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Abstract

We prove a theorem concerning the approximation of generalized bandlimited multivariate functions by deep ReLU
networks for which the curse of the dimensionality is overcome. Our theorem is based on a result by Maurey and on
the ability of deep ReLU networks to approximate Chebyshev polynomials and analytic functions efficiently.
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1. Introduction

The curse of dimensionality is a inevitable issue in high-dimensional scientific computing. Standard numerical
algorithms whose cost is exponential in the dimension d are prohibitive when d is large. As a mesh-free function
parametrization tool, neural networks are believed to be a suitable approach to conquer the curse of dimensionality.
In this paper, we show that deep ReLU networks overcome the curse of dimensionality for generalized bandlimited

functions, which we shall define at the end of the introduction. Let us first quickly review what networks are.
Shallow networks are approximations f̃W of multivariate functions f : Rd → R of the form

f̃W (x) =
W∑

i=1

αiσ(wi · x + θi), (1)

for some activation functionσ : R→ R, weights αi, θi ∈ R, wi ∈ R
d and integer W ≥ 1. Each operationσ(wi ·x+θi) is

called a unit and the W units in (1) form a hidden layer; this is a special form of nonlinear approximation [1, 2]. Deep

networks are compositions of shallow networks and have several hidden layers, and each unit of each layer performs
an operation of the form σ(w · x+ θ). Following Yarotsky [3], we allow connections between units in non-neighboring
layers. We define the depth L of a network as the number of hidden layers and the size W as the total number of units.
In practice, networks with depth L = O(1) are considered shallow, while deep networks have typically L$ 1 layers.

Before the revolution of deep learning [4], most research concerned shallow networks with sigmoid activation
functions. Nowadays, networks using the REctifier Linear Unit (ReLU) activation function σ(x) = max(0, x) have
become the most popular tool, partly because sigmoid activation functions lead to severe gradient degeneracy during
the optimization process. It was also shown in [5] that deep ReLU networks produce sparsity that helps a wide range
of machine learning applications; smooth activation functions, including smoothed ReLU functions, do not. This is
why we focus on ReLU networks in this paper.

The theory of approximating functions using shallow networks goes back to 1989 when Cybenko showed that any
continuous functions can be approximated by shallow networks [6], while Hornik, Stinchcombe and White proved
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a similar result for Borel measurable functions [7]. In the 1990s, the attention shifted to the approximation power1

of shallow networks [8, 9, 10, 11]. Of particular interest was the absence of the curse of dimensionality in the
approximation of functions with fast decaying Fourier coefficients [12].

Fast forward to the 2010s and the success of deep networks, one of the most important theoretical problems is
to determine why and when deep networks can lessen or break the curse of dimensionality, especially for ReLU
networks. One may focus on a particular set of functions which have a very special structure (such as compositional
or polynomial), and show that for this particular set deep networks overcome the curse of dimensionality [13, 14,
15, 16, 17, 18, 19, 20, 21]. Alternatively, one may consider a function space that is more generic for multivariate
approximation in high dimensions, such as Korobov spaces [22], and prove convergence results for which the curse
of dimensionality is lessened [23].

In this paper, we may consider generalized bandlimited functions f : B = [0, 1]d → R of the form

f (x) =
∫

Rd

F(w)K(w · x)dw, supp F ⊂ [−M,M]d, M ≥ 1, (2)

for some square-integrable function F : [−M,M]d → C and analytic kernel K : R → C. This class of functions
contains several examples of Reproducing Kernel Hilbert Spaces (RKHSs), including the space of bandlimited func-
tions. The latter are ubiquitous in science and engineering. In information theory, bandlimited signals are often used
for analysis and representation after sampling. In scientific computing, after discretization, functions are bandlimited
by the Nyquist–Shannon sampling theorem. Studying the approximation power of ReLU networks for bandlimited
functions is particularly important for neural network-based scientific computing in high dimensions. In Section 3,
we shall show that for any measure µ such functions can be approximated to accuracy ε in the L2(B, µ)-norm by deep
ReLU networks of depth L = O

(
log2

2
1
ε

)
and size W = O

(
1
ε2

log2
2

1
ε

)
.

