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Georg Menz, André Schlichting, Wenpin Tang, Tianqi Wu

PII: S0304-4149(22)00151-X
DOI: https://doi.org/10.1016/j.spa.2022.06.015
Reference: SPA 4011

To appear in: Stochastic Processes and their Applications

Received date : 18 September 2021
Revised date : 14 June 2022
Accepted date : 17 June 2022

Please cite this article as: G. Menz, A. Schlichting, W. Tang et al., Ergodicity of the infinite
swapping algorithm at low temperature, Stochastic Processes and their Applications (2022), doi:

ttps://doi.org/10.1016/j.spa.2022.06.015.

his is a PDF file of an article that has undergone enhancements after acceptance, such as the
ddition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
ersion of record. This version will undergo additional copyediting, typesetting and review before it
s published in its final form, but we are providing this version to give early visibility of the article.
lease note that, during the production process, errors may be discovered which could affect the
ontent, and all legal disclaimers that apply to the journal pertain.

2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.spa.2022.06.015
https://doi.org/10.1016/j.spa.2022.06.015


Journal Pre-proof

E

Ke
all
equ

AM

Sa
ne
an
slo
erg
sam

On
equ
Da
low
exc
of
cop

Revised Manuscript
Jo
ur

na
l P

re
-p

ro
ofRGODICITY OF THE INFINITE SWAPPING ALGORITHM AT

LOW TEMPERATURE

GEORG MENZ, ANDRÉ SCHLICHTING, WENPIN TANG, AND TIANQI WU

Abstract. Sampling Gibbs measures at low temperatures is an important but
computationally challenging task. Numerical evidence suggests that the infinite-
swapping algorithm (isa) is a promising method. The isa can be seen as an im-
provement of the parallel tempering replica method. We rigorously analyze the
ergodic properties of the isa in the low temperature regime, deducing asymptotic
estimates for the spectral gap (or Poincaré constant), optimal in dimension one,
and an estimate for the log-Sobolev constant. Our main results indicate that the
effective energy barrier can be reduced drastically using the isa compared to the
classical over-damped Langevin dynamics. As a corollary, we derive a concentra-
tion inequality showing that sampling is also improved by an exponential factor.
Finally, we study simulated annealing for the isa and prove that the isa again
outperforms the over-damped Langevin dynamics.

y words: Sampling, low-temperature, simulated annealing, infinite swapping, par-
el tempering, replica exchange, Poincaré inequality, spectral gap, log-Sobolev in-
ality, Eyring-Kramers formula.

S 2010 Mathematics Subject Classification: 60J60, 39B62.

1. Introduction

mpling from Gibbs measures at low temperatures is important in science and engi-
ering. It has a variety of applications including molecular dynamics [And80, CS11]
d Bayesian inference [RC04, GCS+14]. Usually, sampling at low temperatures is
w due to the fact that at low temperatures energy barriers in the underlying en-
y landscape are large. This traps the stochastic sampling process and slows down
pling.

e popular way to sample Gibbs measures is to run the over-damped Langevin
ation or its various discretization schemes for approximation, see e.g. [RT96,
l17, DM17, DCWY19]. A lot of efforts have been made to accelerate sampling at
temperatures and there are many competing methods. One of them is the replica

hange method which is also known as parallel tempering. In the simplest version
a replica exchange method, one considers two particles governed by independent
ies of the underlying dynamics, for instance, the over-damped Langevin equation.

Date: June 14, 2022.
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e particle evolves at the desired low temperature τ1 > 0, and the other particle
lves at a higher temperature τ2 > 0 with τ1 � τ2 � 1. At some random times,
positions of both particles are swapped. This approach has the advantage that
particle at the lower temperature correctly samples the low-temperature Gibbs

asure whereas the particle at the higher temperature can explore the full state
ce, and discover the relevant states of the system efficiently.

plica exchange methods or parallel tempering have been successfully applied in
ny different scenarios, and they seem to accelerate sampling in low-temperature
uations quite well. As far as we are concerned, almost all evaluations of the
rformance of those methods are empirical. In an attempt to study the sampling
rformance of parallel tempering, it was discovered in [DLPD12] that the large
viation rate function for time-averaged empirical measures of parallel tempering

monotone function of the swapping rate. It implies that sampling only improves
a faster swapping rate.

is led to the question of a suitable limiting process as the swapping rate goes
infinity. Since the number of jumps of the particles would grow to infinity in

y bounded time-interval, the authors in [DLPD12] suggest the infinite swapping
orithm/process (isa), a procedure that can be interpreted as the limit of paral-
tempering, where instead of the particle positions, the particle temperatures are

apped at an infinitely fast rate (see Section 2.1 for a review).

be more precise, let H : Rn → R be the underlying energy landscape and the goal

to sample the Gibbs measure with density ντ1(x) := 1
Zτ1 exp

(
−H(x)

τ1

)
where Zτ1

he normalizing constant. Formally, given two different temperatures 0 < τ1 � τ2,
isa is defined as the evolution of two particles X1 = (X1(t), t ≥ 0) and X2 =

2(t), t ≥ 0) governed by the stochastic differential equations (SDEs):
{
dX1 = −∇H(X1) dt+

√
2τ1ρ(X1, X2) + 2τ2ρ(X2, X1) dB1,

dX2 = −∇H(X2) dt+
√

2τ2ρ(X1, X2) + 2τ1ρ(X2, X1) dB2,
(1.1)

ere (B1, B2) are independent Brownian motions in Rn, and

ρ(x1, x2) :=
π(x1, x2)

π(x1, x2) + π(x2, x1)
and π(x1, x2) := ντ1(x1)ντ2(x2). (1.2)

ce τ1 6= τ2, we have that π(x1, x2) 6= π(x2, x1), and thus ρ(x1, x2) 6= ρ(x2, x1). The
ctions ρ(x1, x2), ρ(x2, x1) are relative weights assigned to the two configurations
, x2), (x2, x1) based on π. At each moment, this essentially assigns the higher
perature τ2 to the particle whose potential energy H is higher at that moment

e also [DDN18, Section 3.2]).

e crucial feature of the dynamics (1.1) is that the empirical measure

ηt :=
1

t

∫ t

0
ρ(X1, X2)δ(X1,X2) + ρ(X2, X1)δ(X2,X1)ds

verges weakly to the product measure π as t → ∞ by the ergodic theorem.

particular, by restricting to the first coordinate, the measure 1
t

∫ t
0 ρ(X1, X2)δX1 +
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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM 3

2, X1)δX2ds approximates the Gibbs measure ντ1 for t large enough. In [DLPD12],
arge deviation principle was established for the measure ηt. However, it is not clear
w the rate function depends on the temperatures (τ1, τ2), so it is less obvious why

higher temperature τ2 may be helpful. Further numerical and heuristic studies in
DN18] indicate that there is an exponential gain when using the isa for sampling
comparison with the classical over-damped Langevin dynamics. Let us also point
t a connection to integrated tempering enhanced sampling method [Gao08], which
s a reformulation as an infinite switching limit of simulated tempering method
r a mixed potential [LVE13, LVE17, YLLG18, MLLVE19]. Recently the isa was

plied to training restricted Boltzmann machines [HNR20], and was shown to be
petitive empirically. But no rigorous result has been established so far on how

ll the isa accelerates sampling at low temperatures.

this article we take the analysis of [DLPD12, DDN18] to the next level through a
ctional inequality approach. We carry out the first rigorous study of the ergodic
perties of the isa at low temperatures by quantifying its convergence in terms of
temperatures (τ1, τ2). Under standard nondegeneracy assumptions, we deduce
low-temperature asymptotics for the Poincaré and the log-Sobolev constant of
isa, see Theorem 2.8 and Theorem 2.9 below. In the context of metastability,

se formulas are also known as Eyring-Kramers formulas (see [Ber13] for back-
und). Comparing our results to the Eyring-Kramers formulas for the over-damped
ngevin equation (e.g. see [BEGK04, BGK05, MS14]), we have an exponential gain:
effective energy barrier of the underlying energy landscape H only sees the higher
perature τ2. We also give indications that our results are optimal.

the best of our knowledge, this is the first time an Eyring-Kramers formula was
rived for inhomogeneous diffusions, for which the stationary and ergodic distribu-
n is generally unknown. By construction, however, the isa (1.1) has an explicit
tionary distribution µ given by µ(x1, x2) = 1

2 (π(x1, x2) + π(x2, x1)), where π(·, ·)
defined by (1.2). This makes a rigorous analysis of (1.1) feasible. For the proof
our main results, Theorem 2.8 and Theorem 2.9, we follow the transportation
proach of [MS14]. The idea is to identify the right “paths” of transport which give

leading order term in the Poincaré and the log-Sobolev constant of the isa. In
case of the Langevin diffusion process those paths can be obtained from moun-

n pass paths between local minima of the energy H. Since the isa is a process
Rn ×Rn swapping the two particle temperatures, it requires analyzing transport
a planar network obtained from the product structure of two energies, and so is
re involved.

ere are several other methods which could be used to deduce the Eyring-Kramers
mula for the Poincaré constant. For instance, one could consider adapting the
tential theoretic approach (see [BEGK04, BGK05]), or the semiclassical analysis
e [HKN04, HN05, HN06]), or the approach using quasi-stationarity (see [BR16,
PN16, LLPN19, GLPN19]). We adopt the approach of [MS14], which is robust

ough to deduce the Eyring-Kramers formula for the log-Sobolev constant in the
ting of an inhomogeneous diffusion coefficient. The rate of convergence in relative
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ropy obtained from the log-Sobolev constant is important for our applications to
pling and simulated annealing.

the first application, we apply the main results to study the sampling properties
the isa and compare it to the over-damped Langevin dynamics. It is well known
t the Poincaré and the log-Sobolev constants characterize the rate of convergence
equilibrium of the underlying process. It is also known that Poincaré and log-
bolev inequalities yield non-asymptotic concentration/deviation inequalities (see
G08, WY08] and references therein). Hence, our main results yield a quantitative
trol in terms of the temperatures (τ1, τ2) on the rate of convergence of the time
rage to the ensemble average, quantifying the ergodic theorem. Let us note in
parison that the precise dependence on (τ1, τ2) is missing in the large deviation

imates for the isa in [DLPD12]. As a byproduct of our analysis, we find a condition
(τ1, τ2) under which sampling at low temperatures using the isa is exponentially
ter than using the over-damped Langevin dynamics. This provides a guidance on
choice of the higher temperature τ2 for the isa, which is the condition (2.18) in

rollary 2.10.

the second application, we study the isa for simulated annealing and compare
to simulated annealing adapted to the over-damped Langevin dynamics. Sim-
ted annealing (SA) is an umbrella term denoting a particular set of stochastic
timization methods. SA can be used to find the global extremum of a function
: Rn → R, in particular when H is non-convex. Those methods have many appli-
ions in different fields, for example in physics, chemistry and operations research
e e.g. [vLA87, KAJ94, Nar99]). The name and inspiration comes from annealing
metallurgy, a process that aims to increase the size of the crystals by heating and
trolled cooling. The SA mimics this procedure mathematically. The stochas-
version of SA was independently described by Kirkpatrick, Gelatt and Vecchi

GV83] and Černý [Č85]. See Section 2.7 for details on simulated annealing.

plica exchange methods or parallel tempering have been successfully applied to
nconvex optimization (see e.g. [CCD+19, DT21]) and simulated annealing (see
. [KZ09, LPA+09]). Because the isa has better ergodic properties than parallel
pering, there is big hope that the isa can produce even better results. Addition-

y, our main results show that the isa mixes much faster than the over-damped
ngevin dynamics. Therefore, one expects that the isa also outperforms the over-
mped Langevin dynamics for simulated annealing. In this article, we show that
s is indeed the case. From a computational point of view, one has to investigate
trade-off between the theoretical improvement and the cost of doubling the di-

nsion of the underlying state space. In this regard, one might also investigate
ether the use of a ladder of increasing temperature as described in [MLLVE19] is
n more beneficial for the sampling versus the computational costs of higher and
her dimensions. Hence, further studies on the computational costs are needed
decide whether isa could practically compete with state-of-the-art methods for
ulated annealing, e.g. methods based on Lévy flights [Pav07] or Cuckoo’s search

D09].
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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM 5

ere are a few directions to extend this work. From the Eyring-Kramers formulas
the isa, we obtain deviation upper bounds for the convergence to equilibrium at
temperatures. It is interesting to know whether these upper bounds are optimal,

d to derive matching lower bounds. Also, we plan to extend the study of the
to the underdamped Langevin dynamics, for which the Eyring-Kramers formula

the Poincaré constant was established in [HHS11]. Furthermore, one could also
end the isa to Lévy flights and apply it to simulated annealing for even better

rformance.

ganization of the paper: In Section 2, we provide background, derive the isa,
sent the main results and apply these results to sampling and simulated annealing.
Section 3, we give proofs of the results stated in Section 2.

