
Deep Network Approximation for Smooth Functions

Jianfeng Lu ∗ Zuowei Shen † Haizhao Yang ‡ Shijun Zhang §

Abstract

This paper establishes the (nearly) optimal approximation error characteriza-
tion of deep rectified linear unit (ReLU) networks for smooth functions in terms
of both width and depth simultaneously. To that end, we first prove that multi-
variate polynomials can be approximated by deep ReLU networks of width O(N)
and depth O(L) with an approximation error O(N−L). Through local Taylor ex-
pansions and their deep ReLU network approximations, we show that deep ReLU
networks of width O(N lnN) and depth O(L lnL) can approximate f ∈ Cs

([0,1]d)
with a nearly optimal approximation error O(�f�Cs([0,1]d)N−2s�dL−2s�d). Our esti-
mate is non-asymptotic in the sense that it is valid for arbitrary width and depth
specified by N ∈ N+ and L ∈ N+, respectively.

Key words. Deep ReLU Network, Smooth Function, Polynomial Approximation, Func-
tion Composition, Curse of Dimensionality.

1 Introduction

Deep neural networks have made significant impacts in many fields of computer
science and engineering, especially for large-scale and high-dimensional learning prob-
lems. Well-designed neural network architectures, e�cient training algorithms, and high-
performance computing technologies have made neural-network-based methods very suc-
cessful in real applications. Especially in supervised learning; e.g., image classification
and objective detection, the great advantages of neural-network-based methods over tra-
ditional learning methods have been demonstrated. Understanding the approximation
capacity of deep neural networks has become a key question for revealing the power of
deep learning. A large number of experiments in real applications have shown the large
capacity of deep network approximation from many empirical points of view, motivating
much e↵ort in establishing the theoretical foundation of deep network approximation.
One of the fundamental problems is the characterization of the optimal approximation
error of deep neural networks of arbitrary depth and width.

∗Department of Mathematics, Department of Physics, and Department of Chemistry, Duke Univer-
sity (jianfeng@math.duke.edu).

†Department of Mathematics, National University of Singapore (matzuows@nus.edu.sg).
‡Department of Mathematics, Purdue University (haizhao@purdue.edu).
§Department of Mathematics, National University of Singapore (zhangshijun@u.nus.edu).

1

ar
X

iv
:2

00
1.

03
04

0v
8 

 [c
s.L

G
]  

24
 S

ep
 2

02
1



1.1 Main result

Previously, the quantitative characterization of the approximation power of deep
feed-forward neural networks (FNNs) with rectified linear unit (ReLU) activation func-
tions was provided in [41]. For ReLU FNNs with width O(N) and depth O(L), the deep
network approximation of f ∈ C([0,1]d) admits an approximation errorO�!f(N−2�dL−2�d)�
in the Lp-norm for any p ∈ [1,∞], where !f(⋅) is the modulus of continuity of f . In par-
ticular, for the class of Hölder continuous functions, the approximation error is nearly
optimal. 1○ The next question is whether the smoothness of functions can improve the
approximation error. In this paper, we investigate the deep network approximation of
smaller function space, such as the smooth function space Cs([0,1]d).

In Theorem 1.1 below, we prove by construction that ReLU FNNs with width
O(N lnN) and depth O(L lnL) can approximate f ∈ Cs([0,1]d) with a nearly optimal
approximation error O(�f�Cs([0,1]d)N−2s�dL−2s�d), where the norm � ⋅ �Cs([0,1]d) is defined
as

�f�Cs([0,1]d) ∶=max��@↵f�L∞([0,1]d) ∶ �↵�1 ≤ s, ↵ ∈ Nd� for any f ∈ Cs([0,1]d).

Theorem 1.1. Given a smooth function f ∈ Cs([0,1]d) with s ∈ N+, for any N,L ∈ N+,
there exists a function � implemented by a ReLU FNN with width C1(N + 2) log

2
(8N)

and depth C2(L + 2) log
2
(4L) + 2d such that

�� − f�L∞([0,1]d) ≤ C3�f�Cs([0,1]d)N−2s�dL−2s�d,
where C1 = 17sd+13dd, C2 = 18s2, and C3 = 85(s + 1)d8s.