We review some properties of deep ReLU networks in Section 2, providing new proofs of existing results (Propo-
sitions 2.2 and 2.3), as well as presenting new results (Propositions 2.4 and 2.5, Theorem 2.6). In Section 3, we recall
an existing theorem (Theorem 3.1), before proving our main theorem (Theorem 3.3).

2. Approximation properties of deep ReLU networks

The ability of deep ReLU networks to implement the multiplication of two real numbers with amplitude M was
proved by Yarotsky in [3, Prop. 1]. Liang and Srikant proved a similar result for M = 1 using networks with rectifier
linear as well as binary step units in [16, Thm. 1]. In the rest of the paper, “with accuracy ε” or “bounded” should be
understood in the L∞-norm, unless stated otherwise.

Proposition 2.1 (Multiplication in two dimensions). For any scalar M ≥ 1, N ≥ 1 and 0 < ε < 1, there is a deep

ReLU network π̃ with inputs (x1, x2) ∈ [−M,M] × [−N,N], that has depth

L = O
(
log2

MN

ε

)
,

and size

W = O
(
log2

MN

ε

)
,

such that

‖̃π(x1, x2) − x1 x2‖L∞([−M,M]×[−N,N]) ≤ ε.

Equivalently, if the network has depth L = O
(
log2

1
ε

)
and size W = O

(
log2

1
ε

)
, the approximation error satisfies

‖̃π(x1, x2) − x1 x2‖L∞([−M,M]×[−N,N]) ≤ MNε.

1For a real-valued function f in Rd whose smoothness is characterized by some integer m ≥ 1, and for some prescribed accuracy ε > 0, one
shows that there exists a shallow network f̃W of size W = W(d,m) that satisfies ‖ f − f̃W ‖ ≤ ε for some norm ‖ · ‖.
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We generalize the proposition of Yarotsky to the d-dimensional case.

Proposition 2.2 (Multiplication in d ≥ 2 dimensions). For any scalar M ≥ 1 and 0 < ε < 1, and any integer d ≥ 2,
there is a deep ReLU network Π̃ with inputs (x1, . . . , xd) ∈ [−M,M]d, that has depth

L = O

(
d log2

d

ε
+ d2 log2 M

)
,

and size

W = O

(
d log2

d

ε
+ d2 log2 M

)
,

such that
∥∥∥Π̃(x1, . . . , xd) − x1 . . . xd

∥∥∥
L∞([−M,M]d ) ≤ ε.

Proof. Let M ≥ 1 and 0 < ε < 1 be two scalars, and d ≥ 2 an integer. For any scalar A ≥ 1 and B ≥ 1, let us call π̃ the
network of Proposition 2.1 that implements the multiplication xy, x ∈ [−A, A], y ∈ [−B, B], with accuracy ABε0, for
some scalar 0 < ε0 < 1 to be determined later. This network has depth and size O

(
log2

1
ε0

)
.

We construct the network Π̃ that implements the multiplication x1x2 . . . xd as follows,

y1 = π̃(x1, x2), |y1| ≤ M2(1 + ε0),

y2 = π̃ (y1, x3) , |y2| ≤ M3(1 + ε0)2,

y3 = π̃ (y2, x4) , |y3| ≤ M4(1 + ε0)3,

...
...

yd−1 = π̃ (yd−2, xd) , |yd−1| ≤ Md(1 + ε0)d−1,

and by setting Π̃(x1, . . . , xd) = yd−1.
The network Π̃ has accuracy

|Π̃(x1, . . . , xd) − x1 . . . xd | ≤ |yd−1 − yd−2xd | + |xd||yd−2 − yd−3xd−1| + . . . + |xd xd−1 . . . x5||y3 − y2x4|

+ |xd xd−1 . . . x4||y2 − y1x3| + |xd xd−1 . . . x3||y1 − x1x2|,

< Md(1 + ε0)d−2ε0 + Md(1 + ε0)d−3ε0 + . . . + Md(1 + ε0)2

+ Md(1 + ε0) + Mdε0,

< dMd(1 + ε0)dε0 (crude estimate).

