
Unveiling the nature of a miniature world: a horizon scan of fundamental
questions in bryology
Jairo Patiño a,b, Irene Bisang c, Bernard Goffinet d, Lars Hedenäs c, Stuart McDaniel e, Silvia Pressel f,
Michael Stech g,h, Claudine Ah-Pengi, Ariel Bergamini j, Richard T. Caners k, D. Christine Cargill l,
Nils Cronberg m, Jeffrey Duckett f, Sarah Eppley n, Nicole J. Fenton o, Kirsten Fisher p, Juana González-
Mancebob, Mitsuyasu Hasebe q, Jochen Heinrichs†, Kristoffer Hylander r, Michael S. Ignatov s,t,
Javier Martínez-Abaigar u, Nagore G. Medina v,w, Rafael Medina x, Dietmar Quandty, Stefan A. Rensing z,
Karen Renzagliaaa, Matthew Rennerab, Rosa M. Ros ac, Alfons Schäfer-Verwimp ad, Juan Carlos Villarreal ae

and Alain Vanderpoorten af

aIsland Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología–Consejo Superior de Investigaciones
Científicas (IPNA-CSIC), Tenerife, Canary Islands, Spain; bDepartment of Botany, Ecology and Plant Physiology, University of La Laguna,
Tenerife, Canary Islands, Spain; cDepartment of Botany, Swedish Museum of Natural History, Stockholm, Sweden; dDepartment of Ecology
and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA; eDepartment of Biology, University of Florida, Gainesville,
Florida, USA; fLife Sciences Department, The Natural History Museum, London, UK; gNaturalis Biodiversity Center, RA Leiden, The
Netherlands; hLeiden University, Leiden, The Netherlands; iUMR PVBMT, Université de La Réunion, Saint-Pierre, France; jWSL Swiss Federal
Research Institute, Birmensdorf, Switzerland; kRoyal Alberta Museum, Edmonton, Alberta, Canada; lAustralian National Herbarium, Centre
for Australian National Biodiversity Research, Canberra, Australia; mDepartment of Biology, Lund University, Ecology Building,
Naturvetarvägen, Lund, Sweden; nCenter for Life in Extreme Environments, Portland State University, Portland, Oregon, USA; oForest
Research Institute, Université du Québec en Abitibi-Témiscamingue, Québec, Canada; pBiological Sciences, California State University, Los
Angeles, California, USA; qNational Institute for Basic Biology, Okazaki, Japan; rDepartment of Ecology, Environment and Plant Sciences,
Stockholm University, Stockholm, Sweden; sTsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow, Russia; tFaculty of
Biology, Lomonosov Moscow State University, Moscow, Russia; uFaculty of Science and Technology, University of La Rioja, Logroño, La
Rioja, Spain; vDepartamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain; wCentro de
Investigación en Biodiversidad y Cambio Global, Madrid, Spain; xDepartment of Biodiversity, Ecology, and Evolution, Complutense
University of Madrid, Madrid, Spain; yNees-Institut für Biodiversität der Pflanzen, Rheinische, Friedrich-Wilhelms-Universität, Bonn,
Germany; zUniversity of Freiburg, Freiburg, Germany; aaDepartment of Plant Biology, Southern Illinois University Carbondale, Illinois, USA;
abRoyal Botanic Garden and Domain Trust, Mrs Macquaries Road, Sydney, Australia; acDepartment of Plant Biology (Botany), University of
Murcia, Murcia, Spain; adMittlere Letten 11, Herdwangen-Schoenach, Germany; aeDépartement de Biologie, Pavillon C.-E. Marchand
Université Laval, Québec (Québec), Canada; afInstitute of Botany, University of Liege, Liège, Belgium

ABSTRACT
Introduction. Half a century since the creation of the International Association of Bryologists, we
carried out a review to identify outstanding challenges and future perspectives in bryology.
Specifically,wehave identified50 fundamental questions that are critical in advancing thediscipline.
Methods. We have adapted a deep-rooted methodology of horizon scanning to identify key
research foci. An initial pool of 258 questions was prepared by a multidisciplinary and
international working group of 32 bryologists. A series of online surveys completed by a
broader community of researchers in bryology, followed by quality-control steps
implemented by the working group, were used to create a list of top-priority questions. This
final list was restricted to 50 questions with a broad conceptual scope and answerable
through realistic research approaches.
Key results. The top list of 50 fundamental questions was organised into four general topics:
Bryophyte Biodiversity and Biogeography; Bryophyte Ecology, Physiology and Reproductive
Biology; Bryophyte Conservation and Management; and Bryophyte Evolution and
Systematics. These topics included 9, 19, 14 and 8 questions, respectively.
Conclusions.Althoughmany of the research challenges identified are not newly conceived, our
horizon-scanning exercise has established a significant foundation for future bryological
research. We suggest analytical and conceptual strategies and novel developments for
potential use in advancing the research agenda for bryology.
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Introduction

The horizon-scanning method consists of systemati-
cally searching for and identifying emerging research
trends, limitations and opportunities that might deter-
mine future pathways in a given research field. Horizon

scanning is a valuable and increasingly popular
approach because it allows input and synthesis from
a large and diverse scientific community (Sutherland
et al. 2011). Several previous initiatives have success-
fully sought to identify and prioritise research
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questions within scientific fields, including ecology
(Sutherland et al. 2013), global change biology (Suther-
land et al. 2020), invasion biology (Ricciardi et al. 2017),
island biology (Patiño et al. 2017), palaeoecology
(Seddon et al. 2014) and subterranean biology
(Mammola et al. 2020).

To date, most horizon-scanning exercises have dealt
with the state of the art in broad research areas rather
than focusing on specific taxonomic groups. However,
there is significance in conducting horizon scans that
are narrow in their focus, to spotlight taxon-specific
priorities (e.g. Trevathan-Tackett et al. 2019). In this
paper, we present the results of the first horizon scan
for bryology to identify future research avenues and
priorities with the aim of significantly advancing our
understanding of the biology of bryophytes.

Why bryophytes?

Bryophytes comprise three major lineages: hornworts,
liverworts and mosses (Vanderpoorten and Goffinet
2009). All three lineages possess a dominant gameto-
phyte onto which the unbranched and monosporangi-
ate sporophyte is permanently attached. Bryophytes
are characterised by a unique combination of struc-
tural and physiological traits, such as their generally
small size, poikilohydric condition, vegetative desicca-
tion tolerance, physiological resistance to low-temp-
erature regimes, and production of spores as their
main dispersal unit (Patiño and Vanderpoorten 2018).
This combination of traits has allowed bryophytes to
thrive under a wide range of climatic and environ-
mental conditions from polar to tropical regions, and
from continents to remote oceanic islands, playing
key ecological roles including their influence on the
global climate since the Ordovician (Lenton et al.
2012). Bryophytes are indeed dominant organisms in
several ecosystems, such as many forest and wetland
systems (Vitt et al. 1995; Fenton et al. 2015). Several
other life-history features of bryophytes are unique
among embryophytes, such as evolutionarily labile
mating systems and high levels of dioecy. It is unsur-
prising, therefore, that compelling answers to major
questions in physiology (e.g. Proctor et al. 2007), evol-
ution (e.g. Shaw et al. 2011), global change biology
(e.g. He et al. 2016), and ecology and biogeography
(e.g. Patiño and Vanderpoorten 2018) are increasingly
being provided by studies of bryophytes.

Half a century since the International Association of
Bryologists (IAB; https://bryology.org/) was estab-
lished, bryological research is now embracing a
golden era, propelled by new technologies for data
management, molecular biology, genomics and eco-
logical modelling. Such advances have been reflected
by recent special issues addressing the state of the
art of different fields of bryological research (Budke
et al. 2018; Stech et al. 2021). However, key questions

have only started to be largely resolved, most
notably those concerning phylogenetic relationships
among the three main bryophyte lineages and with
respect to the vascular plants (Puttick et al. 2018; de
Sousa et al. 2019; Harris et al. 2020; Su et al. 2021).
The monophyly of bryophytes and their sister relation-
ship with tracheophytes challenge the long-held per-
ception of bryophytes as the earliest extant land
plants, and hence interpretations regarding how adap-
tations to land were acquired in the group and in tra-
cheophytes (Donoghue et al. 2021; McDaniel 2021).
The integration of bryophytes in land plant phyloge-
nomics, that is, the study of the evolution of genes
and their function, is thus essential for estimating
how the function of genes changed during the early
diversification of land plants. Additionally, this crucial
task is contributing to uncovering which gene or
gene families originated or expanded during terrestria-
lisation (Bowles et al. 2020; Naramoto et al. 2022).

It is thus time to consider both outstanding and
new challenges facing the botanical discipline of bryol-
ogy, with the ultimate goal of identifying promising
research avenues and horizon issues. Such an exercise
may help to answer general questions, facilitate
hypothesis-driven research, and ensure the long-term
conservation of this ecologically and evolutionarily
important group of land plants.

To celebrate the fiftieth anniversary of the IAB, 32
bryologists engaged in different fields of bryological
research initiated and developed a horizon-scanning
exercise. This international team sought to bring
forward 50 ranked fundamental questions for bryologi-
cal research. The outcomes of this survey-based
approach were presented during the 50th IAB confer-
ence in 2019 (IAB 2019), held at the Royal Botanical
Garden in Madrid (9–12 July 2019). More recently, a
selection of these fundamental research foci were pre-
sented by members of the core team of this initiative
during a dedicated symposium at the online Bryo-
phytes and Lichens BL2021 Conference (6–9 July
2021), co-organised by the IAB.

Materials and methods

The horizon-scanning approach

The horizon-scanning method used in the present
study is based on the approach developed during a
former initiative carried out to identify key research
foci in island biology (Patiño et al. 2017). Before IAB
2019, the five initial survey coordinators (B. Goffinet,
L. Hedenäs, J. Patiño, S. Pressel and A. Vanderpoorten)
invited several other bryologists to form the ‘50 funda-
mental questions in bryology’ working group. Each
member provided expertise in at least one of eight
main research fields: (i) Ecology; (ii) Systematics and
Taxonomy; (iii) Floristics, Biodiversity and Biogeography;
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(iv) Evolution; (v) Genomics, Evolutionary Developmental
(Evo-Devo) and Developmental Biology; (vi) Reproduc-
tive Biology and (Eco-)Physiology; (vii) Conservation
and Management; and (viii) Palaeobryology. Two to
four working group members were asked to contribute
to a specific research field, with the option to recruit
one more member to their panel if deemed critical in
providing complementary expertise. The final inter-
national working group comprised 32 bryologists
(see author list), who had the main task of identifying
10–15 fundamental questions within their assigned
research field (Figure 1). Members of each panel
were encouraged to consult broadly with colleagues
outside the working group.

This first phase (Phase 1 in Figure 1) produced 258
questions, which were then screened by the survey
coordinators for duplication or ambiguity. The survey
coordinators also took care to homogenise wording
to ensure that the proposed questions were presented
in a straightforward style with a consistent level of
readability (Mammola et al. 2020). This first phase
resulted in a curated list of 224 questions (hereafter
termed List #1). To facilitate practical implementation
of the first round of voting (Survey 1), questions from
List #1 were redistributed into four general topics
(GTs; adapted from Patiño et al. 2017), as follows.