As we can see from Theorem 1.1, the smoothness improves the approximation error
in N and L; e.g., s ≥ d implies N−2s�dL−2s�d ≤ N−2L−2. However, we would like to remark
that the improved approximation error is at the price of a prefactor much larger than
dd if s ≥ d. The proof of Theorem 1.1 will be presented in Section 2.2 and its tightness
will be discussed in Section 2.3. In fact, the logarithmic terms in width and depth in
Theorem 1.1 can be further reduced if the approximation error is weakened. Given any
Ñ , L̃ ∈ N+ with

Ñ ≥ C1(1 + 2) log
2
(8) = 17sd+13d+2d and L̃ ≥ C2(1 + 2) log

2
(4) + 2d = 108s2 + 2d,

there exist N,L ∈ N+ such that

C1(N + 2) log
2
(8N) ≤ Ñ < C1�(N + 1) + 2� log

2
�8(N + 1)�

and
C2(L + 2) log

2
(4L) + 2d ≤ L̃ < C2�(L + 1) + 2� log

2
�4(L + 1)� + 2d.

It follows that

N ≥ N + 3

4
> Ñ

4C1 log
2
(8N + 8) ≥

Ñ

4C1 log
2
(8Ñ + 8)

= Ñ

68sd+13dd log
2
(8Ñ + 8)

and

L ≥ L + 3

4
> L̃ − 2d

4C2 log
2
(4L + 4) ≥

L̃ − 2d

4C2 log
2
(4L̃ + 4)

= L̃ − 2d

72s2 log
2
(4L̃ + 4)

.

Thus, we have an immediate corollary.

1○“nearly optimal” up to a logarithmic factor.

2



Corollary 1.2. Given a function f ∈ Cs([0,1]d) with s ∈ N+, for any Ñ , L̃ ∈ N+, there
exists a function � implemented by a ReLU FNN with width Ñ and depth L̃ such that

�� − f�L∞([0,1]d) ≤ C̃1�f�Cs([0,1]d)� Ñ

C̃2 log2(8Ñ+8)�
−2s�d
� L̃−2d
C̃3 log2(4L̃+4)�

−2s�d

for any Ñ ≥ 17sd+13d+2d and L̃ ≥ 108s2+2d, where C̃1 = 85(s+1)d8s, C̃2 = 68sd+13dd, and
C̃3 = 72s2.

Theorem 1.1 and Corollary 1.2 characterize the approximation error in terms of
total number of neurons (with an arbitrary distribution in width and depth) and the
smoothness of the target function to be approximated. The only result in this direction
we are aware of in the literature is Theorem 4.1 of [46]. It shows that ReLU FNNs with
width 2d + 10 and depth L achieve a nearly optimal error O(( L

lnL
)−2s�d) for su�ciently

large L when approximating functions in the unit ball of Cs([0,1]d). This result is
essentially a special case of Corollary 1.2 by setting Ñ = O(1) and L̃ su�ciently large.

1.2 Contributions and related work

Our key contributions can be summarized as follows.

(i) Upper bound: We provide a quantitative and non-asymptotic approximation
error O(�f�Cs([0,1]d)N−2s�dL−2s�d) when the ReLU FNN has width O(N lnN) and
depth O(L lnL) for functions in Cs([0,1]d) in Theorem 1.1. In real applications,
the first question is to decide the network width and depth since they are two
required hyper-parameters. The approximation error as a function of width and
depth in this paper can directly answer this question, while the approximation
results in terms of the total number of parameters in the literature cannot, because
there are many architectures sharing the same number of parameters. Actually, an
immediate corollary of our theorem as we shall discuss can also describe our theory
in terms of the total number of parameters. Furthermore, our results contain
approximation error estimates for both wide networks with fixed finite depth and
deep networks with fixed finite width.

