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ABSTRACT:		Easily	prepared	cycloadducts	derived	from	the	(4+3)-cycloaddition	of	oxidopyridinium	ions	with	dienes	reacted	
intramolecularly	 in	a	[2+2]	cycloaddition	process	to	afford	complex	polycyclic	species	 in	which	the	tropane	skeleton	was	
embedded.	

We have been investigating the intermolecular (4+3) cycload-
dition reaction1 of selected oxidopyridinium ions with dienes 
and have reported that the process is generally quite effective 
in terms of yield.2  Complete control of regioselectivity and 
endo/exo selectivity remain to be fully optimized, though pro-
gress has been made on both fronts.2,3  An example is shown 
in Scheme 1.  As part of that program, the chemistry of the 
cycloadducts has become of interest.  We realized that the cy-
cloadducts were primed for an intramolecular [2+2] photo-
chemical cycloaddition, which would lead to molecularly 
complex scaffolds in which the tropane skeleton is embedded.  
This letter reports our successful realization of this process. 
SCHEME	1.	 	Endo	Selective	(4+3)-Cycloaddition	of	an	
Oxidopyridinium	Ion	

 

Cycloadducts such as 4 possess both a simple, substituted al-
kene as well as a vinylogous carbamate.  Some photochemis-
try of vinylogous carbamates and amides has been reported.4  
We thus expected the cycloadducts we planned to examine to 
be excellent candidates for intramolecular cycloaddition, with 
a few exceptions (vide infra).   
Tropane alkaloids have a long history in drug use and abuse.5,6  
Perhaps the two most “notorious” members of this class are 
scopolamine (5) and cocaine (6) (Figure 1).  Both are charac-
terized by an 8-azabicyclo[3.2.1]octane ring system and have 
notable biological activity.  Scopolamine is an 

anticholinergic, muscarinic receptor antagonist used medici-
nally as an antinauseant and antispasmodic, with potential in 
the treatment of depression, and as a research tool to model 
neural degradation associated with diseases such as dementia 
(e.g., Alzheimer’s).7-9  While cocaine is used medically as a 
local anesthetic, it has greater renown as a drug of abuse.5,10,11  
However, the synthesis of tropane alkaloids remains of inter-
est, for the treatment of cocaine addiction and as a tool for 
neuroscience.12  We were motivated by the possibility of ob-
taining rigid molecular scaffolds that might be useful for func-
tionalization in the design of biologically active molecules. 

 

FIGURE	1.		Examples	of	tropane	alkaloids.	

The precursors used in this study are the (4+3)-cycloadducts 
resulting from the reaction of dienes with the oxidopyridinium 
ion obtained from 1 upon treatment with base.  Their synthe-
ses have been reported elsewhere.2,3 
When a solution of the (4+3)-cycloadduct 7 in acetonitrile in 
a borosilicate test tube was irradiated at a 0 ºC (bath) using a 
medium pressure mercury-vapor lamp, a new product was ob-
served.13  The reaction mixture was purified by flash chroma-
tography to afford the pure product as a colorless oil in 75% 
yield (Scheme 2).14  The 1H spectrum of the isolated product 
revealed the disappearance of the downfield vinylic proton 
previously assigned to the vinylogous carbamate.  The two 
methyl singlet peaks at 1.36 ppm and 1.19 ppm showed that 
the two vicinal methyl groups were still connected to tertiary 
carbons.  The methyl singlet peak at 3.76 ppm in 1H NMR, 
along with the peak at 171.1 ppm in 13C NMR indicated the 
retention of the methyl ester.  The data collectively suggested 
an intramolecular [2+2] cycloaddition between the alkene of 
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the vinylogous carbamate and the alkene on the cyclohep-
tanone ring, as we had expected.  
SCHEME	 2.	 	 First	 Trial	 of	 Intramolecular	 Photocy-
cloaddition	

 

After obtaining [2+2]-cycloadduct in the photolysis trial, we 
set off to optimize the reaction conditions by examining the 
solvent effects and irradiation time on the reaction.  The re-
sults are summarized in Table 1.  Among all the solvents that 
were screened, chloroform was the only solvent that failed to 
yield the anticipated product, since the starting material de-
composed relatively quicky under these reaction conditions 
(Table 1, entry 3).  The best yield that was observed in the 
reaction of 7 was 96% when using acetonitrile as the solvent. 
We also observed a decrease of the product yield from 96% to 
76% with additional irradiation for just half an hour, suggest-
ing that the [2+2]-cycloadduct decomposed upon extended ir-
radiation (Table 1, entries 7-8). 
Table	1.		Optimization	of	the	Photolysis	of	7	

 

entry	 solvent	 time	(h)	 yield	(%)a	
1	 toluene	 2	 90	
2	 CH2Cl2	 2	 84	
3	 CHCl3	 1.5	 b	
4	 EtOAc	 1.5	 74	
5	 MeOH	 1.5	 66	
6	 MeCN	 2	 79	
7	 MeCN	 2.5	 96	
8	 MeCN	 3	 76	

aIsolated	 yield	 after	 chromatographic	 purification.		
bDecomposition	occurred.		

