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ERGODICITY OF THE INFINITE SWAPPING ALGORITHM AT
LOW TEMPERATURE

GEORG MENZ, ANDRE SCHLICHTING, WENPIN TANG, AND TIANQI WU

ABSTRACT. Sampling Gibbs measures at low temperatures is an important but
computationally challenging task. Numerical evidence suggests that the infinite-
swapping algorithm (isa) is a promising method. The isa can be-seen as an im-
provement of the parallel tempering replica method. We rigorously analyze the
ergodic properties of the isa in the low temperature regime, deducing asymptotic
estimates for the spectral gap (or Poincaré constant), optimal in dimension one,
and an estimate for the log-Sobolev constant. Our main results indicate that the
effective energy barrier can be reduced drastically using the isa compared to the
classical over-damped Langevin dynamics. As a corollary, we derive a concentra-
tion inequality showing that sampling is also improved by/an exponential factor.
Finally, we study simulated annealing for the isa and prove that the isa again
outperforms the over-damped Langevin dynamics.

Key words: Sampling, low-temperature, simulated annealing, infinite swapping, par-
allel tempering, replica exchange, Poincaré inequality, spectral gap, log-Sobolev in-
equality, Eyring-Kramers formula.

AMS 2010 Mathematics Subject Classification: 60J60, 39B62.

1. INTRODUCTION

Sampling from Gibbs measures at low temperatures is important in science and engi-
neering. It has a variety of applications including molecular dynamics [And80, CS11]
and Bayesian inference [RC04; GEST14]. Usually, sampling at low temperatures is
slow due to the fact that at.low temperatures energy barriers in the underlying en-
ergy landscape are large. This traps the stochastic sampling process and slows down
sampling.

One popular way to sample Gibbs measures is to run the over-damped Langevin
equation or its various discretization schemes for approximation, see e.g. [RT96,
Dall7, DM17, DCWY19]. A lot of efforts have been made to accelerate sampling at
low temperatures and there are many competing methods. One of them is the replica
exchange method which is also known as parallel tempering. In the simplest version
of a replica exchange method, one considers two particles governed by independent
copies of the underlying dynamics, for instance, the over-damped Langevin equation.

Date: June 14, 2022.
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One particle evolves at the desired low temperature 71 > 0, and the other particle
evolves at a higher temperature 7 > 0 with 71 <« 70 < 1. At some random times,
the positions of both particles are swapped. This approach has the advantage that
the particle at the lower temperature correctly samples the low-temperature Gibbs
measure whereas the particle at the higher temperature can explore the full state
space, and discover the relevant states of the system efficiently.

Replica exchange methods or parallel tempering have been successfully applied in
many different scenarios, and they seem to accelerate sampling inJdow-temperature
situations quite well. As far as we are concerned, almost all evaluations of the
performance of those methods are empirical. In an attempt to study the sampling
performance of parallel tempering, it was discovered in [DLPD12] that the large
deviation rate function for time-averaged empirical measures of parallel tempering
is a monotone function of the swapping rate. It implies that sampling only improves
at a faster swapping rate.

This led to the question of a suitable limiting process-as the swapping rate goes
to infinity. Since the number of jumps of the particles/would grow to infinity in
any bounded time-interval, the authors in [DLPD12] suggest the infinite swapping
algorithm /process (isa), a procedure that can be interpreted as the limit of paral-
lel tempering, where instead of the particle positions, the particle temperatures are
swapped at an infinitely fast rate (see Section 2.1 for a review).

To be more precise, let H : R™ — R be the underlying energy landscape and the goal

is to sample the Gibbs measure with density v™ () := zln exp (—%ﬁ”) where Z™

is the normalizing constant. Formally, given two different temperatures 0 < 7 < 79,
the isa is defined as the evolution of two particles X; = (X1(¢), t > 0) and Xy =
(X2(t), t > 0) governed by the stochastic differential equations (SDEs):
{ dX, = —VH(Xl) dt + \/2T1p(X1,X2) + 27’2p(X2, Xl) dBl,

dXo = —VH(XQ) dt + \/2T2,0(X1,X2) + 2T1p(X2, Xl) dBs,

where (Bj, By) are independent, Brownian motions in R”, and

(1.1)

m(z1, 22)
(21, x2) + 7 (22, 27)

p(xy,x9) i= and  7(x1,22) = v (21)v" (x2). (1.2)
Since 11 # T2, we have that 7(#q,x9) # 7(x2, x1), and thus p(x1, z2) # p(xe2,z1). The
functions p(z1,z2), p(r2,&1) are relative weights assigned to the two configurations
(x1,22), (z2,21) basedson 7. At each moment, this essentially assigns the higher
temperature o to the particle whose potential energy H is higher at that moment
(see also [DDN18, Section 3.2]).

The crucial feature of the dynamics (1.1) is that the empirical measure

1

t
ng 1= t/o p(X1, X2)d(x,, x0) + P( X2, X1)d(x,,x,)d3

converges weakly to the product measure 7 as ¢ — oo by the ergodic theorem.
In particular, by restricting to the first coordinate, the measure % fg p(X1, X2)0x, +
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p(X2, X1)dx,ds approximates the Gibbs measure v™ for ¢ large enough. In [DLPD12],
a large deviation principle was established for the measure 7;. However, it is not clear
how the rate function depends on the temperatures (71, 72), so it is less obvious why
the higher temperature 7 may be helpful. Further numerical and heuristic/studies in
[DDN18] indicate that there is an exponential gain when using the isa for sampling
in comparison with the classical over-damped Langevin dynamics. Let us.also point
out a connection to integrated tempering enhanced sampling method [Gao08), which
has a reformulation as an infinite switching limit of simulated tempering method
over a mixed potential [LVE13, LVE17, YLLG18, MLLVE19]. Recently the isa was
applied to training restricted Boltzmann machines [HNR20], and was shown to be
competitive empirically. But no rigorous result has been established so far on how
well the isa accelerates sampling at low temperatures.

In this article we take the analysis of [DLPD12, DDN18] to ‘the next level through a
functional inequality approach. We carry out the first rigorous study of the ergodic
properties of the isa at low temperatures by quantifying its{convergence in terms of
the temperatures (71, 72). Under standard nondegeneracy assumptions, we deduce
the low-temperature asymptotics for the Poincaré and the log-Sobolev constant of
the isa, see Theorem 2.8 and Theorem 2.9 below. (In the context of metastability,
these formulas are also known as Eyring-Kramers formulas (see [Berl3] for back-
ground). Comparing our results to the Eyring-Kramers formulas for the over-damped
Langevin equation (e.g. see [BEGK04, BGK05, MS14]), we have an exponential gain:
the effective energy barrier of the underlying energy landscape H only sees the higher
temperature 5. We also give indications that our results are optimal.

To the best of our knowledge, this is‘the first time an Eyring-Kramers formula was
derived for inhomogeneous diffusions, for which the stationary and ergodic distribu-
tion is generally unknown. By construction, however, the isa (1.1) has an explicit
stationary distribution p given by u(z1, @)= 3 (7(21,z2) + 7(z2, 71)), where (-, )
is defined by (1.2). This makes a rigorous analysis of (1.1) feasible. For the proof
of our main results, Theorem 2.8 and Theorem 2.9, we follow the transportation
approach of [MS14]. The idea is.to identify the right “paths” of transport which give
the leading order term in the Poincaré and the log-Sobolev constant of the isa. In
the case of the Langevin diffusion process those paths can be obtained from moun-
tain pass paths between local minima of the energy H. Since the isa is a process
on R" x R™ swapping the.two particle temperatures, it requires analyzing transport
in a planar network obtained from the product structure of two energies, and so is
more involved.

There are several other methods which could be used to deduce the Eyring-Kramers
formula for the Poincaré constant. For instance, one could consider adapting the
potential theoretic approach (see [BEGK04, BGKO05]), or the semiclassical analysis
(see [HKNO4, HNO5, HN06]), or the approach using quasi-stationarity (see [BR16,
GLPN16, LLPN19, GLPN19]). We adopt the approach of [MS14], which is robust
enough to deduce the Eyring-Kramers formula for the log-Sobolev constant in the
setting of an inhomogeneous diffusion coefficient. The rate of convergence in relative
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entropy obtained from the log-Sobolev constant is important for our applications to
sampling and simulated annealing.

In the first application, we apply the main results to study the sampling properties
of the isa and compare it to the over-damped Langevin dynamics. It is well known
that the Poincaré and the log-Sobolev constants characterize the rate of convergence
to equilibrium of the underlying process. It is also known that Poincaré and log-
Sobolev inequalities yield non-asymptotic concentration/deviation inequalities (see
[CGO08, WYO08] and references therein). Hence, our main results yield a quantitative
control in terms of the temperatures (71, 72) on the rate of convergence of the time
average to the ensemble average, quantifying the ergodic theorem. Let’'us note in
comparison that the precise dependence on (71, 72) is missing in the large deviation
estimates for the isa in [DLPD12]. As a byproduct of our analysis, we find a condition
on (71, 7) under which sampling at low temperatures using the isa‘is exponentially
faster than using the over-damped Langevin dynamics. This provides a guidance on
the choice of the higher temperature 75 for the isa, which is the condition (2.18) in
Corollary 2.10.

In the second application, we study the isa for simulated annealing and compare
it to simulated annealing adapted to the over-damped Langevin dynamics. Sim-
ulated annealing (SA) is an umbrella term denoting a particular set of stochastic
optimization methods. SA can be used to/find the global extremum of a function
H :R™ — R, in particular when H is non‘convex. Those methods have many appli-
cations in different fields, for example in physies, chemistry and operations research
(see e.g. [VLA87, KAJ94, Nar99]). The name and inspiration comes from annealing
in metallurgy, a process that aims to/increase the size of the crystals by heating and
controlled cooling. The SA mimics this procedure mathematically. The stochas-
tic version of SA was independently described by Kirkpatrick, Gelatt and Vecchi
[KGVS83] and Cerny [C85]. See Section 2.7 for details on simulated annealing.

