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Abstract 

In this Perspective, we assess the promise and challenges for solid-state batteries to 

operate under fast charge conditions (e.g., <10-minute charge). We present the 

limitations of state-of-the-art lithium-ion batteries (LIBs) and liquid-based lithium 

metal batteries in context, and highlight the distinct advantages offered by SSBs with 

respect to rate performance, thermal safety, and cell architecture. Despite the promising 

fast charge attributes of SSBs, we must overcome fundamental challenges pertaining to 

electro-chemo-mechanics interaction, interface evolution, and transport-kinetics 

dichotomy to realize their implementation. We describe the mechanistic implications of 

critical features including plating-stripping crosstalk, metallic filament growth, cathode 

microstructure, and interphase formation on the fast charge performance of SSBs. 

Towards achieving the eventual goal of fast charge in SSBs, we highlight both intrinsic 

(e.g., interface design, transport properties) and extrinsic (e.g., temperature, pressure) 

design factors that can favorably modulate the mechanistic coupling and cross-

correlations. Finally, a list of key research questions is identified that need to be 

answered to gain a deeper understanding of the fast charge capabilities and 

requirements of SSBs. 
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Widespread adoption of battery electric vehicles (EVs) will benefit from the 

rapid advancement of fast-charging technology that can compete with the refueling 

times of internal combustion engine vehicles and assuage ‘range anxiety’.1 While fast-

charging technology is dependent on a wide range of considerations including charging 

infrastructure, vehicle engineering, and techno-economics,2, 3 the chemistry and design 

of batteries4, 5 are central elements that dictate its successful deployment. Over the past 

three decades, lithium-ion batteries (LIBs) have revolutionized the energy storage 

sector and are the state-of-the-art technology across portable electronics and EVs. 

Although recent advances in electrode engineering,6, 7 electrolyte design8, 9 and cell 

architectures10, 11 have enhanced energy densities and mitigated concerns of safety and 

degradation, fast charging at 400 kW (or under 10 min charge time) still remains an 

elusive target. Under charging rates of 6C and above, LIBs are confronted with major 

challenges with respect to electrolyte transport and thermal safety, resulting in reduced 

energy densities, deleterious side reactions, and accelerated capacity decay.12 

Electrodes with low areal capacities have demonstrated improved fast charging 

characteristics as compared to thicker battery electrodes.13 However, since thinner 

battery electrodes still require a similar fraction of inactive materials such as current 

collectors and separators, this results in lower energy densities and imposes a larger 

cost constraint.14 On the other hand, thicker electrodes with higher energy densities 

result in greater electrolyte concentration polarization and increased ohmic heat 

generation, which limits fast-charging capability. Hence, fast charging currently 

presents a tradeoff between energy and power density, with cost and thermal 

performance being key considerations. 

While the adoption of fast charging for LIBs requires overcoming critical 

scientific and engineering barriers, solid-state batteries (SSBs) offer several intrinsic 
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advantages over their liquid counterparts that can potentially unlock exciting 

opportunities.15-17 Although SSBs have not historically been associated with high rates 

of charge or discharge because of limited ion transport rates in solids, this has changed 

in recent years due to the discovery and development of solid-state Li-ion conductors 

with ionic conductivity values approaching those of liquids.18, 19 By replacing the 

organic liquid electrolyte with a non-flammable solid electrolyte, SSBs provide 

enhanced safety attributes over conventional LIBs. Upon pairing of solid electrolytes 

with a lithium metal anode, such systems present the possibility of engineering batteries 

with ultra-high energy density (>1000 Wh/L).  

Owing to their inherent mechanical rigidity and high cationic transference 

number, solid electrolytes can potentially address challenges of unstable deposition and 

concentration gradients encountered in Li metal batteries with liquid electrolytes.  

However, despite their theoretical promise, there are a number of technical challenges 

and fundamental scientific advances necessary for SSBs to achieve reliable fast 

charging while retaining long cycle life. Ion transport during fast charging is often 

limited by electrolyte conductivity and ion percolation within all-solid-state composite 

cathodes, rather than the pure solid-state-electrolyte separator.20, 21 Solid-solid 

interfaces within these systems also present electro-chemo-mechanical challenges, 

including Li metal penetration through the solid electrolyte, contact loss, and 

electrochemical decomposition.22-26 In this regard, enhancing our fundamental 

understanding of aspects including electro-chemo-mechanics, evolution of solid-solid 

interfaces, thermal stability, and the transport/mechanical properties of constituent 

materials (Figure 1) will be critical to advance the bottom-up design of such systems 

and achieve fast charging in SSBs. 
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Figure 1. The development of SSBs offers an exciting opportunity to simultaneously 

achieve high energy density and fast charging rates. Despite presenting uniquely 

beneficial transport, thermal, and mechanical attributes, the rate performance of SSBs 

still faces significant bottlenecks.  

In this Perspective, we first compare and contrast the fundamental 

electrochemical, transport, mechanical and thermal considerations for fast charging of 

LIBs and SSBs, and connect them to performance and degradation. Fast charge 

limitations of liquid-based Li metal batteries are also discussed in the context of 

morphological instability and rate capability, and their underlying interfacial 

mechanisms are compared with those in SSBs. Towards achieving the future target of 

<10 min fast charging in SSBs, we discuss the major electro-chemo-mechanical and 

transport challenges that need to be addressed. These limiting mechanisms are further 



6 
 

linked to the intrinsic material evolution and interfacial complexations within the 

system. To overcome the underlying fast-charge challenges, intrinsic (e.g., interface 

design, material properties) and extrinsic (e.g., temperature, pressure) design factors 

that can modulate the electrochemical, transport and mechanical response of SSBs, and 

therefore fast charge capability, have been outlined. Lastly, we propose a list of critical 

research questions that must be answered to gain fundamental insight into the fast 

charge response of SSBs, and bridge the scientific gaps towards successful 

implementation.   