2. Setting, main results and applications

this section, we start by discussing how the isa emerges as the weak limit from
rallel tempering. Then we introduce the precise setting and assumptions. After
s we present the main results of this article, the Eyring-Kramers formula for
Poincaré constant and an estimate of the log-Sobolev constant for the isa. We

o give indications that they are optimal. We close this section by discussing two
plications: sampling Gibbs measures at low temperatures and simulated annealing.

. ISA as the weak limit of parallel tempering. Before describing parallel
pering and isa, let us first consider the over-damped Langevin equation which

a single diffusion specified by a sufficiently smooth, non-convex energy landscape
: Rn → R and a temperature τ > 0. It is governed by the SDE:

dξt = −∇H(ξt)dt+
√

2τdBt, (2.1)

ere (Bt, t ≥ 0) is standard Brownian motion in Rn. The infinitesimal generator
the diffusion process (2.1) is

Lτ := τ∆−∇H · ∇.
der some growth assumptions on H (e.g. those of [MS14, Section 1.2]), the over-
mped Langevin equation (2.1) has a unique invariant measure with density

ντ (x) :=
1

Zτ
exp

(
−H(x)

τ

)
,

ere Zτ is the normalizing constant. This probability measure is known as the
bbs measure with energy landscape H and temperature τ . The Dirichlet form
ociated with the Gibbs measure ντ is defined for any suitable test function f :
→ R by

Eντ (f) :=

∫

Rn
(−Lτf)fdντ =

∫

Rn
τ |∇f |2dντ .
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r general non-convex energy landscape H, the over-damped Langevin equation
ws metastable behavior at low temperatures τ in the sense of a separation of
e scales:

• In the short run, the process converges fast to a local minimum of the energy
landscape H;

• In the long run, the process stays near a local minimum for exponentially
long time before it jumps to another local minimum.

the previous work of [MS14], this behavior is captured by explicit, low-temperature
mptotic formulas (known as Eyring-Kramers formulas) for the two constants
> 0 appearing in the following two functional inequalities for the invariant

asure ντ : the Poincaré inequality (PI(ρ))

Varντ (f) :=

∫ (
f −

∫
fdντ

)2
dντ ≤ 1

ρ
Eντ (f) (2.2)

d the log-Sobolev inequality (LSI(α))

Entντ (f2) :=

∫
f2 ln

f2

∫
f2dντ

dντ ≤ 2

α
Eντ (f) (2.3)

lding for all sufficiently smooth test functions f : Rn → R.

is understood that for larger constants ρ, α > 0, the diffusion process tends faster
equilibrium. More precisely, the constants ρ and α are the exponential rate
relaxation to equilibrium measured in variance or relative entropy, respectively.
us, it is useful to obtain lower bounds on the constants ρ, α, or equivalently
per bounds on their inverse ρ−1, α−1. Also note that the Poincaré and the log-
bolev inequalities (2.2)–(2.3) are defined slightly different from those in [MS14],
ere Eντ (f) is replaced with

∫
|∇f |2dντ on the right side. Thus, the constants ρ, α

fined by (2.2)–(2.3) differ from those in [MS14] up to a factor of τ .

the present work, we extend these results to an inhomogeneous diffusion, the
finite swapping process”. It arises from parallel tempering by swapping particle
peratures, which we now introduce. Given two temperatures 0 < τ1 < τ2 � 1,
> Kτ1 for some K > 1, define two product measures on Rn × Rn:

π+(x1, x2) := ντ1(x1)ντ2(x2), π−(x1, x2) := ντ2(x1)ντ1(x2).

ntify the symbols σ = +,− with the identity and the swap permutation on {1, 2},
pectively. Then πσ is the invariant measure of the following simple product SDE:

{
dX1 = −∇H(X1) dt+

√
2τσ(1) dB1 ,

dX2 = −∇H(X2) dt+
√

2τσ(2) dB2 ,

ere B := (B1, B2) is standard Brownian motion in Rn × Rn. Its infinitesimal
erator consists of the two infinitesimal generators of the marginals

Lσ := Lx1τσ(1) + Lx2τσ(2) ,
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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM 7

ere the superscripts indicate the variable the generators are acting on. By con-
uction Lσ is reversible with respect to πσ and its associated Dirichlet form is

Eπσ(f) :=

∫

Rn×Rn
(−Lσf)fdπσ = Eπσ(τσ(1)|∇x1f |2 + τσ(2)|∇x2f |2).

e idea of parallel tempering is to swap between the positions of X1 and X2. At
e random times, X1 is moved to the position of X2 and vice-versa, so the resulting
cess is a Markov process with jumps. To guarantee that the invariant measure
ains the same, the jump intensity is of the Metropolis form a g(x1, x2), where
constant ‘a’ is the swapping rate of parallel tempering, and g = min (1, π−/π+).

e resulting process is denoted by (Xa
1 (t), Xa

2 (t)).

uitively, larger values of ‘a’ lead to faster convergence to equilibrium. However,
process (Xa

1 (t), Xa
2 (t)) is not tight so it does not converge weakly as a→∞. The

idea of [DLPD12] is to swap the temperatures of (X1, X2) instead of swapping
positions. More precisely, they consider the following process

{
dX

a
1 = −∇H(X1) dt+

√
2τ11Za=0 + 2τ21Za=1 dB1 ,

dX2 = −∇H(X2) dt+
√

2τ21Za=0 + 2τ11Za=1 dB2 ,

ere Za is a jump process which switches from state 0 to state 1 with intensity
(X

a
1, X

a
2), and from state 1 to state 0 with intensity a g(X

a
2, X

a
1). It was shown

[DLPD12] that as a→∞, the process (X
a
1(t), X

a
2(t)) converges weakly to the isa,

ose dynamics is governed by the SDE (1.1). We rewrite it as
{
dX1 = −∇H(X1) dt+

√
2a1(X1, X2) dB1 ,

dX2 = −∇H(X2) dt+
√

2a2(X1, X2) dB2 ,
(2.4)

ere the state-dependent diffusion coefficients a1, a2 : Rn × Rn → [τ1, τ2] are given

a1 := τ1ρ
+ + τ2ρ

− and a2 := τ2ρ
+ + τ1ρ

−

with ρ+ :=
π+

π+ + π−
and ρ− :=

π−

π+ + π−
.

e infinitesimal generator of the isa (2.4) is

L := ρ+L+ + ρ−L− = −∇H(x1) · ∇x1 −∇H(x2) · ∇x2 + a1∆x1 + a2∆x2 ,

ich is no longer the sum of two one-particle generators due to the full-space de-
ndent diffusion coefficients a1, a2. A short calculations shows that L is self-adjoint
th respect to the invariant symmetric measure

µ := 1
2(π+ + π−). (2.5)

t us note that the measure µ in (2.5) is generally not of product form, which con-
butes to the effectiveness of the sampling, at the expense of certain complications
our analysis. The Dirichlet form associated with µ is given by

Eµ(f) :=

∫
(−Lf)fdµ =

1

2
Eπ+(f) +

1

2
Eπ−(f) =

∫
(a1|∇x1f |2 + a2|∇x2f |2)dµ.
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also define the Fisher information

Iµ(f2) := 2Eµ(f). (2.6)

. Growth and nondegeneracy assumptions. We adopt the same assump-
ns on the energy landscape H as in [MS14, Section 1.2]. These assumptions are
ndard in the study of metastability (see e.g. [BEGK04, BGK05]).

finition 2.1 (Morse function). A smooth function H : Rn → R is a Morse
ction if the Hessian ∇2H of H is nondegenerate on the set of critical points.
at implies, for some 1 ≤ CH <∞ holds

∀x ∈ S :=
{
z ∈ Rn : ∇H(z) = 0

}
:

|ξ|
CH
≤
∣∣∇2H(x)ξ| ≤ CH |ξ|. (2.7)

also make the following growth assumptions on the potential H to ensure the
stence of PI and LSI.

sumption 2.2 (PI). H ∈ C3(Rn,R) is a nonnegative Morse function, such that
some constants CH > 0 and KH ≥ 0 holds

lim inf
|x|→∞

|∇H(x)| ≥ CH , (2.8)

lim inf
|x|→∞

(
|∇H(x)|2 −∆H(x)

)
≥ −KH . (2.9)

sumption 2.3 (LSI). H ∈ C3(Rn,R) is a nonnegative Morse function, such that
some constants CH > 0 and KH ≥ 0 holds

lim inf
|x|→∞

|∇H(x)|2 −∆H(x)

|x|2 ≥ CH ,

inf
x
∇2H(x) ≥ −KH Id .

mark 2.4. Assumption 2.2 has the following consequences for the energy land-
pe H:

• The condition (2.8) and H(x) ≥ 0 ensures that e−
H
τ is integrable and can be

normalized to a probability measure on Rn (see [MS14, Lemma 3.14]). Hence,
the probability measures ντ (and therefore π+, π− and µ) are well-defined.

• The Morse condition (2.7) together with the growth condition (2.8) ensures
that the set S of critical points is discrete and finite. In particular, it follows
that the set of local minima is a finite set M = {m1, . . . ,mN}.
• Together with the rest of Assumption 2.2, the Lyapunov-type condition (2.9)

leads to a local PI for the Gibbs measures ντ (see [MS14, Theorem 2.9]).

ilarly, Assumption 2.3 yields the following consequences for the energy land-
pe H.

• It leads to a local LSI for the Gibbs measures ντ (see [MS14, Theorem 2.10]).
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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM 9

• Assumption 2.3 implies Assumption 2.2, which is natural in light of the fact
that LSI is stronger than PI.

keep the presentation clear, we also make some nondegeneracy assumptions on
energy landscape H. First, to simplify some formulas, we assume without loss

generality throughout that

min
x∈Rn

H(x) = 0.

e saddle height Ĥ(mi,mj) between two local minima mi,mj is defined by

Ĥ(mi,mj) := inf

{
max
s∈[0,1]

H(γ(s)) : γ ∈ C([0, 1], Rn), γ(0) = mi, γ(1) = mj

}
.

sumption 2.5. Let m1, · · · ,mN be the positions of the local minima of H.

(i) m1 is the unique global minimum of H, and m1, . . . ,mN are ordered in the
sense that there exists δ > 0 such that

H(mN ) ≥ H(mN−1) ≥ · · · ≥ H(m2) ≥ δ > 0 = H(m1). (2.10)

(ii) For each i, j ∈ [N ] := {1, . . . , N}, the saddle height between mi,mj is
attained at a unique critical point sij of index one. That is, H(sij) =

Ĥ(mi,mj), and if {λ1, . . . , λn} are the eigenvalues of ∇2H(sij), then λ1 =:
λ− < 0 and λi > 0 for i ∈ {2, . . . , n}. The point sij is called the communi-
cating saddle point between the minima mi and mj.

