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Abstract
A complete description of the state of the cell requires knowl-
edge of its size, shape, components, intracellular reactions,
and interactions with its environment—all of these as a func-
tion of time and cell growth. Adding to this list is the need for
theoretical models and simulations that integrate and help to
interpret this daunting amount of experimental data. It seems
like an overwhelming list of requirements, but progress is being
made on many fronts. In this review, we discuss the current
challenges and problems in obtaining sufficient information
about each aspect of a dynamical whole-cell model (DWCM)
for simple and well-studied bacterial systems.
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Introduction
The goal of whole-cell modeling is to generate pre-
dictions about cell behavior from cell states evolving
forward in time. From a basic science perspective, such
an endeavor involves the integration of a daunting

amount of experimental data along with theoretical and
algorithmic studies into whole-cell models (WCM) with
the promise of revealing simultaneously results and
correlations that will deepen our understanding of the
✰ Fully documented templates are available in the elsarticle package
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principles of life. To describe the state of a cell, requires
information about the system’s initial states, the evo-
lution rules, and a method to apply the time-evolution.
In the context of WCM we refer to these as the
composition, interactions, and propagation, respectively.

Composition includes knowledge of the cellular archi-
tecture and the concentrations of the biomolecules and
metabolites in three-dimensional space. Interactions
include physical and chemical interactions among the
chemical species and with the extracellular environ-
ment. Propagation refers to the necessary computational
methodologies to time-evolve a given cell state accord-
ing to the interactions over biologically relevant length
and timescales. The existing WCMs vary in the details
of composition (entire cell or just a selected subvolume
of the cell), physical interactions (atomistic force-fields

to crowding by excluded-volume, each resulting in a
different representation of chemical species), chemical
reactions (ranging from thousands of genome-wide
chemical transformations to none), and propagation
(molecular dynamics, stochastic diffusion and chemical
kinetics, and PDEs/ODEs). With advances in biophysi-
cal experimental and computational methods, progress
is being made on all fronts. In this article, we discuss the
challenges and problems in obtaining sufficient infor-
mation from the standpoint of our own experience in
creating 3D and well-stirred dynamical whole-cell

models (DWCMs) for a living minimal cell [1].
Cellular shapes and architecture
The physical and chemical methods that allow us to
simulate conformational changes in biomolecules,

determine functional forms of large complexes in solu-
tion, and locate labeled protein complexes and RNAs in
dense media, respectively have been recognized by
Chemistry Nobel Prizes for molecular dynamics (2013),
cryo-electron microscopy (CEM; 2017), and super-
resolved fluorescence microscopy (SRFM; 2014).
These Nobel Prizes rest upon previous prizes awarded
for methods of obtaining structures of biomolecules
from X-ray crystallography and in solution from NMR.
Recent advances in cryo-electron tomography (CET)
and super-resolution imaging (SRI) have led to an

increasing amount of information about the structures of
single cells and the dynamics of the molecular actors
within them, respectively.
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2 Biophysical Methods
CET of entire small bacterial cells like Spiroplasma
melliferum, Mycoplasma pneumoniae, and the synthetic
genetically minimal cell, JCVI-syn3A, can reveal the
three-dimensional cell shape and spatial distributions of
ribosomes within the cell [2e4,1]. In the case of
M. pneumoniae [3], the in-cell architecture of a tran-
scribing and translating expressome was resolved at
subnanometer resolution through crosslinking mass

spectrometry, subtomogram averaging, and integrative
modeling. The expressome comprises RNA polymerase
(RNAP), the ribosome, and the transcription elongation
factors NusG and NusA. With NusA being pinpointed at
the interface between a NusG-bound elongating RNAP
and the ribosome, it was proposed that the expressome
can mediate transcription-translation coupling. The
frequency of such coupling is still uncertain and seems
to vary among bacterial species [5]. Typically, bacterial
nucleoids are not directly observed in CET, but their
spatial localization can be inferred from the ribosome

distributions. Generating ensembles of DNA configu-
rations consistent with the ribosome distributions and
bacterial genome organization principles inferred from
sequencing techniques such as chromosome conforma-
tion capture (3C) [4,6,7] and CHIP-seq [8,9] methods
is necessary for whole-cell simulations [1]. Nucleotide-
resolution molecular models of the condensed 4.6 mbp
Escherichia coli chromosome [8] are presently the
highest-resolution cell-scale structural models of
condensed bacterial nucleoids. Dynamically altering the
local DNA structure during a WCM simulation at any

level approaching nucleotide representation has yet to
be achieved. When numerous CET are obtained from a
population of cells, then correlations between cell size
and ribosome distributions can be observed, within
which chromosomes at different points in replication
can be placed [4].