We choose ε0 = ε/(dMde) to obtain accuracy ε.
The depth and the size of the resulting network are equal to (d−1) times the depth and size of the network defined

at the beginning of the proof. With accuracy ε0 defined above, this gives depth and size

O

(
d log2

dMde

ε

)
= O

(
d log2

d

ε
+ d2 log2 M

)
.

The proof is complete.

The network of Proposition 2.2 computes x1 . . . xd as well as all the intermediate products x1 . . . xk, 2 ≤ k ≤ d − 1,
to the same accuracy ε. This allows us to prove the following result about polynomials, similar to [16, Thm. 2].

Proposition 2.3 (Polynomials). For any scalar M ≥ 1, C ≥ 0 and 0 < ε < 1, any integer n ≥ 2, and any polynomial

pn of degree n with input x ∈ [−M,M] of the form

pn(x) =
n∑

k=0

ck xk, max
0≤k≤n
|ck| ≤ C,

3



there is a deep ReLU network p̃n with inputs (x1, . . . , xn) ∈ [−M,M]n, that has depth

L = O
(
n log2

Cn

ε
+ n2 log2 M

)
,

and size

W = O
(
n log2

Cn

ε
+ n2 log2 M

)
,

such that

‖p̃n(x, . . . , x) − pn(x)‖L∞([−M,M]) ≤ ε.

Proof. Let M ≥ 1, C ≥ 0 and 0 < ε < 1 be three scalars, n ≥ 2 an integer, and consider a polynomial

pn(x) =
n∑

k=0

ck xk, max
0≤k≤n
|ck| ≤ C.

We construct p̃(x1, . . . , xn) as follows,

p̃n(x1, . . . , xn) = c0 + c1x1 +

n∑

k=2

ckyk−1(x1, . . . , xk),

where yk−1(x1, . . . , xk) approximates x1 . . . xk with the network of Proposition 2.2 to accuracy 0 < ε0 < 1 to be
determined later. (Note that when the inputs are the same yk−1(x, . . . , x) approximates xk.)

The network p̃n has accuracy

| p̃n(x, . . . , x) − pn(x)| ≤ C

n∑

k=2

|yk−1(x, . . . , x) − xk | < nCε0.

We choose ε0 = ε/(Cn) to obtain accuracy ε.
The resulting network has depth and size

O

(
n log2

Cn2Mn

ε

)
= O

(
n log2

Cn

ε
+ n2 log2 M

)
.

The proof is complete.

The Chebyshev polynomials of the first kind play a central role in approximation theory [24]. They are defined on
the interval [−1, 1] via the three-term recurrence relation

Tn(x) = 2xTn−1(x) − Tn−2(x), n ≥ 2, (3)

with T0 = 1 and T1(x) = x. We show next how deep ReLU networks can efficiently implement Chebyshev polynomi-
als, using the recurrence (3).

Proposition 2.4 (Chebyshev polynomials). For any scalar 0 < ε < 1, any integer n ≥ 2 and any Chebyshev polyno-

mial Tn of degree n with input x ∈ [−1, 1], there is a deep ReLU network T̃n with inputs (x1, . . . , xn) ∈ [−1, 1]n, that

has depth

L = O
(
n log2

n

ε
+ n2

)
,

and size

W = O
(
n log2

n

ε
+ n2

)
,

such that
∥∥∥T̃n(x, . . . , x) − Tn(x)

∥∥∥
L∞([−1,1])

≤ ε.
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Proof. Let 0 < ε < 1 be a scalar and n ≥ 2 be an integer. For any scalar A ≥ 1 and B ≥ 1, let us call π̃ the network of
Proposition (2.1) that implements the multiplication xy, x ∈ [−A, A], y ∈ [−B, B], with accuracy ABε0 for some scalar
0 < ε0 < 1 to be determined later. This network has depth and size O

(
log2

1
ε0

)
.