(ii) Lower bound: Through the Vapnik-Chervonenkis (VC) dimension upper bound
of ReLU FNNs in [22], we prove a lower bound

C�N2
L
2(lnN)3(lnL)3�−s�d for some positive constant C

for the approximation error of the functions in the unit ball of Cs([0,1]d) approx-
imated by ReLU FNNs with width O(N lnN) and depth O(L lnL) in Section 2.3.
Thus, the approximation error O(N−2s�dL−2s�d) in Theorem 1.1 is nearly optimal
for the unit ball of Cs([0,1]d).

(iii) Approximation of polynomials: It is proved by construction in Proposition 4.1
that ReLU FNNs with width O(N) and depth O(L) can approximate polynomials
on [0,1]d with an approximation error O(N−L). This is a non-trivial extension of
the result O(2−L) for polynomial approximation by fixed-width ReLU FNNs with
depth L in [44].

3



(iv) Uniform approximation: The approximation error in this paper is measured in
the L∞([0,1]d)-norm as a result of Theorem 2.1. To achieve this, given a ReLU
FNN approximating the target function f uniformly well on [0,1]d except for a
small region, we develop a technique to construct a new ReLU FNN with a similar
size to approximate f uniformly well on [0,1]d in Theorem 2.1. This technique
can be applied to improve approximation errors from the Lp-norm to the L∞-norm
for other function spaces in general, e.g., the continuous function space in [41],
which is of independent interest.

In particular, if we denote the best approximation error of functions in Cs
u
([0,1]d)

approximated by ReLU FNNs with width Ñ and depth L̃ as

"s,d(Ñ , L̃) ∶= sup
f∈Cs

u([0,1]d)
� inf
�∈NN (width≤Ñ ; depth≤L̃) �� − f�L∞([0,1]d)� for any Ñ , L̃ ∈ N+,

where Cs
u
([0,1]d) denotes the unit ball of Cs([0,1]d) defined by

C
s

u
([0,1]d) ∶= �f ∈ Cs([0,1]d) ∶ �@↵f�L∞([0,1]d) ≤ 1, for all ↵ ∈ Nd with �↵�1 ≤ s�.

By combining the upper and lower bounds stated above, we have

C1(s, d) ⋅ �Ñ2
L̃
2ln(ÑL̃)�

−s�d
≤

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
proved in Section 2.3

"s,d(Ñ , L̃) ≤ C2(s, d) ⋅ � Ñ
2
L̃
2

(ln Ñ ln L̃)2�
−s�d

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
shown in Corollary 1.2

,

where C1(s, d) and C2(s, d) are two positive constants in s and d, and C2(s, d) can be
explicitly represented by s and d.

The expressiveness of deep neural networks has been studied extensively from many
perspectives, e.g., in terms of combinatorics [34], topology [8], VC-dimension [7, 22, 39],
fat-shattering dimension [2, 27], information theory [37], and classical approximation
theory [4,5,9,12,14,15,20,21,24,29,32,35,42–45,47]. In the early works of approximation
theory for neural networks, the universal approximation theorem [15, 23, 24] without
approximation errors showed that, given any " > 0, there exists a su�ciently large neural
network approximating a target function in a certain function space within an error ".
For one-hidden-layer neural networks and functions with integral representations, Barron
[5, 6] showed an asymptotic approximation error O( 1√

N
) in the L2-norm, leveraging

an idea that is similar to Monte Carlo sampling for high-dimensional integrals. For
very deep ReLU neural networks with width fixed as O(d) and depth O(L), Yarotsky
[45, 46] showed that the nearly optimal approximation errors for Lipschitz continuous
functions and functions in the unit ball of Cs([0,1]d) are O(L−2�d) and O((L� lnL)−2s�d),
respectively. Note that the results are asymptotic in the sense that L is required to be
su�ciently large and the prefactors of these rates are unknown. To obtain a generic result
that characterizes the approximation error for arbitrary width and depth with known
prefactors to guide applications, the authors of [41] demonstrated that the nearly optimal
approximation error for ReLU FNNs with width O(N) and depth O(L) to approximate
Lipschitz continuous functions on [0,1]d is O(N−2�dL−2�d). Such a nearly optimal error
is further improved to an optimal one, O�(N2L2 lnN)−1�d�, in a more recent paper [42].
In this paper, we extend this generic framework to Cs([0,1]d) with a nearly optimal
approximation error O(�f�Cs([0,1]d)N−2s�dL−2s�d).