(iii) There exists p ∈ [N ] such that the energy barrier H(sp1)−H(mp) dominates
all the others. That is, there exists δ > 0 such that for all i ∈ [N ] \ {p},

E∗ := H(sp1)−H(mp) ≥ H(si1)−H(mi) + δ.

The dominating energy barrier E∗ is called the critical depth.

  

 

saddle

Ĥ
(m

1
,m

2
)

0

E∗

local minima

m2

global minima

m1

Figure 1. Illustration of the critical depth of a double-well function.
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. The Eyring-Kramers formulas. Our main results are the Eyring-Kramers
mula for the Poincaré constant and a good estimate for log-Sobolev constant
the isa. Here a crucial new feature occurs in comparison to the over-damped

ngevin dynamic: the lower temperature τ1 cannot be arbitrarily smaller than the
her temperature τ2 and there is an effective restriction on their ratio τ1/τ2. We
ment on this observation in Subsection 2.4. For ease of comparison, we begin by

alling the Eyring-Kramers formulas for the Poincaré and log-Sobolev constants
the Gibbs measure ντ , which is the invariant measure of a single diffusion at
perature τ governed by the over-damped Langevin equation (2.1). To simplify the
ression for these low-temperature asymptotic formulas, we introduce the following

tation that will be used throughout the rest of this article:

We write A /τ B if A ≤ B
(

1 +O(
√
τ | ln τ |3/2)

)
as τ → 0,

d A 'τ B if B /τ A. If both A /τ B and B /τ A, we write A ≈τ B.

eorem 2.6 (Corollary 2.15 and 2.18 in [MS14]). Assume 0 < τ � 1. Suppose that
energy landscape H satisfies Assumptions 2.2 and 2.5. Then the Gibbs measure

satisfies the Poincaré inequality (2.2) with the constant ρ satisfying

1

ρ
/τ

1

ρτ
:=

2π
√
| det∇2H(sp1)|√

| det∇2H(mp)||λ−(sp1)|
exp

(
H(sp1)−H(mp)

τ

)
. (2.11)

re λ−(sp1) is the negative eigenvalue of the Hessian ∇2H(sp1) at the communi-
ing saddle point sp1.

eorem 2.7 (Corollary 2.17 and 2.18 in [MS14]). Assume 0 < τ � 1. Suppose that
energy landscape H satisfies Assumptions 2.3 and 2.5. Then the Gibbs measure

satisfies the log-Sobolev inequality (2.3) with the constant α satisfying

2

α
/τ

2

ατ
:=

(
H(mp)

τ
+ ln

√
|det∇2H(m1)|
|det∇2H(mp)|

)
1

ρτ
, (2.12)

ere ρτ is defined in (2.11).

w we are ready to state our main results.

eorem 2.8 (Eyring-Kramers formula for the Poincaré constant for the isa). As-
e that τ2 ≥ Kτ1 for some constant K > 1. Let µ be the invariant measure of the
defined by (2.5). Suppose that the energy landscape H satisfies Assumptions 2.2

d 2.5. Then the measure µ satisfies the Poincaré inequality

Varµ(f) ≤ 1

ρ
Eµ(f) (2.13)

h the constant ρ satisfying

1

ρ
/τ2

1

ρPI
:=

1

ρτ2
+ CΦn

(τ2

τ1

)
. (2.14)
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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM 11

re ρτ2 is given by the formula (2.11) with τ = τ2, C is a numerical constant
ependent of τ1 and τ2, and Φn : [1,∞)→ [0,∞) is the function

Φn(x) =





1 if n = 1,

1 + lnx if n = 2,

1 + x(n−2)/2 if n ≥ 3.

(2.15)

eorem 2.9 (Estimate for the log-Sobolev constant of the isa). Assume that τ2 ≥
1 for some constant K > 1. Let µ be the invariant measure of the isa defined by
5). Suppose that the energy landscape H satisfies Assumptions 2.3 and 2.5. Then
measure µ satisfies the log-Sobolev inequality

Entµ(f) :=

∫
f ln f dµ−

∫
f dµ ln

∫
f dµ ≤ 1

α
Iµ(f), (2.16)

that Entµ(f2) ≤ 2
αEµ(f) with

2

α
/τ2

2

αLSI
:= 2N2

(
H(mp)

τ1
+
H(mp)

τ2

)
1

ρτ2
+
C

τ1
Φn

(τ2

τ1

)
. (2.17)

re N is the number of local minima of H, ρτ2 is given by the formula (2.11) with
τ2, C is a numerical constant independent of τ1 and τ2, and Φn is the function

ned in (2.15).

simple calculation shows that the terms involving Φn are asymptotically negligible
pared to the rest of these formulas, provided τ1 is not too small compared to τ2:

rollary 2.10. Impose the condition that as τ2 → 0,

1

τ1
=





exp
(
o
(

1
τ2

))
if n ≥ 3,

exp
(

exp
(
o
(

1
τ2

)))
if n = 2.

(2.18)

en, with the assumptions of Theorem 2.8, the measure µ satisfies the Poincaré
quality (2.13) with the constant ρ satisfying

1

ρ
/τ2

1

ρτ2
, (2.19)

d with the assumptions of Theorem 2.9, the measure µ satisfies the log-Sobolev
quality (2.16) with the constant α satisfying

2

α
/τ2 2N2

(
H(mp)

τ1
+
H(mp)

τ2

)
1

ρτ2
. (2.20)

re ρτ2 is given by the formula (2.11) with τ = τ2.

mark 2.11. Comparing the Eyring-Kramers formulas (2.19) and (2.20) for the
at temperatures (τ1, τ2) to the corresponding formulas (2.11) and (2.12) derived
a single diffusion at the lower temperature τ1, the main difference is that in

exponent
H(sp1)−H(mp)

τ1
, the lower temperature τ1 is now replaced by the higher

perature τ2, as long as 1
τ1

grows sub-exponentially as 1
τ2

in the limit τ1, τ2 → 0.
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ce we assume τ2 ≥ Kτ1 for some constant K > 1, this means the energy barrier
sp1)−H(mp) is effectually reduced by a factor of K > 1.

. Dependence on the ratio between temperatures. The following proposi-
n shows that the dependence on τ2/τ1 in the Poincaré and LSI constants of the isa
necessary and the function Φn that describes this dependence is nearly optimal.

oposition 2.12. If τ2, τ1/τ2 are sufficiently small, then there exists a constant
> 0 and for every η > 0, there exists a constant Cη > 0, such that

sup
f∈H1(µ)

Varµ(f)

Eµ(f)
≥
{
Cη(τ2/τ1)(1−η)(n−2)/2 for n ≥ 3,

C ln(τ2/τ1) for n = 2.

. Optimality of the Eyring-Kramers formulas in dimension one. For
over-damped Langevin dynamics, the corresponding Eyring-Kramers formula
Poincaré inequality has been shown to be optimal. For the isa, the Poincaré
stant of (2.14) is optimal in a generic one-dimensional case. This gives a strong
ication of optimality in higher dimensions.

oposition 2.13. Assume n = 1, and H has three critical points: two minima
< m2 with H(m1) = 0 < δ ≤ H(m2) and a local maximum s in between. Then

sup
f∈H1(µ)

Varµ(f)

Eµ(f)
'τ2

1

ρPI
,

ere ρPI is given by the formula (2.14) and H1(µ) := {f :
∫
Rn |∇f |2dµ <∞}.

r the over-damped Langevin dynamics, the corresponding Eyring-Kramers formula
LSI inequality has been shown to be optimal in the one-dimensional case. For
isa, we do not expect the LSI constant of (2.17) to be optimal. However, up

the combinatorial pre-factor in the number of local minima N , it captures the
mptotic behavior for a generic one-dimensional case.

oposition 2.14. Assume n = 1, and H has three critical points: two minima
< m2 with H(m1) = 0 < δ ≤ H(m2) and a local maximum s in between. Then

sup
f∈H1(µ)

Entµ(f2)

Iµ(f2)
'τ2

1

αLSI
,

ere αLSI is given by the formula (2.17).

. Application to sampling. It is well known that estimates on the Poincaré and
log-Sobolev constant yield estimates for the rate of convergence to equilibrium

the underlying process. Applying this to the isa, we obtain the following direct
sequence of Theorem 2.8 and Theorem 2.9. We refer to [Sch12, Theorem 1.7]
a proof in the setting of the over-damped Langevin dynamics. The argument

ectly carries over to the isa.
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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM 13

rollary 2.15. Let ft be the relative density of the isa (2.4) at time t with respect
the invariant measure µ.

(i) Under the same assumptions as in Theorem 2.8, it holds that

Varµ(ft) ≤ e−2ρt Varµ(f0),

where ρ satisfies the estimate (2.14).

(ii) Under the same assumptions as in Theorem (2.9), it holds that

Entµ(ft) ≤ e−2αt Entµ(f0),

where α satisfies the estimate (2.17).

other well-known consequence is that the Poincaré or log-Sobolev constant allows
quantify the ergodic theorem i.e. to estimate speed of convergence of the time
rage to the ensemble mean. See [CG08, Proposition 1.2] and [Wu00, Corollary
for a proof in the setting of the over-damped Langevin dynamics. The same
ument carries over to the isa.

rollary 2.16. Let ν denote the initial law of the isa (2.4).

(1) Under the same assumptions as in Theorem 2.8, it holds that for all func-
tions f : Rn × Rn → R such that sup |f | = 1, all 0 < R ≤ 1 and all t > 0,

Pν
(

1

t

∫ t

0
f(X1(s), X2(s)) ds−

∫
f dµ ≥ R

)
≤
∥∥∥∥
dν

dµ

∥∥∥∥
L2

exp

(
− tR2ρ

8 Varµ(f)

)
,

where ρ satisfies the estimate (2.14).

(2) Under the same assumptions as in Theorem 2.9, it holds that for all func-
tions f ∈ L1(µ) and all R, t > 0,

Pν
(

1

t

∫ t

0
f(X1(s), X2(s))ds−

∫
fdµ ≥ R

)
≤
∥∥∥∥
dν

dµ

∥∥∥∥
L2

exp
(
−tαH∗(R)

)
,

where α satisfies the estimate (2.17) and

H∗(R) := sup
λ∈R

{
λR− ln

∫
exp

(
λ
(
f −

∫
f dµ

))
dµ

}
.

ilar bounds hold for the negative deviation.

e consequence of Corollary 2.16 is that the isa has an exponential gain in com-
rison with the over-damped Langevin dynamics for sampling (see also Remark
1). The deviation bounds show an explicit dependence of the convergence on the
peratures, which is missing in the large deviation analysis in [DLPD12]. This

tifies why the choice of a second higher temperature in the isa is useful, and shows
w it increases the speed of convergence in the ergodic theorem.



Journal Pre-proof

14

2.7
equ

Th
Rn
ver
the
tim
tra
is
is
sti

Sim
in
wi
wa
to
sto
is
me
coo
we
ma

In
La
Ey
the
He
So
sch
the
wh
by
dy
ove
fol

Th
nea

Le
 Jo
ur

na
l P

re
-p

ro
of

GEORG MENZ, ANDRÉ SCHLICHTING, WENPIN TANG, AND TIANQI WU

. Application to simulated annealing. Here we apply the log-Sobolev in-
ality in Theorem 2.9 to the isa for simulated annealing.

e goal of simulated annealing is to find the global minimum of a function H :
→ R that is potentially non-convex. Let us explain the main idea of the stochastic
sion of simulated annealing. One considers a stochastic process on H subject to
rmal noise. When simulating this process, one lowers the temperature slowly over
e. Hereby, the stochastic process gets trapped. Now, the goal is to show that the
pped process converges to the global minimum of H with high probability. This
typically true if the temperature is lowered slowly enough. Hence, another goal
to find the best stochastic process with the fastest possible cooling schedule that
ll allows to approximate the global minimum.

ulated annealing adapted to the over-damped Langevin dynamics was studied
[GH86, Mic92], see also [TZ21] for a review and results in discrete time. As we
ll see below, the cooling schedule has to be logarithmically slow. This implies long
iting time in order to reach the global minimum. There are many approaches
improve this behavior. Luckily, one has the freedom to choose the underlying
chastic process used for simulated annealing. One of the most efficient approach
called Cuckoo search and is based on Lévy flights (see [Pav07, YD09]). Those
thods are able to find the global minimum in certain situations with a polynomial
ling schedule. An alternative is to use replica exchange or parallel tempering. As
know from [DLPD12], mixing only improves when particles are swapped faster,
king the isa a natural candidate for accelerating simulated annealing.