We construct the network T̃n that approximates Tn(x) as follows,

T̃0 = 1, |T̃0| ≤ 1,

T̃1(x) = x, |T̃1| ≤ 1,

T̃2(x, x) = 2π̃(x, T̃1) − T̃0, |T̃2| < (1 + ε0)2,

T̃3(x, x, x) = 2π̃(x, T̃2) − T̃1, |T̃3| < 3(1 + ε0)3,

...
...

T̃n(x, . . . , x) = 2π̃(x, T̃n−1) − T̃n−2, |T̃n| < 3n−2(1 + ε0)n.

Let us now estimate the accuracy en of the network T̃n(x, . . . , x), where en = |T̃n(x, . . . , x) − Tn(x)|. We have

en = |2π̃(x, T̃n−1) − T̃n−2 − 2xTn−1 + Tn−2|,

≤ 2|̃π(x, T̃n−1) − xT̃n−1| + 2|x||T̃n−1 − Tn−1| + en−2,

≤ 2ε0|T̃n−1| + 2en−1 + en−2,

< 2ε03n−3(1 + ε0)n−1
+ 2en−1 + en−2,

< n4n(1 + ε0)nε0 (crude estimate).

We choose ε0 = ε/(n4ne) to obtain accuracy ε.
The depth and the size of the resulting network are equal to (n+1) times the depth and size of the network defined

at the beginning of the proof. With accuracy ε0 defined above, this gives depth and size

O

(
n log2

n4ne

ε

)
= O

(
n log2

n

ε
+ n2

)
.

The proof is complete.

Note that we could have proven Proposition 2.4 using Proposition 2.3 and an estimate for the size C of the
coefficients of the expansion of Tn in the monomial basis. (The leading term of Tn grows like 2n−1, while the other
terms grow at most like cn, for some c < 4.)

Since Proposition 2.4 implements Tn, as well as the intermediate Tk’s, 0 ≤ k ≤ n − 1, to the same accuracy ε, we
have the following result about truncated Chebyshev series.

Proposition 2.5 (Truncated Chebyshev series). For any scalar C > 0 and 0 < ε < 1, any integer n ≥ 2, and any

truncated Chebyshev series fn of degree n with input x ∈ [−1, 1], real coefficients ck’s, 1 ≤ k ≤ n, of the form

fn(x) =
n∑

k=0

ckTk(x), max
0≤k≤n
|ck | ≤ C,

there is a deep ReLU network f̃n with inputs (x1, . . . , xn) ∈ [−1, 1]n, that has depth

L = O
(
n log2

Cn

ε
+ n2

)
,

and size

W = O
(
n log2

Cn

ε
+ n2

)
,

such that
∥∥∥∥ f̃n(x, . . . , x) − fn(x)

∥∥∥∥
L∞([−1,1])

≤ ε.
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Proof. Let C ≥ 0 and 0 < ε < 1 be two scalars, n ≥ 2 an integer. Consider a truncated Chebyshev series of the form

fn(x) =
n∑

k=0

ckTk(x), max
0≤k≤n
|ck | ≤ C,

for some real coefficients ck’s, 1 ≤ k ≤ n.
We construct f̃n as follows,

f̃n(x1, . . . , xn) = c0 + c1x1 +

n∑

k=2

ckT̃k(x1, . . . , xk), (4)

where T̃k approximates Tk with the network of Proposition 2.4 to accuracy 0 < ε0 < 1 to be determined later.
The network f̃n has accuracy

| f̃n(x, . . . , x) − fn(x)| ≤ C

n∑

k=2

|T̃k − Tk| < nCε0.

We choose ε0 = ε/(Cn) to obtain accuracy ε.
The resulting network has depth

O

(
n log2

Cn2

ε
+ n2

)
= O

(
n log2

Cn

ε
+ n2

)
,

and size

O

(
n log2

Cn2

ε
+ n2

)
= O

(
n log2

Cn

ε
+ n2

)
.

The proof is complete.