Replica exchange methods or parallel tempering have been successfully applied to
nonconvex optimization (see e.g. [CCD 19, DT21]) and simulated annealing (see
e.g. [KZ09, LPAT09]). Because the isa has better ergodic properties than parallel
tempering, there is big hope that the isa can produce even better results. Addition-
ally, our main results showsthat the isa mixes much faster than the over-damped
Langevin dynamics. Therefore, one expects that the isa also outperforms the over-
damped Langevin dynamics for simulated annealing. In this article, we show that
this is indeed the case.. From a computational point of view, one has to investigate
the trade-off between‘the theoretical improvement and the cost of doubling the di-
mension of the underlying state space. In this regard, one might also investigate
whether the use of a ladder of increasing temperature as described in [MLLVE19] is
even more beneficial for the sampling versus the computational costs of higher and
higher dimensions:. Hence, further studies on the computational costs are needed
to decide whether isa could practically compete with state-of-the-art methods for
simulated annealing; e.g. methods based on Lévy flights [Pav07] or Cuckoo’s search
[YDO09].
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There are a few directions to extend this work. From the Eyring-Kramers'formulas
for the isa, we obtain deviation upper bounds for the convergence to equilibrium at
low temperatures. It is interesting to know whether these upper bounds are optimal,
and to derive matching lower bounds. Also, we plan to extend the study of the
isa to the underdamped Langevin dynamics, for which the Eyring-Kramers formula
of the Poincaré constant was established in [HHS11]|. Furthermore, one could also
extend the isa to Lévy flights and apply it to simulated annealing for even better
performance.

Organization of the paper: In Section 2, we provide background; derive the isa,
present the main results and apply these results to sampling and simulated annealing.
In Section 3, we give proofs of the results stated in Section 2.

2. SETTING, MAIN RESULTS AND APPLICATIONS

In this section, we start by discussing how the isa emerges as the weak limit from
parallel tempering. Then we introduce the precise setting and assumptions. After
this we present the main results of this article, the Eyring-Kramers formula for
the Poincaré constant and an estimate of the logsSobolev constant for the isa. We
also give indications that they are optimal. We close this section by discussing two
applications: sampling Gibbs measures at low temperatures and simulated annealing.

2.1. ISA as the weak limit of parallel tempering. Before describing parallel
tempering and isa, let us first consider the over-damped Langevin equation which
is a single diffusion specified by a sufficiently smooth, non-convex energy landscape
H :R"” — R and a temperature 7 > 0._It is governed by the SDE:

d¢; = —V.H(&)dt + V27dB;, (2.1)

where (B, t > 0) is standard Brewnian motion in R™. The infinitesimal generator
of the diffusion process (2.1) is

Lyi=7A—-VH.V.

Under some growth assumptions on H (e.g. those of [MS14, Section 1.2]), the over-
damped Langevin equation (2.1) has a unique invariant measure with density

V) = - exp (Jff))

where Z7 is the normalizing constant. This probability measure is known as the
Gibbs measure with energy landscape H and temperature 7. The Dirichlet form
associated with the Gibbs measure v” is defined for any suitable test function f :
R? - R by

&/(0)= [ (~Loppa = [ vsPa
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For general non-convex energy landscape H, the over-damped Langevin/equation
shows metastable behavior at low temperatures 7 in the sense of a separation of
time scales:

e In the short run, the process converges fast to a local minimum of the energy
landscape H;

e In the long run, the process stays near a local minimum for exponentially
long time before it jumps to another local minimum.

In the previous work of [MS14], this behavior is captured by explicit; low-temperature
asymptotic formulas (known as Eyring-Kramers formulas) for the two constants
p,a > 0 appearing in the following two functional inequalities for the invariant
measure v7: the Poincaré inequality (PI(p))

T 2 T 1
Var (1) = [ (= [ i) am < Seh) (2:2)
and the log-Sobolev inequality (LSI(«))

2

2
Entm(fQ) = /f2 In ffJ;ddeVT < a&,v(f) (2.3)

holding for all sufficiently smooth test functions f : R® — R.

It is understood that for larger constants/p, ax>/0, the diffusion process tends faster
to equilibrium. More precisely, the constants p.and « are the exponential rate
of relaxation to equilibrium measured in variance or relative entropy, respectively.
Thus, it is useful to obtain lower bounds on the constants p,«, or equivalently
upper bounds on their inverse p~!, o~ .  Also note that the Poincaré and the log-
Sobolev inequalities (2.2)—(2.3) are defined slightly different from those in [MS14],
where &,-(f) is replaced with [ |V f|>dv™ on the right side. Thus, the constants p, a

defined by (2.2)—(2.3) differ from those in [MS14] up to a factor of 7.

In the present work, we extend these results to an inhomogeneous diffusion, the
“infinite swapping process”. It arises from parallel tempering by swapping particle
temperatures, which we now/introduce. Given two temperatures 0 < 7 < 1 < 1,
7o > K11 for some K > 1, define two product measures on R" x R™:

7t (21, 22) 1= v (21)V™(22), m (z1,22) = v (x1)v™ (22).

Identify the symbols o = +, —= with the identity and the swap permutation on {1, 2},
respectively. Then 79is the invariant measure of the following simple product SDE:

dX, = —VH(X1)dt+ /27,1, dB1,
dX2 = —VH(X2) dt + 4 /27’0(2) dB2 5

where B := (Bjy, By) is standard Brownian motion in R™ x R™. Its infinitesimal
generator consists of the two infinitesimal generators of the marginals

L, = L% 4 L[*

To(1) To(2)’
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where the superscripts indicate the variable the generators are acting on.' By, con-
struction L, is reversible with respect to 77 and its associated Dirichlet form is

Erlf)i= [ (~La§)fdn® =Bty Vs S+ o VP

The idea of parallel tempering is to swap between the positions of X7 and Xg.” At
some random times, X7 is moved to the position of X and vice-versa, so the resulting
process is a Markov process with jumps. To guarantee that the invariant measure
remains the same, the jump intensity is of the Metropolis form ag(x1,23), where
the constant ‘a’ is the swapping rate of parallel tempering, and g/=min (1,7~ /7).
The resulting process is denoted by (X{(t), X3(t)).

Intuitively, larger values of ‘a’ lead to faster convergence to equilibrium. However,
the process (X{(t), X4(t)) is not tight so it does not converge weakly as a — co. The
key idea of [DLPDI12] is to swap the temperatures of (X1, Xg) instead of swapping
the positions. More precisely, they consider the following process

dX| = —VH(Xy)dt + /27111 ze—g + 2150 7a=1 dBy

dXo = —VH(XQ) dt + 2711 za—g + 271l za— dBs
where Z“ is a jump process which switches fromsstate 0 to state 1 with intensity
ag(X7,X5), and from state 1 to state 0 with-intensity.a g(X5, X). It was shown

in [DLPD12] that as a — oo, the process (X (t), X (t)) converges weakly to the isa,
whose dynamics is governed by the SDE (1.1). We rewrite it as

Xm :—VH(Xl) dt+\/2a1(X1,X2) dBl, (2 4)

dXQ = *VH(XQ) dtJr \/2(12(X1,X2> dBQ 5 '
where the state-dependent diffusion coefficients aj, az : R™ x R™ — [r, 19| are given
by

aj = 7’1p+ + TP and ag:= 7’2p+ +T11p
T o
ith = d T o= —_—
A P ot o P T+
The infinitesimal generator of the isa(2.4) is
L:=ptLy+p Lo ==VH(z1) Vg — VH(22)  Vay, + a1, + a2y,

which is no longer the sum of two one-particle generators due to the full-space de-
pendent diffusion coefficients aiyas. A short calculations shows that L is self-adjoint
with respect to the invariant symmetric measure

pi=3(rt+77). (2.5)

Let us note that the measure p in (2.5) is generally not of product form, which con-
tributes to the effectiveness of the sampling, at the expense of certain complications
in our analysis. The Dirichlet form associated with u is given by

&) = [(-OMd = 580 (D) + 36 (1) = [(@IVar P + aalVon P
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We also define the Fisher information

Tu(f2) = 28u(). (2:6)

2.2. Growth and nondegeneracy assumptions. We adopt the same assump-
tions on the energy landscape H as in [MS14, Section 1.2]. These assumptions are
standard in the study of metastability (see e.g. [BEGK04, BGKO05]).

Definition 2.1 (Morse function). A smooth function H : R™ — Ris a Morse
function if the Hessian V?H of H is nondegenerate on the set of critical points.
That implies, for some 1 < Cyg < oo holds

Ve eS:={z€eR":VH(z) =0} : |5| <|v2H JEI < O lél. (2.7)

We also make the following growth assumptions on the potential H to ensure the
existence of PI and LSI.

Assumption 2.2 (PI). H € C3(R",R) is a nonnegative Morse function, such that
for some constants Cir > 0 and K > 0 holds

1|n|n inf [VH(z)| = Ch, (2.8)

liminf (|VH (z)]* —AH(@)) > —Kp. (2.9)

|x]—o0
Assumption 2.3 (LSI). H € C3(R",R) is a nonnegative Morse function, such that
for some constants Cy > 0 and Ky > 0 holds
H(Z)*=AH
lim inf [VH()l 3 @)
jal =00 ||

inf V2H (z) > — Ky 1d.