GT1 – Bryophyte Biodiversity and Biogeography: 39
questions from the subject areas of Macroecol-
ogy; Floristics, Biodiversity and Biogeography;
and Palaeobryology

GT2 – Bryophyte Ecology, Physiology and Reproduc-
tive Biology: 59 questions from Ecology, Com-
munity Ecology, Reproductive Biology and
(Eco-)Physiology

GT3 – Bryophyte Conservation and Management: 39
questions pertaining to Conservation Biology
and Global Change

GT4 – Bryophyte Evolution and Systematics: 87 ques-
tions on Evolution, Genomics, Evo-Devo and
Developmental Biology, and Systematics and
Taxonomy.

The subscribers (n = 1536) of the listserv e-mail dis-
cussion group Bryonet (bryonet-L@mtu.edu), sup-
ported by IAB, were invited to participate in Survey
#1. This first step was structured into four online
surveys (Phase 2 in Figure 1), one for each of the four
GTs. Across the four online surveys, Bryonet subscri-
bers had the opportunity to score each question as
‘fundamental’ or ‘not fundamental’, or to leave the
answer blank. The order in which the questions were
presented was randomised for each new online
login, so that a specific order would not bias the
outcome of the surveys (see Patiño et al. 2017); this
strategy was retained for the two subsequent online
surveys (see below). For each of the four GTs, survey

participants were also given the opportunity to
propose one or two additional questions, to fill a per-
ceived important gap in List #1. At the end of Survey
#1, the original set of questions were ranked according
to the total number of participants who scored a given
question as ‘fundamental’, and the top 100 questions
were selected (List #2).

A total of 33 new questions were proposed by par-
ticipants in Survey #1 (List #3); these questions were
merged with an equivalent number of questions
from List #2, specifically the 33 lowest ranked ques-
tions (Phase 3 in Figure 1). This resulting new set of
66 questions (List #4) was used in a second online
survey (Survey #2) in which only the 32 members of
the ‘50 fundamental questions in bryology’ working
group participated. The questions from List #4 were
voted and ranked during Survey #2 as ‘fundamental’
or ‘not fundamental’. The top 33 questions of List #4
were then refined to eliminate redundant questions
or ambiguities through discussions among the
survey coordinators, and then merged with the top
67 questions retained from List #2. A final round of
rewording to improve readability and to eliminate
ambiguities and overlap (sensu Mammola et al.
2020) reduced the number of questions from 100 to
90 (see Figure 1).

The list of 90 questions (List #6) was then subjected
to a third and final online survey (Survey #3) involving
the broader participation of several international and
national bryological societies, including the IAB; the
Latinoamerican, Central European, Dutch, Nordic,
Spanish–Portuguese, British, Australian and Chinese
bryological societies; and the members of Bryonet
and the International Molecular Moss Science Society
(Phase 4 in Figure 1). During this online survey, we col-
lected professional information such as the main
research field(s) and the geographical area(s) of study
to enable characterisation of the scientific profiles
and interests of the participants. Survey #3 was com-
pleted by a total of 187 respondents. The final
ranking of the questions was based on the proportion
of ‘fundamental’ votes relative to the total numbers of
votes received for each question (Patiño et al. 2017),
and eventually resulted in selection of the 50 highest
ranked questions.

Procedural shortcomings

When applying horizon-scanning approaches, it is
crucial to discuss transparently the potential caveats
and uncertainties that can emerge from the partici-
pants, particularly from their background knowledge
and areas of expertise (Sutherland et al. 2011; Patiño
et al. 2017; Mammola et al. 2020). Individual subjective
components are always consequential, because they
will influence the selection of initial topics, the formu-
lation of questions, and the final voting procedure. For
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instance, a significant imbalance can be observed in
the final questions selected for each GT (see Results),
which may have resulted from bryologists interested
in a given topic being underrepresented in the bryolo-
gical community.

Despite such caveats, we sought to minimise the
consequences of individual preferences and other
sources of subjectivity by (i) including a broad spec-
trum of expertise in our core working group, and (ii)
performing several rounds of voting involving a
diverse group of both societies and research-interest
groups from a wide range of institutions, geographical
regions and study fields (see Results). Furthermore, by
allowing participants in Survey #1 to suggest
additional questions, we aimed to broaden the range
of fundamental questions while minimising the
biases inherent to horizon-scanning initiatives (Suther-
land et al. 2011, 2013; Patiño et al. 2017).

Results

During Survey #1, the number of voters (from a total of
93) and the maximum and minimum percentage of
‘fundamental’ votes (i.e. for the questions considered
the most and least fundamental, respectively) varied
across the four online surveys, as follows.

GT1 – Bryophyte Biodiversity and Biogeography (73
voters): 86% and 16%

GT2 – Bryophyte Ecology, Physiology and Reproduc-
tive Biology (58 voters): 84% and 15%

GT3 – Bryophyte Conservation and Management (55
voters): 85% and 16%

GT4 – Bryophyte Evolution and Systematics (48 voters):
79% and 10%.

All 32 members of the ‘50 fundamental questions in
bryology’ working group participated in Survey #2,
providing support for a given question for which the
percentage of ‘fundamental’ votes ranged between
89% and 11%.

A total of 187 people contributed to the third and
final round of online voting (Survey #3), of whom
88% identified a bryological field as their primary
field of research. Although voters’ geographical areas
of study were clearly skewed towards Europe and the
Americas, with 78 and 60 participants, respectively,
all the other continents were represented: Asia (32),
Australasia including New Zealand (15), Africa (14),
Antarctica (9), and worldwide, as involving at least
four different floristic regions (9); thus, most regions
of the world were to some degree represented in
this survey. The 90 questions in Survey #3 received a
mean (± SD) of 169.5 (± 2.5) votes, with the majority
(70/90) scored as ‘fundamental’ by most survey
participants.

In the following sections and the Appendix, we
present the 50 questions most highly ranked and
hence perceived as fundamental in bryology through
our horizon-scanning initiative. For ease of presen-
tation, questions are organised in the same four
general bryological topics used during Survey #3:

Figure 1. The procedure used to identify the 50 fundamental questions in bryology. The actions performed by the
32 bryologists of the ‘50 fundamental questions in bryology’ working group are highlighted in grey.
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GT1 – Bryophyte Biodiversity and Biogeography (9
questions); GT2 – Bryophyte Ecology, Physiology and
Reproductive Biology (19 questions); GT3 – Bryophyte
Conservation and Management (14 questions); and
GT4 – Bryophyte Evolution and Systematics (8 ques-
tions). We also provide information on each question’s
final rank (#) and the percentage of ‘fundamental’
votes received in Survey #3 (%).

GT1 – Bryophyte Biodiversity and
Biogeography

Biodiversity patterns

Q1. What are the main drivers of taxonomic, phyloge-
netic and functional diversity in bryophytes?
[Rank #3, votes 81.9%.]

Q2. Which are the main ecological factors shaping
bryophyte species diversity along latitudinal and
climatic gradients? [Rank #14, votes 75.0%.]

Q3. How is phylogenetic diversity in bryophytes geo-
graphically structured? [Rank #33, votes 65.7%.]

Q4. How does environmental heterogeneity affect
species and intraspecific diversity patterns of
bryophytes at different spatial and time scales?
[Rank #45, votes 62.3%.]

Mounting evidence from ecological analyses of bryo-
phyte functional traits (Ah-Peng et al. 2014; Spitale
2016; Henriques et al. 2017a; Berdugo and Dovciak
2019), although still limited by the availability of rel-
evant databases (Henriques et al. 2017b), suggests
that taxonomic and functional diversity represent
complementary diversity metrics. Although the two
metrics are sometimes strongly correlated (Ah-Peng
et al. 2014), species assemblages may change function-
ally without significant changes in species richness
(Lelli et al. 2019). The four highest-ranked questions
in this section [Q1–Q4] emphasise the importance of
improving our understanding of the factors shaping
taxonomic, phylogenetic and functional diversity
metrics across spatial and time scales.

The factors controlling diversity patterns typically
vary depending on spatial scale, and two questions
[Q3, Q4] are focused on how this variation is struc-
tured. For example, cover, species richness and func-
tional diversity of bryophyte biocrust communities
increase with shrub cover at the site scale, but the
reverse applies at the microsite level (Soliveres and
Eldridge 2020). These interactions within the bryo-
phyte community and between bryophytes and vascu-
lar plants also vary along gradients of nutrient
availability (Gunnarsson et al. 2004). A recent study
on the long-term effects of nutrient enrichment has
shown that the addition of phosphorus (P), unlike
that of nitrogen (N), had a considerable impact on

plant communities of boreal rich fens (Øien et al.
2018). The increase in bryophyte diversity was
explained by the fact that bryophytes receive N
through their association with cyanobacteria, presum-
ably affording them a greater ability to utilise the
added P than that of vascular plants, which were
affected by N shortage.

At larger spatial scales, recent surveys focused on
altitudinal gradients (Patiño and González-Mancebo
2011; Hernández-Hernández et al. 2017; Boch et al.
2019; Iskandar et al. 2020), which offer substantial cli-
matic variation across short distances. In turn, variation
of diversity metrics along latitudinal gradients remains
poorly studied. This knowledge gap can be explained
by the lack of distribution data in a spatially standar-
dised framework. In mosses, the absence of a standard
checklist at the world scale, similar to that available for
liverworts (Söderström et al. 2016), is a further impedi-
ment to macroecological and broad-scale biogeogra-
phical studies; this limitation is reflected in Q1.

For now, an entire field of research on phylogenetic
diversity, which is the focus of Q3, has been addressed
in a surprisingly low number of bryological studies
(Shaw et al. 2005; Collart et al. 2021b; Sanbonmatsu
and Spalink Forthcoming 2022; Wu et al. 2021), consid-
ering its growing importance in ecology, evolution and
conservation. Phylogenetic diversity measures the
genetic divergence among species within a commu-
nity (alpha diversity) or the extent to which species
within a community tend to be more phylogenetically
related than species among communities (beta diver-
sity) (see Graham and Fine 2008). These metrics can
be usefully applied to address a broad range of ques-
tions, from the evolutionary origin of floras to the
question of niche conservatism, according to which
species are evolutionarily restricted within their
niche. Niche conservatism has become one of the
major foci in ecology, because it appears to be a
primary driver of present-day distribution patterns of
plant biodiversity (Crisp et al. 2009) and also has
major consequences for the ability of species to
adapt as a response to ongoing global change.

The development of efficient protocols for rapidly
generating large numbers of sequences of unicopy
nuclear genes in mosses (Liu et al. 2019; Medina
et al. 2019) will undoubtedly open new avenues for
research in community phylogenetics and its appli-
cation to such major questions as the factors driving
species distributions and diversity patterns at large
spatial and temporal scales. Such efforts should also
be extended to liverworts and hornworts. Despite
this increasing interest in exploring patterns in taxo-
nomic, functional and phylogenetic diversity, the pre-
dominant drivers, and the relationships among these
three biodiversity components, remain unclear in
bryophytes.
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The central role of historical collections for biodi-
versity research

Q5. How can we realise the full potential of bryophyte
herbaria for biodiversity research? [Rank #25,
votes 69.0%.]