Chebyshev series lie at the heart of approximation theory. In particular, it is possible to show that Lipschitz
continuous functions f with input x ∈ [−M,M] have a unique absolutely and uniformly convergent Chebyshev series,
and we write f (x) =

∑∞
k=0 ckTk(x/M) [24, Thm. 3.1]. For analytic functions, the truncated Chebyshev series defined

as fn(x) =
∑n

k=0 ckTk(x/M) are exponentially accurate approximations [24, Thm. 8.2].
More precisely, for some scalars M ≥ 1 and s > 1, let us define

aM
s = M

s + s−1

2
, bM

s = M
s − s−1

2
,

and the Bernstein s-ellipse scaled to [−M,M],

EM
s =

{
x + iy ∈ C :

x2

(aM
s )2
+

y2

(bM
s )2
= 1

}
.

(It has foci
√

(aM
r )2 − (bM

r )2 = ±M, semi-major axis aM
s and semi-minor axis bM

s .) If a function f is analytic on the
interval [−M,M], and analytically continuable to the ellipse EM

s , where it satisfies | f (x)| < C f , for some C f > 0, then,
for each n ≥ 0, the truncated Chebyshev series fn satisfies

‖ fn − f ‖L∞([−M,M]) ≤
2C f s−n

s − 1
. (5)

Using Proposition 2.5 and Equation (5), we prove a result about the approximation of analytic functions by deep
ReLU networks.
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Theorem 2.6 (Deep networks for analytic functions). For any scalar M ≥ 1, s > 1, C f > 0 and 0 < ε < 1, and any

real-valued analytic function f with input x ∈ [−M,M] that is analytically continuable to the open ellipse EM
s , where

it satisfies | f (x)| ≤ C f , there is a deep ReLU network f̃n with inputs (x1, . . . , xn) ∈ [−M,M]n, that has depth

L = O




1

log2
2 s

log2
2

C f

ε


 ,

and size

W = O




1

log2
2 s

log2
2

C f

ε


 ,

such that
∥∥∥∥ f̃n(x, . . . , x) − f (x)

∥∥∥∥
L∞([−M,M])

≤ ε.

Proof. Let M ≥ 1, s > 1, C f > 0 and 0 < ε < 1 be four scalars, and f be an analytic function defined on [−M,M] that
is analytically continuable to the open Bernstein s-ellipse EM

s , where it satisfies | f (x)| ≤ C f . We first approximate f

by a truncated Chebyshev series fn, and then approximate fn by a deep ReLU network f̃n using Proposition 2.5.
Since f is analytic in the open Bernstein s-ellipse EM

s then, for any integer n ≥ 2,

‖ fn(x) − f (x)‖L∞([−M,M]) ≤
2C f s−n

s − 1
= O

(
C f s−n

)
.

Therefore, if we take n = O
(

1
log2 s

log2
2C f

ε

)
, then the above term is bounded by ε/2.

Let us now approximate fn by a deep ReLU network f̃n. We first write

fn(x) =
n∑

k=0

ckTk

(
x

M

)
,

with

max
0≤k≤n
|ck | = O

(
C f s

)
, via [24, Thm. 8.1]. (6)

We then define our network f̃n as in Proposition 2.5, with extra scaling x/M, and such that

| f̃n(x, . . . , x) − fn(x)| ≤
ε

2
.

This yields

| f̃n(x, . . . , x) − f (x)| ≤ | f̃n(x, . . . , x) − fn(x)| + | fn(x) − f (x)| ≤
ε

2
+
ε

2
= ε.

To compute the depth and the size of the resulting network, we note that (i) the extra scaling x/M adds a layer
and increases the size by O(n), (ii) the coefficients satisfy Equation (6), and (iii) the truncated series was computed to
accuracy ε/2. Therefore, the network f̃n(x, . . . , x) has depth

O

(
n log2

2C f sn

ε
+ n2
+ 1

)
= O

(
n log2

2C f sn

ε
+ n2

)
,

and size

O

(
n log2

2C f sn

ε
+ n2
+ n

)
= O

(
n log2

2C f sn

ε
+ n2

)
.