> Cy,

Remark 2.4. Assumption 2.2 has the following consequences for the energy land-
scape H:

e The condition (2.8) and H(x) > 0 ensures that e~ is integrable and can be
normalized to a probability measure on R™ (see [MS14, Lemma 3.14]). Hence,
the probability measures ¥7 (and therefore 7,7~ and p) are well-defined.

e The Morse condition (2.7) together with the growth condition (2.8) ensures
that the set S of eritical points is discrete and finite. In particular, it follows
that the set of local minima is a finite set M = {mq,...,my}.

e Together with the rest of Assumption 2.2, the Lyapunov-type condition (2.9)
leads‘to a local PI for the Gibbs measures v” (see [MS14, Theorem 2.9]).

Similarly, Assumption 2.3 yields the following consequences for the energy land-
scape H.

o It leads to a local LSI for the Gibbs measures 17 (see [MS14, Theorem 2.10]).
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e Assumption 2.3 implies Assumption 2.2, which is natural in light of the fact
that LSI is stronger than PI.

To keep the presentation clear, we also make some nondegeneracy assumptions on
the energy landscape H. First, to simplify some formulas, we assume without loss
of generality throughout that

min H(z) = 0.
z€R™

The saddle height H (mi, mj) between two local minima m;, m; is defined by

ﬁ(mi,mj) = inf { max H(v(s)) : v € C([0,1], R"), v(0) =my (1) = mj} .

s€[0,1]
Assumption 2.5. Let my,--- ,mpy be the positions of the local minima of H.
(i) my is the unique global minimum of H, and my,...,my are ordered in the
sense that there exists § > 0 such that
H(mN) ZH(mel) > zH(mg) 25>0:H(m1) (210)

(it) For each i,j € [N] := {1,...,N}, the/saddle height between m;,m; is
attained at a unique critical point sij of index one. That is, H(s;;) =
f[(mi,mj), and if {\1,..., \,} are the eigenvalues of V2H (s;j), then A\j =:
AT <0 and A\ > 0 fori e {2,../;m}. The point s;; is called the communi-
cating saddle point between the minima m; and m;.

(1it) There exists p € [N] such that.the energy barrier H(sp1) — H(m,,) dominates
all the others. That is, there exists.0 > 0 such that for all i € [N]\ {p},

E, = H(sp1) — H(myp) > H(s;j1) — H(m;) + 0.

The dominating energy barrier E, @s called the critical depth.

A

saddle
£ E,
—_ mo
\ / = local minima
nmq
0 ® >

globalvminima

FiGURE 1. dllustration of the critical depth of a double-well function.
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2.3. The Eyring-Kramers formulas. Our main results are the Eyring-Kramers
formula for the Poincaré constant and a good estimate for log-Sobolev constant
for the isa. Here a crucial new feature occurs in comparison to the over-damped
Langevin dynamic: the lower temperature 7 cannot be arbitrarily smaller than the
higher temperature 79 and there is an effective restriction on their ratio 73/72. We
comment on this observation in Subsection 2.4. For ease of comparison, we begin by
recalling the Eyring-Kramers formulas for the Poincaré and log-Sobolev constants
for the Gibbs measure v7, which is the invariant measure of a single diffusion at
temperature 7 governed by the over-damped Langevin equation (2.1). To simplify the
expression for these low-temperature asymptotic formulas, we introduce the following
notation that will be used throughout the rest of this article:

We write A S, B if A< B (1 + O(V/T7| 1n7|3/2)> as 7 = 0,
and A 2, Bif BS, A. If both A $; B and B Sy A, we write A ~; B.

Theorem 2.6 (Corollary 2.15 and 2.18 in [MS14]). Assume 0 < 7 < 1. Suppose that
the energy landscape H satisfies Assumptions 2.2 and 2.5. Then the Gibbs measure
VT satisfies the Poincaré inequality (2.2) with the constant p satisfying

1_ 1 271y /| det V2H (sp1)] <H(sp1) — H(m,)
p T

= exp
PT /I det V2H (my) A (sp1)]

Here A~ (sp1) is the negative eigenvalue of the Hessian V?H (sp1) at the communi-
cating saddle point sp1.

QA

). (2.11)

Theorem 2.7 (Corollary 2.17 and 2.18in [MS14]). Assume 0 < 7 < 1. Suppose that
the energy landscape H satisfies Assumptions 2.3 and 2.5. Then the Gibbs measure
V" satisfies the log-Sobolev inequality (2.3) with the constant « satisfying

2 i 3 :: (H(mp) +ln\/|detV2H(m1)> 1 (2.12)

QA

a ™ a7 i |det V2H (my)| | p~’

where p” is defined in (2.11).

Now we are ready to state our main results.

Theorem 2.8 (Eyring-Kramers formula for the Poincaré constant for the isa). As-
sume that 79 > K11 for some constant K > 1. Let u be the invariant measure of the
isa defined by (2.5). Suppose that the energy landscape H satisfies Assumptions 2.2
and 2.5. Then the measure pu satisfies the Poincaré inequality

1
Var, (/) < ~€(0) (2.13)
with the constant p satisfying
1 1 1 Ty
o< = _Z
S n o= o +C<I>n(ﬁ). (2.14)
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Here p™ is given by the formula (2.11) with 7 = 19, C is a numerical constant
independent of 11 and T2, and ®,, : [1,00) — [0,00) is the function
1 ifn=1,
O, (x)=<¢1+Inzx if n=2, (2.15)
1+2m2/2 jfpn>3.

Theorem 2.9 (Estimate for the log-Sobolev constant of the isa). Assume that » >
KT for some constant K > 1. Let u be the invariant measure of the isa defined by
(2.5). Suppose that the energy landscape H satisfies Assumptions 2.3 and 2.5. Then
the measure p satisfies the log-Sobolev inequality

Buty()i= [ finfdu— [ fduin [ fdn< ZT,09) (2.16)
so that Ent,,(f?) < 2&,(f) with
2 2 H(mp) H(mp)\ 1 C Ty
agmam._m?( Ty )ﬁJan)”(n)' (2.17)

Here N is the number of local minima of H, p™ is giwven by the formula (2.11) with
T =19, C' is a numerical constant independent of 71 and 7o, and ®,, is the function
defined in (2.15).

A simple calculation shows that the termsinvelving ®,, are asymptotically negligible
compared to the rest of these formulas, provided 7y.is not too small compared to 7o:

Corollary 2.10. Impose the condition that as 9 — 0,

1 exp O(T—l2 ) ifn >3,

Ty - exp |exp (o (%))) if n=2. (2.18)

Then, with the assumptions of Theorem 2.8, the measure u satisfies the Poincaré
inequality (2.13) with the constant p satisfying

1 1
— S —, (2.19)
p " pm
and with the assumptions jof Theorem 2.9, the measure u satisfies the log-Sobolev
inequality (2.16) with thesconstant o satisfying

2 H H 1
o ™ T1 T P2

Here p™ is given by the formula (2.11) with T = 7.

Remark 2.11. Comparing the Eyring-Kramers formulas (2.19) and (2.20) for the
isa at temperatures (71, 72) to the corresponding formulas (2.11) and (2.12) derived
for a single diffusion at the lower temperature 7, the main difference is that in

the exponent H(S”*H;HM, the lower temperature 7 is now replaced by the higher
temperature 7o, as long as % grows sub-exponentially as % in the limit 7,7 — 0.
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Since we assume 79 > K7 for some constant K > 1, this means the energy barrier
H(sp1) — H(myp) is effectually reduced by a factor of K > 1.

2.4. Dependence on the ratio between temperatures. The following proposi-
tion shows that the dependence on 75 /71 in the Poincaré and LSI constants of the isa
is necessary and the function ®,, that describes this dependence is nearly.optimal.

Proposition 2.12. If 79,7 /7 are sufficiently small, then there exists a constant
C > 0 and for every n > 0, there exists a constant Cy, > 0, such that

sup V) o Coy(ra/m)I=M0=2/2 - for n =13,
reriuy Enlf) Cln(ra/m1) foram =2.

2.5. Optimality of the Eyring-Kramers formulas in dimension one. For
the over-damped Langevin dynamics, the corresponding Eyring-Kramers formula
for Poincaré inequality has been shown to be optimal. For the isa, the Poincaré
constant of (2.14) is optimal in a generic one-dimensional case. This gives a strong
indication of optimality in higher dimensions.

Proposition 2.13. Assume n = 1, and H has three critical points: two minima
my < mg with H(my) =0 < § < H(mg) anda local mazimum s in between. Then

Var,(f) = 1
sup —EE 2 —
reminy Ea(f) T2 oM

where p*'! is given by the formula (2.14) and H' (1) := {f : [gn [V f[?dp < o0}

For the over-damped Langevin dynamics, the corresponding Eyring-Kramers formula
for LSI inequality has been shown to be eptimal in the one-dimensional case. For
the isa, we do not expect the LSI constant of (2.17) to be optimal. However, up
to the combinatorial pre-factor in the mumber of local minima N, it captures the
asymptotic behavior for a generic one-dimensional case.

Proposition 2.14. Assume n = 1, .and H has three critical points: two minima
m1 < mg with H(my) =0 <9 < H(mg) and a local mazimum s in between. Then

Ent,, (f?) 1
Sups =7 T Rm —isD
reit () Lu(f?) a

where o™ is given by the formula (2.17).

2.6. Application to sampling. It is well known that estimates on the Poincaré and
the log-Sobolev. constant-yield estimates for the rate of convergence to equilibrium
of the underlying process. Applying this to the isa, we obtain the following direct
consequence of Theorem 2.8 and Theorem 2.9. We refer to [Sch12, Theorem 1.7]
for a proof in the setting of the over-damped Langevin dynamics. The argument
directly carries over to the isa.
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Corollary 2.15. Let f; be the relative density of the isa (2.4) at time t with respect
to the invariant measure (.