Renewed interest in herbaria, brought about by their
use in integrative taxonomy and a growing awareness
of their value as ‘windows into the past’ in global
change research (Lang et al. 2019), underpins the rel-
evance of Q5. Bryophyte herbarium collections have
been used to reconstruct the historical composition
of floras (Lavoie 2013), shed light on the timing of colo-
nisation events (Calleja et al. 2020), analyse altitudinal
range shifts (Bergamini et al. 2009), study phenology or
functional trait variation (Hedenäs et al. 2010; Bisang
et al. 2014; Stark et al. 2017), measure pollutant con-
centrations to retrace changes in pollution loads over
time (Martinez-Swatson et al. 2020; Wu et al. 2020),
reconstruct past levels of stratospheric ozone and
ultraviolet (UV) radiation (Otero et al. 2009), and
assess increases and decreases in bryophyte abun-
dance to help trace predicted changes in nature
(Hedenäs et al. 2002; Hofmann et al. 2007). Most
recently, the application of high-throughput sequen-
cing methods to the analysis of museum collections
has revolutionised the study of biodiversity, offering
a unique opportunity to obtain temporal snapshots
of past population genetic diversity and quantify the
extent and dynamics of the current biodiversity crisis
(Gauthier et al. 2020).

In bryophytes, as in other organisms stored in
natural science collections, such techniques open
new avenues of research. For example, these
approaches have allowed quantification of the
impact of air and water pollution on patterns of
genetic structure and diversity over time in ecological
groups such as epiphytic and aquatic bryophytes, and
the impact of ongoing human-mediated habitat frag-
mentation in biodiversity hotspots such as Amazonia
or oceanic archipelagoes. It is therefore crucial that col-
lecting efforts and collection infrastructures are not
only maintained but also renewed to ensure the
future of herbaria as fundamental research resources
(Bebber et al. 2010; Soltis 2017; Lang et al. 2019).

Distribution patterns

Q6. At what spatial and temporal scales are dispersal
limitations and environmental conditions
shaping bryophyte distributions and diversity?
[Rank #23, votes 69.9%.]

Q7. What geographical regions exhibit the highest
levels of bryophyte endemism, both taxonomic
and phylogenetic, and what geographical

attributes do these regions present in common,
if any? [Rank #30, votes 67.1%.]

Q8. Are there bryophyte species that are truly cosmo-
politan in distribution, and if so, what mechanism(s)
explain such a capacity? [Rank #41, votes
63.9%.]

Q9. How do stochastic (e.g. natural disturbance, popu-
lation dynamics) and deterministic (e.g. habitat
filters) processes influence bryophyte diversity
and community composition, and how do these
processes vary along environmental gradients?
[Rank #42, votes 63.4%.]

Bryophytes have traditionally been perceived as
organisms characterised by high dispersal capacities,
based on their large distribution ranges and low
levels of endemism (Patiño and Vanderpoorten
2018). Experimentally derived dispersal kernels
(Lönnell et al. 2012) and community analyses demon-
strating substantial differences between the species
composition of spore clouds and ground vegetation
(Barbé et al. 2016b) support the notion that bryophytes
generally exhibit extremely good dispersal capacities
that might erase any signal of isolation by distance.
However, the widely held view that bryophyte
species exhibit large, disjunct distribution ranges has
increasingly been challenged by emerging phylogeo-
graphical evidence supporting a predominant role of
within-continent speciation versus intercontinental
dispersal (for review, see Vigalondo et al. 2019). This
debate is reflected in three top-ranked questions con-
cerning the role of dispersal capabilities in shaping dis-
tribution ranges [Q6, Q8], and the factors underpinning
levels of endemism in bryophytes from both taxo-
nomic and phylogenetic perspectives [Q7].

Although substantial phylogeographical evidence
supports the idea that bryophytes exhibit high long-
distance dispersal capacities, significant spatial
genetic structures have been found in virtually all
species at all spatial scales (Vanderpoorten et al.
2019). This suggests that successful colonisation
events are determined by environmental filtering, geo-
graphical distance or barriers, and wind connectivity,
rather than stochasticity [Q9]. Dispersal capacity may
further be modulated by species intrinsic traits (van
Zanten 1978; Estébanez et al. 2018). In particular,
mating systems have long been identified as a major
factor controlling variation in dispersal capacities
among species. Recent analyses of epiphyll metacom-
munities have shown that early arrivals have greater
rates of male and female sexual expression and repro-
ductive output than late colonisers, suggesting that
dispersal ability is reflected in establishment order
(Sierra et al. 2019). The roles of dispersal- and establish-
ment-related species traits (e.g. mating systems,
spore ultrastructure and ornamentation, specialised
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vegetative propagules) in shaping diversity patterns of
apparently efficient dispersers such as bryophytes
needs to be explored in greater detail (see GT2).

GT2 – Bryophyte Ecology, Physiology and
Reproductive Biology

Life-history strategies and reproduction

Q10. What are the functions of bryophyte morpho-
logical structures (e.g. hair points, papillae, para-
phyllia, paraphyses) in terms of the
ecophysiology (e.g. photosynthesis dynamics)
and fitness (e.g. reproductive performance)?
[Rank #21, votes 70.4%.]

Q11. How does vegetative reproduction versus sexual
reproduction influence population establish-
ment and dynamics? [Rank #24, votes 69.6%.]

Q12. What are the main intrinsic factors (e.g. life-
history traits, habitat specificity, genetic diver-
sity) governing rarity and vulnerability in bryo-
phytes? [Rank #26, votes 68.9%.]

Q13. What are the life-history traits of bryophytes that
allow them, as a plant group, to persist and
compete in the broad range of environments
they occupy, and how do those traits vary
across lineages? [Rank #29, votes 67.7%.]

Q14. What biotic and abiotic factors determine the
development of bryophyte gametophytes from
propagule banks? [Rank #47, votes 60.9%.]

Q15. Which (extrinsic versus intrinsic) cues determine
the reproductive strategies of a bryophyte
species (e.g. sexual, asexual or both)? [Rank
#49, votes 60.0%.]

The characteristics of the bryophyte life cycle have a
major bearing on nearly every aspect of bryophyte
biology. The differences in reproductive modes (sexual,
asexual; see Q11), which in turn are coupled to mating
systems and other life-history attributes outlined
above, affect establishment and demography of popu-
lations, plant community composition, and eventually
species distribution and richness patterns (During 2007;
Löbel and Rydin 2009; Laenen et al. 2016b).

Both spores and asexual diaspores of bryophytes
can survive years, or even centuries, of unsuitable con-
ditions while buried in different substrates (During
2007; Bisang et al. 2009; Caners et al. 2009; Bu et al.
2017). Also, the regeneration capacity of bryophyte
fragments after several centuries of ice entombment
in polar environments has been recently demonstrated
(La Farge et al. 2013; Cannone et al. 2017). A persistent
diaspore bank is critical for population regeneration
and maintenance of genetic diversity, and it can
serve as a reservoir for dispersal over time (During
2007; Hock et al. 2008; Maciel-Silva et al. 2012).
However, diaspore longevity in, movement to and

emergence from the diaspore bank, and factors con-
trolling these, have been investigated for only a
handful of species and habitats [Q14]. What are the
effects of species-inherent traits, environmental
factors and biotic vectors, and how do they interact?
These questions also pertain to species and habitat
management in a conservation context [GT3].

We currently lack sufficient data to enable assess-
ment of which factors drive selection for different
reproductive modes and other life-history traits
[Q15], which are the intrinsic phylogenetic and devel-
opmental constraints that limit phenotypic expression
of these traits [Q15], and how these traits shape popu-
lation dynamics [Q11]. This relates to another top-
ranked question [Q10] concerning the function of mor-
phological traits for reproductive performance and
ecophysiology. For example: Do paraphyses affect
gamete dispersal? What role does the maternal cuticu-
lar structure play in offspring development? What are
the effects of gametophore size on mate availability
(Budke et al. 2013)? How do leaf shape or leaf hair
points affect a species’ water economy (Tao and
Zhang 2012; Pan et al. 2016; Hájek 2020)?

Other characteristics of bryophytes determine to a
high degree where they can thrive and how large
they can grow, including their limited structural (e.g.
conducting tissues; but see Brodribb et al. 2020) or
functional mechanisms to regulate tissue water
content. The cellular water content of bryophyte
gametophytes largely depends on environmental
humidity (‘poikilohydry’). However, most species toler-
ate some level of dehydration of their vegetative
tissues over long periods. The processes that deter-
mine bryophyte recovery from dehydration have
received considerable attention lately (Oliver et al.
2005; Stark 2017). Nevertheless, the function of bryo-
phyte-specific morphological structures in these and
other physiological processes remains poorly explored
[Q10]. Thus, many crucial issues related to bryophyte
life histories, functions and strategies, and how these
relate to, for example, distribution or population
dynamics, and the environment, remain unsolved,
whereas they have received detailed attention
in seed plants. Addressing these key questions
[Q11–Q15; see also Q47 in section GT4] will not only
advance bryology but add significantly to the under-
standing of plant biology and life-history evolution
(Stearns 2000).

The questions outlined above need to be addressed
in a phylogenetic framework to take into account phy-
logenetic relatedness (Crawford et al. 2009; Bisang
et al. 2014), and with input from molecular biology
to address the underlying mechanisms of trait
expressions (e.g. Smith and Donoghue 2008). A com-
prehensive compilation of species traits for species
from all the major bryophyte orders, at the scale of
continents or regions, as has been accomplished for
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Europe (Dierssen 2001), the Azores (Henriques et al.
2017b) and the UK (Hill et al. 2007), for example, will
be a prerequisite for: (i) testing for trade-offs
between different reproductive modes and other life-
history characters (e.g. Bisang and Ehrlén 2002;
Pohjamo and Laaka-Lindberg 2003; Löbel and Rydin
2009); and (ii) comparing traits and trait combinations
between lineages and environments [Q13]. Ultimately,
identifying genes contributing to focal phenotypes will
provide a means to assess homology among distantly
related taxa, or identify the extent to which distantly
related species use the same mechanisms for solving
biological challenges.

Research into life-history traits should be sup-
plemented by studies of other species-inherent
characteristics, for example habitat specificity, niche
breadth, gametophytic ploidy level and intraspecific
genetic variation, and their relationships with environ-
mental factors and vulnerability [Q12] should be eval-
uated (Kotiaho et al. 2005; Löbel et al. 2018;
Zettlemoyer et al. 2019). The recent Red List assess-
ments of > 1800 European bryophytes (Hodgetts
et al. 2019) has enabled such an analysis for Europe.
This step will provide crucial insights into extinction
risks to bryophytes and the possibility of modelling
them [Q12] for other regions and environments.

Dispersal ecology

Q16. To what extent do bryophyte species differ in
their capacity for long-distance dispersal, and
how does this variation in dispersal ability corre-
late with ecological, physiological or reproduc-
tive traits? [Rank #12, votes 75.4%.]

Q17. What are the main environmental factors
affecting dispersal of bryophytes, and how do
they vary across habitats and geographical
areas? [Rank #18, votes 71.7%.]

Q18. What is the role of biotic and abiotic vectors for
bryophyte dispersal at various spatial scales?
[Rank #34, votes 65.7%.]

Q19. What are the effective dispersal distances of
bryophytes, and how do these vary with their
life-history traits, in particular the type of dia-
spore? [Rank #38, votes 64.9%.]