Using n = O
(

1
log2 s

log2
2C f

ε

)
, this gives depth and size

O



(

1
log2 s

log2
2C f

ε

)
log2

(
2C f s

ε

1
log2 s

log2
2C f

ε

)
+

1

log2
2 s

log2
2

2C f

ε


 = O




1

log2
2 s

log2
2

C f

ε


 .

The proof is complete.
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Our result below could be generalized to multiple dimensions, which would be interesting future work. In [25], it
was shown that deep ReLU networks can approximate multivariate analytic functions with exponential convergence,
a result similar to our theorem above. However, we would like to emphasize that it is not possible to directly apply the
result in [25] to prove our main theorem in Section 3, because it is only valid on an open interval contained in [−1, 1],
instead of an arbitrary closed interval [−M,M].

Let us now highlight that, in general, the constants s and C f depend on M. Let us look at two examples, a function
with a singularity on the imaginary axis and an entire function (i.e., a function that is analytic over the whole complex
plane). A typical example of an analytic function with singularities on the imaginary axis is the Runge-like function
f (x) = 1/(1+ x2

β2 ), β > 1, whose singularities are located at x = ±iβ. The function f is analytic on the interval [−M,M]
and analytically continuable to the open Bernstein s-ellipse EM

s with

s(M) =

√
(4M2 − 2)r2 + r4 + 1 + r2 − 1

2Mr

and r = β +
√
β2 + 1. Since f increases along the imaginary axis we may take

C f (M) = f

(
M

s(M) − s(M)−1

2

)
.

The complex exponential f (x) = eix is an entire function. Hence, any s > 1 works but C f (s,M) must grow with s
and M. As f increases along the imaginary axis we may choose

C f (s,M) = f

(
M

s − s−1

2

)
= eM s−s−1

2 . (7)

In this case the network of Thm. 2.6 has depth and size

O




1

log2
2 s

(
M

s − s−1

2
+ log2

1
ε

)2 .

We would also like to mention that the ReLU activation function is not an optimal choice for constructing neu-
ral networks to approximate smooth functions. For example, Thm. 2.3 of [9] shows that one-hidden-layer shallow
networks with O

(
log

(
1
ε

))
parameters can approximate analytic functions with ε accuracy when a smooth activation

function is used. The disadvantage of the ReLU activation function in this scenario is not unexpected since it is not a
natural choice to use a function that is not differentiable to approximate a smooth function. However, from the point
of view of deep learning and optimization, ReLU is a much better choice [25]. The study in this paper should be
regarded as a complement to existing approximation theory, using a more modern approach.

3. Approximation of generalized bandlimited functions by deep ReLU networks

A famous theorem of Carathéodory states that if a point x ∈ Rd lies in the the convex hull of a set P, then x

can be written as the convex combination of at most d + 1 points in P. Maurey’s theorem [26] is an extension of
Carathéodory’s result to the infinite-dimensional case. It was used in the context of shallow network approximations
by Barron in 1993 [12]. We recall Maurey’s theorem below.

Theorem 3.1 (Maurey’s theorem). Let H be a Hilbert space with norm ‖ · ‖. Suppose there exists G ⊂ H such that for

every g ∈ G, ‖g‖ ≤ b for some b > 0. Then, for every f in the convex hull of G and every integer n ≥ 1, there is a fn in

the convex hull of n points in G and a constant c > b2 − ‖ f ‖2 such that ‖ f − fn‖
2 ≤ c

n
.

We are now ready to prove our main theorem about the approximation of generalized bandlimited functions of the
form (2) by deep ReLU networks. Let us first define a Hilbert space of such functions.
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Definition 3.2 (Generalized bandlimited functions). Let d ≥ 2 be an integer, M ≥ 1 be a scalar, and B = [0, 1]d.