(i) Under the same assumptions as in Theorem 2.8, it holds that
Var,(fi) < e Var,(fo),

where p satisfies the estimate (2.14).
(i) Under the same assumptions as in Theorem (2.9), it holds that

Ent,,(f1) < e ** Ent,(fo),
where « satisfies the estimate (2.17).
Another well-known consequence is that the Poincaré or log-Sobolev constant allows
to quantify the ergodic theorem i.e. to estimate speed of convergence of the time
average to the ensemble mean. See [CGO8, Proposition 1.2] and [Wu00, Corollary

4] for a proof in the setting of the over-damped Langevin,dynamics. The same
argument carries over to the isa.

Corollary 2.16. Let v denote the initial law of the isa (2.4).

(1) Under the same assumptions as in/ Theorem 2.8, it holds that for all func-
tions f: R™ x R™ — R such that sup|f| =1, all0 < R <1 and all t > 0,

()
L2 P 8Var,(f))’

(2) Under the same assumptions‘as in_Theorem 2.9, it holds that for all func-
tions f € L*(u) and all R,t >0,

(2 [ rsiormionse g2 B2

where p satisfies the estimate (2.14).

puc /Otf(Xl(s),Xg(s))ds—/fd/l > R) < szi:

exp(—taH*(R)),
L2

where « satisfies the estimate (2.17) and

H*(R) := igg{AR—ln/exp(A(f—/fd,u)) d,u}.

Similar bounds hold for the negative deviation.

One consequence of Corollary 2.16 is that the isa has an exponential gain in com-
parison with/the over-damped Langevin dynamics for sampling (see also Remark
2.11). The deviation bounds show an explicit dependence of the convergence on the
temperatures, which is missing in the large deviation analysis in [DLPD12]. This
justifies why the choice of a second higher temperature in the isa is useful, and shows
how it increases the speed of convergence in the ergodic theorem.
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2.7. Application to simulated annealing. Here we apply the log-Sobolev in-
equality in Theorem 2.9 to the isa for simulated annealing.

The goal of simulated annealing is to find the global minimum of a function. H :
R™ — R that is potentially non-convex. Let us explain the main idea of the'stochastic
version of simulated annealing. One considers a stochastic process on H subject to
thermal noise. When simulating this process, one lowers the temperature slowly over
time. Hereby, the stochastic process gets trapped. Now, the goal is to show that the
trapped process converges to the global minimum of H with high probability. This
is typically true if the temperature is lowered slowly enough. Hence, another goal
is to find the best stochastic process with the fastest possible cooling schedule that
still allows to approximate the global minimum.

Simulated annealing adapted to the over-damped Langevin dynamics was studied
in [GH86, Mic92], see also [TZ21] for a review and results in discrete time. As we
will see below, the cooling schedule has to be logarithmically/slow. This implies long
waiting time in order to reach the global minimum. ‘There are many approaches
to improve this behavior. Luckily, one has the freedom to 'choose the underlying
stochastic process used for simulated annealing. One of the most efficient approach
is called Cuckoo search and is based on Lévy flights (see [Pav07, YDO09]). Those
methods are able to find the global minimum in cértain situations with a polynomial
cooling schedule. An alternative is to use replica exchange or parallel tempering. As
we know from [DLPDI12], mixing only improves when particles are swapped faster,
making the isa a natural candidate for accelerating simulated annealing.

In [Mic92], it was shown that for simulated annealing adapted to the over-damped
Langevin dynamics, the fastest successful cooling schedule is characterized by the
Eyring-Kramers formula for the log-Sobolev constant. However, no estimates on
the associated log-Sobolev constant at low temperatures were known at that time.
Hence, more sophisticated arguments. were applied by [HKS89] to replace the log-
Sobolev constant by the Poincaré constant showing that the fastest successful cooling
schedule is characterized by the eritical depth E, = H(s1,) — H(m,). Only in 2014,
the Eyring-Kramers formula for the log-Sobolev constant was derived in [MS14]
which leads to a more direct/proof of the same result. This formula was then used
by [Monl8] to study simulated annealing adapted to the underdamped Langevin
dynamics, showing that it is at least as good as simulated annealing adapted to the
over-damped Langevin dynamics. The main result of [HKS89, Mic92] is stated as
follows.

Theorem 2.17 ([HKS89, Mic92]). Let (X, t > 0) be the process of simulated an-
nealing adapted tothe over-damped Langevin dynamics:

dXt = —VH(Xt) dt + 27'(t) dBt (221)

Let E, := H(sp1) —4 (my,) denote the critical depth of the energy landscape H. Then
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(i) If E <liminf; o 7(¢) Int < limsup,_,., 7(t)Int < co with E > E,; then for
all 6 > 0,
P(H(X;) <H(m)+6) -1 ast— oc.
(i) If limsup, ,. 7(t)Int < E with 0 < E < E,, then for § small enough,
limsup P(H(X;) < H(mi) +6) < 1.

t—o0

Applying the isa to simulated annealing yields:

{ dX1=—VH(X1)dt +/271(t) p(X1, X2) + 2 72(t) p(X2, X1)dB,
dXo = —VH(X2)dt +/272(t) p(X1, X2) + 271 (t) p(X23 X1).dDBs.

We require that for some fixed constant K > 1

Tg(t)ZKTl(t) and Tl(t)\l,o.

(2.22)

In Theorem 2.8 and Theorem 2.9, we showed that the infinite swapping dynam-
ics mixes faster than the over-damped Langevin dynamies. Choosing 7o = K71, the
effective critical depth of the potential H is % compared to F, for simulated anneal-
ing adapted to the over-damped Langevin dynamies given by (2.21). This indicates
that the infinite swapping dynamics could eutperform the over-damped Langevin
dynamics for simulated annealing. The main result of this section shows that this is
true.

Theorem 2.18. Assume that the energy landscape H satisfies Assumptions 2.3 and
2.5. Let Ey := H(sp1) — H(my) be the critical depth of the energy landscape H. For
E>E K>1, et

E KFE
—F d t) = ———. 2.23
me g, My = a5y (2:23)
Let X1, Xo be given by (2.22) with initial distribution m. Let my(x1,z2) be the
probability density of (X1(t), Xa(t)). Assume the following moment condition for the
initial distribution m: for every p > 1, there exists a constant C, such that

Tl(t) =

/(H(ml) + H(z2))"dm(z1,22) < Cyp. (2.24)
Then for all 6 >0, >0
1 mm(%éfzi})*s
Pluin{HCH @) () > 0) 5 (1 ) @)

3. PROOFS

3.1. Proof of Theorem 2.8 and Theorem 2.9. As in [MS14], we decompose
the state space R™nto an “admissible partition” of metastable regions {€;}¥ | as
defined below.
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Definition 3.1 (Admissible partition). The family {;}Y | with Q; open'and, con-
nected is called an admissible partition for H if

(i) for each i € [N], the local minimum m; € €,
(i) {Q;}., forms a partition of R™ up to sets of Lebesque measure zéro,

(iii) The partition sum of Q; is approximately Gaussian. That isy,there erists
70 > 0 such that for all T < 19, for i € [N],

VT(Qi)ZT:LieXp< (w)) %exp<—HTi>). (3.1)

Remark 3.2. A canonical way to obtain an admissible partition for H is to associate
to each local minimum m; for ¢ € [N] its basin of attraction with respect to the
gradient flow of H. That is,
. dy
O, = {y c RY . lim Yy = My, el = *VH(yt); Yo :y}.
t—00 dt

However, as in [MS14], to facilitate the proof, we chooseé instead the basins of at-
traction for the gradient flow of a suitable perturbation of H (see Section 3.3).

Suppose {Q;})¥ is an admissible partition inthe sense of Definition 3.1. Define local

measures on R™

vi (z) = %f(x)!m, (3.2)

P () det V2H (my)
=V i) N .
‘ det V2H (m;)

This induces a decomposition of the measure p on R™ x R” as

1
H=73 (W T ):Z ij ZJ+Z ij Mg (33)
where for 1 <1i,j <n, Zj]'. = ZZIZ;?,ZZ.; = Z?Z}l and

1
T (e, w2) = = (@, 22) |0, x0; = v (@1)v] (22),

ij

- r
T (@1, 2 i= —=m (w1, 22)o,xq; = v (@1)v] (22).
Ly

The following results are read from [MS14, Lemma 2.4 and Corollary 2.8].
Lemma 3.3 (Decomposition of variance). For the mixture representation (3.3) of
the Gibbs medasure wy.and a smooth function f : R™ x R" — R, it holds

Vary(f) = EZZ*-Var + ZZ Var_- (3.4)

ZJ

Z > 2577 (Bae (f) — B, (f))? (3.5)

0'6{ +}
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ZZ+Zkl]E+ f—E_ ()~ (3.6)

kl

where the second line is summing over unordered pairs {(i,7), (k,1)} and the last line
is summing over ordered pairs ((i,7), (k,1)).

Lemma 3.4 (Decomposition of entropy). For the mizture representation (3.3) of
the Gibbs measure p, and a smooth function f: R"™ x R” — R, it holds

Ent,(f?%) < %Zz; Entﬁj(f2) + % >z Entﬁi_j(fz) (3.7)

1 Z Z
22| 2 A i g gl (D 6

(%:3) \(kD#(.49) GRS (kD) w?

- +
XY A e A v (1) (39)

» >
(m iz MZi: Zy) - G5 M2 24)
A i
Z ZA (2¢.,27) (Erg (f) — Bag/(f)) (3.10)
ae{ 4} iJ
Z5 7y
2
2 Z MNZ5, Zy ) (E Z(f) B D5 (3.11)

where the second to last line is summing over unordered pairs {(i,j), (k,l)} and
the last line is summing over ordered pairs ((i,));(k,1)). Here the function A :
[0,00) x [0,00) = [0,infty) is the logarithmic mean defined by

! _a=b .
A(CL, b) = / a(l_s)bs ds = {lnalnb’ a 7é b,
0

a, a=>b.