The generally wide geographical distributions of bryo-
phyte species suggest that they have great dispersal
abilities (Medina et al. 2011; Patiño and Vanderpoorten
2018), as already discussed in the earlier subsection
Distribution patterns. Spores or vegetative diaspores
< 20 μm can be transported by wind across very large
distances of several thousands of kilometres (Muñoz
et al. 2004; Wilkinson et al. 2012). However, spore
size as an estimate of dispersal potential is certainly
too simplistic. Bryophyte diaspores can be dispersed
by different mechanisms. Besides wind, water in the

form of rain or running water is an important vector,
and rain ends dispersal events by washing out wind-
blown diaspores from the air (Kimmerer 1991; Korpe-
lainen et al. 2013). Animals serve as dispersal agents
over short (Boch et al. 2013, 2015), moderate (Marino
et al. 2009; Barbé et al. 2016a), and even long distances
(Lewis et al. 2014; Chmielewski and Eppley 2019).
Additionally, spatial and temporal factors constrain
diaspore production. For instance, long-distance
spore dispersal may occur from localised or regional
source populations, or only during years with suitable
weather conditions (Lönnell et al. 2014; Hedenäs 2015;
Barbé et al. 2017; Hedenäs and Bisang 2019).

Thus, besides diaspore size, numerous other biotic
or abiotic factors must be considered to enable realis-
tic estimates of the dispersal potential of bryophytes.
Their relative importance at different spatial scales
remains, however, poorly understood [Q18]. Indeed,
only some of these factors have been studied
thoroughly and often only in a few model species, as
reflected in the questions included in this subsection
[Q16–Q19]. Therefore, to improve our understanding
of bryophyte dispersal processes and their influence
on relevant ecological aspects (e.g. community assem-
bly), it is crucial to shed new light on (i) the influence of
environmental (e.g. weather) conditions [Q17]; and (ii)
adaptations in life-history traits (e.g. diaspore shape
and ornamentation, density or mass of individual dia-
spores) and physiology (e.g. survival ability during dis-
persal) [Q16]. This will facilitate comprehension of
when and how the production and release of diaspores
increase dispersal efficiency (van Zanten 1978;
Hedenäs 2001; Sundberg 2013; Lönnell et al. 2015;
Zanatta et al. 2016, 2018).

Although many studies have analysed diverse
aspects of bryophyte dispersal, we remain far from
the general understanding required for quantitative
estimates of how dispersal affects bryophytes and
their distributions or survival in many natural and
anthropogenic contexts. To date, bryophyte dispersal
distances and mechanisms [Q19] have been studied
for relatively few species (e.g. Lönnell et al. 2012; Sund-
berg 2013; Zanatta et al. 2018). Reaching the general
understanding needed requires data from a much
wider selection of species and over different spatial
and temporal scales. These species need to represent
diverse dispersal modes, habitats, distribution types,
life histories, diaspore types and physiological adap-
tations. Future investigations should also consider
whether similar dispersal adaptations in different
lineages are a result of a single evolutionary event or
the outcome of convergence through independent
evolutionary episodes resulting from, for instance,
common responses to adaptive forces.

Finally, large-scale analyses incorporating numer-
ous species must be based on data assembled and
scored in a consistent way or in ways that make
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comparisons possible. For example, can we compare
dispersal distances estimated (i) from species’ distri-
bution and abundance patterns at different scales
(Pharo and Zartman 2007; Patiño and Vanderpoorten
2018), (ii) from tracing the origin or studying the fate
of spores or vegetative diaspores by means of spore
traps (e.g. Pohjamo et al. 2006; Lönnell et al. 2012;
Sundberg 2013; Ingimundardóttir et al. 2014), and
(iii) from molecular or phylogeographical approaches
(e.g. Shaw et al. 2003; Pfeiffer et al. 2006; Hedenäs
2008)? Despite the formidable challenges, given the
small size of both diaspores and plants compounded
by often complicated micrometeorological and other
microecological conditions (Moncrieff et al. 1997;
Buzorius et al. 2001), broad approaches will provide a
much deeper understanding of bryophyte dispersal.

Biotic interactions and productivity

Q20. How do bryophytes contribute to water reten-
tion, carbon and nitrogen budgets in ecosystems
where their productivity and biomass are most
significant? [Rank #2, votes 83.0%.]

Q21. How common are the symbiotic associations
with fungi and/or cyanobacteria, and through
what mechanisms do they increase the ecologi-
cal performance of bryophytes? [Rank #15,
votes 73.9%.]

Q22. How large is the contribution of bryophytes as
primary producers across ecosystem types?
[Rank #16, votes 73.9%.]

Q23. What are the interrelationships between bryo-
phytes and the microbiome, and how do they
influence bryophyte community composition
and ecosystem function? [Rank #20, votes
71.0%.]

Q24. How do symbioses with fungi affect bryophyte
development? [Rank #27, votes 68.8%.]

Q25. What is the contribution of cyanobacteria associ-
ated with bryophytes to global fixation of atmos-
pheric nitrogen, and in which ecosystem is this
more prominent? [Rank #48, votes 60.9%.]

Bryophytes are key components of several biomes
worldwide, where they contribute fundamentally to
biomass and productivity and exert a major influence
on ecosystem processes, including water, carbon (C)
and N cycles (Turetsky 2003; Cornelissen et al. 2007;
Turetsky et al. 2012; Michel et al. 2013; Song et al.
2016; Ah-Peng et al. 2017; Horwath et al. 2019).
Although appreciation for the roles of bryophytes in
ecosystem functioning has increased in the past few
decades, especially for peat mosses (Bengtsson et al.
2016), major questions remain unanswered as to the
mechanisms involved and how differences among
species in key traits such as water retention capacity,
productivity, litter quality and decomposition, N

interception, retention and fixation, and in the com-
munity composition of their microbiomes, shape the
functional significance of bryophytes across ecosystem
types [Q20–Q25].

In pristine, N-limited northern ecosystems, biologi-
cal N2 fixation by cyanobacteria and other diazotrophic
microbes associated epiphytically with dominant
feathermosses and Sphagnum contributes up to 50%
of the total N input in these systems (DeLuca et al.
2002, 2007, 2008; Turetsky et al. 2012; Rousk et al.
2015; Holland-Moritz et al. 2018), characterising pro-
ductivity and with putative crucial roles in overall N
and C budgets (Rousk et al. 2013a, 2013b). In many
other ecosystems, including tropical environments
(Cusack et al. 2009), cyanobacteria probably contribute
significantly to N2 fixation, because they are frequently
observed on bryophytes collected in many habitats
and regions (L. Hedenäs, unpublished data). Transfer
of cyanobacteria-fixed N2 to moss hosts increases
their biomass growth (Berg et al. 2013), directly
influencing C fixation, while the N stored in moss
tissue provides a major soil N input before and after
decomposition (Coxson et al. 1992; Lindo and Gonza-
lez 2010), further affecting ecosystem C sequestration.
However, current gaps in understanding of the physio-
logical and genetic mechanisms governing bryo-
phyte–cyanobacteria symbiosis (Warshan et al. 2016),
and of the processes, routes and timescales by which
the N from cyanobacterial-N–enriched moss tissue
becomes available for N cycling in the soil (Lindo
et al. 2013; Rousk et al. 2013a, 2013b), severely limit
our appreciation of the role of this association in eco-
system functioning [Q20, Q21, Q25].

A better understanding of how different groups of
nitrogen fixers may contribute to habitat N2 fixation
(Rousk et al. 2015), and how the composition of sym-
biotic cyanobacteria communities is influenced by
host (Bay et al. 2013), habitat and season (Zackrisson
et al. 2009; Ininbergs et al. 2011; Warshan et al.
2016), is also required, together with improved
appreciation of the impact of habitat traits, including
nutrient status (N deposition and P availability), temp-
erature, water relations and atmospheric CO2 concen-
trations on bryophyte productivity, N2 fixation and
ecosystem C and N cycling (Turetsky 2003; Rousk
et al. 2013a, 2013b; van den Elzen et al. 2020). The
latest research indicates that host identity may be a
more important factor than the environment in struc-
turing moss-associated bacterial communities,
although local site conditions, such as light and temp-
erature, also appear to have an effect, albeit subtler
(Holland-Moritz et al. 2021 and literature within).

Cyanobacterial associations have been well charac-
terised in hornworts (Frangedakis et al. 2021) and in
the liverwort order Blasiales (Adams and Duggan
2008; Rikkinen and Virtanen 2008), with a recent
focus on those of feathermosses and Sphagnum
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species. However, as reflected by Q20 and Q24, a com-
prehensive understanding of the taxonomic extent of
these partnerships across bryophytes, and their signifi-
cance across ecosystem types, remains patchy (Tur-
etsky 2003; Deane-Coe 2015). Also required is a
deeper understanding of the types and roles of other
microbes that associate with bryophytes [Q23], and
how microbiomes may impact not only host nutrient
acquisition but also germination, growth, metabolism
and phenology (Bragina et al. 2014) across ecosystem
types [Q22]. Mosses associate with a diverse commu-
nity of potential N2-fixing microbes, including non-
photosynthetic bacteria (Holland-Moritz et al. 2021
and references therein). Methanotrophic bacteria are
important N2-fixing members of the Sphagnum micro-
biome (Larmola et al. 2014), contributing up to 20% of
the CO2 necessary for host photosynthesis (Raghoebar-
sing et al. 2005; Vile et al. 2014), and play a significant
role in reducing methane fluxes from arctic freshwater
systems through their mutually beneficial associations
with submerged brown mosses (Amblystegiaceae)
(Liebner et al. 2011).

Mutualistic, mycorrhizal-like associations involving
diverse members of the Mucoromycota (Mucoromy-
cotina and Glomeromycotina or Glomeromycota)
(Spatafora et al. 2016) and Ascomycota (Rimington
et al. 2020) have been demonstrated in a number
of liverworts (e.g. Field et al. 2015, 2016; Kowal
et al. 2018) and shown to enhance host P and N
uptake and increase host fitness (Humphreys et al.
2010); however, the spread, functional significance
and biogeochemical impact of these symbioses
across bryophytes and ecosystems remain to be
determined [Q24]. Besides these mutualistic groups,
bryophyte microbiomes include a wide range of pro-
karyotes and fungi (Nelson et al. 2018), which may
act as pathogens, parasites, saprobes or commensals
(Davey and Currah 2006), and make possible a wide
range of outcomes for host development (Nelson
et al. 2018). However, our understanding of the vari-
ation in microbiome community composition among
species and habitat type, the metabolic roles of these
associations, the impacts of ecological factors on
microbiome structure and function, their influence
on bryophyte community composition, and ulti-
mately the roles of bryophyte microbiomes in eco-
system functioning (Kostka et al. 2016; Carrell et al.
2020; Holland-Moritz et al. 2021; Stuart et al. 2021),
is in its infancy [Q23, Q24]. An improved understand-
ing of bryophyte–microbiome interactions is needed
to predict the potential impact of climate and
anthropogenic change on bryophyte-mediated bio-
geochemical cycles. Given the major influence of
bryophytes on ecological processes in several
biomes worldwide (Lindo et al. 2013; Weston et al.
2015), environmentally induced changes in bryo-
phyte communities and their microbiomes are likely

to provide major feedback in carbon, nitrogen and
water cycles at the global scale [Q25].

Community ecology

Q26. Which environmental factors determine estab-
lishment success in bryophytes, ultimately
shaping bryophyte community composition?
[Rank #9, votes 77.8%.]