Suppose K : R → C is analytic and bounded by a constant DK ∈ (0, 1] on [−dM, dM], and that K satisfies the

assumption of Thm. 2.6 for some s > 1 and CK > 0. We define the Hilbert spaceHK,M(B) of generalized bandlimited

functions via

HK,M(B) =
{

f (x) =
∫

[−M,M]d

F(w)K(w · x)dw

 F : [−M,M]d → C is in L2([−M,M]d)
}
,

with inner product 〈 f , g〉HK,M(B) :=
∫

[−M,M]d F f (w)Fg(w)dw and norm ‖ f ‖HK,M (B) := ‖F f ‖L2([−M,M]d ), where

F f = arg min
F∈S f

‖F‖L2([−M,M]d ), S f =

{
F

 f (x) =
∫

[−M,M]d

F(w)K(w · x)dw

}
.

Note that

| f (x)| ≤ DK

∫

[−M,M]d

|F f (w)|dw ≤ (2M)d/2‖F f ‖L2([−M,M]d ) = (2M)d/2‖ f ‖HK,M (B).

The above inequality shows that if we consider an evaluation functional Lx defined onHK,M(B) as follows,

f (x) = Lx( f ) :=
∫

[−M,M]d

F f (w)K(w · x)dw,

then Lx is bounded on HK,M(B). Hence, HK,M(B) is a RKHS; it contains the space of bandlimited functions, which
correponds to K(t) = eit. For simplicity, we will use F instead of F f for f ∈ HK,M(B), when the dependency on f is
clear.

Theorem 3.3 (Deep networks forHK,M). Suppose f is an arbitrary real-valued function inHK,M(B), for some function

K, scalars M ≥ 1, s > 1 and CK > 0, and integer d ≥ 2. Let us assume that
∫
Rd |F(w)|dw =

∫
[−M,M]d |F(w)|dw = CF.

Then, for any measure µ and any scalar 0 < ε < 1, there exists a deep ReLU network f̃ with inputs x ∈ B = [0, 1]d,

that has depth

L = O




1

log2
2 s

log2
2

CFCK

√
µ(B)
ε


 ,

and size

W = O




C2
Fµ(B)

ε2 log2
2 s

log2
2

CFCK

√
µ(B)
ε


 ,

such that

∥∥∥∥ f̃ − f
∥∥∥∥

L2(µ,B)
=

√∫

B

| f̃ (x) − f (x)|2dµ(x) ≤ ε.

Proof. Let f be an arbitrary function in HK,M, and µ be an arbitrary measure. Let F(w) = |F(w)|eiθ(w). Since f is
real-valued, we may write

f (x) = Re
( ∫

Rd

F(w)K(w · x)dw

)
,

= Re
( ∫

Rd

CFeiθ(w)K(w · x)
|F(w)|

CF
dw

)
,

=

∫

[−M,M]d

CF

[
cos(θ(w))KR(w · x) − sin(θ(w))KI(w · x)

]
|F(w)|

CF
dw,

9



where KR(w · x) = Re(K(w · x)) and KI (w · x) = Im(K(w · x)). The integral above represents f as an infinite convex
combination of functions in the set

GK,M =
{
γ
[

cos(β)Re(K(w · x)) − sin(β)Im(K(w · x))
]
, |γ| ≤ CF , β ∈ R, w ∈ [−M,M]d

}
.

Therefore, f is in the closure of the convex hull of GK,M . Since functions in GK,M are bounded in the L2(µ, B)-norm
by 2CF DK

√
µ(B) ≤ 2CF

√
µ(B), Theorem 3.1 tells us that there exist real coefficients b j’s and β j’s such that2

fε0 (x) =
-1/ε20.∑

j=1

b j
[
cos(β j)KR(w · x) − sin(β j)KI(w · x)

]
,

-1/ε20 .∑

j=1

|b j| ≤ CF ,

for some 0 < ε0 < 1 to be determined later, such that
∥∥∥ fε0 (x) − f (x)

∥∥∥
L2(µ,B) ≤ 2CF

√
µ(B)ε0.