With the data from Table 1 in hand, we proceeded to study the 
substrate scope of the reaction.  The results are summarized in 
Table 2.  In general, the reactions were conducted in acetoni-
trile at 0 ºC with irradiation times ranging from 1.3 to 2.5 h. 
The parent system 9 underwent cycloaddition uneventfully 
and in high yield (Table 2, entry 2).  Substitution at the 2 po-
sition was well tolerated regardless of stereochemistry, afford-
ing [2+2] cycloadducts in excellent yields (Table 2, entries 2-
5).  Fusing a ring between the 2 and 3 positions of the sub-
strates led to an expected dichotomy in behavior.  For exam-
ple, the photocycloaddition of 15a (from the mixture of 15a 
and 15b) proceeded to give 16a in very good yield (Table 2, 
entry 6).  Compound 15a is exo,3b and produces a cycloadduct 
with a cis-fused six-membered ring.  However, the endo iso-
mer 15b would be forced to pro- 
 

Table	2.		Intramolecular	Photocycloadditions	Produc-
ing	Complex	Tropanoidsa	
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aReactions	were	conducted	at	0	ºC	in	MeCN	for	the	time	in-
dicated.		bThe	starting	material	was	a	46:54	mixture	of	endo	
and	exo	isomers,	respectively.		The	product	bore	the	same	ra-
tio	by	1H	NMR.		Data	in	parentheses	shows	that	photolysis	for	
a	 longer	time	leads	to	a	 lower	yield.	 	 cThe	starting	material	
was	a	37:63	mixture	of	endo	 and	exo	 isomers,	 respectively.		
dThe	yield	 is	corrected	based	on	starting	material	composi-
tion;	the	amount	of	the	unreactive	isomer	was	not	included	in	
the	yield	calculation.		eA	22%	yield	of	the	endo	starting	mate-
rial	was	recovered.		fOnly	starting	material	was	observed	by	
TLC.		It	was	not	isolated	after	photolysis.		gThe	starting	mate-
rial	was	a	59:41	mixture	of	3-TES	and	4-TES	isomers	as	de-
termined	by	NMR	(See	ref.	3b).		hThe	starting	material	was	a	
54:46	mixture	of	3-TES	and	4-TES	isomers	as	determined	by	
NMR	(See	ref.	3b).		iThe	starting	material	was	a	55:45	mixture	
of	regioisomers.	 	The	regioisomeric	products	were	partially	
separable	 and	 could	 be	 characterized	 individually.	 	 See	 SI.		
jThe	starting	material	was	a	50:50	mixture	of	regioisomers.		
kThe	starting	material	was	an	81:13:6	mixture	of	isomers	(See	
ref.	 3b);	 the	major	 isomer	 is	 shown.	 	 No	 evidence	 for	 any	
[2+2]	cycloadduct	was	found.		 lThe	starting	material	was	an	
80:16:4	mixture	of	isomers	(See	ref.	3b);	the	major	isomer	is	
shown		No	evidence	for	any	[2+2]	cycloadduct	was	found.			

duce a trans-fused six-membered ring on the same cyclobu-
tane unit and consequently 16b is not formed (Table 2, entry 

6).  Other examples are in concert with this trend (Table 2, 
entries 7-10).   
Interestingly, substitution of a trialkylsilyl group on the 4 po-
sition of the substrate seems to inhibit cycloaddition.  Entries 
11-12 of Table 2 show that when inseparable mixtures of 3 
and 4 silylated substrates are photolyzed, only products de-
rived from substrates with silyl substituents at the 4 position 
are isolated.  The yields are low, but they represent yields cal-
culated based on the entire mass of the starting substrate, in-
cluding the isomer that does not produce a photocycloadduct.  
When a mixture of 25a/b was photolyzed, both isomers pro-
duced a photocycloadduct.  When a mixture of 27a/b (Ad = 
1-adamantyl) was similarly photolyzed, only cycloadduct 28a 
was obtained.  Its structure was confirmed by X-ray analysis.  
This compound possesses a regiochemistry opposite to that of 
22b and 24b, suggesting that while sterics plays a role in the 
outcome of the photocycloaddition vis-à-vis the results from 
25a/b, there is likely another factor influencing and dominat-
ing the photocycloaddition of the silylated substrates.  This 
observation warrants further investigation.   
When the endo substrates 29 and 31 were photolyzed, no cy-
cloadduct was formed.  This is true not only for the major di-
astereomers shown in Table 2, but for minor, inseparable iso-
mers that were part of the starting material  Apparently, the 
combination of silyl substitution and substitution at position 4 
combined to thwart the cycloaddition process.  However, for 
both starting materials of these (4+3) cycloadducts, dienes 35 
and 36 were produced in 17% and 23% yields, respectively.  
This represents a formal, photochemical retro-(4+3) cycload-
dition, which we presently formulate as the result of two ho-
molytic bond cleavages, as shown in Scheme 3. 
Starting materials substituted at the 2 position with either a 
benzoyloxy or 2-iodobenzoyloxy group gave photocycload-
ducts in 54-62% yields, regardless of relative stereochemistry 
(Table 2, entries 17-20).  
Scheme	3.		Possible	Mechanism	for	the	Generation	of	
Dienes	31	and	32	

 

To demonstrate some chemistry of the photocycloadducts, we 
treated 8 with SmI2.  This resulted in the formation of 47 in 
23% yield (not optimized, Scheme 4).  Mechanistically, this 
result can be rationalized as an interrupted Clemmensen-
Clemo-Prelog-Leonard reaction15 in which the product 47 is 
unable to form an iminium ion and thus remains as the prod-
uct.   
In summary, we report that the intramolecular [2+2] photocy-
cloadditions of 7-azabicyclo[4.3.1]deca-3,8-dien-10-ones, 
readily available products of the (4+3) cycloaddition of ox-
idopyridinium ions and dienes,2,3 afford complex polycyclic 
structures containing the tropane ring system.  The process 
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promises to be applicable to many, but not all, such (4+3) cy-
cloadducts, providing rapid access to rigid molecular  
Scheme	4.		SmI2	Reduction	of	Photocycloadduct	8.	

 

scaffolds that could be of use in, inter alia, drug development.  
Further studies of the chemistry of the (4+3) cycloadducts are 
continuing.  Results will be reported in due course.   
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