 

Fast Charge Limitations of Conventional Li-ion Batteries 

We begin by discussing the mechanisms that limit fast charge of conventional 

Li-ion batteries, which will enable comparison with SSBs in a later section. During fast 

charging, LIB operation involves non-equilibrium processes and exhibits a transition 

from reaction-limited to transport-limited conditions.27 The low cationic transference 

number (tLi+ < 1) of liquid electrolytes engenders concentration gradients across the cell 

during charging, resulting in accumulation and depletion of Li+ near reaction sites at 

the positive and negative electrodes, respectively. At higher rates of charging, mass 

transfer limitations intensify and lead to increased magnitudes of concentration 

overpotential and ohmic drop in the electrolyte phase, especially within the tortuous 

electrode framework5, 28 (Figure 2(a)). Consequently, increased polarization drives the 

cell voltage towards cut-off at earlier stages of cell operation, resulting in a decrease in 

accessible capacity at high C-rates. Diminished concentrations of Li+ at regions away 

from the interface between the negative electrode and separator can also lead to reduced 

intercalation kinetics and poor utilization of the active material within the electrode, 

which results in current focusing near the separator. 
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Under fast charge conditions, large kinetic overpotentials are also established to 

sustain the increased rates of applied current. In conjunction with the ohmic and 

concentration overpotentials, these irreversibilities in the system can push the local 

electrode potential below 0 V vs Li/Li+.29-33 This thermodynamically favors the 

formation of metallic lithium (Figure 2(b)), and results in competing kinetics between 

Li intercalation and plating on the graphite surface. Li plating poses major challenges 

and hazards including electrolyte decomposition, internal short-circuit risk, and 

capacity fade. Since the electrolytes in LIBs are optimized for graphite rather than Li 

metal, the reversibility of plated Li in these systems is generally poor. For a given C-

rate, thick electrodes produce larger concentration gradients and kinetic overpotentials, 

leading to lower accessible capacities and an increased tendency for plating. Hence, the 

current strategy of increasing energy density with thicker electrodes results in a 

fundamental trade-off with charging rate.34, 35  

Fast charging also amplifies the ohmic and kinetic heat generation modes within 

the battery and results in increased internal cell temperatures.36, 37 Sufficiently high 

temperatures (~60⁰C) can trigger side reactions38 and electrode degradation, and can 

lead to thermal runaway in extreme circumstances (Figure 2(a)). In addition, intensified 

thermal effects can cause large diffusion-induced stresses within the active material 

host, thereby rendering a greater propensity for particle fracture.39, 40 Active material 

cracking (Figure 2(b)) further facilitates electrolyte seepage and decomposition, and it 

can reduce the accessibility of electrochemical reaction sites. While high temperatures 

pose concerns of accelerated aging and thermal safety, fast charging at sub-zero 

temperatures is limited by sluggish kinetics and transport, eventually leading to Li 

plating41, 42 and reduced energy densities. The degradation response of LIBs under fast 

charge conditions and the underlying mechanisms have been summarized in Figure 2.  
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In summary, fast charging of LIBs triggers mass transport limitations, 

deleterious side reactions, and excessive heat generation, which adversely affect their 

electrochemical performance, lifetime, and safety. Under fast charge conditions, these 

limiting mechanisms and degradation modes are further amplified (locally) by spatial 

heterogeneity in state-of-charge and current focusing. Fundamentally, fast charging of 

LIBs is constrained by electrolyte transport, Li plating, solid-state diffusion, and the 

restricted thermal window necessary for optimal electrochemical operation.   

 

Figure 2. Fast charge implications on the electrochemical-thermal response and 

degradation of LIBs, with underlying causes shown in (a) and degradation mechanisms 

shown in (b). Electrolyte concentration gradients, intensified Joule heating, SEI (solid-

electrolyte interphase) growth, Li plating, and cracking of the cathode material are 

major factors that limit the implementation of fast charge.  
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Fast Charge Limitations in Li Metal Batteries with Liquid Electrolytes 

The promise and possibility of enabling higher energy densities has motivated 

a recent resurgence of research on the use of Li metal anodes (high specific capacity = 

3860 mAhg-1, low density and the lowest standard electrode potential = –3.04 V vs. 

SHE) with liquid electrolytes.43, 44 Unfortunately, many of the challenges associated 

with the irreversibility of Li metal plating under fast-charge conditions in LIBs are 

exacerbated in these cells, which intentionally plate Li metal during charge. It is noted 

that the electrolytes used in LIBs are not tuned for Li plating, which makes them even 

worse for plating in LIBs. While these challenges can be partially addressed by 

controlling the electrolyte chemistry to be optimized for Li metal electrodes rather than 

graphite,45-47 significant hurdles still remain.  

During charging, spatial heterogeneities along the Li metal surface (grain 

boundaries, SEI species, defects, pits, etc.) lead to local current focusing and subsequent 

growth of high-surface-area ‘dendrites’.48, 49 The newly plated Li exposes fresh surface 

area, reacting with the electrolyte and consuming the Li reservoir. Stripping from these 

dendritic structures is typically inefficient, isolating regions of metallic Li from the 

electrode, forming “dead Li”.50, 51 Accumulation of dead Li during extended cycling 

has been shown to be a key cause of failure in cells with Li metal anodes. In particular, 

the tortuous dead Li layer exacerbates mass transport limitations in the liquid electrolyte, 

which results in a decrease in the achievable power density (and thus fast-charging 

performance) during extended cycling.50 

To increase Coulombic efficiency (CE) for Li metal anodes in liquid electrolytes, 

previous studies have explored the influence of charge/discharge protocol.  It has been 

reported that CE increases during slow charging and fast discharging.52, 53 Unfortunately, 
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this is the opposite of what is desired for EV applications. Interestingly, there seem to 

be competing effects during fast charging, where nucleation density of plating increases 

with increasing current density48, 54, 55 (which is beneficial), but the subsequent growth 

morphology under fast charge conditions can promote a higher surface area, which 

exacerbates SEI formation and irreversible capacity loss. 