Q27. How does the interaction between macroclimate
and microhabitat structure bryophyte commu-
nity composition? [Rank #28, votes 68.2%.]

Q28. How common and intense are competitive inter-
actions in bryophytes, and to what extent do
they influence their coexistence along environ-
mental gradients? [Rank #39, votes 64.2%.]

Community ecology encompasses “the study of pat-
terns in the diversity, abundance and composition of
species in communities, and the processes underlying
those patterns” (Vellend 2010, page 183). Modern com-
munity ecology seeks to integrate the description of
patterns within a mechanistic framework, with the ulti-
mate goal of understanding how communities assem-
ble over time and space (Weiher et al. 2011; Thompson
et al. 2020). Both deterministic and stochastic pro-
cesses can operate during community assembly
(Bannar-Martin et al. 2018). Interspecific competition
and other biotic interactions are frequently assumed
to work at a local scale while environmental changes
and dispersal operate at larger scales (Ovaskainen
et al. 2017).

Bryophytes are ideal organisms in which to investi-
gate influences of deterministic and stochastic factors
across scales. Because they are small, they are
influenced by a broad array of large-scale environ-
mental factors combined with small-scale microhabitat
variables; this enables analysis of the across-scales
effects of environmental drivers. Furthermore, bryo-
phytes compete mainly for above-ground resources,
with scarce experimental evidence suggesting that
competitive exclusion is probably rare at best
(Mälson and Rydin 2009). In fact, bryophytes have
been used to challenge the view that stochastic
versus deterministic factors operate uniquely at
different scales (Medina et al. 2014, 2018a), and to dis-
entangle the importance of dispersal versus niche
assembly processes (Mota de Oliveira et al. 2009;
Mota de Oliveira and ter Steege 2015).

Although major progress has been made towards a
unified community assembly theory (e.g. Vellend
2016), in organisms such as bryophytes much more
theoretical and empirical evidence needs to be
obtained through both natural and manipulative
experiments (Zamfir and Goldberg 2000; Snäll et al.
2003; but see Löbel et al. 2006). In particular, commu-
nity dynamics should be studied at different spatial
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and temporal scales and include an array of
approaches such as experiments, modelling, popu-
lation genetics and metapopulation theory (e.g.
Pharo and Zartman 2007; Rydgren et al. 2010; Roseng-
ren et al. 2015). This need is highlighted in the ques-
tions of this subsection [Q26–Q28].

Owing to the high dispersal capabilities of many
bryophytes (see subsections Distribution patterns and
Dispersal ecology), geographical isolation typically
plays a negligible role, compared with that of environ-
mental filtering, in the assembly of bryophyte commu-
nities (Sundberg et al. 2006; Mota de Oliveira and ter
Steege 2015; Tiselius et al. 2019; Liu et al. 2020; but
see Löbel et al. 2006). In this context, Barbé et al.
(2016a) have shown that environmental tolerance
during establishment and species’ ability to produce
substantial amounts of diaspores are more important
selective forces in bryophyte community dynamics
than dispersal distance per se (see also Crum 1972).
A similar pattern has been observed among island
bryophyte communities and those expected under a
null model in which species can disperse randomly
among islands (Liu et al. 2020). By contrast, indirect
estimates of dispersal derived from analyses of
spatial genetic structures have mostly revealed signifi-
cant isolation-by-distance patterns, indicating disper-
sal limitations (Vanderpoorten et al. 2019; Ledent
et al. 2020). Such a discrepancy between the results
of studies based on the spatial structure of commu-
nities and those of genetic analyses of the dispersal
capacities of bryophytes is striking and opens an
avenue for research on the role of environmental
filters in colonisation and the spatial scale at which
these filters operate [Q26, Q27], as well as the potential
role of biotic interactions [Q28].

When looking into the factors that shape bryophyte
communities, in addition to dispersal and environ-
mental filters, we need to consider a third filter: inter-
actions with other species (Weiher et al. 2011;
HilleRisLambers et al. 2012) [Q28]. Few studies have
assessed biotic filters in bryophytes, and therefore
the degree of interspecific competitive exclusion and
facilitation remains largely unknown. Former studies
have accordingly suggested that competitive exclu-
sion may (Udd et al. 2016; Ma et al. 2020) or may not
(Mälson and Rydin 2009) play a role during bryophyte
community assembly; however, facilitation can be
important in specific ecological bryophyte groupings
and environmental conditions (Bu et al. 2013).

A number of theoretical, experimental and empiri-
cal approaches have been proposed to assess the
role of biotic interactions in shaping assemblages of
species (HilleRisLambers et al. 2012), including
species distribution modelling (Wisz et al. 2013),
which might emerge as a complementary method to
be applied in studies of bryophytes (but see König
et al. 2021). However, several assumptions underlying

these approaches, which utilise presence–absence
data, undermine our ability to disentangle the role of
biotic interactions from that of environmental filters
and dispersal limitations (Blanchet et al. 2020; König
et al. 2021). This shortcoming calls for the implemen-
tation of alternative approaches involving abundance
data associated with mechanistic models and exper-
imental methodologies, in order to advance the study
of bryophyte community ecology.

GT3 – Bryophyte Conservation and
Management

Global change

Q29. What is and will be the impact of global climate
change on bryophyte species’ distribution,
abundance, and composition in ecosystems?
[Rank #1, votes 87.0%.]

Q30. How will global climate change affect extinction
risk (i.e. genetic diversity) of bryophyte species
and, consequently, their ability to adapt to chan-
ging environmental conditions? [Rank #4, votes
81.3%.]

Q31. What are the key drivers of decline in bryophyte
species and intraspecific diversity, at both the
global and regional level? [Rank #5, votes 79.4%.]

Q32. What are the highest priority areas (i.e. regions,
habitats) for the conservation of bryophytes in
the face of land-use change, habitat destruction
and climate change? [Rank #7, votes 79.2%.]

Q33. How are biotic interactions between bryophytes
and other organisms affected by climate
change? [Rank #35, votes 65.7%.]

The earth is increasingly affected by anthropogenic
change, and one of the forecasted consequences, fore-
shadowed by the ongoing dramatic reduction of biodi-
versity, is a most likely sixth mass extinction (Barnosky
et al. 2011; Steffen et al. 2011; Sage 2020): the so-called
Anthropocene extinction. Severe and consistent shifts
have been observed in species distribution ranges,
community composition and biodiversity levels,
including losses of taxonomic, genetic and functional
diversity across several terrestrial taxonomic groups
(Ceballos et al. 2017; Gray 2019). In turn, most bryolo-
gical studies have focused on understanding how
Pleistocene or earlier climate change events have
shaped species distribution and genetic diversity pat-
terns (e.g. Shaw et al. 2011; Patiño et al. 2015; Ledent
et al. 2019). Thus, it is essential to address the question
of how bryophyte species and assemblages might
respond to ongoing global change [Q29–Q33; see
also Q34, Q37, Q38 in the next subsection] (Tuba
et al. 2011; He et al. 2016; Bengtsson et al. 2021).

Species distribution modelling has become a
common approach by which to forecast the potential
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responses of bryophyte distributions to climate
change scenarios. The models often depend,
however, on large-scale climatic predictors and rarely
include small-scale variables accounting for microen-
vironmental differences such as the microclimatic
ones (Zellweger et al. 2019). Indeed, because bryo-
phytes are small organisms, the environment they
experience may be strongly decoupled from macrocli-
matic conditions. Not accounting for small-scale eco-
logical conditions that may lead to an overestimation
of climate-warming effects, as has been shown for
alpine (Scherrer and Körner 2011) and boreal plants
(Greiser et al. 2020).

Furthermore, the extent to which bryophyte species
can compensate for climate warming–induced loss of
suitable habitats by shifting their distribution ranges
remains an area of debate. Projected rates of range
loss derived from dispersal simulations under chan-
ging climate conditions in Europe significantly
exceeded projected rates of range expansion,
suggesting that even highly dispersive organisms
such as bryophytes might not be fully equipped to
cope with projected trends of climate change in the
coming decades (Zanatta et al. 2020).

The need for this crucial information on the effects of
global change is captured by the first two questions of
this subsection, which focus on how bryophyte floras
will respond to changing climatic conditions [Q29, Q30].
Spatial analyses across continental (e.g. Désamoré et al.
2012; Ruete et al. 2012) and insular systems (e.g. Ferreira
et al. 2016; Patiño et al. 2016), predicting future changes
in the geographical ranges of bryophyte species, allow
us to assess the efficacy of existing protected reserves
and the need for new ones [Q32, but also see Q34 in the
next subsection] in order tomeet present and future con-
servation needs.

Mounting evidence for local adaptation among infra-
specific lineages raises the question of the taxonomic
level at which species distribution modelling should be
performed [Q31; see also Q40] (Smith et al. 2019, and
references therein). This question is especially relevant
in taxa with reduced morphologies, such as bryophytes,
in which cryptic species have been increasingly reported.
Such cases necessitate testing of the hypothesis of niche
conservatism versus divergence among the investigated
lineages or taxa, in order to inform subsequentmodelling
analyses (Collart et al. 2021a). A related and similarly neg-
lected aspect is the genetic dimension at the intraspecific
level of diversity (Cronberg 2002; Habel and Schmitt
2018). Biodiversity loss due to reduction in intraspecific
genetic diversity at different spatial scales [Q30] has not
been considered sufficiently for bryophytes (Hedenäs
2019).

Efforts devoted to understanding how species
respond to diverse agents of global change are
growing, following concerns about the capacity of
species to cope with rapid anthropogenic global

change. However, current predictions of global and
regional change responses and subsequent conserva-
tion strategies are largely incomplete, particularly for
inconspicuous species-rich plant groups such as bryo-
phytes [Q29, Q30, Q32, Q33]. Despite major efforts to
assess the extinction risk at national or even continen-
tal levels through Red List assessments over time (Sim-
Sim et al. 2014; Ingerpuu et al. 2018; Hodgetts et al.
2019) and through long-term monitoring of habitats
and species (Pharo and Zartman 2007; Ingerpuu and
Vellak 2017), many regions lack a quantitative assess-
ment of how much of their bryophyte biodiversity is
threatened [Q32]. Such a limitation is strongly corre-
lated with the lack of knowledge about species’ geo-
graphical ranges, population size and habitat
conservation (Bergamini et al. 2019). This further
points to the necessity for floristic explorations [see
Q34, Q41, Q42] and an urgent need to assess geo-
graphical range loss, ecological processes and biologi-
cal traits that render species vulnerable to extinction
under anthropogenic disturbance regimes [Q31, Q32;
see also Q12 and Q43 in panels GT2 and GT4, respect-
ively]. This will enable assessment of the underlying
causes of extinction risks at broad evolutionary and
spatial scales (Pharo and Zartman 2007; Bergamini
et al. 2009; Hylander and Weibull 2012; Hodgetts
et al. 2019).

In this pressing context, we have limited knowledge
about the effects of global warming on biotic inter-
actions (Bragina et al. 2012), and how taxon-specific
life-history traits interact to modify community compo-
sition (Pardow and Lakatos 2013). Inclusion of bryo-
phyte–plant interactions in species-richness models
has been shown to significantly increase their predic-
tive power while decreasing bias (Mod et al. 2015).
Thus, answering questions regarding the impact of
global change on plant–plant interactions in bryo-
phytes [Q33] might have crucial implications for
improving existing approaches to preserving and
restoring bryophyte assemblages across heavily
human-disturbed landscapes.