For CET of larger bacterial and eukaryal cells, focused
ion beam (FIB) milling produces lamellae a few hundred
nanometers in width from a population [10e12], and in
the case of HeLa cells sufficient sampling has produced
invaluable information on the organelles neighboring

the nucleus and the nuclear pore complexes [13]. The
goal to establish visual proteomics from CET has been
recently reviewed in the study by Bäuerlein et al. [14]
along with the remaining technical challenges to achieve
subnanometer resolution. These goals will mostly be
achieved with advances in technology, but there is an
additional challenge to have structures or accurate
predicted structures of all the biomolecules to support
integrative modeling. The interpretations of the CET
and SRI processing will certainly be aided by machine
learning approaches such as AlphaFold2 [15], which can

utilize the large and growing data sets of known protein
structures. Since its impressive performance in CASP14,
it is already being leveraged to predict or complete
protein structures used in molecular dynamics simula-
tions of Cas9 proteins [16].
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Concentrations of proteins, mRNAs, lipids, and metab-
olites that provide the initial states of a cell are typically
estimated from proteomics, transcriptomics, lipidomics,
and metabolomics [17] data. In our own experience,
counts of membrane proteins from proteomics and the
complexity of the lipid composition from lipidomics can
be integrated to model an initial membrane composition
[1]. Complexity of the lipidome includes the degree of

saturation of the fatty acids, the number of different
lipids, and dynamical information about membrane
remodeling during cell growth. The composition of cell
membranes not only affects the overall architecture of
cells, it also affects structure, organization, and function
for both RNAs [18] and proteins, where some perform
their functions in the membrane periphery (ex. Gram-
positive degradosomes [19]).

The remaining proteomics, transcriptomics, and
metabolomics data can then provide the initial con-

centrations of molecules present in the cytoplasm. Un-
fortunately, while there are numerous -omics studies on
bacterial organisms, these studies are typically limited
to a few growth conditions and report quantities at the
population level rather than the single-cell level. As a
further complication, many of these studies do not
provide an exhaustive survey of complete proteomes,
transcriptomes, lipidomes, or metabolomes and report
only subsets of chemical species or incomplete infor-
mation. Consequently, initial states of the membrane
and cytoplasm need to be prepared using datasets

consolidated from multiple organisms, which frequently
require scaling laws for concentrations based on cell
volume and genetic lineage; akin to how homology
modeling has allowed us to generalize our knowledge of
protein and nucleic acid structures. Presently, organi-
zation of cytoplasmic molecules beyond compartmen-
talization in organelles has been treated using uniform
distributions in the absence of 3D localization in the
-omics data. As discussed above, 3D localization in
proteomics is a future goal of CET. The resolutions of
techniques for 3D single-cell transcriptomics in eukaryal
cells [20] are being extended to smaller and denser

biological systems [21].
Kinetic models of subcellular dynamics
Combinations of crystallographic structures and single-
molecule (sm) FRET can provide mechanistic insights

and assist in the development and parameterization of
kinetic models for fundamental processes such as bac-
terial DNA replication initiation [1]. Crystal structures
of DnaA bound states to double- and single-stranded
DNA revealed sequence-dependent binding near the
origin [22,23] and smFRET provided on/off rates of
DnaA filament formation on single-stranded DNA [24].
With the limited photons emitted from fluorophore
labels inside living cells, capturing subcellular dynamics
is restricted by a trade-off between spatial/temporal
www.sciencedirect.com
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resolution and phototoxicity. Developments in the super
resolution microscopy techniques of PALM, STORM,
and STED for imaging of processes within the nucleus
to obtain minimal phototoxicity was reviewed [25]. A
new fluorescence microscopy technique, MINFLUX
(MINimal photon FLUXes) [26,27], promises to pro-
vide a particle tracking technology with a resolution 10
times better than other single-molecule techniques

such as STORM and PALM. MINFLUX uses a donut-
shaped excitation beam to surround a single fluo-
rescing molecule with light. The position of the mole-
cule is then triangulated by moving the beam to
targeted locations and minimizing the fluorescence in-
tensity while shrinking search path of the beam. As a
result of needing very few photons (800-2500) to
localize the fluorophore, its 3D imaging can locate
molecules to 2 nm with a tracking resolution of 100 ms
while retaining the multicolor and sample preparation
advantages of fluorescence microscopy. In the study by

Schmidt et al. [27], the spatial-temporal resolution in
single fluorophore tracking was reported for the diffu-
sion of single labeled lipids in lipid-bilayer model
membranes, and MINFLUX images of nuclear pores in
living U-2 OS cells expressing Nup96emMaple were
obtained in the study by Gwosch et al.[26]. With the
similar spatial and temporal resolutions of MINFLUX
and whole-cell simulations [1], hopefully more exam-
ples from live cells will soon be available to make the
integration of experimental kinetic data into WCMs
more straightforward.