These competing effects have motivated investigations of methods to decouple 

nucleation density from surface area. In particular, some of the highest Coulombic 

efficiency values to date have been reported for 3-D electrode architectures with 

“lithiophilic” surface modifications.56-61 This strategy reduces the kinetic overpotentials 

during fast charging while promoting uniform growth. Without a lithiophilic coating, 

the reduction in local current density from a high-surface-area current collector will 

result in a decreased nucleation density, which can lead to a steric hinderance to plating 

of large, low-density deposits within the structure.58 However, when adding a reactive 

coating that alloys with Li metal, a sufficiently high nucleation density can be achieved, 

allowing for the entire electrode surface to be active. 

Regardless of whether the electrode is planar or 3-dimensional, the local current 

density during charging plays an important role in the plated Li morphology. A variety 

of morphologies have been observed, including needle-like, mossy, and fractal 

dendrites.62-64 Furthermore, transitions in reaction pathway can occur during plating and 

stripping, which are driven by spatially-varying kinetics along the electrode surface.65  

One potentially catastrophic transition in morphology that has been observed is the 

transition from mossy Li to fractal dendritic growth at the onset of electrolyte diffusion 

limitations.66  While the mossy Li deposits are typically larger than the pore size of 

separators, the fractal dendrites have been observed to more easily penetrate the 

separator and cause dangerous short-circuits.   
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The evolution of concentration gradients within the electrolyte during fast 

charging will be further exacerbated by mechanical deformation of plated Li. When 

dendrites are plated and stripped repeatedly, the non-planar Li morphologies experience 

compressive deformation, which results in the formation of a compact and tortuous 

interphase.62 This viscoplastic deformation of Li metal will be influenced by the strong 

dependence of Li on strain rate and temperature.67-69 Under fast-charging conditions, 

the compressive strain rate of Li will increase, resulting in a higher flow stress. The 

higher flow stress would make it more difficult for mossy Li to form the compact 

morphological layer that is required to achieve high CE in Li metal batteries.  

Additionally, this would increase the propensity for Li dendrites to penetrate the 

polymer separator. The coupled nature of electro-chemo-mechanical phenomena will 

have implications in solid electrolyte cells, as discussed in the following sections. 

 Many approaches have been explored to stabilize Li metal cycling in liquid 

electrolytes, including electrolyte design,45-47 electrode architectures,70, 71 coatings,57 

elevated cell temperatures72-74 and more.75 While these mitigation strategies have made 

significant progress, long-term cycling, in particular with fast-charging, remains 

challenging. In addition, the intrinsic safety challenges of Li metal anodes in flammable 

liquid electrolytes are of significant concern for many applications. 

 

Theoretical Advantages of Solid-State Batteries for Fast Charge 

Solid electrolytes offer inherently unique transport, thermal, and mechanical 

characteristics that can potentially address the fast charging barriers of safety, 

performance, and degradation exhibited by their liquid counterparts. Moreover, through 

the incorporation of lithium metal anodes instead of graphite, SSBs can potentially 
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provide gravimetric and volumetric energy densities 40% and 70% higher than LIBs, 

respectively.15 The combination of the potential for high energy content and fast charge 

provides strong motivation to develop these systems. This section discusses the 

theoretical advantages of SSBs that make them prospective candidates for fast charge; 

the challenges associated with many of these potential advantages are discussed in a 

later section.  

Transport in Solid-State Batteries 

As discussed previously, concentration polarization in liquid electrolytes is one 

of the primary factors that limits the fast charge performance of LIBs. Such 

concentration gradients result in asymmetric concentration profiles across the positive 

and negative electrodes.76 While the local depletion of charge carriers limits ionic 

conductivity inside the negative electrode, large salt concentrations result in 

overlapping of ion solvation shells, and thereby provide restricted ionic mobility within 

the positive electrode. Hence, liquid electrolytes offer a relatively narrow window of 

salt concentrations to achieve optimal ionic conductivities. Given the large 

concentration gradients that manifest at high charging rates,5 liquid electrolytes pose a 

major bottleneck for fast-charge operation of LIBs. 

In contrast, inorganic solid electrolytes (ISE) such as Li7La4Zr2O12 (LLZO), 

Li3PS4 (LPS), Li6PS5Cl and Li10GeP2S12 (LGPS) are typically single-ion conductors 

that exhibit a transference number (tLi+) of effectively 1.0. Unlike liquid electrolytes 

that present solvation environments for ion transport, Li+ travels through the rigid anion 

framework of the crystal lattice of ISEs. Hence, ionic concentration does not vary 

dynamically with the passage of current as it does in liquid systems. In recent years, 

sulfide single-ion conductors such as Li9.54Si1.74P1.44S11.7Cl0.3 and Li9.6P3S12 have been 
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developed with exceptional room-temperature ionic conductivities as high as 

25 mS cm-1,18 which is higher than most liquid/separator composites. In addition, such 

systems do not experience the process of de-solvation at the electrode-electrolyte 

interface and thus have been observed to offer minimal charge transfer resistances.18, 77 

The high cationic transference number (~1) and mechanical rigidity of such ISEs also 

have the potential to prevent local ion depletion and enable compact deposition 

morphologies, which are critical challenges faced in liquid-based metal battery 

systems.78 To summarize, ISEs bypass concentration gradients and along with the 

utilization of a Li metal anode, have the unique potential to simultaneously enable high 

energy densities and sustain fast charging rates. 