Disturbance, management and policies

Q34. Which geographical areas and ecosystems are in
urgent need of bryological exploration before
being destroyed by human impact? [Rank #8,
votes 78.5%.]

Q35. How do bryophyte diaspore banks contribute to
the long-term persistence of species, the preser-
vation of genetic variation, and the restoration of
habitats? [Rank #11, votes 76.0%.]

Q36. How should bryological information be commu-
nicated to government, policy makers and man-
agers to influence most effectively policies and
decision-making? [Rank #13, votes 75.4%.]
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Q37. How effective are existing nature conservation
reserves and networks for the conservation of
bryophytes? [Rank #17, votes 72.1%.]

Q38. Which ecosystems, ecosystem functions and ser-
vices are most sensitive to changes in bryophyte
composition? [Rank #22, votes 70.4%.]

Q39. How could bryophyte conservation be better
integrated into modern forestry to improve sig-
nificantly the bryophyte diversity levels in
managed forests? [Rank #36, votes 65.3%.]

Q40. What are the best protocols for cultivation,
reinforcement and reintroduction (ex situ con-
servation) of threatened bryophyte species
into their original habitats? [Rank #50, votes
60.0%.]

Documenting biodiversity patterns, ecosystem func-
tioning, and extinction rates is one of the most funda-
mental steps taken to effectively preserve natural
resources (Cornwell et al. 2019; Le Roux et al. 2019),
particularly in regions with high rates of human-
induced habitat destruction. This crucial conservation
task [reflected in Q34, Q38] is nowhere more critical
than in tropical hotspots across Africa, Asia, the Amer-
icas and Oceania, which are severely threatened by
rapid land-use transformation (Di Marco et al. 2019)
but where so little is known about bryophyte diversity
and its distribution (Figure 2) (Patiño and Vanderpoor-
ten 2018; Cornwell et al. 2019; Van Rooy et al. 2019).
The questions in this subsection [Q34–Q40] therefore
highlight the growing need to design management
and conservation strategies for bryophytes (Halling-
back and Tan 2014). Forests were particularly high-
lighted [Q39], because they offer important habitats
and are under enormous pressure on a global scale
(e.g. Leberger et al. 2020; Karger et al. 2021). More
specifically, the integration of potential historical in
situ (e.g. diaspore banks) and contemporaneous ex
situ (e.g. culture collections) diaspore pool reservoirs
(Barbé et al. 2016b; Ingerpuu et al. 2019; Bisang et al.
2021) may prove valuable approaches by which to pre-
serve and possibly even restore diversity and compo-
sition of bryophyte assemblages in anthropogenically
influenced environments [Q35, Q40]. Additionally,
there is an urgent need to document bryophytes in
urban environments as key markers of the effects of
changes in climate and air quality (Duckett and
Pressel 2019).

Moreover, conservation actions are implemented
from national to subnational scales, and consensus
has emerged on the need to reach stakeholders, man-
agers and politicians to transmit the scientific out-
comes (Carwardine et al. 2019) and to convey the
significance of bryophyte species to biodiversity and
ecosystem functions (Vanderpoorten and Hallingbäck
2009). Connecting scientists and decision makers has

important consequences, from boosting the appli-
cation of novel conservation strategies to fostering in
local policymakers and managers a long-term interest
in plant conservation. The Cape Horn Biosphere
Reserve represents a particularly successful case of
integration of bryophytes into education and conser-
vation programmes (Rozzi et al. 2004, 2006). To
tackle the complex but necessary integration of bryo-
phyte diversity loss into political agendas globally, it
is fundamental to investigate and improve approaches
that promote the incorporation of scientific bryological
research into nature conservation policies [Q36, Q39].
This goal greatly relies on future levels of investment
in the bryological training of early-career botanists
and biodiversity managers (e.g. Lewis et al. 2017), as
well as in the development of standardised method-
ologies for long-term biodiversity monitoring (e.g.
Borges et al. 2018).

Rarity, threat and Red Lists

Q41. Where are the global hotspots of rare or threa-
tened bryophyte species, and how do these
relate to hotspots of species and intraspecific
diversity? [Rank #6, votes 79.4%.]

Q42. Which regions and habitats are most in need of
increasing assessment efforts in red listing of
bryophytes? [Rank #19, votes 71.1%.]

Over recent decades, assessments of rarity and threat
have become the cornerstones of conservation
efforts, and the study of extinction-prone species
identified as a priority when seeking to implement
efficient conservation strategies and policies (Myers
et al. 2000; Orme et al. 2005; Grenyer et al. 2006). A
mounting number of studies have highlighted
limited cross-taxon congruence in distribution pat-
terns of rare and threatened species, with the
researchers calling for high-resolution data from mul-
tiple taxa in order to inform biodiversity conservation
decisions (Grenyer et al. 2006). Taxa traditionally con-
sidered in this type of study include angiosperms,
mammals, amphibians and birds (Orme et al. 2005;
Grenyer et al. 2006; Kier et al. 2009); bryophytes
have been completely, or to a large extent, neg-
lected. Indeed, there are regions across tropical
America, Africa, Asia and Polynesia (see Figure 2),
among others, whose bryophyte floras remain
poorly known and where the need for Red Lists has
been emphasised (González-Mancebo et al. 2012;
Geffert et al. 2013; Hallingback and Tan 2014; Van
Rooy et al. 2019). Therefore, there is an urgent need
not only to carry out a global examination of distri-
butions of all rare and threatened bryophyte
species in order to assess potential patterns of
endangerment, but also to evaluate the degree of
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congruence regarding interspecific but also intraspe-
cific biodiversity hotspots in bryophytes [Q41, Q42;
see also Q31, Q32, Q34]. Because the spatial scale
probably influences the degree of congruence

among cross-taxon biodiversity hotspots, the distri-
bution of threatened bryophyte species across fine
spatial (habitat) gradients should be critically exam-
ined [Q42; see also Q27].

Figure 2. Eight geographical regions considered hotspots of biodiversity and unexplored bryo-
logically. (A) Tatama Massif in the Western Cordillera, Colombia. (B) Chocó in the Western Cordil-
lera, Colombia. (C) Freshwater ponds in the Cape Horn, Chile. (D) Marojejy National Park,
Madagascar. (E) Central Taiwan Mountains around Taroko National Park, Taiwan. (F) Gua
Bewah in Tasik Kenyir, Terengganu, Peninsular Malaysia. (G) Siga, Upolu Island, Samoa. (H) Nadar-
ivatu, Viti Levu, Fiji. Photographs: Guido van Reenen (A), Jan-Peter Frahm (B), Bernard Goffinet (C,
D), Alfons Schäfer-Verwimp (E), Gaik Ee Lee (F), Mereia Tabua (G, H).
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GT4 – Bryophyte Evolution and Systematics

Speciation, diversification and extinction

Q43. What is the current extinction rate in bryophytes,
and what are the most appropriate data to esti-
mate this? [Rank #10, votes 77.4%.]

Q44. How does variation in bryophyte diversity
throughout time correlate with past global
climate changes, with emphasis on the most
recent epochs (i.e. Pleistocene and Holocene)?
[Rank #31, votes 66.5%.]

Q45. What is the relative importance of geographical
(e.g. geographical isolation) and ecological spe-
ciation (e.g. adaptive radiation) in bryophytes?
[Rank #37, votes 65.3%.]

Q46. What is the early branching pattern that explains
the evolution of the relationships among the
three main bryophyte lineages? [Rank #40,
votes 64.0%.]

Q47. What life-history traits can be associated with
high diversification rates in bryophytes? [Rank
#43, votes 63.3%.]

Q48. Which factors enable bryophytes to survive as
predominantly haploid, and if there are different
mechanisms of DNA repair, what is the template?
[Rank #44, votes 62.8%.]

Bryophytes comprise approximately 17,900 extant
species (Magill 2010; Söderström et al. 2016). Although
the relationships among the major bryophyte lineages
remain somewhat contentious, their origin early in the
conquest of land at least half a billion years ago is
uncontested (Morris et al. 2018, Su et al. 2021). Their
long evolutionary history is marked by periods of
rapid diversification in several lineages of liverworts
(Porellales), mosses (Funariaceae, Hypnales) and horn-
worts (Anthocerotales) (Laenen et al. 2014; Medina
et al. 2018b), from which much of the extant diversity
of bryophytes originated. These diversification pat-
terns may have been triggered by a broad variety of
mechanisms, such as geographical speciation (Patiño
and Vanderpoorten 2018), whole-genome duplications
(Devos et al. 2016), global climatic shifts (Shaw et al.
2010; Medina et al. 2018b), and key innovations such
as shifts in mating systems (Wall 2005; Laenen et al.
2016a).

Five questions in this subsection illustrate the need
to study factors and processes that shaped bryophyte
diversity in the past and continue to shape it in the
present: extinction [Q43], past climate change [Q44],
speciation mode [Q45], specific life-history traits
[Q47], and the bryophyte-specific dominant haploid
phase of the life cycle [Q48]. Question 46 highlights
the ongoing discussion about the phylogenetic
relationships of the main bryophyte lineages in the
context of land plant evolution.

Given the current biodiversity crisis, it may not be
surprising that the question related to estimation of
historical extinction rates [Q43] was rated as the top-
priority question, and it is one that connects to
several questions in GT3 related to identification of
knowledge gaps and data sources in order to assess
extinction risk. Additionally, comparative studies of
bryophytes across both taxonomic groups (including
fossils) and spatial scales are necessary to estimate
extinction rates, their trait dependence, and variation
among lineages. Past levels of bryophyte diversity
[Q44] are probably underestimated, because the bryo-
phyte fossil record, despite ongoing discoveries (Feld-
berg et al. 2021; Ignatov and Maslova 2021; Edwards
et al. 2022a, 2022b), remains scarce due to either the
limited resistance of the plant body to decay or tapho-
nomic biases and related issues (Tomescu et al. 2018).
Furthermore, phylogenetic reconstructions highlight
high levels of homoplasy in morphological evolution,
challenging the assignment of extinct taxa to extant
lineages (Edwards et al. 2022c). Although several
fossils, especially from amber, were considered suit-
able for calibrating molecular trees (Feldberg et al.
2021; Ignatov and Maslova 2021), the identity of
many older fossils remains ambiguous. The ambiguity
of assigning fossils to the most terminal phylogenetic
lineage further lowers their calibration potential and
hence their contribution to estimation of the timing
of evolutionary events. Therefore, advances in bryo-
phyte taphonomy (the branch of palaeontology that
deals with the processes of fossilisation) and focused
searches for fossils will be crucial in future efforts to
unravel bryophyte evolution and extinction rates
(Tomescu et al. 2018).

In this context, the ability to link diversification
events to time periods of significant global environ-
mental changes (e.g. Shaw et al. 2010; Bechteler
et al. 2017) strongly depends on the underlying cali-
bration assumptions (Feldberg et al. 2013; Laenen
et al. 2014). Information on the relative timing of spe-
ciation events across the Plant Tree of Life, such as
major radiations in bryophytes and angiosperms,
could be obtained from uncalibrated trees. However,
this analytical strategy would rely on the assumption
of homogeneous rates of molecular evolution across
lineages, a hypothesis unlikely to hold true (Villarreal
et al. 2016). Despite these limitations, such an
approach has recently provided evidence for consist-
ent bursts of diversification in several bryophyte
groups during important global events of climatic
and ecological change (Shaw et al. 2010; Feldberg
et al. 2014; Laenen et al. 2014). Because the number
of such case studies based on high-resolution geo-
graphical and species samplings is still low, Q44
remains largely unanswered.