All-atom models have not yet achieved cell-scale simu-
lations. However, models of cytoplasmic spaces, such as
the 100 nm cube model of DNA-free Mycoplasma geni-
talium cytoplasm [28,29] with biologically accurate pro-
tein, RNA, metabolite, and ion concentrations, are
substantial efforts that provide valuable dynamic data
including diffusion coefficients, conformational changes,
and protein-protein contact dynamics over tens to hun-
dreds of nanoseconds [30].

While the majority of molecular dynamics simulations

are carried out over hundreds of nanoseconds, there
have been some notable achievements in extensions
into the microsecond regime to examine the diffusive
interactions of transcription factors along short pieces of
DNA using all-atom and coarse-grained simulations
[31,32]. Coarse-grained models in which approximately
four heavy atoms in the proteins and lipids are repre-
sented by a single bead reduces the number of equations
of motion and hold the promise of pushing simulations
into more biologically relevant time scales. The Martini
2 and 3 force fields [33] have been used to model lipids

of an entire mitochondrion [34] and lipids with hun-
dreds of membrane proteins (14 types) in protocells
[35]. Even though they are not all-atom, the coarse-
grained simulations can still be used as an additional
validation of WCMs.
www.sciencedirect.com
Whole-cell structure-based models that coarse-grain
entire macromolecules have been created for cyto-
plasmic and membrane macromolecules in aM. genitalium
cell [36] using well-stirred states generated from the
WCM in the study by Karr et al. [37]. The placement of
the macromolecules accounted for steric interactions
and was used to test the viability of predicted cell states.
The structural model of M. genitalium faced the further

challenge of assembling a set of individual structures for
the proteome. Structural models of proteins with known
function were assembled using a combination of Alpha-
Fold2 [15], the Protein Data Bank, Electron Microscopy
Data Bank, UniProt, and homology modeling.
Integrating structure and reaction networks
CET provides a static cell-wide picture of large cellular
structures, SRI provides single-molecule dynamics of
individual molecular systems, and WCMs serve as a
mean to bridge the gap between these techniques until
future methods to observe more complete dynamical
cell states are developed. Importantly chemical re-
actions associated with metabolism and information
processing networks need to be included in order to
capture the subcellular dynamics. The development of

WCMs and how they have progressed from genome-
scale metabolic models (GSMMs) [38] and the calcu-
lation of their steady-state fluxes has been recently
reviewed [39,40]. Due to large numbers of genes with
unknown function and the complexity in model systems
such as E. coli, along with the broad range of length-,
concentration-, and time-scales that need to be
considered, simulating a complete description of the
state of a cell has been challenging and requires hybrid
computational methods.

Comprehensive WCMs have been developed for M.
genitalium [37] and E. coli [41] where the subsystems
were treated in terms of flux balance analysis, ordinary
differential equations, and stochastic simulations. We
recently simulated a synthetic minimal cell consisting of
nearly exclusively the genes and reactions necessary for
the cell to proliferate in a laboratory environment and
we believe this is an ideal system for a WCM [1,42].
JCVI-syn3A is a living genetically minimal bacterial cell
with a chemically synthesized genome consisting of only
493 genes on a 543 kbp chromosome, 452 of these genes
are protein-coding [43]. Syn3A’s genome and physical

size are approximately one-tenth those of the model
bacterial organism E. coli. The simulations of this or-
ganism in the study by Thornburg et al. [1] are based on
fully dynamical kinetic models where subsystem net-
works and chemical species are interconnected contin-
uously over time on a single-cell basis (Figure 1). The
3D spatial models are reconstructed at the single-cell
level using ribosomes coordinates from CET and self-
and ribosome-avoiding DNA configurations. Common
challenges among these whole-cell modeling efforts are
Current Opinion in Structural Biology 2022, 75:102392
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Figure 1

Diverse experimental techniques and data characterizing the cellular state and processes of Syn3A are integrated into a DWCM for simulations of time-
dependent cell states. Ribosomes were placed in the 3D spatial cell model using PDB 5NJT and the instancing visualization method in the study by
Sener et al. [54] (Adapted from the study by Thornburg et al. [1] and includes unpublished data.).

4 Biophysical Methods
characterizing cell architecture, establishing the reac-
tion networks, and the limited availability of kinetic
parameters and -omics data to use as initial conditions.

No one bacterium has a complete set of structures,
parameters, -omics data, and annotated genes with
known functions. The development of any WCM relies
upon synthesizing information from other organisms.