It is to be noted that polymer-based solid electrolytes still involve mass transport 

limitations and provide lower ionic conductivities at room temperature than ISEs.79 Due 

to the limited rate performance of current polymer electrolytes, we do not discuss them 

in detail here for fast-charge applications.15   

Thermal Performance and Safety 

Replacing the liquid electrolyte with a non-flammable ISE enhances the thermal 

stability window when compared to organic liquid electrolytes,18 and it reduces the risk 

of thermal runway when internal short-circuits occur. Designing high-energy-density 

batteries via higher active material packing or by incorporating thicker electrodes is 

associated with increased ohmic heat generation rates that lead to a rise in internal 

temperatures. Hence, achieving the fast charge goals in the high-energy-density systems 

needed for EVs requires critical consideration of thermal performance and safety 

aspects.37 While LIBs tend to exhibit accelerated side reactions and degradation at 

elevated temperatures (~60 °C), SSBs based on ISEs have demonstrated excellent 
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cycling stabilities up to 100 °C.18 SSBs can potentially sustain the large thermal 

fluctuations during fast charge without undergoing additional degradation mechanisms 

and thus retaining long-term stability. In fact, while elevated temperatures are often 

avoided in conventional LIB packs through battery management systems,80-83 they are 

potentially beneficial for transport and fast charge in SSBs and could be incorporated 

into the design of optimal SSB modules and packs. It is noted that elevating the 

operating temperature in LIBs can also improve fast charge performance, particularly 

at low ambient temperatures.10 Solid electrolytes offer enhanced thermal stability at 

high temperatures and comparable ionic conductivity with liquid electrolytes at room 

temperature.18 The morphological stability of the anode and electrochemical 

performance of the SSB depend on the kinetics of transport and reaction, and hence the 

thermal environment in the vicinity of different solid-solid interfaces within the system. 

Temperature-dependent mechanisms such as vacancy diffusion and  viscoplasticity 

(creep) of lithium play a pivotal role in preserving the anode morphology during 

electrochemical operation.84-86 Additionally, further enhancement in ionic transport 

within the solid electrolyte has also been considered beneficial towards achieving 

homogenized reaction distributions at the anode interface87 and improved ionic 

percolation within the cathode microstructure.20, 88  

Operating the SSB at elevated temperatures that can thermally activate the 

kinetics of mechanisms such as ionic transport within the electrolyte/cathode, vacancy 

transport within lithium, and lithium creep behavior theoretically offers significant 

advantages in terms of interface stability, reduced internal resistance and improved cell 

performance. However, low-temperature operation of the SSB would result in reduced 

kinetics of such transport mechanisms, potentially having a deleterious effect on 

interface behavior and performance. Hence, it is important to assess the efficacy of such 
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temperature-dependent mechanisms on the cold-start ability and fast charge operation 

of SSBs at low ambient temperatures.    

In future, the development of solid electrolyte materials with higher thermal 

conductivities would be important to mitigate thermal hot spots and homogenize 

internal cell temperatures during fast charging. In addition, the cathode microstructure 

design can also be tailored to modulate the internal heat generation and temperature rise 

within the battery.89, 90 Overall, solid electrolytes offer improved safety and reduced 

degradation for fast-charge operation.  

Cell Architecture and Interface Control 

The rigid nature of ISEs also affords several advantages with respect to the cell 

architecture and control of the electrode/electrolyte interface. In liquid cells, the 

electrolyte flows to contact the entire exposed area of the electrode. While this provides 

intimate contact for charge transfer, it can also lead to continuous side-reactions and 

result in the formation of undesirable interphases. In particular, Li metal electrodes 

undergo large volume expansion and generate fresh interfaces with the electrolyte, 

which results in repeated SEI formation and consumption of the active metal reservoir. 

Similar phenomena occur in the positive electrode, where active particle cracking 

occurs and exposes interior surfaces to the electrolyte. Under high charging rates, these 

mechanisms can intensify and eventually lead to accelerated degradation of the 

electrode-electrolyte interfaces within the system.  

In contrast, the rigid nature of ISEs can help in preserving their shape during 

cycling, and fresh regions of the electrolyte are less likely to be continuously exposed 

to the electrode in the same way as when surrounded by a liquid. This means that once 

a passivating SEI is formed (either during manufacturing or during formation), 
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subsequent side reactions and SEI growth can potentially be minimized. For Li/SSE 

interfaces, the regions prone to SEI formation after the formation step are those where 

fresh lithium metal is deposited, such as around a penetrating lithium filament in the 

solid electrolyte. This dimensional stability affords researchers an enhanced ability to 

engineer the electrolyte/electrode interface using myriad avenues including 3D 

architectures, wetting layers, self-healing, nucleation layers, and more.91-94 

 

Challenges for Fast Charge of Solid-State Batteries 

Despite the exciting potential of SSBs for achieving fast charge, there are 

fundamental electro-chemo-mechanical challenges at various solid-solid interfaces 

within these systems that must be overcome. Dynamic processes at interfaces between 

the electrode materials and the solid electrolyte are particularly critical, as instabilities 

at solid-solid interfaces can degrade kinetics and lead to capacity and/or power fading. 

Importantly, many aspects of active material and interface evolution can potentially be 

controlled by either engineering the materials/interfaces or by modifying the electro-

chemo-mechanical conditions. With respect to the solid-state cathode, ion percolation, 

electrochemical contact and chemo-mechanical degradation are major factors that limit 

the fast-charge performance of SSBs. On the other hand, the morphological instability 

(e.g., filament growth above the ‘critical current density’ (CCD)) of the Li anode is a 

major aspect that limits high charging rates. In this section, we summarize the key 

challenges in achieving fast charging in SSBs and connect them to the material 

evolution and various interfacial interactions in the system. We discuss the fundamental 

mechanisms that can limit charge rates in SSBs, with the goal of highlighting materials 

challenges that must be addressed. 
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Figure 3. Morphological stability during plating: (a) Formation of various Li 

penetration morphologies (e.g., spalling, branching) observed using operando video 

microscopy25 (Reproduced with permission from [25]. 2020 Elsevier) (b) Scanning 

electron microscopy (SEM) images showing lateral growth of Li along an ISE surface77 