The relative importance of specific evolutionary
mechanisms in driving bryophyte diversification
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remains difficult to assess [Q45]. Allopatric speciation
remains the default assumption, at least for species
whose spores or asexual propagules can withstand
the stresses of aerial dispersal (van Zanten 1978; Esté-
banez et al. 2018), but what constitutes a geographical
barrier to gene flow in bryophytes is uncertain. For
example, unlike vascular plants, bryophytes exhibit
low levels of speciation and insular endemism on
oceanic islands (Patiño et al. 2014), suggesting either
that (i) bryophytes tend to prefer long-term environ-
mentally stable habitats, which do not seem to fuel
plant speciation on islands (Patiño et al. 2014); or (ii)
long-distance gene flow precludes isolation
(Vanderpoorten et al. 2008; Patiño and Vanderpoorten
2021).

The latter hypothesis suggests that in organisms
with high dispersal capacities, such as bryophytes,
gene flow among diverging species may not be com-
pletely disrupted; therefore, factors other than geo-
graphical distance or barriers must promote
reproductive isolation. It was initially thought that
bryophytes largely fail to diversify along environ-
mental gradients (Shaw 1985), which would offer a
straightforward explanation for their failure to ecologi-
cally radiate on islands (Patiño et al. 2014). Mounting
evidence points, however, to the genetic structuring
of genetic variation along ecological gradients (e.g.
Sim-Sim et al. 2015; Magdy et al. 2016; Ledent et al.
2020), which suggests ecotypic differentiation, a
hypothesis congruent with the unexpectedly wide
gene space of bryophytes (e.g. Bowman et al. 2017;
Lang et al. 2018; Li et al. 2020; Zhang et al. 2020;
Carey et al. 2021; Rahmatpour et al. 2021). Studies
that employ reciprocal transplant or crossing exper-
iments (Schwarzer and Joshi 2017), combined with
broad comparative studies of diversification and popu-
lation genetic structure, will be critical for identifying
traits linked to local adaptation, reproductive isolation,
or altered extinction probabilities.

Post-zygotic isolation due to differences in ploidy
levels between closely related species (i.e. polyploid
speciation) is also clearly important (Beike et al. 2014;
Perley and Jesson 2015; Nieto-Lugilde et al. 2018a;
2018b), but many closely related species pairs lack
ploidy differences. Populations may further differ in
the timing of gametogenesis, such that changes in
phenology may generate temporal isolation. Intrigu-
ingly, limited evidence has pointed to the idea that
mosses may use odours to attract sperm-dispersing
microarthropods (Cronberg et al. 2006; Cronberg
2012; Rosenstiel et al. 2012; Shortlidge et al. 2021),
offering the possibility of isolation mechanisms analo-
gous to pollination syndromes in flowering plants.
Identifying the key factors driving speciation in bryo-
phytes [Q44, Q45, Q47] will require a combination of
comparative, experimental and genetic analyses.
Because bryophytes have nearly equal numbers of

bisexual and unisexual species, they are particularly
well suited for answering questions concerning the
role of sexual conflict in speciation, a key research
focus in other eukaryotic groups (Crespi and Nosil
2013).

As far as phylogenetic relationships of the three
major bryophyte lineages are concerned [Q46], infer-
ences from variation in DNA sequences offer support
for the full array of sister relationship hypotheses
(Puttick et al. 2018). Recent phylogenomic analyses
converge to a Plant Tree of Life wherein mosses and
liverworts (‘setaphytes’) are sister groups and all
three bryophyte lineages together compose the
sister group to extant vascular plants (Wickett et al.
2014; Puttick et al. 2018; de Sousa et al. 2019; Sousa
et al. 2020a, 2000b; Su et al. 2021), a hypothesis pre-
viously supported by inferences from spermatogenesis
(Garbary et al. 1993). The challenges of reconstructing
the early radiation of land plants are rooted in the
difficulty of reassembling events that happened half
a billion years ago, and which may have occurred in
rapid succession following the colonisation of land
by plants and given rise to some lineages that have
long since become extinct.

Despite considerable knowledge of the life forms,
life strategies and reproduction of bryophytes (see
GT2), links between life-history traits and phylogenetic
history and diversification rates in bryophytes are
poorly understood [Q47] (but see Crawford et al.
2009). Detailed information on individual species
traits, which is organised in databases (e.g. Dierssen
2001; Hill et al. 2007; Henriques et al. 2017b; Bern-
hardt-Römermann et al. 2018; Stanton and Coe
2021), will be highly beneficial for assessing such
associations. Combined with phylogenetic analyses,
this will allow large-scale analyses of character evol-
ution. For example, Coudert et al. (2017) demonstrated
that the diversification of branching forms during moss
evolution was especially prominent in the diverse
lineages that radiated after the origin of pleurocarpy.
Bisang et al. (2014) suggested that phylogenetic
history is more important than the current environ-
ment in explaining reproductive traits in dioicous
pleurocarpous wetland mosses. These case studies
illustrate how the integration of functional differences
among species, phylogenetic relatedness and geo-
graphical data can contribute towards a more univer-
sal theory of plant functional ecology (Stanton and
Coe 2021).

Question 48 covers different aspects related to the
dominance of the haploid generation in the bryophyte
life cycle. In haploid organisms, natural selection is
more efficient because recessive deleterious or adap-
tive mutations are not masked; they therefore have a
direct effect on the phenotype (Martin-Roy et al.
2021). This should be analogous to the situation in
bryophytes (Szövényi et al. 2014). In bryophytes,
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however, selection in the haploid and diploid phases is
difficult to compare, given that the sporophyte is
dependent on the gametophyte and many species
do not regularly produce sporophytes. How natural
selection acting on the haploid gametophyte phase
influences the evolution of bryophyte genomes and
populations remains a major question.

Furthermore, different types of mutations (single-
nucleotide mutations versus larger structural
changes) may affect haploid versus diploid cells differ-
ently, as observed in the yeast Saccharomyces cerevi-
siae (Sharp et al. 2018). Thus, the gametophyte and
sporophyte of bryophytes may experience different
dynamics of DNA replication and repair. Whether this
is true, and how it would relate to the finding that
differentiation in gene expression between both gen-
erations is weaker in Funaria hygrometrica than in Ara-
bidopsis thaliana (Szövényi et al. 2013), despite the fact
that the bryophyte gametophyte is more exposed to
mutagens in the environment, needs to be
investigated.

It should be also noted that cell cycle arrest is vari-
able among different tissues in Physcomitrium patens
(also referred to as Aphoanorrhegma patens) (Schween
et al. 2003; Ishikawa and Hasebe 2015). For the gameto-
phytes of different liverwort and moss species, DNA
damage from artificially enhanced UV-B radiation has
been demonstrated, whereas exposure to natural
ambient UV-B levels mostly does not result in DNA
damage (summarised in Fabón et al. 2011). Conse-
quently, efficient protection and repair mechanisms in
bryophytes acclimated to their specific environmental
conditions seem to be in place (Fabón et al. 2011),
and in some species at least vegetative desiccation
may provide protection against DNA damage (Turnbull
et al. 2009). Furthermore, DNA damage induces repro-
gramming of gametophore leaf cells to chloronema
apical stem cells, rather than cell death, as in other
organisms (Gu et al. 2020). The molecular mechanisms
of DNA repair in bryophytes have, to date, been
addressed only in the model species Physcomitrium
patens (also referred to as Aphoanorrhegma patens)
(Kamisugi et al. 2016; Wiedemann et al. 2018; Kobayashi
et al. 2020).

Species concepts and taxonomy

Q49. How should we rationalise the dilemma between
classic morphometric taxonomy and molecular
based rearrangements of taxonomic order in
the case of bryophytes? [Rank #32, votes 65.9%.]

Q50. Which species concepts are most adequate for
assessing bryophyte diversity? [Rank #46, votes
61.8%.]

As in other organisms, analyses of DNA sequence data
complement studies of traditional morphological

characters for assessing the species diversity of bryo-
phytes and for classifying species into higher taxa.
Taxonomic revisions based on classic approaches led
to striking reductions in the actual number of
species. During the period of active bryological
exploration of extra-European regions during the nine-
teenth century in particular, hundreds of new ‘species’
were described based in large part on the assumption
that populations from distant regions must represent
distinct taxa (Shaw 2001). Frahm (1999), for example,
reduced the initial number of ca 1000 species in the
moss genus Campylopus to 150, indicating that mor-
phological diversity could have been overrated, at
least for specific groups. Conversely, an increasing
number of morphologically defined species (e.g. Hein-
richs et al. 2010; Renner et al. 2013; Lang et al. 2015),
genera and families (e.g. Bryum, Hypnum, Orthotri-
chum, families in the Dicranidae and Hypnales) have
been split based on molecular data. This trend is
ongoing, as further genera (e.g. Aongstroemia and
Dicranella in Bonfim Santos et al. 2021) and families
(e.g. Ditrichaceae in Fedosov et al. 2016) are resolved
as polyphyletic; these findings will have to be
addressed taxonomically.

That the taxonomic diversity of bryophytes may
be “vastly” underestimated is further suggested by
the frequency of polyploidy (Patel et al. 2021 and
references therein), in which either genome dou-
bling (autopolyploidy; Fritsch 1991) or genome
merger (hybridisation; Natcheva and Cronberg
2004; Shaw 2009; Olena et al. 2018; Sawangproh
et al. 2020; Sawangproh and Cronberg 2021) may
result in immediate reproductive isolation and
hence act as a speciation mechanism. Within this
context, studies that employ reciprocal transplant
or crossing experiments, combined with broad
comparative phylogenetic approaches and new
sequencing technologies (Ravinet et al. 2017;
Harvey et al. 2019), will be critical for providing a
mechanistic understanding of the processes that
generate diversity.