The M. genitalium [37] and E. coli [41] models tackled
the challenge of curating large datasets consisting of
thousands of kinetic parameters and demonstrated
methods of evaluating parameters from other species
and the variations that have been measured in even a
single species. In our own WCM of Syn3A, initial esti-

mates for every kinetic parameter and metabolite con-
centration in the metabolic reactions were determined
Current Opinion in Structural Biology 2022, 75:102392
[1] using a Bayesian estimator [44] with prior informa-
tion consisting of a survey of concentrations from E. coli
[17] andM. pneumoniae [45] and parameters measured in

related organisms through decades of biochemical,
smFRET, and spectroscopic studies reported in the
literature and kinetic databases like [46], BRENDA
[47], and equilibrium constants reported in NIST’s
TECRdb [48] and Equilibrator [49]. Each of the WCMs
discussed has taken a different approach to utilizing the
vast amounts of available kinetic, biochemical, and
structural data. While there is not yet a clear answer to
the best method of curation, the systematic organization
and reporting of these parameters and structures in
federated and connected databases will continue to be

critical for assembling WCMs that provide unified de-
scriptions of cell behaviors.
www.sciencedirect.com
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Simulation methodologies
Simulation methodologies for cellular processes are

reviewed in the study by Smith et al. [50] so we provide
only a brief summary here. In the case of our DWCM of a
livingminimal cell, we employ hybridmultiscalemethods
to propagate the cell state [1]. At the greatest level of
complexity in time- and length-scales, intracellular ki-
netics in a three-dimensional and spatially heterogeneous
environment are modeled by the reaction-diffusion
master equation (RDME) approach, where particles sto-
chastically diffuse between and react within subvolumes.
For the homogeneous case in which the particles are
considered to be well-stirred due to fast diffusion, the

chemical master equation (CME) is used to describe
stochastic reactions. In both cases, the particles are
assumed to be in rather low concentrations. And in the
limits of high concentrations and fast diffusion typically
associated with metabolites in metabolic reactions, the
reactions are described with ordinary differential equa-
tions (ODE). Given the current state of the art in whole-
cell modeling, we feel our approach to WCMs remains
faithful to the known interactions within the genome-
wide biochemical reaction networks, while resolving the
spatial heterogeneity within the cell (positions of ribo-

somes, circular DNA, and membrane) and enabling sim-
ulations over portions of the entire cell cycle. However,
this choice in methodology assumes simple physical in-
teractions between the particles and crowding, and an
important future step includes the backtransformation for
the state of a cell in such a particle picture to one that
includes either all atom or coarse-grained structures of the
cytoplasmic and membrane species, see Figure 1.
Concluding remarks
The DWCM in the study by Thornburg et al. [1]
presented a three-dimensional model of a living minimal
cell Syn3A, and used (RDME/CME/ODE) simulations to
study cell behavior over 20min before any substantial cell
growth or DNA replication had occurred. From these
relatively short runs, probabilistic factors were estimated
that allowed predictions about responses to the envi-
ronment, complexifying pathways and time correlations
between the cellular processes of DNA replication and

cell growth over the full cell cycle using well-stirred ap-
proximations. Determining the balance of energy gener-
ation and costs for each process was an important first
step to measure certain metabolites and cellular in-
termediates as a function of time. As more experiments
and theoretical models on DNA replication and segre-
gation become available, more complex growth behavior
in three-dimensions can be addressed over the entire cell
cycle. Because of the large variation in time-scales and
concentrations, the three-dimensional DWCM for Syn3A
required combined hybrid stochastic-deterministic sim-

ulations using the GPU-based simulation software Lat-
tice Microbes [51,1]. GPU computer clusters represent
yet another necessary revolution to bring structural
www.sciencedirect.com
biology and its wealth of information to understanding
how even a minimal cell functions.

We identify two complementary directions to further
advance whole-cell modeling: aspects of unknown
compositions and interactions in cells must be
addressed by experimental methods and computational
modelers must develop novel techniques to accommo-

date more complex compositions and interactions. For
example, MEDYAN was recently extended to include
mechanochemical interactions between the cytoskel-
eton and membranes [52]. No organism has a gene set
where every function is known. While the number of
genomes being sequenced has increased, the substantial
fraction of genes with products of unknown functions
(for example, roughly 40% in E. coli [43]) leaves gaps in
models and limits their predictive power by leaving out
possible chemical and physical interactions. Among the
genes in Syn3A, there are seven genes known to be

necessary to maintain regular spherical morphology
upon cell division, but their exact functions are un-
known [53]. Determining structures and performing
functional kinetic studies on such genes is going to be
critical for the construction of complete WCMs. In
general, with the increasing abundance of dynamic and
structural data of large-scale reaction networks, a more
systematic approach is needed to determine or estimate
the organism-specific kinetic parameters.
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