(Reproduced with permission from [77]. 2020 WILEY-VCH Verlag GmbH & Co. KGaA, 

Weinheim) (c) Mechanistic description of interface stability during plating based on the 

concept of molar volume mismatch of interacting species.95 (Reproduced with 

permission from [95]. Copyright 2020 The Electrochemical Society ("ECS")) Contact 

loss during stripping: (d) Void growth (white regions) at 3 MPa and 1 mAcm-2 for the 

Li/Li6PS5Cl interface.96 (Reproduced with permission from [96]. 2019 Springer Nature) 
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(e) Pressure-dependent potential response due to stripping97 (Reproduced with 

permission from [97]. Copyright 2019 Elsevier) (f) Formation of voids at the 

Li/Li10SnP2S12 interface during stripping. (operando X-ray tomography).98 

(Reproduced with permission from [98]. 2021 Springer Nature) 

 

Electrodeposition Stability 

Despite the theoretical potential of dendrite suppression by mechanically rigid 

ISE separators, solid electrolytes have been widely reported to exhibit inhomogeneous 

electrodeposition and Li metal penetration,25, 84 which can lead to mechanical failure 

and internal short circuiting. With the high current densities (10-20 mA/cm2) necessary 

for sub 10-min charging, such risks of system failure are further exacerbated. Above 

the CCD,78 filamentary growth/short circuiting has been observed across a wide range 

of solid electrolytes including the garnet-based Li7La4Zr2O12, Li3PS4, Li6PS5Cl, and 

Li2S‐P2S5.99, 100 Recent studies have highlighted the dependence of CCD on different 

aspects such as external pressure,101 temperature,85, 86 interface resistance,102 and 

discharge conditions.96 Preferential plating at surface flaws and electrode edges has 

been observed at fast charging rates, leading to crack formation and mechanical failure 

of the solid electrolyte.103 Figure 3(a) illustrates the formation of different Li 

penetration morphologies such as spalling and branching in the Li-LLZO system that 

have been observed using  operando video microscopy.25 The lateral growth of lithium 

along the surface of ISEs has been identified to be an important mechanism limiting the 

application of high current densities during charging.77 Figure 3(b) depicts the SEM 

images showing the lateral growth of Li on crystalline LLZO surface, along with a 

magnified image of the dendritic structure.77 Filament propagation has also been 

attributed to microstructural features including pore connectivity and density that are 
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linked to electrolyte synthesis conditions.104-107 Fundamentally, the lithium metal-solid 

electrolyte interface hosts a coupled set of electrochemical, chemical, transport, 

mechanical and morphological interactions that impact the performance and safety of 

SSBs. It is to be noted that mechanisms leading to non-uniform deposition in inorganic 

solid electrolytes are significantly different from liquid and polymer-based 

electrolytes.78   

 

Figure 4. Major fast-charge limitations for SSBs, with underlying causes shown in (a) 

and degradation mechanisms shown in (b). Filament propagation through the solid 

electrolyte, loss of solid-solid contact area, and mechanical degradation of the active 

materials are important aspects that currently limit fast charging of SSBs.17   

 

While recent efforts have focused on explaining the chemo-mechanical 

mechanisms governing lithium deposition, plastic flow, and penetration/fracture,23 a 

comprehensive understanding of lithium filament nucleation and growth has not yet 

been attained. Various candidate mechanisms such as current focusing at grain 
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boundaries,108-110 molar volume mismatch of interacting species,95 interphase 

morphology,98, 107, 111 electronic conductivity of the solid electrolyte112, 113 and poor 

electrochemical contact at the solid-solid interface96 have been studied to understand 

the underlying reasons for interfacial instability and cell failure (Figure 4(a) and 4(b)).  

Their implications on interface degeneration, filament propagation and mechanical 

failure of the solid electrolyte typically intensify at high charging rates or repeated 

charge/discharge of the battery. The effect of a candidate interface instability 

mechanism, species molar volume mismatch, has been illustrated in Figure 3(c).95 It is 

inferred that the evolution of mechanical stresses fundamentally alters the reaction 

kinetics and ion transport interactions at the solid-solid interface, which jointly regulate 

the electrodeposition stability of the anode. In this regard, the development of advanced 

computational models that can evaluate the morphological stability of the anode 

including factors such as the thermodynamic properties of the interacting species,95 

ionic transport in the solid electrolyte microstructure,106 plasticity87, 114 and creep 

behavior115 of lithium would be critical to gain a mechanistic understanding of the fast 

charge response. Preserving the morphological stability of the Li metal anode and 

preventing unwanted mechanical penetration of Li continues to be a major challenge 

that must be addressed to achieve fast charging in SSBs. 

Plating-Stripping Crosstalk 

A distinct feature of SSBs featuring Li metal anodes is the effect that discharge 

can have on the deposition stability of a subsequent charging operation. During 

discharge (Li stripping), the kinetics of Li self-diffusion and creep compete with local 

rates of electrochemical reaction at the metal-electrolyte interface.84, 96 In principle, if 

stripping rates are larger than the rates of metal replenishment via mechanical 

deformation and self-diffusion, voids can form and grow at the interface.23, 98, 116 In 
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recent studies, the void growth mechanism has been analyzed using various techniques 

including three-electrode measurements and operando X-ray tomography. Based on 

three-electrode cell analysis, critical stripping current has been identified as an 

important factor influencing the growth of filaments during charging.96 Figure 3(d) 

shows in situ X-ray computed tomography images, illustrating the formation of voids 

at the Li/Li6PS5Cl interface.96 Depending on the creep behavior of Li, the propensity 

for void growth and concomitant effect on overpotential response at the interface is a 

function of applied pressure in the system (See Figure 3(e)).97 In solid electrolytes such 

as Li10SnP2S12 (LSPS), the void growth process is further linked with the formation of 

an interphase at the anode.98 Based on operando X-ray computed microtomography 

experiments, Figure 3(f) depicts the complex interplay between void formation and 

interphase growth during stripping at the Li/LSPS interface.98  

In turn, this deterioration in interfacial contact (Figure 4(a) and 4(b)) will lead 

to current constriction and manifests in the form of increased cell polarization during 

stripping.25, 98 During subsequent Li plating upon charging, the pre-existence of voids 

results in the reduction of electrochemically active area and a consequent increase in 

local current densities. More importantly, contact loss due to stripping can potentially 

result in the formation of isolated contact regions and interfacial discontinuities that 

experience larger current focusing. The preferential nucleation of new Li at local hot 

spots will increase the driving force for filament penetration and mechanical failure of 

the solid electrolyte. Hence, preventing contact loss during discharge is critical to 

achieve uniform reaction currents and mitigate the risk of internal short-circuit during 

fast charging of SSBs.  