The local variances appearing in (3.4), (3.8) and (3.9) and the local entropies ap-
pearing in (3.7) are treated by the Poincaré and the log-Sobolev inequalities for local
product measures.

Lemma 3.5 (Local PI for WU). Under Assumption 2.2 and given To small enough,

there exists an admissible partition {€; } Y, such that for all T < 19, , for all smooth
functions f : R" x R™ - R

(3:22)
Vargs (f)0. < O(1) Eng (7o) | Var FI7 + T2 [ Vo 1)
Lemma 3.6 (Local LSI for 71'%) Under Assumption 2.3, for all smooth functions
T R*xR" >R
5, (3:23) ) )
Entes (f2) < O(1)Eng (IVar f2 4 [Vaa F12).

We defer the details of the proof of Lemmas 3.5 and 3.6 to Section 3.3. They are

based on the simple product structure of the measures 7r” and an adaption of the
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local Poincaré inequality [MS14, Theorem 2.9] and the local LSI inequality. [MS14,
Theorem 2.10]. In the sequel, for a Dirichlet form £(f), we denote E(f)[€?] to be the
Dirichlet integral with region of integration restricted to Q2. It follows that

Zf Vare (f) < O(1)Ere (£)[Q x Q) (3-12)
Z§; Entry (f) < O(17 )€ (f)[ x ). (3.13)

To deal with the mean-differences appearing in (3.5) and (3.10), we will-apply the
mean-difference estimate from [MS14, Theorem 2.12], which allows us to transport
in one of the variables x1,x2 at a time from one metastable region €2,.to another
metastable region ;. In order to ensure that we only get exponential dependence
on 1/7y rather than 1/7; in the Eyring-Kramers formulas, we only transport in the
high-temperature variable, and not in the low-temperaturevariable. This allows us
to deal with mean-differences of the type between 7I';; and W;};, or the type between

i and .

+ + -
i ik and for T

o 2m/det V2H (s;1,) exp (H(sjk) — H(mk)>7

Lemma 3.7 (Mean-difference estimates for 7 7). Let

R /et V2 H (my) | A~ (s3] 7
then
ZZ—Z(EW+ f - Eﬂz f)2 érz C]T]i : g7r+ (f)[Qz X Rn]v (3'14)
ij i
ZB o 25, O - 61 (R % 0] (3.15)

Proof. For the first estimate, applying Cauchy-Schwarz and [MS14, Theorem 2.12],
we get

Z’;};(Eﬂ'+ f - ]E’ﬂ—z f)2 < ZZTIZI? EVTI (}El/TZ f - ]E’V,? f)2
1] T ? J

S 20 B O [ Vo (o)
<€ £4(/)I X R

The second estimate is completely ‘analogous. O

To deal with the mean-differences in (3.6) and (3.11), we have another move available,
which is to swap the temperatures of the two variables, i.e. to swap between 71';']7 and
m;;- This is the maif new technical ingredient compared to [MS14], which comes at a
cost of a termyinvolving the ratio of the higher temperature to the lower temperature,
T2/7'1 .

Lemma 3.8 (Mean-difference estimate for 7'[';;, )

(B f B 12 <00 (2)O(n) Byt [Van f 2+ E - [V, 1)
ij ij 1 ij ij
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+ W(TQ) Z Eﬂ% (Ta(l)‘vm1f|2 + Ta(2)|vmzf‘2)
oe{+,—-}

for any smooth function f : R™ x R® — R, where ®, is the function defined in
equation (2.15) and w(ms) = O(y/72| In12|3/?).

We defer the proof of this lemma to Section 3.4. It follows that

min(Z}5, Z5) (B [ ~E - J)? < (7 )OS (3.16)

Using these estimates, we will show that the dominating terms.in Lemma 3.3 are the
mean-differences between WZ), 7rfr1 and between i T11 where i, j are arbitrary and
p is the local minimum with the dominating energy barrier:

Lemma 3.9. Let p be the local minimum with the dominating energy barrier. Then
for any i,j € [N], and 0 € {+,—}

Z 20 s (1) = Bag, (1)) S O3 € (DI 26 R0 ( 2 ) O, (),

2y 2B, () = Bag, () S OF - Ex (DR XQ)}+ 00 (2 ) O(W)EL().

71

Moreover, if {(i,7)7", (k,1)?2} is one of the following forms

{GD (LD A ), (LD 16D A1 DT, (1,07}

then

72

25 2% B s (F) = Egra( D)) £ @0 ( 2 )O()ELS).

Finally, for any other {(i,7)°", (k,1)?*}; the term Z7} Z7P(E o1 (f) — E”Zf(f))Q is
ij

negligible in the sense of being exponentially smaller in 1/79 compared to one of the

terms above on the right hand Side.

1

Proof. Let I' be the graph/whose vertices are labelled -7, and have three kinds of
edges:

e “vertical” edges between -1, -7

ijo ik’
« : b2 T,
e “horizontal” edges between i3 kg
o “swapping’ edges between :;, i

We decompose the mean-difference between any two measures 7r;5 , Ty @S a sum
of mean-differences of the types in (3.14), (3.15), and (3.16), corresponding to a
sequence of “moves” using the edges of the graph I'. Given any sequence of moves
vg — v1 — --- — Uy on graph I', we assign to each move a positive weight w; > 0,
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m

1 <t < m, with total sum Zwt = 1. Then we have
t=1

m 2
1
Zog Ly, (B | — Erom f)2 = Zvo Ly, (Z “ (Batics £ = B f>>
t=1 wi

o1
<" —ZuZun B § ~ B P2 (3.17)
t=1

After taking into account the weights Z;;. , Z1;» this leads to the choice of the following
three types of sequences of moves for the three types of mean-differences occurring
in Lemma 3.3:

e Type I sequence: :; — :E =l e 'zl — 'Z_l;

e Type II sequence: -;; — - — E - = ILZ —

* o F = - o+ - T
Al T i T I T 1 AT U ke

e Type III sequence: v

Let us first look at the decomposition (3.17) for a Type I sequence. For the 1st move,

Zi5 23 (Bt (F) = Bt (1)) S Z0CJf - Env (£ x BT,
which is negligible unless j = p,k =1 = 1. For the 2nd move,

T2

25248 () - . ()P £ 202, (2) 0E,(1).

which is negligible unless j = k =1 =.1. For the 3rd move,
—Hm)(+ -+ T T n
ZEZHE, () =B, (D) Sme "G5 22,07 £ (DR X )

which is always negligible. The analysis for the remaining three moves are completely
symmetric: the 4th move is always negligible, the 5th move is negligible unless
i =7 =1=1, and the 6th move ismegligible unless [ = p,i = j = 1.

Overall, if (7,7), (k,1) is not one of the exceptions mentioned, we can just assign
w) =w; =+ =wg = 1/6, then the overall sum is negligible. This choice of (wt)?zl
also works in the exceptional cases k = j=1=1andi=j =1 =1 (since we can
afford to lose a constant factor because of the O(1)).

Lastly, in the exceptional case j = p,k = [ = 1, we consider a shortened 2-move

sequence '2;9 — z — -1"1. For the 1st move in this sequence,

Zir (Bt (f) = E .+ (1)) Zr Gt - Ex+ ()[ x R
and for the 2ndnove in this sequence,
232N R ~ By (D) ~ony 22 - 23255 (B () ~ By (1)
T 2
S 27 02 OELD).
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Thus, for this sequence, we can assign w; = 1 — Zy? ~r, 1wy = Z2, then the overall
sum is as claimed. The exceptional case | = p,i = j = 1 is completely symmetric.

The analysis for Type II and Type III sequences are completely analogous. |

We can adapt this approach to estimate the terms in Lemma 3.4.

Lemma 3.10. Let p be the local minimum with the dominating energy barrier. Then
fori k,1 € [N] and o € {+,—} such that
H(m; H H H
H(m,) < H(my) ori=p, and 2", H0) o Hmd gl Gn)
T1 2 To(1) T5(2)

it holds that

AWAS ) 1 . n 2

(sz,z l)( + () = Eng, (£)? Zrs N (clp () 2x R ]+<I>n<ﬁ)0(1)<€“(f)>,
Z_'ZU 1 T
S — Eqno 2%(0@5 ) 2)o()E >
5 7 B~ () 5 e (R % )+ (22 ) O()E()
Finally, for any other {(6,3)", (k.7 the tomi 20 _(8, ()~ B za (1))
mally, for any other {(i,5)°', (k,1)°2}, the erm—ﬁ — K o

A(Zz]7Z ) kl

is negligible in the sense of being exponentially smaller in 1/7’2 compared to one of
the terms above on the right hand side.

Proof. The analysis is similar as in/the previous lemma, but now we have to take
into account the logarithmic mean, using the estimate

ab b
= Q-
A(a,b) A(a/b, 1)
for b S 1,a < 1. The main diﬁ'erence is that we now need to be more careful to
show the transport from - to - 11 is neghglble if H(m;) > H(my) and i # p by

zp
choosing the alternative path: - —> > 1 fp — . 0

<-aln(1/a)

Proof of Theorem 2.8/ Combining Lemma 3.3, (3.12) and Lemma 3.9, we get

Varu(f) S 5 >0 ([ x 0] ZO DE— (£ x Q]

7.7

ZCT? )[4 x R™] + Zc Er (/)R™ x Q)

+ <I>n(~)0<1>eﬂ<f>

!
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< (O(l) +CPR + @n(:j)O(l)) Eu( ),

as desired.

