpogL, by =
/meprL_z, Uy = ,u,,ogrL_z, a = ApmpT, b = KpmpT, ¢ = dyogT, d = kyogt, the
values of which are listed in Table 1. For the boundary and initial conditions, ratio
u/u = 3. The scaling for Wnt/DKK and Nodal/Lefty RD systems are similar.

The numerical simulations are based on the forward Euler approximation of time
derivatives combined with a finite element method, using piece-wise linear functions
for the space discretization, and a suitable triangulation of the domain. Space and time
partitions steps, (&, §) were set to h = 1073 and § = 1079, with § = K2, to prevent
numerical instabilities. The method was implemented using FreeFem++, see Hecht
(2012).
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