To address this challenge, larger stack pressures and temperatures have been 

shown to enhance the ability to maintain a continuous contact area and enable higher 
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discharge rates.86, 97 This points toward the critical role of the mechanical properties of 

Li metal in determining both void formation during stripping and CCD.  In particular, 

the viscous flow of Li, either in the form of viscoplastic deformation in the solid phase67, 

68 or fluid flow of molten Li,85 has been shown to be a critical parameter to increase the 

rate capability of Li metal-solid electrolyte interfaces.117 Furthermore, increasing 

temperature also affects interfacial kinetics and ionic transport in the solid electrolyte, 

which can reduce current focusing and counteract the driving force for fracture.118 

While large stack pressures improve interfacial contact, they can also result in 

greater risk of damaging internal cell layers and mechanically driving Li metal into the 

solid electrolyte;119 this can also adversely impact internal cell resistance. Moreover, 

the application of large stack pressures in commercial cell housings may be impractical. 

While extrinsic parameters like stack pressure can improve the point to point contact 

area between the solid electrolyte and Li metal up to a certain degree, intrinsic 

properties like wettability between the two materials, depending on their surface 

characteristics and morphology, would also jointly contribute to determine the 

homogeneity of plating and stripping at the solid-solid interface. Owing to the vastly 

differing limiting mechanisms at play during plating and stripping, stack pressure and 

thermal design considerations to achieve optimal performance and interface stability 

during plating and stripping may be significantly different. In Figure 4(a) and 4(b), the 

overall set of underlying mechanisms and electrodeposition responses of solid 

electrolyte-metal anode systems are highlighted.  
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Figure 5. Summary of design factors for intrinsic and extrinsic modulation of the fast-

charge response of SSBs. (a) In the cathode, ionic percolation, electro-chemo-

mechanics, and interfacial kinetics are key governing mechanisms. Identifying optimal 

regimes of particle size, binder morphology, and active material coating are all required 

to tailor the overall cathode architecture to sustaining fast charge rates, without 

exhibiting ion transport and chemo-mechanical limitations. (b) In the anode, optimized 
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thermo-mechanical design of the cell and the incorporation of interlayers that can 

enhance active contact and reaction homogeneity are key design factors that can 

modulate the potential unstable evolution of the metal anode during fast charge and 

subsequent discharge.  

Other Anode Material Candidates 

 The challenges associated with contact loss during stripping and short-circuiting 

during plating of lithium metal have motivated the investigation of other high-capacity 

anode material candidates. Alloy anodes, such as silicon and tin, have long been studied 

for conventional Li-ion batteries but have only recently begun to be more widely 

investigated for solid-state batteries120-122. While alloy anodes offer the potential for 

high energy density and significantly reduce the risk of lithium dendrite growth, they 

present different mechanistic challenges to fast charging. In particular, alloy anodes 

require solid-state diffusion over the thickness of the electrode, which can be a 

kinetically limited process regardless of whether the solid-state electrolyte is mixed 

with the alloy material. This highlights an advantage of Li regarding fast charge: the 

electrodeposition of Li occurs at the electrode/electrolyte interface and the kinetics are 

not dependent on long-range diffusion in the electrode material. Furthermore, the non-

uniform expansion of alloy anodes can cause large local and global stresses to be 

exhibited,121 which can cause uncontrolled morphological changes. In short, dedicated 

further effort is required to determine the energy storage and fast charge characteristics 

of alloy anodes in SSBs. 

Microstructure and Design of the Cathode 

An important aspect of single-ion conductors towards electrode design is the 

absence of concentration gradients in response to ionic current. However, a major 
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bottleneck for fast charging in SSBs is related to kinetics within solid-state cathodes, 

including ion transport and electrochemical reactions at interfaces. Achieving enhanced 

fast charge performance in SSBs requires designing cathode microstructures that 

provide sufficient electrochemically active area and ionic/electronic percolation 

pathways, while retaining interfacial stability and long-term cyclability. Given the 

limited ionic conductivity of cathode materials such as LiCoxNiyMnzO2, the cathode 

active particles must be mixed with a solid electrolyte to obtain low-impedance ionic 

transport pathways throughout the electrode21 (Figure 5(a)). Despite incorporating solid 

electrolytes directly into the composite cathode, transport in this layer is often rate-

limiting for SSBs21 (Figure 5(a)). A large fraction (~ 30-50 wt.%) of electrolyte particles 

is often used within the cathode to ensure ion percolation, which penalizes energy 

density.123 With an increase in active material loading to achieve higher energy densities, 

ion percolation limitations within the cathode architecture become more critical. In this 

context, recent studies have reported a decrease in rate performance at higher active 

material loading. (~ 80 wt.%).88, 124, 125 This has been attributed to a higher electrostatic 

potential (IR) drop within the composite electrode structure, which results in spatial 

heterogeneity in state-of-charge throughout the electrode thickness.88 Therefore, energy 

and power density tradeoffs exist in composite cathodes in SSBs, analogous to Li-ion 

batteries. 