0

Proof of Theorem 2.9. Combining Lemma 3.4, (3.12), (3.13) and Lemma 3.10, we
get

Ent,(f) $r Zo Enr () x Q] Zo ~(PQx Q]

+ 5 ANP0( ) - O(E () + 5 Y 2NP007 A0 (/)

i?]’

%2 ZZL <c;;,-5,r+(f)[9i xR”]+<I>n<

i<p \ @ (kZ)A(Za, 1)

2)omern)

1

1 1 .
3L Z%A(gl) (05 st P+ 2, (20, )
<282 (O( )+ Hlmp)(r 4750 + 002 (2) ) (1),
as desired. O

3.2. Proof of Theorem 2.18. With the help of Theorem 2.9, i.e. the low-temperature
asymptotics for the log-Sobolev constant, the proof of Theorem 2.18 follows the ar-
guments in [Mic92, Mon18].

For each t > 0, let u; be the probability measure given in (2.5) at temperatures
71 = T71(t), 72 = T2(t) as defined in (2.23), i.e. p(x1,z2) = %(Trt(l‘l,xz) + (29, x1)),

with
1 H(xl) H(Jjg) )
(21, ) i= — exp| — — ,
¥ 5 oo (10 - T
where Z; is the normalizing constant. Our first observation is that the mass of the

instantaneous equilibrium p; concentrates around the global minimum min H = 0
as t — oo.

Lemma 3:11. If (X, (t), X2(t)) has law i, then for every 0 < e < 8, there exists a
constant C' > 0 such that

P(min{ H(X, (1)), H(X2(t))} > 8) < Ce 70 < C(2 + 1)
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Proof. Since pu(z1,32) = 5(mi(21, 22) + mi(22, 21)), and min(H (z1), H(z2)).is sym-
metric,
P(min{H (X:(1)), H(X2(1))} > 8) = P(min{H (Y1), H(Y2)} > 4)
(H(Y1) > 6)P(H(Ys) > 6)
(H(Y1) > §),

g =

<

where (}71, }72) has law 7, and }71, Ys are independent. It remains to bound
_ H(=)
fH(w)>6 e ™ dv
_H(z)
Je T dx

P(H(Y;) > 6) =

Under Assumption 2.3, [MS14, Lemma 3.14] applies and shows H has linear growth
at infinity. More specifically, there exists a constant C'i such that for all sufficiently
large R,

H(z) > ‘n‘1i%H(z) + C(|z] — R) forfz| > R.

In the above, we can choose R large enough so thatrminy, =g H(z) > . Then

_H(z) _H(z) _H(z)
e ™ dx= e 1 dx+ e ™ dx
H(z)>6 H(z)>d,|z|<R |z|>R

_ 5 _C(z|=R)
<o (1Bl T e
|z|>R

_95
<e Br(0)| + O(11))-
On the other hand, there exists r > 0 such that H(z) < e when |z| < r. Then

_H(=) _H(GC) _ £
/e 1 da;>/ e ™ dx>e 71|B.(0)]
|z|<n

Combining these gives the desired estimate. O

Let (X1(t), X2(t)) be a random vector with law p;. By Lemma 3.11 and Pinsker’s
inequality, we have

P(min{H (X1(t)), H(X2())} > 0) < P(min{H (X1(1)), H(X2(t))} > 8) + drv (ne, me)

< C@+6)"F + /2 Ent(m ), (3.18)

Ent(my|p) = /mt In (mt> dpu
ot 20

is the relative entropy of m; with respect to ;. Thus, it remains to bound Ent(mu|g).
The following lemma gives an estimate of % Ent(m¢|u), the proof of which is in the
same spirit of [Mic92, Proposition 3].

where
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Lemma 3.12. It holds with Z,,(-) defined in (2.6) the estimate

d my
o Bntlonlu) < —21,, (1) (3.19)

+Z(Jﬂﬂiﬂmmxwwﬂwwm

Proof. First note that

d dm m d m
%Ent(mt\,ut) :/dttln<u;) dx+/mtdtln(lutt> dx
d
(Y gy [ g i,
dt Mt dt ot dt

dmg me dIn(p)
= [ —ZLIn( = — . 2
/ o n( " ) dx / o dmy (3.20)

We consider the first term in (3.20). Observe that my satisfies the Fokker-Planck
equation

dmt
dt
Combining this with the identity V,(aiu )= —pu:Vy, H, we get

dmy m my
. (o (2 P o (2))

Integrating by parts, we have

= vﬂcl : (mtvwl H) + vm : (mtvsz) + Am (almt> + Axg (CLth)-

2

d 2
/ mtln<mt> dr — — / |V, (ﬁ) 0|V, (W)‘ oW
dt Lt e Ht my
mg

where 7, is the Fisher information defined in (2.6) for y = p;. Next we consider
the second term in (3.20). Using that.min H = 0 and that 7(¢), 72(¢) are decreasing,
direct calculation yields

+ % (721(75)> (H (z1)p(x2, x1) + H(z2)p(21, 22))

d 1 1
S <7-1(t) + 7'2(75)> (H(w1) + H(z2)).

Integrating this against dm; and combining it with (3.21) yields (3.19). O

The second term om the right hand side of (3.19) are controlled via the following
lemma.
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Lemma 3.13. For any € > 0, there exists a constant C such that
E[H(Xl(t)) + H(Xz(t))] < C(1+1t)°.

We omit the proof of Lemma 3.13, which closely follows that of [Mic92, Lemma
2], using the moment assumptions on the initial distribution m given by (2.24) and
growth assumptions on the energy landscape H in Assumption 2.3.

Lemma 3.14. For any € > 0, there exists C' such that
E of L) T
t < P .
ut(meli) < € (155

Proof. Using the log-Sobolev inequality in Theorem 2.9, the estimate (3.19) becomes
d 2 _
< Bt (mylr) < =20 Bnt(me|) + (2 +1) VE[H (X{(t)) + H(X2(t))],

where ay is the LSI constant in (2.16) for yu = py. From (2.17) we see that for any
€ > 0, there exists tg > 0 and C7 > 0 such that for ¢ > tg,

2, > C1(2 + )" KB E.
Together with Lemma 3.13, we get that for £ > tp,
d ol
p Ent(my|p) < —C1(1+1)" B = But(my|u) + Co(1 +1)7 1T,

A standard Gronwall-type argument as in the proof of [Monl8, Lemma 19] then
finishes off the estimate. For 0 < & < % (1 — ;(E*E), let
2C5

Q(t) = Ent(my|ug) — 7(1 4t) R
1

Then for tg large enough and t > tg,

L0 < -G+ 1) K5 Q).

~+

Qt) < Q(to) exp (-cl (1475)"*E+e ds>,

2C L C
Bnt(rndpn) < 2520+ R P 4 Bty exo (-S040 = (14 0)) ).
1

where 5 :=1 — I]?E —£& >0, and the conclusion follows. O

Combining (3.18) and Lemma 3.14, we get that for any 6 > 0,¢ > 0, there exists a
constant C such that

P<mm{H(X1(t)),H(X2(t))} > 5) < C(( ! >6E + ( ! >;(1;§j;e)>’

1+1¢ 1+1¢
which implies (2.25).
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3.3. Proof of Lemmas 3.5 and 3.6. The following decomposition of’ variance
and entropy for a product measure reduces proving Lemmas 3.5 and 3.6 to proving
corresponding estimates for the component measures v .

Lemma 3.15 (Variance and entropy for product measure). Let 7 = v; ® v; be a
product of two probability measures on open subsets of R™. For any smooth function
fR*XR*"—= R
Var,(f) = E,, (Var,,i(f)) + Var,, (Eyl(f))
<E, (Var,,(f)) + E,, (Var,,j (f))- (3.22)
For any smooth function g : R™ x R™ — R,
Ent,(g9) = E,, (Ent,,i (g)) + Ent,, (Eyi (g))
<E, (Enty,(g)) + Ey, (Ent,,j (9))- (3.23)

Definition 3.16 (Local PI and LSI for v]). The local Gibbs measure v} defined
in (3.2) satisfies a Poincaré inequality with constant p-if.for all smooth functions
fR" >R
1
Varl,ir(f) < ;Ell{ |Vf|27

which is denoted by Pl(p). Likewise, v], defined in (3:2), satisfies a log-Sobolev
inequality with constant « if for all smooth/ functions f: R™ — R

2
EntV[ (fQ) < o EV{ ‘vf’27
which is denoted by LSI(c).

Lemma 3.17 (Local PI for v]). Under Assumption 2.2, given T small enough,
there exists an admissible partition {Qz}f\;1 such that for all T < 19, the local Gibbs
measures v satisfy Pl(p) with p~1 £ O(7):

Lemma 3.18 (Local LSI for v]). Under Assumption 2.3, given 1o small enough,

for the same admissible partition {Qi}i]\;l, for all T < 19, the local Gibbs measures
v satisfy satisfy LSI(a) with a= b= O(1).

Lemmas 3.17 and 3.18 are very similar to [MS14, Theorem 2.9] and [MS14, Theorem
2.10], except now that we have two temperatures 71 < 72, we want the regions §2; in
the admissible partition onlydepend on the higher temperature 7 but not the lower
temperature 71, so that-we can get PI and LSI for the local Gibbs measures v;*, v/,
at different temperatures in the same regions ;.

This can be shown by making a small modification to the proof of [MS14, Theorem
2.9, 2.10], which is based on constructing a Lyapunov function. Let us recall the
definition of a Lyapunov function and the criterion for PI based on it from [MS14].