[Mic92], it was shown that for simulated annealing adapted to the over-damped
ngevin dynamics, the fastest successful cooling schedule is characterized by the
ring-Kramers formula for the log-Sobolev constant. However, no estimates on

associated log-Sobolev constant at low temperatures were known at that time.
nce, more sophisticated arguments were applied by [HKS89] to replace the log-
bolev constant by the Poincaré constant showing that the fastest successful cooling
edule is characterized by the critical depth E∗ = H(s1p)−H(mp). Only in 2014,
Eyring-Kramers formula for the log-Sobolev constant was derived in [MS14]

ich leads to a more direct proof of the same result. This formula was then used
[Mon18] to study simulated annealing adapted to the underdamped Langevin

namics, showing that it is at least as good as simulated annealing adapted to the
r-damped Langevin dynamics. The main result of [HKS89, Mic92] is stated as

lows.

eorem 2.17 ([HKS89, Mic92]). Let (Xt, t ≥ 0) be the process of simulated an-
ling adapted to the over-damped Langevin dynamics:

dXt = −∇H(Xt) dt+
√

2τ(t) dBt. (2.21)

t E∗ := H(sp1)−H(mp) denote the critical depth of the energy landscape H. Then
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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM 15

(i) If E ≤ lim inft→∞ τ(t) ln t ≤ lim supt→∞ τ(t) ln t <∞ with E > E∗, then for
all δ > 0,

P
(
H(Xt) ≤ H(m1) + δ

)
→ 1 as t→∞.

(ii) If lim supt→∞ τ(t) ln t ≤ E with 0 < E < E∗, then for δ small enough,

lim sup
t→∞

P
(
H(Xt) ≤ H(m1) + δ

)
< 1.

plying the isa to simulated annealing yields:
{
dX1 = −∇H(X1) dt+

√
2 τ1(t) ρ(X1, X2) + 2 τ2(t) ρ(X2, X1) dB1,

dX2 = −∇H(X2) dt+
√

2 τ2(t) ρ(X1, X2) + 2 τ1(t) ρ(X2, X1) dB2.
(2.22)

require that for some fixed constant K > 1

τ2(t) = Kτ1(t) and τ1(t) ↓ 0 .

Theorem 2.8 and Theorem 2.9, we showed that the infinite swapping dynam-
mixes faster than the over-damped Langevin dynamics. Choosing τ2 = Kτ1, the

ective critical depth of the potential H is E∗
K compared to E∗ for simulated anneal-

adapted to the over-damped Langevin dynamics given by (2.21). This indicates
t the infinite swapping dynamics could outperform the over-damped Langevin

namics for simulated annealing. The main result of this section shows that this is
e.

eorem 2.18. Assume that the energy landscape H satisfies Assumptions 2.3 and
. Let E∗ := H(sp1)−H(mp) be the critical depth of the energy landscape H. For

> E∗
K ,K > 1, let

τ1(t) =
E

ln(2 + t)
and τ2(t) =

KE

ln(2 + t)
. (2.23)

t X1, X2 be given by (2.22) with initial distribution m. Let mt(x1, x2) be the
bability density of (X1(t), X2(t)). Assume the following moment condition for the
tial distribution m: for every p ≥ 1, there exists a constant Cp such that

∫ (
H(x1) +H(x2)

)p
dm(x1, x2) ≤ Cp. (2.24)

en for all δ > 0, ε > 0

P(min{H(X1(t)), H(X2(t))} > δ) .
(

1

1 + t

)min( δE ,
1
2
− E∗

2KE )−ε
. (2.25)

3. Proofs

. Proof of Theorem 2.8 and Theorem 2.9. As in [MS14], we decompose
state space Rn into an “admissible partition” of metastable regions {Ωi}Ni=1, as

fined below.
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finition 3.1 (Admissible partition). The family {Ωi}Ni=1 with Ωi open and con-
ted is called an admissible partition for H if

(i) for each i ∈ [N ], the local minimum mi ∈ Ωi,

(ii) {Ωi}Ni=1 forms a partition of Rn up to sets of Lebesgue measure zero,

(iii) The partition sum of Ωi is approximately Gaussian. That is, there exists
τ0 > 0 such that for all τ < τ0, for i ∈ [N ],

ντ (Ωi)Z
τ =

∫

Ωi

exp

(
−H(x)

τ

)
dx ≈τ

(2πτ)n/2√
det∇2H(mi)

exp

(
−H(mi)

τ

)
. (3.1)

mark 3.2. A canonical way to obtain an admissible partition for H is to associate
each local minimum mi for i ∈ [N ] its basin of attraction with respect to the
dient flow of H. That is,

Ωi =

{
y ∈ RN : lim

t→∞
yt = mi,

dyt
dt

= −∇H(yt), y0 = y

}
.

wever, as in [MS14], to facilitate the proof, we choose instead the basins of at-
ction for the gradient flow of a suitable perturbation of H (see Section 3.3).

ppose {Ωi}Ni=1 is an admissible partition in the sense of Definition 3.1. Define local
asures on Rn

ντi (x) :=
1

Zτi
ντ (x)|Ωi , (3.2)

Zτi := ντ (Ωi) ≈τ
√

det∇2H(m1)√
det∇2H(mi)

.

is induces a decomposition of the measure µ on Rn × Rn as

µ =
1

2
(π+ + π−) =

∑ 1

2
Z+
ijπ

+
ij +

∑ 1

2
Z−ijπ

−
ij , (3.3)

ere for 1 ≤ i, j ≤ n, Z+
ij := Zτ1i Z

τ2
j , Z

−
ij := Zτ2i Z

τ1
j and

π+
ij(x1, x2) :=

1

Z+
ij

π+(x1, x2)|Ωi×Ωj = ντ1i (x1)ντ2j (x2),

π−ij(x1, x2) :=
1

Z−ij
π−(x1, x2)|Ωi×Ωj = ντ2i (x1)ντ1j (x2).

e following results are read from [MS14, Lemma 2.4 and Corollary 2.8].

mma 3.3 (Decomposition of variance). For the mixture representation (3.3) of
Gibbs measure µ, and a smooth function f : Rn × Rn → R, it holds

Varµ(f) =
1

2

∑
Z+
ij Varπ+

ij
(f) +

1

2

∑
Z−ij Varπ−ij

(f) (3.4)

+
1

4

∑

σ∈{−,+}

∑
ZσijZ

σ
kl(Eπσij (f)− Eπσkl(f))2 (3.5)
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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM 17

+
1

4

∑
Z+
ijZ
−
kl(Eπ+

ij
(f)− Eπ−kl(f))2. (3.6)

ere the second line is summing over unordered pairs {(i, j), (k, l)} and the last line
summing over ordered pairs ((i, j), (k, l)).

mma 3.4 (Decomposition of entropy). For the mixture representation (3.3) of
Gibbs measure µ, and a smooth function f : Rn × Rn → R, it holds

Entµ(f2) ≤ 1

2

∑
Z+
ij Entπ+

ij
(f2) +

1

2

∑
Z−ij Entπ−ij

(f2) (3.7)

+
1

2

∑

(i,j)


 ∑

(k,l)6=(i,j)

Z+
kl

Λ(Z+
ij , Z

+
kl)

+
∑

(k,l)

Z−kl
Λ(Z+

ij , Z
−
kl)


Z+

ij Varπ+
ij

(f) (3.8)

+
1

2

∑

(i,j)


 ∑

(k,l)6=(i,j)

Z−kl
Λ(Z−ij , Z

−
kl)

+
∑

(k,l)

Z+
kl

Λ(Z−ij , Z
+
kl)


Z−ij Varπ−ij

(f) (3.9)

+
1

2

∑

σ∈{−,+}

∑ ZσijZ
σ
kl

Λ(Zσij , Z
σ
kl)

(Eπσij (f)− Eπσkl(f))2 (3.10)

+
1

2

∑ Z+
ijZ
−
kl

Λ(Z+
ij , Z

−
kl)

(Eπ+
ij

(f)− Eπ−kl(f))2, (3.11)

ere the second to last line is summing over unordered pairs {(i, j), (k, l)} and
last line is summing over ordered pairs ((i, j), (k, l)). Here the function Λ :
∞)× [0,∞)→ [0, infty) is the logarithmic mean defined by

Λ(a, b) =

∫ 1

0
a(1−s)bs ds =

{
a−b

ln a−ln b , a 6= b;

a, a = b.

e local variances appearing in (3.4), (3.8) and (3.9) and the local entropies ap-
aring in (3.7) are treated by the Poincaré and the log-Sobolev inequalities for local
duct measures.

mma 3.5 (Local PI for πσij). Under Assumption 2.2 and given τ2 small enough,

re exists an admissible partition {Ωi}Ni=1 such that for all τ ≤ τ2, , for all smooth
ctions f : Rn × Rn → R

Varπσij (f)
(3.22)

≤ O(1)Eπσij (τσ(1)|∇x1f |2 + τσ(2)|∇x2f |2).

mma 3.6 (Local LSI for πσij). Under Assumption 2.3, for all smooth functions
Rn × Rn → R

Entπσij (f
2)

(3.23)

≤ O(1)Eπσij (|∇x1f |
2 + |∇x2f |2).

defer the details of the proof of Lemmas 3.5 and 3.6 to Section 3.3. They are
sed on the simple product structure of the measures πσij and an adaption of the
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al Poincaré inequality [MS14, Theorem 2.9] and the local LSI inequality [MS14,
eorem 2.10]. In the sequel, for a Dirichlet form E(f), we denote E(f)[Ω] to be the
richlet integral with region of integration restricted to Ω. It follows that

Zσij Varπσij (f) ≤ O(1)Eπσ(f)[Ωi × Ωj ], (3.12)

Zσij Entπσij (f) ≤ O(τ−1
1 )Eπσ(f)[Ωi × Ωj ]. (3.13)

deal with the mean-differences appearing in (3.5) and (3.10), we will apply the
an-difference estimate from [MS14, Theorem 2.12], which allows us to transport
one of the variables x1, x2 at a time from one metastable region Ωj to another
tastable region Ωk. In order to ensure that we only get exponential dependence
1/τ2 rather than 1/τ1 in the Eyring-Kramers formulas, we only transport in the
h-temperature variable, and not in the low-temperature variable. This allows us
deal with mean-differences of the type between π+

ij and π+
ik, or the type between

and π−ki.

mma 3.7 (Mean-difference estimates for π+
ij , π

+
ik and for π−ji, π

−
ki). Let

Cτ2jk :=
2π
√

det∇2H(sjk)√
det∇2H(mk)|λ−(sjk)|

exp

(
H(sjk)−H(mk)

τ2

)
,

n

Z+
ik(Eπ+

ij
f − Eπ+

ik
f)2 /τ2 Cτ2jk · Eπ+(f)[Ωi × Rn], (3.14)

Z−ki(Eπ−ji f − Eπ−ki f)2 /τ2 Cτ2jk · Eπ−(f)[Rn × Ωi]. (3.15)

oof. For the first estimate, applying Cauchy-Schwarz and [MS14, Theorem 2.12],
get

Z+
ik(Eπ+

ij
f − Eπ+

ik
f)2 ≤ Zτ1i Zτ2k Eντ1i (Eντ2j f − Eντ2k f)2

/τ2 Zτ1i Eντ1i Cτ2jk

∫
τ2|∇x2f |2dντ2(x2)

≤ Cτ2jk · Eπ+(f)[Ωi × Rn].

e second estimate is completely analogous. �

deal with the mean-differences in (3.6) and (3.11), we have another move available,
ich is to swap the temperatures of the two variables, i.e. to swap between π+

ij and

. This is the main new technical ingredient compared to [MS14], which comes at a
t of a term involving the ratio of the higher temperature to the lower temperature,
τ1.

mma 3.8 (Mean-difference estimate for π+
ij , π

−
ij).