Solid-state cathodes can also be limited by insufficient interfacial area for 

charge-transfer reactions.126 The presence of voids and the incorporation of secondary 

phases including the conductive additive and polymer binder can further reduce the 

active interfacial area and impede ion percolation pathways. The microstructure of the 

composite structure including aspects such as particle size, distribution, porosity, and 

tortuosity also plays an important role in electrochemical performance along with ionic 
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conductivity and active area. Together, these factors dictate the ohmic and kinetic losses 

within the cathode composite. In addition, while conductive additives can enhance 

electronic conductivity, they have been found to promote oxidative decomposition of 

the solid electrolyte,127 which makes interfacial engineering through coatings more 

complicated in composite cathodes.  

While design and construction of solid-state composite cathodes has been 

dominant in SSB research (Figure 5(a)), it is necessary to critically evaluate the 

compatibility of this design approach with fast charging. At higher charging rates, 

chemo-mechanical challenges including interfacial delamination and particle cracking 

due to severe volume fluctuations of the active material need to be understood and 

addressed.128-131 Therefore, the relative mechanical compliance of the active material 

and surrounding matrix of solid electrolyte must be considered under a range of 

volumetric strain conditions. This mechanical damage can potentially be mitigated by 

using single crystal cathode particles instead of polycrystalline materials.132 In addition, 

cathode particles should not be completely surrounded by electrolyte to avoid electronic 

isolation from neighboring particles while maintaining both electronic and ionic 

percolation networks throughout the electrode. Moreover, the stack pressures required 

to maintain particle contact within the cathode during high charging rates need to be 

optimized. In summary, a wide spectrum of design parameters (Figure 5) including the 

mechanical properties and particle sizes of the active material and solid electrolyte,123, 

133 morphology of the conductive-binder domain, and electrode thickness must be 

considered to simultaneously achieve high energy density and fast-charge operation of 

SSBs.  

Creating sufficient ionic and electronic percolating pathways in thick cathodes 

may demand new cathode chemistries and architectures. For example, one approach is 
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to create thick, dense cathodes that intrinsically possess higher electronic and ionic 

conductivity; this has been recently demonstrated134 using a thick electrodeposited 

LiCoO2 cathode with no conductive diluents.135 Electrodeposited cathodes can be 

grown with preferred crystallographic facets that allow optimized ion transport 

pathways  and charge transfer to enable fast charge, although the limits of 

charge/discharging rate need to be determined. Another approach136 is to fabricate 3D 

templates that provide bi-continuous electronic and ionic pathways, to minimize 

tortuosity and simultaneously enable high active material loading. To bypass the 

challenges of constructing all-solid-state cathodes with high rate capability, recent 

studies have also incorporated liquid or gel electrolytes in the cathode to enhance rate 

performance.137, 138 While this approach can, in principle, mitigate some of the 

disadvantages of all-solid-state composite cathodes, the introduction of a flammable 

liquid or gel component can also negate some of the safety benefits. 

Interphase Formation 

Interfaces between practical solid electrolytes and electrodes experience some 

degree of interphase formation that can irreversibly consume lithium ions and increase 

impedance. Most ISEs with relatively high ionic conductivity are thermodynamically 

unstable against Li metal, although this growth may be self-limited through the 

formation of stable interphase products. It is noted that ISEs that exhibit poor stability 

at high voltages are also susceptible to interphase formation in contact with 

conventional cathodes, an effect that is typically mitigated by coating cathode particles 

with ultrathin layers to stabilize the interface. In contrast to liquid electrolyte systems, 

SSBs do not necessarily allow for continuous wetting of new surfaces that are formed 

due to volume changes during cycling. This can be beneficial for limiting interphase 

formation compared to liquid-based batteries, particularly those with Li metal anodes.  



28 
 

The formation of interphases is dependent on the electrode potential, and high 

rates of charge could cause excursions to extreme potentials that aggravate interphase 

formation. This may be particularly important in cathodes that employ surface 

coatings127, 139 to protect the solid electrolyte against decomposition. Formation of such 

interphases can also alter ion transport and reaction kinetics at the anode, along with 

hindering ion percolation within the cathode. The effect of decomposition and 

interphase growth at the solid electrolyte-active material interface in the cathode has 

been mathematically described below:  

Charge conservation within the active material (equation 1) and solid electrolyte phases 

(equation 2) are expressed as:  

                                                         ∇ ⋅ (𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒∇𝜙𝜙𝑠𝑠) − 𝑗𝑗𝐵𝐵𝐵𝐵 = 0                                               (1) 

                                                          ∇ ⋅ (𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒∇𝜙𝜙𝑒𝑒) + 𝑗𝑗𝐵𝐵𝐵𝐵 = 0                                              (2) 

Here, 𝜙𝜙𝑠𝑠  and 𝜙𝜙𝑒𝑒  represent the electric potential for electron transport (effective 

conductivity: 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 ) in the active material and ion transport (effective conductivity: 

𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒) in the solid electrolyte, respectively. 𝑗𝑗𝐵𝐵𝐵𝐵 is the reaction current density at the solid 

electrolyte-active material interface, which is expressed as:   

                                 𝑗𝑗𝐵𝐵𝐵𝐵 = 𝑎𝑎𝑠𝑠 𝑖𝑖0 �𝑒𝑒𝑒𝑒𝑒𝑒 �
𝛼𝛼𝑎𝑎𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂� − 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛼𝛼𝑐𝑐𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂��                                 (3) 

Here, 𝑎𝑎𝑠𝑠 is the active area for reaction,  𝑖𝑖0 is the exchange current density, 𝛼𝛼𝑎𝑎 and 𝛼𝛼𝑐𝑐 

are the charge transfer coefficients, 𝑅𝑅 is the gas constant, 𝑇𝑇 is the operating temperature, 

𝜂𝜂 is the overpotential and 𝐹𝐹 is the Faraday constant. Formation/growth of a resistive 

interphase modifies the reaction kinetics:  

                                             𝜂𝜂 = 𝜙𝜙𝑠𝑠 − 𝜙𝜙𝑒𝑒 − 𝑈𝑈𝑒𝑒𝑒𝑒 − 𝑖𝑖𝐵𝐵𝐵𝐵  𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎                                     (4) 
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Here, 𝑈𝑈𝑒𝑒𝑒𝑒 represents the equilibrium potential; the interphase resistance (𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎) 

depends on the conductivity (𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ) and thickness/growth dynamics (𝛿𝛿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ) of the 

passivating products: 

                                                          𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛿𝛿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

                                                         (5)  

It is noted that the above formalism depicts how the formation of an interphase alters 

the lithiation/de-lithiation kinetics in the cathode. In addition to the lithiation/de- 

lithiation currents, consumption of lithium ions for interphase formation can extract a 

fraction of the total applied current.29, 36 Overall, while fast charge can aggravate the 

formation of such interphases, depending on their transport properties and growth 

dynamics, the reaction landscape at the solid-solid interfaces is further modified.   