Definition 3.19 (Lyapunov function, Definition 3.7 in [MS14]). A smooth function

Wy + Q; — (0,00) s a Lyapunov function for v} if the following hold for L, :=
TA—-VH-V:
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(i) There exists an open set U; C €; and constants b > 0, A > 0 such that

L. W.
L < -A+bly, Vze. (3.24)
W
(ii) Wy satisfies Neumann boundary condition on €); in the sense that it satisfies

the integration by parts formula
/ (=L W,)gdv] :/ Vg - VW dv]. (3.25)

Lemma 3.20 (Lyapunov condition for local PI, Theorem 3.8 in [MS14]). If there
exists a Lyapunov function for v] in the sense of Definition 3.19 and that the trun-
cated Gibbs measure V] |y, satisfies Pl(py,), then the local Gibbs measure v] satisfies
PI(p) with

b1
p —)\pUi N

We choose U; to be a ball centered at the local minimum m; with a small, fixed
radius Ry such that H is strongly convex on U;. Then the Bakry-Emery criterion
provides the following result.

Lemma 3.21 (PI for truncated Gibbs measure; Lemma' 3.6 in [MS14]). The mea-
sures v] |y, satisfy Pl(py,) with p[}il = O(7).

In [MS14], the candidate for the Lyapunov function is W, = exp(%), so that (see
[MS14, equation (3.9)])

LW,
W,

In order to satisfy the condition (3.24), the Hamiltonian H was replaced by a per-
turbed one H, such that ||[H — H;|looc' = O(7). In order to satisfy the condition
(3.25), €; is then chosen to be a basin of attraction with respect to the gradient flow
of this perturbed Hamiltonian #H. Consequently, the local PI was first deduced for
the perturbed Gibbs measure % exp % on £);, which then implies PI for the original
measure via Holley-Stroock/perturbation principle. One side effect of this approach
is that the region €2; depends on the temperature 7, which is unsuitable in our setting
with two different temperatures.

1 1 )
= JAH(2) S| VH (@)

We modify this approach. as follows: instead of perturbing the Hamiltonian in the
Gibbs measure, we only perturb the Hamiltonian in the Lyapunov function. Given
79 = ¢ small enough, we will choose a perturbation H. = H + V. where V. = O(e),
and choose €2 to be the basin of attraction with respect to the gradient flow of H..
Then, for every 7. < e, we choose the Lyapunov function to be W, = exp % Then
(3.25) is satisfied by [MS14, Theorem B.1] and

LTWT__VH.VHE+ AH. |VH|?
W, o "\ Tor 472
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1 1 LW,
— ZAH. — —(IVH]?2 = IVV.I?) < ===

2 & 47_ (|V | |V E| ) —_ WE )
where the last inequality holds as long as |[VV;| < |VH]|. Then once (3.24) is-verified
for 7 = ¢, PI for v follows for every 7 < e on the same region €2;.

It turns out the same perturbation used in [MS14] works here. Let S be the set of
critical points of H and M = {my,ma,...,muy} be the set of local minima of H.

Lemma 3.22 (e-modification). Given a function H satisfying Assumption 2.2, there
exist constants o, \o,a,C € (0,00) and a family of C3 functions {V:}o<e<e, Such
that for H. := H + V, it holds

(i) Ve is supported on U eg\ pm Bayz(s) and |Ve(z)| < Ce for all x.
(ii) Lyapunov-type condition: |VV:(x)| < |VH(x)| for oll z and

1 1 ) )
GAHe = ([VH? = [VV[) < =Xo for all 2. ¢ LEJM B, z(m).

We omit the proof of Lemma 3.22. It can be shown by carefully following the proof
of [MS14, Lemma 3.12]; indeed, the perturbation ¥z can be taken to be the same one
used there. It is easy to see that H. has the/same local minima as H. For each local
minimum m; of H, let €; be the associated basin of attraction w.r.t. the gradient
flow defined by the o-modified potential H,, that is

n. 1 dyt
Q; = {y €R™: lim gy Zan;, —- = ~VHr, (3), yo = y} :
Then (€;)%, is an admissible partitionsin the sense of Definition 3.1. We omit the
proof of this fact, which can be shown by slightly modifying the proof of [MS14,
Lemma 3.12]. The preceding discussion shows v} defined on €2; by (3.2) satisfies

PI(p) with p~! = O(7) for all 7 £ 75

Equipped with the Poincaré inequality for v, the log-Sobolev inequality for v] is
now a simple consequence of the following criterion from [MS14].

Lemma 3.23 (Lyapunov:condition for local LSI, Theorem 3.15 in [MS14]). Assume
the following hold:

(i) There ezists a_smooth function W : Q; — (0,00) and constants A,b > 0 such
that for L, i=7A—VH- -V
LW,
(ii) V2H > —Ky for some Ky > 0 and v] satisfies PI(p).
(iii) Wy satisfies Neumann boundary condition on €; (see (3.25)).
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Then v} satisfies LSI(a) with

Q*ISQ Z 1_;,_% +ﬁ 14_% _|_g,
A\ 2 pT A\ 2 pT P

where V7 (|z|?) denotes the second moment of v .

Choosing W to be the same Lyapunov function we chose for the PI, it is straight-
forward to check that, under Assumption 2.3, the conditions (i)-(iii) holds-and the
second moment 7 (|x|?) is uniformly bounded. We omit the proofs, which are vir-
tually identical to their counterparts in [MS14] (see Lemmas 3.17-3.19). Finally,
p~t = O(7) yields o=t = O(1).

3.4. Proof of Lemma 3.8. In order to prove Lemma 3.8, we observe that the local
Gibbs measures v are close to a class of truncated Gaussian measures in the sense
of mean-difference, see [MS14, Lemma 4.6].

Definition 3.24 (Truncated Gaussian measure). Given m € R™, ¥ a symmetric
positive definite n x n matriz, R > 1, consider the ellipsoid

E":={zcR": (z—m) -2 (& —m) < R*}.

The truncated Gaussian measure ¥™ at temperature T with mean m and covariance
3 on scale R is defined to be

"(2) = exp (—%(m —m) - %Kz —m))
T Zp/T"Vdet X

where Zg is the constant needed to make this a probability density. More precisely,

T = / exp (—|22/2)di= /27" (1 — O(e ™ R"2)).
Bgr(0)

ﬂE"'v

Lemma 3.25 (Approximation by truncated Gaussian). For 7 < 1o, let 7] be the
truncated Gaussian measure at.temperature T with mean m; and covariance ¥; =
(VH?(m;))~" on scale R(my) = |lnm|'/?. Then

dry
i (z) ~p, 1, (3.26)

uniformly in the support of o7, and for any smooth function f:R" — R

T

d
(Evr f —Eq7 f)? < Var,r (leT> Var,r (f) = O(v/72| In7o|%/?) TR, V£

2

We omit the'proof of Lemma 3.25, which is the same as [MS14, Lemma 4.6] with
only minor/changes.

Corollary 3.26. For any smooth function f:R" x R® — R
2
(Eng f - E,yfa<1>®,yjfa<2> £)” = 0(/m|InnyP?) . Erg (o) [Var [I* + To(2)| Vi 7).

2
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Proof. This follows from the previous lemma by writing
Erg f—E (7o) g o f=(E, 7o) g, o2 f—E 1o g, 7 @) f)
+ (Evzo(l)@)l,;a(z) f—E 1o g o f)-

O

This reduces our task to proving mean-difference estimate for truncated Gaussian.

Lemma 3.27 (Mean-difference estimate for truncated Gaussian§ at two tempera-
tures). For any smooth function f:R"™ — R

(E,2 f —En £)? < GullS < n(f)) n B VP,
1 1
where the function ®,, is given by (2.15), and C,, is a constant.only depending on n.

Proof. By change of variables, it suffices to show the first inequality for m; = 0,%; =
Id. From the Cauchy-Schwarz inequality and the fundamental theorem of calculus,
we can deduce

2

(B> f—En f)? <Ey (f(x/EX) — JmX)

7 i e n—1
dw IV f(sw)lds | ——r"""dr
Sn—1 T ZR

< 2 Il + [2)
where, we recall that R > 1 from Definition 3.24

2 2

e 2
I = dw Vi(sw)|lyc =d n=lq
1 /Sn 1 / (/ Tr | (8 )| SS " 8) R ' /r’

2

2 r

e 2
Iy = dw V W) o~ =d — " Lar.
2 /S" 1 / (/’7‘17’ ‘ f(s )| VT S) R ' '

Estimate for I5: By Cauchy=Schwarz,

[M]

T

I d R\/Ev 21 ds | &2 m1g
o< [ [ (AR [ IV s | Gt

2

R R 7%
< \/E/ dw/ IV f(sw)]? / r"*dr | ds.
Sn—1 \/6 S5

7
= R

Using integration by parts and standard Gaussian tail bound, for s > /72,

n—1

R _ﬁ n _i 82 2
e 2r"%dr < Cpe 272 [ — ,
£l T2

3
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where (), is a constant only depending on n. This gives
I <CpnE = [V
Estimate for I;: By Cauchy-Schwarz

2

R VT2 VT2r -5
L §/ dw/ / IV f(sw)|?s" tds / s~y | €2 iy
st Jo \Jo ST Zr

1 ) R(OVE 2
= I Fx5, 0y /0 /ﬁ ="V | re= 7 dr

< CnB%TQE = [Vf|?- <I>n<2>,
Y T1

where (), is a constant only depending on n. O

Corollary 3.28. For any smooth function f:R" x R” — R

2 72 2 2
(g f—Eppg,n £)? < (1 - cbn(ﬁ)) O(72) (g8 IV oo f* + E,.— [V, /).

Proof. This follows from the previous lemma and (3.26) by writing
Engrf-Erngnf=Engmf~Emgn HRE g f-Engn f)
O

Lemma 3.8 follows from Corollary 3.26 and 3.28.