(Eπ+
ij
f − Eπ−ij f)2 ≤ Φn

(τ2

τ1

)
O(τ2)(Eπ+

ij
|∇x2f |2 + Eπ−ij |∇x1f |

2)
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+ ω(τ2)
∑

σ∈{+,−}
Eπσij (τσ(1)|∇x1f |2 + τσ(2)|∇x2f |2)

any smooth function f : Rn × Rn → R, where Φn is the function defined in
ation (2.15) and ω(τ2) := O(

√
τ2| ln τ2|3/2).

defer the proof of this lemma to Section 3.4. It follows that

min(Z+
ij , Z

−
ij )(Eπ+

ij
f − Eπ−ij f)2 ≤ Φn

(τ2

τ1

)
O(1)Eµ(f). (3.16)

ing these estimates, we will show that the dominating terms in Lemma 3.3 are the
an-differences between π+

ip, π
+
11 and between π−pj , π

−
11 where i, j are arbitrary and

s the local minimum with the dominating energy barrier.

mma 3.9. Let p be the local minimum with the dominating energy barrier. Then
any i, j ∈ [N ], and σ ∈ {+,−}

Z+
ipZ

σ
11(Eπ+

ip
(f)− Eπσ11(f))2 /τ2 Cτ21p · Eπ+(f)[Ωi × Rn] + Φn

(τ2

τ1

)
O(1)Eµ(f),

Z−pjZ
σ
11(Eπ−pj (f)− Eπσ11(f))2 /τ2 Cτ21p · Eπ−(f)[Rn × Ωj ] + Φn

(τ2

τ1

)
O(1)Eµ(f).

reover, if {(i, j)σ1 , (k, l)σ2} is one of the following forms

{(i, 1)+, (1, 1)+}, {(1, j)−, (1, 1)−}, {(i, 1)+, (1, 1)−}, {(1, 1)+, (1, l)−},

n

Zσ1ij Z
σ2
kl (Eπσ1ij (f)− Eπσ2kl (f))2 ≤ Φn

(τ2

τ1

)
O(1)Eµ(f).

ally, for any other {(i, j)σ1 , (k, l)σ2}, the term Zσ1ij Z
σ2
kl (Eπσ1ij (f) − Eπσ2kl (f))2 is

ligible in the sense of being exponentially smaller in 1/τ2 compared to one of the
ms above on the right hand side.

oof. Let Γ be the graph whose vertices are labelled ·σij and have three kinds of
ges:

• “vertical” edges between ·+ij , ·+ik;
• “horizontal” edges between ·−ij , ·−kj ;
• “swapping” edges between ·+ij , ·−ij .

decompose the mean-difference between any two measures π+
ij , π

−
kl as a sum

mean-differences of the types in (3.14), (3.15), and (3.16), corresponding to a
uence of “moves” using the edges of the graph Γ. Given any sequence of moves
→ v1 → · · · → vm on graph Γ, we assign to each move a positive weight ωt > 0,
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t ≤ m, with total sum
m∑

t=1

ωt = 1. Then we have

Zv0Zvm(Eπv0 f − Eπvm f)2 = Zv0Zvm

(
m∑

t=1

√
ωt

1√
ωt

(Eπvt−1 f − Eπvt f)

)2

≤
m∑

t=1

1

ωt
Zv0Zvm(Eπvt−1 f − Eπvt f)2. (3.17)

ter taking into account the weights Z+
ij , Z

−
kl, this leads to the choice of the following

ee types of sequences of moves for the three types of mean-differences occurring
Lemma 3.3:

• Type I sequence: ·+ij → ·+i1 → ·−i1 → ·−11 → ·−k1 → ·+k1 → ·+kl;
• Type II sequence: ·−ij → ·−1j → ·+1j → ·+11 → ·+1l → ·−1l → ·−kl;
• Type III sequence: ·+ij → ·+i1 → ·−i1 → ·−11 → ·+11 → ·+1l → ·−1l → ·−kl.

t us first look at the decomposition (3.17) for a Type I sequence. For the 1st move,

Z+
ijZ

+
kl(Eπ+

ij
(f)− Eπ+

i1
(f))2 /τ2 Z+

klC
τ2
j1 · Eπ+(f)[Ωi × Rn],

ich is negligible unless j = p, k = l = 1. For the 2nd move,

Z+
ijZ

+
kl(Eπ+

i1
(f)− Eπ−i1(f))2 ≤ Zτ2j Z+

kl · Φn

(
τ2

τ1

)
O(1)Eµ(f),

ich is negligible unless j = k = l = 1. For the 3rd move,

Z+
ijZ

+
kl(Eπ−i1(f)− Eπ−11(f))2 /τ2 e

−H(mi)
(

1
τ1
− 1
τ2

)
Zτ2j ZklC

τ2
1i · Eπ−(f)[Rn × Ω1],

ich is always negligible. The analysis for the remaining three moves are completely
metric: the 4th move is always negligible, the 5th move is negligible unless
j = l = 1, and the 6th move is negligible unless l = p, i = j = 1.

erall, if (i, j), (k, l) is not one of the exceptions mentioned, we can just assign
= ω1 = · · · = ω6 = 1/6, then the overall sum is negligible. This choice of (ωt)

6
t=1

o works in the exceptional cases k = j = l = 1 and i = j = l = 1 (since we can
ord to lose a constant factor because of the O(1)).

stly, in the exceptional case j = p, k = l = 1, we consider a shortened 2-move
uence ·+ip → ·+i1 → ·+11. For the 1st move in this sequence,

Z+
ipZ

+
11(Eπ+

ij
(f)− Eπ+

i1
(f))2 /τ2 Cτ2p1 · Eπ+(f)[Ωi × Rn]

d for the 2nd move in this sequence,

Z+
ipZ

+
11(Eπ+

i1
(f)− Eπ+

11
(f))2 ≈τ2 Zτ2p · Z+

i1Z
+
11(Eπ+

i1
(f)− Eπ+

11
(f))2

/τ2 Zτ2p · Φn

(τ2

τ1

)
O(1)Eµ(f).
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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM 21

us, for this sequence, we can assign ω1 = 1−Zτ2p ≈τ2 1, ω2 = Zτ2p , then the overall
is as claimed. The exceptional case l = p, i = j = 1 is completely symmetric.

e analysis for Type II and Type III sequences are completely analogous. �

can adapt this approach to estimate the terms in Lemma 3.4.

mma 3.10. Let p be the local minimum with the dominating energy barrier. Then
i, k, l ∈ [N ] and σ ∈ {+,−} such that

H(mi) < H(mp) or i = p, and
H(mi)

τ1
+
H(mp)

τ2
≥ H(mk)

τσ(1)
+
H(ml)

τσ(2)
,

holds that

Z+
ipZ

σ
kl

Z+
ip, Z

σ
kl)

(Eπ+
ip

(f)− Eπσkl(f))2 /τ2
1

Λ(
Z+
ip

Zσkl
, 1)

(
Cτ21pEπ+(f)[Ωi × Rn] + Φn

(τ2

τ1

)
O(1)Eµ(f)

)
,

Z−piZ
σ
kl

Z−pi, Z
σ
kl)

(Eπ−pi(f)− Eπσkl(f))2 /τ2
1

Λ(
Z−pi
Zσkl
, 1)

(
Cτ21pEπ−(f)[Rn × Ωi] + Φn

(τ2

τ1

)
O(1)Eµ(f)

)
.

ally, for any other {(i, j)σ1 , (k, l)σ2}, the term
Zσ1ij Z

σ2
kl

Λ(Zσ1ij , Z
σ2
kl )

(Eπσ1ij (f)− Eπσ2kl (f))2

negligible in the sense of being exponentially smaller in 1/τ2 compared to one of
terms above on the right hand side.

oof. The analysis is similar as in the previous lemma, but now we have to take
o account the logarithmic mean, using the estimate

ab

Λ(a, b)
= a · b

Λ(a/b, 1)
/τ a ln(1/a)

b /τ 1, a � 1. The main difference is that we now need to be more careful to
w the transport from ·+ip to ·+11 is negligible if H(mi) ≥ H(mp) and i 6= p by

osing the alternative path: ·+ip → ·−ip → ·−1p → ·+1p → ·+11. �

oof of Theorem 2.8. Combining Lemma 3.3, (3.12) and Lemma 3.9, we get

Varµ(f) /τ2
1

2

∑

i,j

O(1)Eπ+(f)[Ωi × Ωj ] +
1

2

∑
O(1)Eπ−(f)[Ωi × Ωj ]

+ 2 · 1

4

∑

i

Cτ2p1 · Eπ+(f)[Ωi × Rn] + 2 · 1

4

∑

j

Cτ21p · Eπ−(f)[Rn × Ωj ]

+ Φn

(τ2

τ1

)
O(1)Eµ(f)
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≤
(
O(1) + Cτ21p + Φn

(τ2

τ1

)
O(1)

)
Eµ(f),

desired.

�

oof of Theorem 2.9. Combining Lemma 3.4, (3.12), (3.13) and Lemma 3.10, we

ntµ(f) /τ2
1

2

∑

i,j

O(τ−1
1 )Eπ+(f)[Ωi × Ωj ] +

1

2

∑
O(τ−1

1 )Eπ−(f)[Ωi × Ωj ]

+
1

2

∑

i,j

2N2O(τ−1
1 ) ·O(1)Eπ+(f) +

1

2

∑

i,j

2N2O(τ−1
1 ) ·O(1)Eπ−(f)

+
1

2

∑

i≤p



∑

σ

∑

(k,l)

1

Λ(
Z+
ip

Zσkl
, 1)



(
Cτ21p · Eπ+(f)[Ωi × Rn] + Φn

(τ2

τ1

)
O(1)Eµ(f)

)

+
1

2

∑

i≤p



∑

σ

∑

(k,l)

1

Λ(
Z−pi
Zσkl
, 1)



(
Cτ21p · Eπ−(f)[Rn × Ωj ] + Φn

(τ2

τ1

)
O(1)Eµ(f)

)

≤ 2N2

(
O(τ−1

1 ) +H(mp)(τ
−1
1 + τ−1

2 )Cτ21p +O(τ−1
1 )Φn

(τ2

τ1

))
Eµ(f),

desired. �

. Proof of Theorem 2.18. With the help of Theorem 2.9, i.e. the low-temperature
mptotics for the log-Sobolev constant, the proof of Theorem 2.18 follows the ar-

ments in [Mic92, Mon18].

r each t > 0, let µt be the probability measure given in (2.5) at temperatures
= τ1(t), τ2 = τ2(t) as defined in (2.23), i.e. µt(x1, x2) = 1

2(πt(x1, x2) + πt(x2, x1)),
th

πt(x1, x2) :=
1

Zt
exp

(
−H(x1)

τ1(t)
− H(x2)

τ2(t)

)
,

ere Zt is the normalizing constant. Our first observation is that the mass of the
tantaneous equilibrium µt concentrates around the global minimum minH = 0
t→∞.

mma 3.11. If (X̃1(t), X̃2(t)) has law µt, then for every 0 < ε < δ, there exists a
stant C > 0 such that