Interphase-driven instabilities in the cathode will depend on both the 

mechanical and chemical properties of the active material and solid electrolyte, due to 

the deformation and decomposition processes that occur.140 While there is a growing 

understanding of the nature of the interphase products that form and how they grow at 

open circuit and slow cycling rates, there is still the need to understand how interphase 

processes deviate under fast charge conditions that involve large overpotentials. In 

particular, it is important to know if the same passivating products that comprise stable 

interphases and enable reversible cycling are present during fast charging. 

 

Design Strategies to Overcome Fast-Charge Challenges in Solid-State Batteries 

 Figure 5 summarizes key design considerations to address challenges relating 

to fast charge of SSBs, including interface evolution, ionic transport, and chemo-

mechanics pertaining to the composite cathode and metal anode in SSBs. As presented 
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in Figure 5(a), microstructural arrangement largely governs the coupled transport-

kinetic interactions and mechanical response of the cathode. To eliminate rate 

limitations from the cathode, it is important to collectively optimize design parameters 

including the thickness, particle sizes (solid electrolyte/active material), interfacial 

coating on the active material, and morphology of the secondary phases (e.g., binder). 

On the other hand, while the incorporation of interlayers (Figure 5(b)) has yielded 

promising results for the anode in retaining interfacial contact,94 it is critical to gain 

deeper insights into the underlying mechanisms regarding chemical and morphological 

(in)stability at interfaces. Additionally, the thermo-mechanical design of the cell should 

be evaluated, considering implications from both the anode and cathode. Overall, 

enabling fast charge in SSBs mandates a mechanistic analysis and comprehensive 

optimization of materials and architecture design. Critically, while interface 

characteristics, microstructure, mechanical properties and transport properties of the 

components can intrinsically modulate SSB behavior, factors such as temperature, stack 

pressure and cell design/architecture can act as extrinsic modulators141 that could also 

be beneficially controlled for enabling fast charge characteristics (Figure 5).   

 As the scientific community investigating various aspects of SSBs grows, there 

is an excellent opportunity to comprehensively assess the challenges and opportunities 

for fast charge of SSBs and establish a strong fundamental knowledge base through this 

effort. In addition to the ideas presented in this Perspective, we propose the following 

set of research questions to guide future efforts:  

(i) What is the effect of high overpotentials during fast charge on the distinct 

formation/growth dynamics of interphases at the anode and cathode? Can the individual 

responses at the anode and cathode be decoupled, for example through the use of three-

electrode measurements? 
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(ii) How does internal heat generated during fast charge affect local reaction 

kinetics and (electro)chemical interface degradation? Can this internal heating be 

rationally controlled to enhance fast charge while minimizing degradation? 

(iii) How do heterogeneities in the microstructure and interfaces within solid 

electrolyte/composite cathodes alter fast charge response in terms of local ion transport 

and reaction kinetics?   

(iv) Can the successful implementation of interlayer design concepts preserve 

the morphological stability of alkali metal anodes even at high charging/discharging 

rates, and thus mitigate the requirement of large stack pressures and elevated 

temperatures?  

(v) Along with materials and cell-level improvements, how can pack design and 

extrinsic modulators (temperature, pressure) be synergistically controlled to leverage 

the architectural advantages of SSBs and enable fast charge capabilities, high energy 

density, and long cycle life? 

 

Summary    

SSBs hold the potential to enhance the fast charge performance and safety of state-of-

the-art LIBs; however, successful realization is predicated on systematic investigation 

and understanding of ionic transport, reaction kinetics, chemo-mechanical evolution, 

interface dynamics and thermal behavior of these systems. Despite the promise of SSBs 

for fast charge applications, key challenges must be overcome to enable optimal 

performance. As outlined in this Perspective, morphological stability and interphase 

growth at the anode, as well as microstructure-driven interactions and chemo-

mechanics of the cathode, are important considerations to achieve enhanced 
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performance, safety and minimized degradation during repeated fast charge operations. 

To accomplish the eventual goal of fast charge of 80% capacity in <10 min, it will likely 

be important to integrate system-level advancements, along with materials and cell-

level improvements. A concerted effort involving research laboratories and industry 

will be critical to bridge the associated scientific and engineering gaps and accelerate 

progress in development of SSB technologies to enable a wide variety of electrified 

transportation.   
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Quotes for the paper:  

Solid electrolytes offer inherently unique transport, thermal, and mechanical 

characteristics that can potentially address the fast charging barriers of safety, 

performance, and degradation exhibited by their liquid counterparts. 

 

Preserving the morphological stability of the Li metal anode and preventing unwanted 

mechanical penetration of Li continues to be a major challenge that must be addressed 

to achieve fast charging in SSBs. 

 

Achieving enhanced fast charge performance in SSBs requires designing cathode 

microstructures that provide sufficient electrochemically active area and 

ionic/electronic percolation pathways, while retaining interfacial stability and long-

term cyclability. 

 

Critically, while interface characteristics, microstructure, mechanical properties, and 

transport properties of the components can intrinsically modulate SSB behavior, factors 

such as temperature, stack pressure and cell design/architecture can act as extrinsic 

modulators that could also be beneficially controlled for enabling fast charge 

characteristics. 