An increasing number of studies based on denser
population-level and marker sampling have revealed
an until-now unappreciated molecular diversity that
may not be covered by the morphological species
concept traditionally applied to bryophytes [Q50].
Complex interspecific and intraspecific evolutionary
patterns may result from molecular variation without
corresponding morphological variation, as well as
genealogical conflict suggesting hybridisation (e.g.
Sukkharak et al. 2011; Buchbender et al. 2014; Myszc-
zyński et al. 2017; Nieto-Lugilde et al. 2018a; Patel
et al. 2021; Sawangproh and Cronberg 2021) or hori-
zontal gene transfer (Hedenäs et al. 2021). Molecular
lineages within morphological species may represent
“cryptic species” (Struck et al. 2018), which are poten-
tially widespread among bryophytes (e.g. Hedenäs
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Figure 3. Bryophyte species illustrating the broad diversity of bryophytes and their potential use
for education and outreach through citizen science. (A) The base of the liverwort tree: Treubia
lacunosa (Colenso) Prosk. (B) Dehisced sporophytes in the model liverwort Marchantia polymor-
pha subsp. ruderalis Bischl. & Boisel.-Dub. (C) Mature sporophytes of the largest thalloid liverwort
in the world, Monoclea forsteri Hook. (D) Nothoceros endiviaefolius (Mont.) J.Haseg. ex J.C.Villar-
real, Hässel de Menéndez & N.Salazar, from Navarino island, Chile, an endemic hornwort from
the subantarctic Magellanic ecoregion. (E) About 6% of global carbon is locked up in Sphagnum
living and dead; pristine Sphagnum magellanicum Brid. from Tierra del Fuego. (F) Representative
of the most robust mosses, the Polytrichaceae; male and female colonies of Polytrichum juniper-
inum Hedw. (G) Primary colonists after a heathland fire: Ceratodon purpureus (Hedw.) Brid.,
Funaria hygrometrica Hedw. and male Marchantia polymorpha. (H) Splachnum luteum Hedw.
from Alaska is an example of insect-mediated spore dispersal. Photographs: Jeffrey Duckett
and Silvia Pressel (A–C, E–G) and Bernard Goffinet (D and H).
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and Eldenäs 2007; Fuselier et al. 2009; Bączkiewicz et al.
2017; Hedenäs 2020), although the use of that term
needs to be evaluated critically (Renner 2020) [see
Q49]. In particular, developing morphometrical tools
offer increasing opportunities to identify more infor-
mative characters, especially in taxa mostly character-
ised by plastic, continuous traits, such as thalloid
liverworts (Reeb et al. 2018). To tackle Q50, and to
some extent Q49, integrating comprehensive infor-
mation from morphological and molecular sources,
together with other geographical or ecological data,
should become the preferred approach by which to
(re-)circumscribe bryophyte taxa (e.g. Medina et al.
2012; Nieto-Lugilde et al. 2018b; Vigalondo et al.
2019; Hanusch et al. 2020).

Concluding remarks

Through a comprehensive and diverse horizon scan-
ning exercise, we have identified 50 top-priority ques-
tions in bryology to commemorate the fiftieth
anniversary of the IAB. Four interconnected GTs
emerged (GT1–GT4), which encompass challenging
questions and emerging research foci in a broad
variety of bryological disciplines, including biodiver-
sity, ecology, physiology, conservation, evolution and
systematics. The fundamental questions presented in
this paper signal: (i) an increasing need for phyloge-
netic and functional data to be incorporated into
investigations of mechanisms underlying the shaping
of global patterns of bryophyte diversity; (ii) greater
recognition of the importance of life-history theory
and biotic interactions in explaining bryophyte
biology, population dynamics, community assembly
and ecosystem functioning; (iii) expansion of multidis-
ciplinary roles for bryophyte conservation biology in
climate change research, ecosystem management,
and assessment of extinction risk; (iv) growing appli-
cations for cutting-edge sequencing technologies
and statistical-mechanistic models in biogeography
and systematics; and (v) the use of experimental
approaches to assess the importance of adaptation,
reproductive barriers, and the genetic basis of trait
variation in bryophyte evolution. When possible, we
have suggested potential avenues for the research
needed to answer the proposed questions.

Our horizon scan, the results of which reflect major
challenges in bryology over the coming decades, was
based on identification of the most highly ranked
questions. This approach may, however, lead to under-
valuation of the importance of some potentially over-
looked questions. In particular, outreach was not
represented in the final list of selected questions.
This might reflect the often-invoked challenge that
botanists, although eager to participate in and

deliver outreach activities, face critical limitations in
the implementation of effective outreach efforts.
There is an increasing demand for botanical infor-
mation from people outside the scientific community.
Therefore, it is plausible that a key question will be
how we can best stimulate the imagination of a signifi-
cant proportion of society to appreciate and focus
attention on bryology (Figure 3). The involvement of
undergraduate students and postdoctoral scholars to
tenured professors and researchers in outreach activi-
ties and citizen science is a key step forward. An impor-
tant challenge will be to design more innovative and
inclusive outreach programmes and activities that
engage with more diverse student and citizen commu-
nities (von Konrat et al. 2018; Raven 2019).

Although we recognise that our list of fundamental
questions is not without its limitations, particularly
regarding the truly emerging nature of a given topic,
the possible bias introduced by the participants’ inter-
ests, and the fact that some of the approaches pro-
posed are rather nascent, it seems that our scanning
initiative is sufficiently broad and diverse to delineate
some of the most crucial research priorities for years
to come. Indeed, along with other important recent
initiatives (e.g. Renzaglia et al. 2007; Budke et al.
2018; Câmara et al. 2021; Stech et al. 2021), we have
sought to contribute and advance the bryophyte
research agenda. Despite our large and ambitious list
of research foci, much of hypothesis-driven and well-
executed research discussed here has the full potential
to inspire theoretical and empirical research in the near
future. We envision that our final list of 50 key ques-
tions in bryology will become a fruitful arena for
early-career bryologists and contribute to fostering
international and interdisciplinary collaborations,
both important long-term goals of the IAB.

Dedication

This paper is dedicated to the memory of our colleague
Jochen Heinrichs, who sadly passed away in 2018.
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Appendix

The 50 fundamental questions in bryology

GT1 – Bryophyte Biodiversity and Biogeography

Biodiversity patterns
Q1. What are the main drivers of taxonomic, phylogenetic and functional diversity in bryophytes?
Q2. Which are the main ecological factors shaping bryophyte species diversity along latitudinal and climatic gradients?
Q3. How is phylogenetic diversity in bryophytes geographically structured?
Q4. How does environmental heterogeneity affect species and intraspecific diversity patterns of bryophytes at different spatial

and time scales?

The central role of historical collections for biodiversity research
Q5. How can we realise the full potential of bryophyte herbaria for biodiversity research?

Distribution patterns
Q6. At what spatial and temporal scales are dispersal limitations and environmental conditions shaping bryophyte distri-

butions and diversity?
Q7. What geographical regions exhibit the highest levels of bryophyte endemism, both taxonomic and phylogenetic, and

what geographical attributes do these regions present in common, if any?
Q8. Are there bryophyte species that are truly cosmopolitan in distribution, and if so, what mechanism(s) explain such a

capacity?
Q9. How do stochastic (e.g. natural disturbance, population dynamics) and deterministic (e.g. habitat filters) processes

influence bryophyte diversity and community composition, and how do these processes vary along environmental
gradients?
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GT2 – Bryophyte Ecology, Physiology and Reproductive Biology

Life-history strategies and reproduction
Q10. What are the functions of bryophyte morphological structures (e.g. hair points, papillae, paraphyllia, paraphyses) in terms

of the ecophysiology (e.g. photosynthesis dynamics) and fitness (e.g. reproductive performance)?
Q11. How does vegetative reproduction versus sexual reproduction influence population establishment and dynamics?
Q12. What are the main intrinsic factors (e.g. life-history traits, habitat specificity, genetic diversity) governing rarity and vul-

nerability in bryophytes?
Q13. What are the life-history traits of bryophytes that allow them, as a plant group, to persist and compete in the broad range

of environments they occupy, and how do those traits vary across lineages?
Q14. What biotic and abiotic factors determine the development of bryophyte gametophytes from propagule banks?
Q15. Which (extrinsic versus intrinsic) cues determine the reproductive strategies of a bryophyte species (e.g. sexual, asexual

or both)?

Dispersal ecology
Q16. To what extent do bryophyte species differ in their capacity for long-distance dispersal, and how does this variation in

dispersal ability correlate with ecological, physiological or reproductive traits?
Q17. What are the main environmental factors affecting dispersal of bryophytes, and how do they vary across habitats and

geographical areas?
Q18. What is the role of biotic and abiotic vectors for bryophyte dispersal at various spatial scales?
Q19. What are the effective dispersal distances of bryophytes, and how do these vary with their life-history traits, in particular

the type of diaspore?

Biotic interactions and productivity
Q20. How do bryophytes contribute to water retention, carbon and nitrogen budgets in ecosystems where their productivity

and biomass are most significant?
Q21. How common are the symbiotic associations with fungi and/or cyanobacteria, and through what mechanisms do they

increase the ecological performance of bryophytes?
Q22. How large is the contribution of bryophytes as primary producers across ecosystem types?
Q23. What are the interrelationships between bryophytes and the microbiome, and how do they influence bryophyte community

composition and ecosystem function?
Q24. How do symbioses with fungi affect bryophyte development?
Q25. What is the contribution of cyanobacteria associated with bryophytes to global fixation of atmospheric nitrogen, and in which

ecosystem is this more prominent?

Community ecology
Q26. Which environmental factors determine establishment success in bryophytes, ultimately shaping bryophyte community

composition?
Q27. How does the interaction between macroclimate and microhabitat structure bryophyte community composition?
Q28. How common and intense are competitive interactions in bryophytes, and to what extent do they influence their coexistence

along environmental gradients?

GT3 – Bryophyte Conservation and Management

Global change

Q29. What is and will be the impact of global climate change on bryophyte species’ distribution, abundance, and composition
in ecosystems?

Q30. How will global climate change affect extinction risk (i.e. genetic diversity) of bryophyte species and, consequently, their
ability to adapt to changing environmental conditions?

Q31. What are the key drivers of decline in bryophyte species and intraspecific diversity, at both the global and regional level?
Q32. What are the highest priority areas (i.e. regions, habitats) for the conservation of bryophytes in the face of land-use

change, habitat destruction and climate change?
Q33. How are biotic interactions between bryophytes and other organisms affected by climate change?

Disturbance, management and policies
Q34. Which geographical areas and ecosystems are in urgent need of bryological exploration before being destroyed by

human impact?
Q35. How do bryophyte diaspore banks contribute to the long-term persistence of species, the preservation of genetic vari-

ation, and the restoration of habitats?
Q36. How should bryological information be communicated to government, policy makers and managers to influence most

effectively policies and decision-making?
Q37. How effective are existing nature conservation reserves and networks for the conservation of bryophytes?
Q38. Which ecosystems, ecosystem functions and services are most sensitive to changes in bryophyte composition?
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Q39. How could bryophyte conservation be better integrated into modern forestry to improve significantly the bryophyte
diversity levels in managed forests?

Q40. What are the best protocols for cultivation, reinforcement and reintroduction (ex situ conservation) of threatened bryo-
phyte species into their original habitats?

Rarity, threat and red Lists
Q41. Where are the global hotspots of rare or threatened bryophyte species, and how do these relate to hotspots of species

and intraspecific diversity?
Q42. Which regions and habitats are most in need of increasing assessment efforts in red listing of bryophytes?

GT4 – Bryophyte Evolution and Systematics

Speciation, diversification and extinction
Q43. What is the current extinction rate in bryophytes, and what are the most appropriate data to estimate this?
Q44. How does variation in bryophyte diversity throughout time correlate with past global climate changes, with emphasis on

the most recent epochs (i.e. Pleistocene and Holocene)?
Q45. What is the relative importance of geographical (e.g. geographical isolation) and ecological speciation (e.g. adaptive radi-

ation) in bryophytes?
Q46. What is the early branching pattern that explains the evolution of the relationships among the three main bryophyte

lineages?
Q47. What life-history traits can be associated with high diversification rates in bryophytes?
Q48. Which factors enable bryophytes to survive as predominantly haploid, and if there are different mechanisms of DNA

repair, what is the template?

Species concepts and taxonomy
Q49. How should we rationalise the dilemma between classic morphometric taxonomy and molecular based rearrangements

of taxonomic order in the case of bryophytes?
Q50. Which species concepts are most adequate for assessing bryophyte diversity?
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