We now approximate fε0 (x) by a deep ReLU network f̃ (x). Note that KR and KI are both analytic and satisfy the
same assumptions as K. Using Theorem 2.6, they can be approximated to accuracy ε0 using networks K̃R and K̃I of
depth and size

O




1

log2
2 s

log2
2

CK

ε0


 .

We define the deep ReLU network f̃ (x) by

f̃ (x) =
-1/ε20.∑

j=1

b j
[

cos(β j)K̃R(w · x) − sin(β j)K̃I(w · x)
]
.

This network has depth L = O
(

1
log2

2 s
log2

2
CK

ε0

)
and size W = O

(
1

ε20 log2
2 s

log2
2

CK

ε0

)
, and

| f̃ (x) − fε0 (x)| ≤
-1/ε20.∑

j=1

|b j||K̃R(w j · x) − KR(w j · x)| +
-1/ε20.∑

j=1

|b j||K̃I(w j · x) − KI(w j · x)| ≤ 2CFε0,

which yields
∥∥∥∥ f̃ (x) − fε0 (x)

∥∥∥∥
L2(µ,B)

≤ 2CF

√
µ(B)ε0.

The total approximation error satisfies
∥∥∥∥ f̃ (x) − f (x)

∥∥∥∥
L2(µ,B)

≤ 4CF

√
µ(B)ε0.

We take

ε0 =
ε

4CF

√
µ(B)

to complete the proof.

2We use Theorem 3.1 with b = 2CF

√
µ(B), c = b2 > b2 − ‖ f ‖2, and ‖ · ‖ = ‖ · ‖L2(µ,B).
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Let us end this section with comments on the constants CF , CK and µ(B); we start with CF . If F is a mollifier then
CF = 1, whereas if F is a normal distribution truncated to [−M,M]d then CF < 1. In general, however, CF might
grow algebraically or exponentially with the dimension d.

We continue with CK . Consider for example the complex exponential kernel K(t) = eit, t ∈ [−dM, dM]. Equation
7 yields

CK(s, dM) = edM s−s−1
2 , for any s > 1.

The resulting network to approximate a function to accuracy ε in the L2(µ, B)-norm with such a kernel has depth

L = O




1

log2
2 s


dM

s − s−1

2
+ log2

CF

√
µ(B)
ε




2 ,

and size

W = O




C2
Fµ(B)

ε2 log2
2 s


dM

s − s−1

2
+ log2

CF

√
µ(B)
ε




2 .

We conclude with µ(B). If µ is a probability measure, then µ(B) ≤ 1 for any compact domain B. If µ is Lebesgue
measure, then µ(B) = 1 for B = [0, 1]d, but grows exponentially with the dimension d if B = [0, (]d, ( > 1. This is a
common drawback in the approximation theory of neural networks for conquering the curse of dimensionality [12].

4. Discussion

We have proven new upper bounds for the approximation of bandlimited functions of the form (2), for which
the curse of dimensionality is overcome. Our proof is based on Maurey’s theorem and on the ability of deep ReLU
networks to approximate Chebyshev polynomials and analytic functions efficiently.

There are many ways in which this work could be profitably continued. The space of bandlimited functions is a
type of RKHS and therefore a possible extension would be to look at different types of RKHS. One could also relax the
bandlimited assumption (2), e.g., to functions F whose derivatives are rapidly decreasing. In this case, the kernel K

could be approximated on the real line by Chebyshev polynomials on truncated intervals or Hermite polynomials. The
latter is another example of classical orthogonal polynomials, which can be represented by a three-term recurrence
relation similar to (3) and efficiently implemented by deep ReLU networks.

Let us conclude this paper with a comment on deep versus shallow networks in the context of parallel computing.
Since the depth L grows like O

(
log2

2
1
ε

)
in Theorem 3.3, the approximation accuracy for deep networks can be root-

exponentially improved if L increases. Hence, very deep networks are more efficient than shallow networks when both
parallel computing efficiency and approximation efficiency are considered. This is in contrast with the more general
case of continuous functions, the approximation of which via very deep networks might be less attractive in terms of
parallel computing [27].
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