Remark 3.29. One can show a weakerwersion of Lemma 3.8 by a simpler approach:
First we split the mean-difference as

(Eﬂ'+ f - ]Eﬂ'_ f)2 S QEyTl (}Ey‘{-2 f — EVTI f)2 + 2]Ey7.—1 (Ey‘.rl f - ]EVTQ f)2
1 J J J 2 [

Now, using the covariance representation of mean-difference and Cauchy-Schwarz,

we have
T1

2 dv; 2 dvj'
(EVJQ f— EV;1 f) < VaI'V;'Q (f) Vary;z e < O(Tg) Ey;z |V$2f‘ EV? )

J J

Finally, using the partition/size given in (3.1), we have
dijl Me—H(a:)(Tfl—T{l) < w < <T2)2 )

dv* 15! () Ty ) B AN

3.5. Proof of Proposition 2.12. It suffices to consider test functions of the form
f(z,y) = f(z). This is equivalent to replacing p by its first marginal, which is
= %(Vﬁ +v72). In this case, Var,(f) and £,(f) reduces to

Vary(f) = %(Varufl (f) + Var,~(f)) + E(Euﬁ f—=Eum f)27

1
Ea(f)y= 5(71 Evri V[P + 72 By [V f]).
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We further restrict f to C.(€1). By (3.1) and (2.10), v™(Q1),v™(21) & 1. once

T1 T2
71 < 79 are small enough, so that flly/—lfl, ZZ—LQ ~ 1 on O (see equation (3.2)). A crude

application of Young’s inequality then yields
Varg(f) 2 (Evn f)° = 4(Eur £)* 2 E,n ) = 58, f)%,
gﬁ(f) S 1 Eylﬂ |Vf|2 + 7o EVITQ |Vf|2,

where < means < up to a multiplicative constant. By change of variables, we may
assume my = 0,3 = (V2H(m;))~! = Id. We consider a test function of the form

f(x) = fe(x) = h(lx|/Ve),

where h > 0 is a compactly supported, absolutely continuous function and € € |11, 72]
is a scaling parameter, both to be specified later. As in the proof of Lemma 3.8,
we will approximate by truncated Gaussian measures (see Definition 3.24). Since
e <y, f- is supported in the support of 74{2. By Lemma 3.25,

Vara(f) 2 (E o £)% = 6(E. - f.)% (3:27)
Ea(F) STE,n VA + o E oo [l (3.28)
if 79 is small enough. By rescaling, we have:
T
nEn Vi =_E » VAP (3.29)
"
T 1 _
nEn VP = 2E o VA < (e/m) "2V A3, (3.30)
71 s
1 n
B Je = 2 fi 8n(c/m) il (3:31)

and for any r > 0,

7'2 €
E’YTl fe =K ~, f1 >P 1(|X| < 7‘) - inf f1 > (1 - n€2"71> - inf h. (332)
! m* m° || <r (0,7]

In the following R,, > 0 is the number.such that exp (—?—E) = .

Case 1: n > 3. We choose h to.be a compactly supported smooth function such that
h =1 on [0, R,], decreases to 0-on [R,,2R,] and is 0 outside [0,2R,]. Then
(3.30) (3:31) (332) 1
nEn VL Sie/m)" P2 Enfe £ (/n)"" Enf 2 3,

where the implicit constants only depend on the dimension n and the function h.
Since b/ =0 on [0, Ry,]

2 (8:29) 7 2 T 002 —cy = m
T E,n VTS ;Hh 2o P (| X] = Rp) < ;Hh [10cCre " S (11/2)™,
vy

for every positive integer m, where the constants cg, Cyr > 0 only depend on the
Hamiltonian H. The second inequality is a consequence of Assumption 2.2 (see
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MS14, Lemma 3.13]). Now, for any 0 < n < 3, set ¢ = 7'1_777'", and choose.m large
2 1 T2
enough so that nm > (1 —n)(n — 2)/2, we obtain

(32 ) 527)
5ﬁ(f) <y (7—1/7-2)(1 n)(n— 2)/2 Var- (f) >, (7_2/7_1)(1 n(n-2)/2¢g_ (f)

if 79, 71 /79 are both small enough.

Case 2: n = 2. Let h be the function given by

1 for 0 <r <y,
h(r)=<¢2(1—r*) forro<r<l1,
0 forr > 1,

for parameters 0 < oo < 1,0 < r¢ < 1 satisfying rff = %, to be specified later. Then
h is absolutely continuous, A’ = 0 on [0, r], and by direct computation

Ifill < 7ma, [V fillie = o®rg?, VA3 = 3ma.

We choose € = 1 and 7’2 2= = R? (which is possible/onee 7 /79 is small enough).
Then:

31) 1 e a (3.32) 1
B r fe S g?HfIHL 5 By fe /2 >
(‘ 9 o’ (3.30) 1 3o
2 2 2
Eufl |vf€| valHLoo = R27 7—2E«/I2 |vf6| < %valHLz = 7

Since rg = 1, 1 = L ln( ). Thus
(3.28) Oé 306 (3.27) 1
G 5 gty Vel Ry 8 2 (2) &),

if 79,71 /72 are both small enough.

3.6. Proof of Proposition 2.13 and Proposition 2.14. It suffices to consider
test functions of the form f(xz,;y). = g(x)g(y). This is equivalent to replacing u by
7m=v" ®v™. In this case, Var,(f),But,(f?), £.(f), Z.(f) reduce to

Varg(f) =E,n 92 Eym 92 — (Evmt 9)2(Elﬁ2 9)2,
Ent(f) = Eyn 92 Ent,m 92 + Eym 92 Ent,n 927

1
5Lr(fz’) =E(f) =T Eymi (¢)) Byre ¢ + Byt g2 Eyra (g)%

We represent v for ¢ = 1,2 as the mixture
v =Z{'v+ Z3 vy where vt = VT q,, vyt 1= VT q,,
where Q; := (—00, §), s := (s,00). Denote

) H’
2P = Q) oy 1, 23 = () gy YA ima)
H”(mg)
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Proof of Proposition 2.13 (Optimality of PI in 1d): Imposing E,~ g = 0, we get
E(f) _ Em(d)? | Eyn(g)’

Var,(f) E E,n g2 2 E,m g2

We make the following ansatz for g:

g(ma) for x < s+ 0,
g(x) = q g(m1) + % &[5 e~ W=9)*/Com) gy for s — §.< @5+ 6,
g(ma2) for x > s+ 4,

where o is a positive constant to be specified later, § = /2rgr|lnm| for some
positive constant rg to be chosen later, and k is chosen so that g is continuous
at s + 0. (This is the same kind of ansatz used in [MS14, Section 2.4].) Then

k=1+0(m ~ro/o 7) &~ 1 once ry is large enough. Fix such a choice of 7g;" For 75 small
enough, ¢ is small enough so that

Evri g mry g(m1) 27" + g(m2) 23’
This motivates the choice
g(m1) =r, —1, g(ma)ar, 1/25
such that E,~ g = 0. Then
By g° Rry Z72g(ma)* + Z329(ma)? r, g(ma2)*Z52,
En g° Ry 271 g(m1)? + Z3' g(ma)? ~q, g(ma)?Z3"

Finally, we compute the Dirichlet forms. By Taylor expansion of H around s,

2
E]/"Z (gl)Q ~ g(mQ) 1 / 6_($—S)2/(0T2)—H(x)/7-2 o
Bs(s)

2 ooy Zm

N g(mg)? \/H”(ml)eH(s)/Tg/ o (2=5)2/(2m2)(2/0+ H'()) gy
om0y \[27Te Bs(s)

H"(my) o H(s)/m TH(s)],

27Ty

where we set 0 = 1/|H"(s)| = —=1/H"(s). This implies

E,n ()% VH"(m2)|H" ()| (1(mg)—(s)) /72
o - ~

2 E, g2

N1y g(m2)2

T2 P

It remains to show/the other term is asymptotically negligible:

g(m2)* 1 / o~ (@=9)2/(72) ~H(z)/
Ef (6)2 < =)0 dy . sup e MM
1)~ 2107y Zr, () 2€Bs(s)

< g(mg)? H"(m1)|H" ()| __(1-nyr(s)/m
& o VI ’
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where 7 = O(6?). Since 75 > Ky for a constant K > 1, choosing § sufficiently small,
fe i T E,m(g')?
this implies 71 = -

T

is asymptotically negligible compared to p.

Proof of Proposition 2.14 (Optimality of LSI in 1d up to constant factor): In
the same set-up as above, imposing E,~ ¢% = 1, we get

1 Iﬂ'(f2> <1 Eyn (g,)2 NI, Eyr (g/)2
2Ent,(f) =  Ent,n g2 Ent,n g2Eym g%

‘We use the same form of ansatz as before with

Zt H"(my) _ 1
2 2 o H(mg)/T 2
g(ml) ~To Z{l ~ Ty H//(m2)€ 2 17 g(m2)

such that E,~ ¢?> = 1. Then
By ¢ ~r, Z729(m1)? + Z32g(m2)? ~r, Z37g(ms)?,
H(ma)

Ent,n g° R, Zflg(m1)2lng(m1)2 + ZQTlg(mg)2 lng(mg)2 ~r, lng(mg)2 R 0

and the same computation as before shows

VH" () [H(5)| -y (s)/m
2m\/2T T2 ’

VH" () [HYS)| _pr(s)/m,

21T

E,n (9)? S g(ma)®

Eura(g')? ~ry g(ma)?

where 7 = O(62). This implies

2
Ey(g") o MHTORDH" ()| (11(my) 1 (5)) <a,

Ty Ent,n g2 E, g2 R T1 3 H (my)

7\2
and that 7 E’;l? Ef ;2 is asymptotically negligible compared to a.
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