P(min{H(X̃1(t)), H(X̃2(t))} > δ) ≤ Ce−
δ−ε
τ1(t) ≤ C(2 + t)−

δ−ε
E .
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oof. Since µt(x1, x2) = 1
2(πt(x1, x2) + πt(x2, x1)), and min(H(x1), H(x2)) is sym-

tric,

P(min{H(X̃1(t)), H(X̃2(t))} > δ) = P(min{H(Ỹ1), H(Ỹ2)} > δ)

= P(H(Ỹ1) > δ)P(H(Ỹ2) > δ)

≤ P(H(Ỹ1) > δ),

ere (Ỹ1, Ỹ2) has law πt, and Ỹ1, Ỹ2 are independent. It remains to bound

P(H(Ỹ1) > δ) =

∫
H(x)>δ e

−H(x)
τ1 dx

∫
e
−H(x)

τ1 dx
.

der Assumption 2.3, [MS14, Lemma 3.14] applies and shows H has linear growth
infinity. More specifically, there exists a constant CH such that for all sufficiently
ge R,

H(x) ≥ min
|z|=R

H(z) + C(|x| −R) for |x| > R.

the above, we can choose R large enough so that min|z|=RH(z) > δ. Then
∫

H(x)>δ
e
−H(x)

τ1 dx =

∫

H(x)>δ,|x|<R
e
−H(x)

τ1 dx+

∫

|x|>R
e
−H(x)

τ1 dx

≤ e−
δ
τ1

(
|BR(0)|+

∫

|x|>R
e
−C(|x|−R)

τ1 dx

)

≤ e−
δ
τ1 (|BR(0)|+O(τ1)).

the other hand, there exists r > 0 such that H(x) < ε when |x| < r. Then
∫
e
−H(x)

τ1 dx >

∫

|x|<r
e
−H(x)

τ1 dx > e
− ε
τ1 |Br(0)|.

mbining these gives the desired estimate. �

t (X̃1(t), X̃2(t)) be a random vector with law µt. By Lemma 3.11 and Pinsker’s
quality, we have

min{H(X1(t)), H(X2(t))} > δ) ≤ P(min{H(X̃1(t)), H(X̃2(t))} > δ) + dTV (µt,mt)

≤ C(2 + t)−
δ−ε
E +

√
2 Ent(mt|µt), (3.18)

ere

Ent(mt|µt) :=

∫
mt

µt
ln

(
mt

µt

)
dµt

he relative entropy ofmt with respect to µt. Thus, it remains to bound Ent(mt|µt).
e following lemma gives an estimate of d

dt Ent(mt|µt), the proof of which is in the
e spirit of [Mic92, Proposition 3].
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mma 3.12. It holds with Iµ(·) defined in (2.6) the estimate

d

dt
Ent(mt|µt) ≤ −2Iµt

(
mt

µt

)
(3.19)

+
d

dt

(
1

τ1(t)
+

1

τ2(t)

)
E[H(X1(t)) +H(X2(t))].

oof. First note that

d

dt
Ent(mt|µt) =

∫
dmt

dt
ln

(
mt

µt

)
dx+

∫
mt

d

dt
ln

(
mt

µt

)
dx

=

∫
dmt

dt
ln

(
mt

µt

)
dx+

∫
dmt

dt
dx−

∫
mt

µt

dµt
dt
dx

=

∫
dmt

dt
ln

(
mt

µt

)
dx−

∫
d ln(µt)

dt
dmt. (3.20)

consider the first term in (3.20). Observe that mt satisfies the Fokker-Planck
ation

dmt

dt
= ∇x1 · (mt∇x1H) +∇x2 · (mt∇x2H) + ∆x1(a1mt) + ∆x2(a2mt).

mbining this with the identity ∇xi(aiµt) = −µt∇xiH, we get

dmt

dt
= ∇x1 ·

(
a1µt∇x1

(
mt

µt

))
+∇x2 ·

(
a2µt∇x2

(
mt

µt

))
.

egrating by parts, we have
∫
dmt

dt
ln

(
mt

µt

)
dx = −

∫ (
a1

∣∣∣∣∇x1
(
mt

µt

)∣∣∣∣
2

+ a2

∣∣∣∣∇x2
(
mt

µt

)∣∣∣∣
2
)
µt
mt

dµt

= −2Iµt
(
mt

µt

)
, (3.21)

ere Iµt is the Fisher information defined in (2.6) for µ = µt. Next we consider
second term in (3.20). Using that minH = 0 and that τ1(t), τ2(t) are decreasing,

ect calculation yields

−d ln(µt)

dt
≤ d

dt

(
1

τ1(t)

)(
H(x1)ρ(x1, x2) +H(x2)ρ(x2, x1)

)

+
d

dt

(
1

τ2(t)

)(
H(x1)ρ(x2, x1) +H(x2)ρ(x1, x2)

)

≤ d

dt

(
1

τ1(t)
+

1

τ2(t)

)(
H(x1) +H(x2)

)
.

egrating this against dmt and combining it with (3.21) yields (3.19). �

e second term on the right hand side of (3.19) are controlled via the following
ma.
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mma 3.13. For any ε > 0, there exists a constant C such that

E
[
H(X1(t)) +H(X2(t))

]
≤ C(1 + t)ε.

omit the proof of Lemma 3.13, which closely follows that of [Mic92, Lemma
using the moment assumptions on the initial distribution m given by (2.24) and
wth assumptions on the energy landscape H in Assumption 2.3.

mma 3.14. For any ε > 0, there exists C such that

Ent(mt|µt) ≤ C
(

1

1 + 3t

)1− E∗
KE
−ε
.

oof. Using the log-Sobolev inequality in Theorem 2.9, the estimate (3.19) becomes

d

dt
Ent(mt|µt) ≤ −2αt Ent(mt|µt) +

2

E
(2 + t)−1 E[H(X1(t)) +H(X2(t))],

ere αt is the LSI constant in (2.16) for µ = µt. From (2.17) we see that for any
0, there exists t0 > 0 and C1 > 0 such that for t > t0,

2αt ≥ C1(2 + t)−
E∗
KE
−ε.

gether with Lemma 3.13, we get that for t > t0,

d

dt
Ent(mt|µt) ≤ −C1(1 + t)−

E∗
E
−ε Ent(mt|µt) + C2(1 + t)−1+ε.

standard Gronwall-type argument as in the proof of [Mon18, Lemma 19] then
ishes off the estimate. For 0 < ε < 1

2

(
1− E∗

KE

)
, let

Q(t) = Ent(mt|µt)−
2C2

C1
(1 + t)−1+ E∗

KE
+2ε.

en for t0 large enough and t > t0,

d

dt
Q(t) ≤ −C1(1 + t)−

E∗
KE
−εQ(t),

Q(t) ≤ Q(t0) exp

(
−C1

∫ t

t0

(1 + s)−
E∗
KE

+ε ds

)
,

t(mt|µt) ≤
2C2

C1
(1 + t)−1+ E∗

KE
+2ε + Ent(mt0 |µt0) exp

(
−C1

ν
((1 + t)β − (1 + t0)β)

)
,

ere β := 1− E∗
KE − ε > 0, and the conclusion follows. �

mbining (3.18) and Lemma 3.14, we get that for any δ > 0, ε > 0, there exists a
stant C such that

P
(

min
{
H(X1(t)), H(X2(t))

}
> δ
)
≤ C

((
1

1 + t

) δ−ε
E

+

(
1

1 + t

) 1
2

(
1− E∗

KE
−ε

))
,

ich implies (2.25).
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. Proof of Lemmas 3.5 and 3.6. The following decomposition of variance
d entropy for a product measure reduces proving Lemmas 3.5 and 3.6 to proving
responding estimates for the component measures ντi .

mma 3.15 (Variance and entropy for product measure). Let π = νi ⊗ νj be a
duct of two probability measures on open subsets of Rn. For any smooth function
Rn × Rn → R

Varπ(f) = Eνj
(
Varνi(f)

)
+ Varνj

(
Eνi(f)

)

≤ Eνj
(
Varνi(f)

)
+ Eνi

(
Varνj (f)

)
. (3.22)

r any smooth function g : Rn × Rn → R>0,

Entπ(g) = Eνj
(
Entνi(g)

)
+ Entνj

(
Eνi(g)

)

≤ Eνj
(
Entνi(g)

)
+ Eνi

(
Entνj (g)

)
. (3.23)

finition 3.16 (Local PI and LSI for ντi ). The local Gibbs measure ντi defined
(3.2) satisfies a Poincaré inequality with constant ρ if for all smooth functions
Rn → R

Varντi (f) ≤ 1

ρ
Eντi |∇f |

2,

ich is denoted by PI(ρ). Likewise, ντi , defined in (3.2), satisfies a log-Sobolev
quality with constant α if for all smooth functions f : Rn → R

Entντi (f2) ≤ 2

α
Eντi |∇f |

2,

ich is denoted by LSI(α).

mma 3.17 (Local PI for ντi ). Under Assumption 2.2, given τ2 small enough,
re exists an admissible partition {Ωi}Ni=1 such that for all τ ≤ τ2, the local Gibbs
asures ντi satisfy PI(ρ) with ρ−1 = O(τ).

mma 3.18 (Local LSI for ντi ). Under Assumption 2.3, given τ2 small enough,
the same admissible partition {Ωi}Ni=1, for all τ ≤ τ2, the local Gibbs measures
satisfy satisfy LSI(α) with α−1 = O(1).

mmas 3.17 and 3.18 are very similar to [MS14, Theorem 2.9] and [MS14, Theorem
0], except now that we have two temperatures τ1 < τ2, we want the regions Ωi in
admissible partition only depend on the higher temperature τ2 but not the lower
perature τ1, so that we can get PI and LSI for the local Gibbs measures ντ1i , ν

τ2
i

different temperatures in the same regions Ωi.

is can be shown by making a small modification to the proof of [MS14, Theorem
, 2.10], which is based on constructing a Lyapunov function. Let us recall the
finition of a Lyapunov function and the criterion for PI based on it from [MS14].

finition 3.19 (Lyapunov function, Definition 3.7 in [MS14]). A smooth function
: Ωi → (0,∞) is a Lyapunov function for ντi if the following hold for Lτ :=
−∇H · ∇:
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(i) There exists an open set Ui ⊂ Ωi and constants b > 0, λ > 0 such that

LτWτ

Wτ
≤ −λ+ b1Ui ∀x ∈ Ωi. (3.24)

(ii) Wτ satisfies Neumann boundary condition on Ωi in the sense that it satisfies
the integration by parts formula

∫

Ωi

(−LτWτ )gdντi =

∫

Ωi

∇g · ∇Wτdν
τ
i . (3.25)

mma 3.20 (Lyapunov condition for local PI, Theorem 3.8 in [MS14]). If there
sts a Lyapunov function for ντi in the sense of Definition 3.19 and that the trun-
ed Gibbs measure ντi |Ui satisfies PI(ρUi), then the local Gibbs measure ντi satisfies
(ρ) with

ρ−1 ≤ b

λ
ρ−1
Ui

+
1

λ
τ.

choose Ui to be a ball centered at the local minimum mi with a small, fixed
ius R0 such that H is strongly convex on Ui. Then the Bakry-Émery criterion
vides the following result.

mma 3.21 (PI for truncated Gibbs measure, Lemma 3.6 in [MS14]). The mea-
es ντi |Ui satisfy PI(ρUi) with ρ−1

Ui
= O(τ).

[MS14], the candidate for the Lyapunov function is Wτ = exp
(
H
2τ

)
, so that (see

S14, equation (3.9)])

LτWτ

Wτ
=

1

2
∆H(x)− 1

4τ
|∇H(x)|2.

order to satisfy the condition (3.24), the Hamiltonian H was replaced by a per-
bed one Hτ such that ‖H − Hτ‖∞ = O(τ). In order to satisfy the condition
25), Ωi is then chosen to be a basin of attraction with respect to the gradient flow
this perturbed Hamiltonian Hτ . Consequently, the local PI was first deduced for
perturbed Gibbs measure 1

Z exp Hτ
2τ on Ωi, which then implies PI for the original

asure via Holley-Stroock perturbation principle. One side effect of this approach
hat the region Ωi depends on the temperature τ , which is unsuitable in our setting

th two different temperatures.

modify this approach as follows: instead of perturbing the Hamiltonian in the
bbs measure, we only perturb the Hamiltonian in the Lyapunov function. Given
= ε small enough, we will choose a perturbation Hε = H + Vε where Vε = O(ε),
d choose Ωi to be the basin of attraction with respect to the gradient flow of Hε.
en, for every τ ≤ ε, we choose the Lyapunov function to be Wτ = exp Hε

2τ . Then
25) is satisfied by [MS14, Theorem B.1] and

LτWτ

Wτ
= −∇H · ∇Hε

2τ
+ τ

(
∆Hε

2τ
+
|∇Hε|2

4τ2

)



Journal Pre-proof

28

wh
for

It
cri

Le
exi
tha

We
of
use
mi
flo

Th
pro
Le
PI

Eq
no

Le
the
Jo
ur

na
l P

re
-p

ro
of
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=
1

2
∆Hε −

1

4τ

(
|∇H|2 − |∇Vε|2

)
≤ LεWε

Wε
,

ere the last inequality holds as long as |∇Vε| ≤ |∇H|. Then once (3.24) is verified
τ = ε, PI for ντi follows for every τ ≤ ε on the same region Ωi.

turns out the same perturbation used in [MS14] works here. Let S be the set of
tical points of H and M = {m1,m2, . . . ,mN} be the set of local minima of H.

mma 3.22 (ε-modification). Given a function H satisfying Assumption 2.2, there
st constants ε0, λ0, a, C ∈ (0,∞) and a family of C3 functions {Vε}0<ε<ε0 such
t for Hε := H + Vε it holds

(i) Vε is supported on
⋃
s∈S\MBa

√
ε(s) and |Vε(x)| ≤ Cε for all x.

(ii) Lyapunov-type condition: |∇Vε(x)| ≤ |∇H(x)| for all x and

1

2
∆Hε −

1

4ε
(|∇H|2 − |∇Vε|2) ≤ −λ0 for all x /∈

⋃

m∈M
Ba
√
ε(m).

omit the proof of Lemma 3.22. It can be shown by carefully following the proof
[MS14, Lemma 3.12]; indeed, the perturbation Vε can be taken to be the same one
d there. It is easy to see that Hε has the same local minima as H. For each local

nimum mi of H, let Ωi be the associated basin of attraction w.r.t. the gradient
w defined by the τ2-modified potential Hτ2 , that is

Ωi :=

{
y ∈ Rn : lim

t→∞
yt = mi,

dyt
dt

= −∇Hτ2(yt), y0 = y

}
.

en (Ωi)
N
i=1 is an admissible partition in the sense of Definition 3.1. We omit the

of of this fact, which can be shown by slightly modifying the proof of [MS14,
mma 3.12]. The preceding discussion shows ντi defined on Ωi by (3.2) satisfies
(ρ) with ρ−1 = O(τ) for all τ ≤ τ2.

uipped with the Poincaré inequality for ντi , the log-Sobolev inequality for ντi is
w a simple consequence of the following criterion from [MS14].

mma 3.23 (Lyapunov condition for local LSI, Theorem 3.15 in [MS14]). Assume
following hold:

(i) There exists a smooth function Wτ : Ωi → (0,∞) and constants λ, b > 0 such
that for Lτ := τ∆−∇H · ∇

LτWτ

Wτ
≤ −λ|x|2 + b ∀x ∈ Ωi.

(ii) ∇2H ≥ −KH for some KH > 0 and ντi satisfies PI(ρ).
(iii) Wτ satisfies Neumann boundary condition on Ωi (see (3.25)).
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en ντi satisfies LSI(α) with

α−1 ≤ 2

√
τ

λ

(
1

2
+
b+ λντi (|x|2)

ρτ

)
+
KH

λ

(
1

2
+
b+ λντi (|x|2)

ρτ

)
+

2

ρ
,

ere ντi (|x|2) denotes the second moment of ντi .

oosing Wτ to be the same Lyapunov function we chose for the PI, it is straight-
ward to check that, under Assumption 2.3, the conditions (i)-(iii) holds and the
ond moment ντi (|x|2) is uniformly bounded. We omit the proofs, which are vir-
lly identical to their counterparts in [MS14] (see Lemmas 3.17-3.19). Finally,

1 = O(τ) yields α−1 = O(1).

. Proof of Lemma 3.8. In order to prove Lemma 3.8, we observe that the local
bbs measures ντi are close to a class of truncated Gaussian measures in the sense
mean-difference, see [MS14, Lemma 4.6].

finition 3.24 (Truncated Gaussian measure). Given m ∈ Rn, Σ a symmetric
itive definite n× n matrix, R ≥ 1, consider the ellipsoid

Eτ := {x ∈ Rn : (x−m) · Σ−1(x−m) ≤ R2τ}.
e truncated Gaussian measure γτ at temperature τ with mean m and covariance
on scale R is defined to be

γτ (x) :=
exp

(
− 1

2τ (x−m) · Σ−1(x−m)
)

ZR
√
τ
n√

det Σ
1Eτ ,

ere ZR is the constant needed to make this a probability density. More precisely,

ZR :=

∫

BR(0)
exp (−|x|2/2)dx =

√
2π

n
(1−O(e−R

2
Rn−2)).

mma 3.25 (Approximation by truncated Gaussian). For τ ≤ τ2, let γτi be the
ncated Gaussian measure at temperature τ with mean mi and covariance Σi =
H2(mi))

−1 on scale R(τ2) = | ln τ2|1/2. Then

dγτi
dντi

(x) ≈τ2 1, (3.26)

iformly in the support of γτi , and for any smooth function f : Rn → R

(Eντi f − Eγτi f)2 ≤ Varντi

(
dγτi
dντi

)
Varντi (f) = O(

√
τ2| ln τ2|3/2) · τ Eντi |∇f |

2.

omit the proof of Lemma 3.25, which is the same as [MS14, Lemma 4.6] with
ly minor changes.

rollary 3.26. For any smooth function f : Rn × Rn → R

Eπσij f − E
γ
τσ(1)
i ⊗γ

τσ(2)
j

f
)2

= O(
√
τ2| ln τ2|3/2) · Eπσij

(
τσ(1)|∇x1f |2 + τσ(2)|∇x2f |2

)
.
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GEORG MENZ, ANDRÉ SCHLICHTING, WENPIN TANG, AND TIANQI WU

oof. This follows from the previous lemma by writing

Eπσij f − E
γ
τσ(1)
i ⊗γ

τσ(2)
j

f =
(
E
ν
τσ(1)
i ⊗ν

τσ(2)
j

f − E
γ
τσ(1)
i ⊗ν

τσ(2)
j

f
)

+
(
E
γ
τσ(1)
i ⊗ν

τσ(2)
j

f − E
γ
τσ(1)
i ⊗γ

τσ(2)
j

f
)
.

�

is reduces our task to proving mean-difference estimate for truncated Gaussian.

mma 3.27 (Mean-difference estimate for truncated Gaussians at two tempera-
es). For any smooth function f : Rn → R

(Eγτ2i f − Eγτ1i f)2 ≤ Cn‖Σi‖
(

1 + Φn

(τ2

τ1

))
τ2 Eγτ2i |∇f |

2,

ere the function Φn is given by (2.15), and Cn is a constant only depending on n.

oof. By change of variables, it suffices to show the first inequality for mi = 0,Σi =
From the Cauchy-Schwarz inequality and the fundamental theorem of calculus,
can deduce

(Eγτ2i f − Eγτ1i f)2 ≤ Eγ1i
(
f(
√
τ2X)− f(

√
τ1X)

)2

≤
∫

Sn−1

dω

∫ R

0

(∫ √τ2r
√
τ1r
|∇f(sω)|ds

)2
e−

r2

2

ZR
rn−1dr

≤ 2(I1 + I2),

ere, we recall that R ≥ 1 from Definition 3.24

I1 :=

∫

Sn−1

dω

∫ R

0

(∫ √τ2r
√
τ1r
|∇f(sω)|1s≤√τ2ds

)2
e−

r2

2

ZR
rn−1dr,

I2 :=

∫

Sn−1

dω

∫ R

0

(∫ √τ2r
√
τ1r
|∇f(sω)|1s>√τ2ds

)2
e−

r2

2

ZR
rn−1dr.

timate for I2: By Cauchy-Schwarz,

I2 ≤
∫

Sn−1

dω

∫ R

0
(
√
τ2r −

√
τ1r)

(∫ R
√
τ2

√
τ2

|∇f(sω)|21s≤r√τ2ds
)
e−

r2

2

ZR
rn−1dr

≤ √τ2

∫

Sn−1

dω

∫ R
√
τ2

√
τ2

|∇f(sω)|2


∫ R

s√
τ2

e−
r2

2

ZR
rndr


 ds.

ing integration by parts and standard Gaussian tail bound, for s ≥ √τ2,

∫ R

s√
τ2

e−
r2

2 rndr ≤ Cne−
s2

2τ2

(
s2

τ2

)n−1
2

,
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ere Cn is a constant only depending on n. This gives

I2 ≤ Cnτ2 Eγτ2i |∇f |
2.

timate for I1: By Cauchy-Schwarz

I1 ≤
∫

Sn−1

dω

∫ R

0

(∫ √τ2
0

|∇f(sω)|2sn−1ds

)(∫ √τ2r
√
τ1r

s−(n−1)ds

)
e−

r2

2

ZR
rn−1dr

=
1

ZR
‖∇f‖2L2(B√τ2 (0))

∫ R

0

(∫ √τ2
√
τ1

u−(n−1)du

)
re−

r2

2 dr

≤ Cne
1
2 τ2 Eγτ2i |∇f |

2 · Φn

(τ2

τ1

)
,

ere Cn is a constant only depending on n. �
rollary 3.28. For any smooth function f : Rn × Rn → R

Eγτ1i ⊗γτ2j f − Eγτ2i ⊗γτ1j f)2 ≤
(

1 + Φn

(τ2

τ1

))
O(τ2)

(
Eπ+

ij
|∇x2f |2 + Eπ−ij |∇x1f |

2
)
.

oof. This follows from the previous lemma and (3.26) by writing

γ
τ1
i ⊗γ

τ2
j
f − Eγτ2i ⊗γτ1j f = (Eγτ1i ⊗γτ2j f − Eγτ1i ⊗γτ1j f) + (Eγτ1i ⊗γτ1j f − Eγτ2i ⊗γτ1j f).

�

mma 3.8 follows from Corollary 3.26 and 3.28.

mark 3.29. One can show a weaker version of Lemma 3.8 by a simpler approach:
st we split the mean-difference as

(Eπ+ f − Eπ− f)2 ≤ 2Eντ1i (Eντ2j f − Eντ1j f)2 + 2Eντ1j (Eντ1i f − Eντ2i f)2.

w, using the covariance representation of mean-difference and Cauchy-Schwarz,
have

Eντ2j f − Eντ1j f)2 ≤ Varντ2j
(f) Varντ2j

(
dντ1j
dντ2j

)
≤ O(τ2)Eντ2j |∇x2f |

2 Eντ1j

(
dντ1j
dντ2j

)
.

ally, using the partition size given in (3.1), we have

dντ1j
dντ2j

=
ντ2j (Ωj)

ντ1j (Ωj)
e−H(x)(τ−1

1 −τ−1
2 ) ≤

ντ2j (Ωj)

ντ1j (Ωj)
/τ2

(
τ2

τ1

)n
2

.

. Proof of Proposition 2.12. It suffices to consider test functions of the form
x, y) = f(x). This is equivalent to replacing µ by its first marginal, which is

1
2(ντ1 + ντ2). In this case, Varµ(f) and Eµ(f) reduces to

Varµ̄(f) =
1

2
(Varντ1 (f) + Varντ2 (f)) +

1

4
(Eντ1 f − Eντ2 f)2,

Eµ̄(f) =
1

2
(τ1 Eντ1 |∇f |2 + τ2 Eντ2 |∇f |2).
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further restrict f to Cc(Ω1). By (3.1) and (2.10), ντ1(Ω1), ντ2(Ω1) ≈ 1 once

< τ2 are small enough, so that
dν
τ1
1

dντ1 ,
dν
τ2
1

dντ2 ≈ 1 on Ω1 (see equation (3.2)). A crude
plication of Young’s inequality then yields

Varµ̄(f) & (Eντ1 f)2 − 4(Eντ2 f)2 & (Eντ11 f)2 − 5(Eντ21 f)2,

Eµ̄(f) . τ1 Eντ11 |∇f |
2 + τ2 Eντ21 |∇f |

2,

ere . means ≤ up to a multiplicative constant. By change of variables, we may
ume m1 = 0,Σ1 = (∇2H(m1))−1 = Id. We consider a test function of the form

f(x) = fε(x) = h(|x|/√ε),
ere h ≥ 0 is a compactly supported, absolutely continuous function and ε ∈ [τ1, τ2]
a scaling parameter, both to be specified later. As in the proof of Lemma 3.8,
will approximate by truncated Gaussian measures (see Definition 3.24). Since
τ2, fε is supported in the support of γτ21 . By Lemma 3.25,

Varµ̄(f) & (Eγτ11 fε)
2 − 6(Eγτ21 fε)

2, (3.27)

Eµ̄(f) . τ1 Eντ11 |∇fε|
2 + τ2 Eγτ21 |∇fε|

2, (3.28)

2 is small enough. By rescaling, we have:

τ1 Eντ11 |∇fε|
2 =

τ1

ε
E
ν
τ1
ε

1

|∇f1|2, (3.29)

τ2 Eγτ21 |∇fε|
2 =

τ2

ε
E
γ
τ2
ε

1

|∇f1|2 ≤
1√
2π

n (ε/τ2)(n−2)/2‖∇f1‖2L2 , (3.30)

Eγτ21 fε = E
γ
τ2
ε

1

f1 ≤
1√
2π

n (ε/τ2)n/2‖f1‖L1 , (3.31)

d for any r ≥ 0,

Eγτ11 fε = E
γ
τ1
ε

1

f1 ≥ P
γ
τ1
ε

1

(|X| ≤ r) · inf
|x|≤r

f1 ≥
(

1− ne−
r2

2n
ε
τ1

)
· inf

[0,r]
h. (3.32)

the following Rn > 0 is the number such that exp
(
−R2

n
2n

)
= 1

2 .

se 1: n ≥ 3. We choose h to be a compactly supported smooth function such that
1 on [0, Rn], decreases to 0 on [Rn, 2Rn] and is 0 outside [0, 2Rn]. Then

τ2 Eγτ21 |∇fε|
2

(3.30)

. (ε/τ2)(n−2)/2, Eγτ21 fε
(3.31)

. (ε/τ2)n/2, Eγτ11 fε
(3.32)

≥ 1

2
,

ere the implicit constants only depend on the dimension n and the function h.
ce h′ = 0 on [0, Rn]

1 Eντ11 |∇fε|
2

(3.29)

≤ τ1

ε
‖h′‖2L∞P

ν
τ1
ε

1

(|X| ≥ Rn) ≤ τ1

ε
‖h′‖2L∞CHe

−cH ε
τ1 .m (τ1/ε)

m,

every positive integer m, where the constants cH , CH > 0 only depend on the
miltonian H. The second inequality is a consequence of Assumption 2.2 (see
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S14, Lemma 3.13]). Now, for any 0 < η < 1
2 , set ε = τ1−η

1 τη2 , and choose m large
ough so that ηm ≥ (1− η)(n− 2)/2, we obtain

Eµ̄(f)
(3.28)

.η (τ1/τ2)(1−η)(n−2)/2, Varµ̄(f)
(3.27)

&η (τ2/τ1)(1−η)(n−2)/2Eµ̄(f),

2, τ1/τ2 are both small enough.

se 2: n = 2. Let h be the function given by

h(r) =





1 for 0 ≤ r ≤ r0,

2(1− rα) for r0 ≤ r ≤ 1,

0 for r ≥ 1,

parameters 0 < α < 1, 0 < r0 < 1 satisfying rα0 = 1
2 , to be specified later. Then

s absolutely continuous, h′ = 0 on [0, r0], and by direct computation

‖f1‖L1 ≤ πα, ‖∇f1‖2L∞ = α2r−2
0 , ‖∇f1‖2L2 = 3πα.

choose ε = τ2 and r2
0
τ2
τ1

= R2
2 (which is possible once τ1/τ2 is small enough).

en:

Eγτ21 fε
(3.31)

≤ 1

2π

ε

τ2
‖f1‖L1 ≤ α

2
, Eγτ11 fε

(3.32)

≥ 1

2
,

τ1 Eντ11 |∇fε|
2

(3.29)

≤ τ1

ε
‖∇f1‖2L∞ ≤

α2

R2
2

, τ2 Eγτ21 |∇fε|
2

(3.30)

≤ 1

2π
‖∇f1‖2L2 =

3α

2
.

ce rα0 = 1
2 , 1

α = 1
2 ln 2 ln

(
τ2
τ1R2

2

)
. Thus

Eµ̄(f)
(3.28)

. α2

R2
2

+
3α

2
, Varµ̄(f)

(3.27)

& 1

α
Eµ̄(f) & ln

(
τ2

τ1

)
Eµ̄(f),

2, τ1/τ2 are both small enough.

. Proof of Proposition 2.13 and Proposition 2.14. It suffices to consider
t functions of the form f(x, y) = g(x)g(y). This is equivalent to replacing µ by
ντ1 ⊗ ντ2 . In this case, Varµ(f),Entµ(f2), Eµ(f), Iµ(f) reduce to

Varπ(f) = Eντ1 g2 Eντ2 g2 − (Eντ1 g)2(Eντ2 g)2,

Entπ(f) = Eντ1 g2 Entντ2 g
2 + Eντ2 g2 Entντ1 g

2,

1

2
Iπ(f2) = Eπ(f) = τ1 Eντ1 (g′)2 Eντ2 g2 + τ2 Eντ1 g2 Eντ2 (g′)2.

represent ντi for i = 1, 2 as the mixture

ντi = Zτi1 ν
τi
1 + Zτi2 ν

τi
2 where ντi1 := ντi |Ω1 , ν

τi
2 := ντi |Ω2 ,

ere Ω1 := (−∞, s),Ω2 := (s,∞). Denote

Zτi1 := ντi(Ω1) ≈τ2 1, Zτi2 = ντi(Ω2) ≈τ2
√
H ′′(m1)√
H ′′(m2)

e−H(m2)/τi .
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oof of Proposition 2.13 (Optimality of PI in 1d): Imposing Eντ1 g = 0, we get

Eπ(f)

Varπ(f)
= τ1

Eντ1 (g′)2

Eντ1 g2
+ τ2

Eντ2 (g′)2

Eντ2 g2
.

make the following ansatz for g:

g(x) =





g(m1) for x ≤ s− δ,
g(m1) + g(m2)−g(m1)√

2πστ2
· κ
∫ x
s−δ e

−(y−s)2/(2στ2)dy for s− δ < x < s+ δ,

g(m2) for x > s+ δ,

ere σ is a positive constant to be specified later, δ =
√

2r0τ2| ln τ2| for some
sitive constant r0 to be chosen later, and κ is chosen so that g is continuous
s + δ. (This is the same kind of ansatz used in [MS14, Section 2.4].) Then

1 +O(τ
−r0/σ
2 ) ≈ 1 once r0 is large enough. Fix such a choice of r0. For τ2 small

ough, δ is small enough so that

Eντi g ≈τ2 g(m1)Zτi1 + g(m2)Zτi2 .

is motivates the choice

g(m1) ≈τ2 −1, g(m2) ≈τ2 1/Zτ12

h that Eντ1 g = 0. Then

Eντ2 g2 ≈τ2 Zτ21 g(m1)2 + Zτ22 g(m2)2 ≈τ2 g(m2)2Zτ22 ,

Eντ1 g2 ≈τ2 Zτ11 g(m1)2 + Zτ12 g(m2)2 ≈τ2 g(m2)2Zτ12 .

ally, we compute the Dirichlet forms. By Taylor expansion of H around s,

Eντ2 (g′)2 ≈τ2
g(m2)2

2πστ2

1

Zτ2

∫

Bδ(s)
e−(x−s)2/(στ2)−H(x)/τ2dx

≈τ2
g(m2)2

2πστ2

√
H ′′(m1)√

2πτ2
e−H(s)/τ2

∫

Bδ(s)
e−(x−s)2/(2τ2)(2/σ+H′′(s))dx

≈τ2 g(m2)2

√
H ′′(m1)

2πτ2
e−H(s)/τ2

√
|H ′′(s)|,

ere we set σ = 1/|H ′′(s)| = −1/H ′′(s). This implies

τ2
Eντ2 (g′)2

Eντ2 g2
≈τ2

√
H ′′(m2)|H ′′(s)|

2π
e(H(m2)−H(s))/τ2 ≈τ2 ρ.

remains to show the other term is asymptotically negligible:

Eντ1 (g′)2 /τ2
g(m2)2

2πστ2

1

Zτ1

∫

Bδ(s)
e−(x−s)2/(στ2)dx · sup

x∈Bδ(s)
e−H(x)/τ1

/τ2
g(m2)2

2π

√
H ′′(m1)|H ′′(s)|√

2τ1τ2
e−(1−η)H(s)/τ1 ,
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ere η = O(δ2). Since τ2 > Kτ1 for a constant K > 1, choosing δ sufficiently small,

s implies τ1
Eντ1 (g′)2

Eντ1 g2
is asymptotically negligible compared to ρ.

oof of Proposition 2.14 (Optimality of LSI in 1d up to constant factor): In
same set-up as above, imposing Eντ1 g2 = 1, we get

1

2

Iπ(f2)

Entπ(f)
≤ τ1

Eντ1 (g′)2

Entντ1 g2
+ τ2

Eντ2 (g′)2

Entντ1 g2 Eντ2 g2
.

use the same form of ansatz as before with

g(m1)2 ≈τ2
Zτ12

Zτ11

≈τ2
√
H ′′(m1)√
H ′′(m2)

e−H(m2)/τ1 , g(m2)2 =
1

g(m1)2

h that Eντ1 g2 = 1. Then

ντ2 g
2 ≈τ2 Zτ21 g(m1)2 + Zτ22 g(m2)2 ≈τ2 Zτ22 g(m2)2,

tντ1 g
2 ≈τ2 Zτ11 g(m1)2 ln g(m1)2 + Zτ12 g(m2)2 ln g(m2)2 ≈τ2 ln g(m2)2 ≈τ2

H(m2)

τ1
,

d the same computation as before shows

Eντ1 (g′)2 /τ2 g(m2)2

√
H ′′(m1)|H ′′(s)|

2π
√

2τ1τ2
e−(1−η)H(s)/τ1 ,

Eντ2 (g′)2 ≈τ2 g(m2)2

√
H ′′(m1)|H ′′(s)|

2πτ2
e−H(s)/τ2 ,

ere η = O(δ2). This implies

τ2
Eντ2 (g′)2

Entντ1 g2 Eντ2 g2
≈τ2 τ1

√
H ′′(m2)|H ′′(s)|

2πH(m2)
e(H(m2)−H(s))/τ2 . α,

d that τ1
Eντ1 (g′)2

Entντ1 g
2 is asymptotically negligible compared to α.
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