Most related works are summarized in Table 1 for the comparison of our contribu-
tions in this paper and the results in the literature.

4



Table 1: A summary of existing approximation errors of ReLU FNNs for Lip([0,1]d)
(the Lipschitz continuous function space) and Cs

u
([0,1]d) (the unit ball of Cs([0,1]d)).

paper function class width depth approximation error Lp([0,1]d)-norm tightness valid for

[44] polynomial O(1) O(L) O(2−L) p =∞ any L ∈ N+
this paper polynomial O(N) O(L) O(N−L) p =∞ any N,L ∈ N+

[40] Lip([0,1]d) O(N) 3 O(N−2�d) p ∈ [1,∞) nearly tight in N any N ∈ N+
[45] Lip([0,1]d) 2d + 10 O(L) O(L−2�d) p =∞ nearly tight in L large L ∈ N+
[41] Lip([0,1]d) O(N) O(L) O(N−2�dL−2�d) p ∈ [1,∞] nearly tight in N and L any N,L ∈ N+
[42] Lip([0,1]d) O(N) O(L) O�(N2L2 lnN)−1�d� p ∈ [1,∞] tight in N and L any N,L ∈ N+
[46] Cs

u
([0,1]d) 2d + 10 O(L) O�(L� lnL)−2s�d� p =∞ neatly tight in L large L ∈ N+

this paper Cs
u
([0,1]d) O(N lnN) O(L lnL) O(N−2s�dL−2s�d) p =∞ nearly tight in N and L any N,L ∈ N+

this paper Cs
u
([0,1]d) O(N) O(L) O�(N� lnN)−2s�d(L� lnL)−2s�d� p =∞ nearly tight in N and L any N,L ∈ N+

1.3 Discussion

We will discuss the comparison of our theory with existing works and the application
scope in machine learning.

Approximation errors in O(N) and O(L) versus O(W )

It is fundamental and indispensable to characterize deep network approximation in
terms of width O(N) 2○ and depth O(L) simultaneously in realistic applications, while
the approximation in terms of the number of nonzero parameters W is probably only of
interest in theory. First, networks used in practice are specified via width and depth and,
therefore, Theorem 1.1 can provide an error bound for such networks. However, existing
results in W cannot serve this purpose because they may be only valid for networks with
other widths and depths. Theories in terms of W essentially have a single variable to
control the network size in three types of structures: 1) a fixed width N and a varying
depth L; 2) a fixed depth L and a varying width N ; 3) both the width and depth are
controlled by the target error " (e.g., N is a polynomial of 1

"d
and L is a polynomial of

ln(1
"
)). Therefore, given a network with arbitrary width N and depth L, there might

not be a known theory in terms of W to quantify the performance of this structure.
Second, the error characterization in terms of N and L is more useful than that in terms
of W , because most existing optimization and generalization analyses are based on N

and L [1, 3, 10, 13, 17, 18, 25, 26], to the best of our knowledge. Approximation results
in terms of N and L are more consistent with optimization and generalization analysis
tools to obtain a full error analysis.

Most existing approximation theories for deep neural networks so far focus on the
approximation error in the number of parameters W [4, 5, 9, 11, 12, 14, 15, 19–21, 24, 29–
33, 35–38, 43–47]. Controlling two variables N and L in our theory is more challenging
than controlling one variable W in the literature. The characterization of deep network
approximation in terms of N and L can imply an approximation error in terms of W ,
while this may not be true the other way around, e.g., our theorems cannot be derived
from results in [46]. Let us discuss the first type of structure mentioned in the previous
paragraph, which includes the best-known result for a nearly optimal approximation
error, O((W � lnW )−2s�d), for functions in the unit ball of Cs([0,1]d) using ReLU FNNs
with W parameters [46]. As an example to show how Theorem 1.1 in terms of N and

2○For simplicity, we omit O(⋅) in the following discussion.

5



L can be applied to show a similar result in terms of W . The main idea is to specify
the value of N and L in Theorem 1.1 to show the desired corollary. For example, if we
let N = O(1) in Theorem 1.1, then we have the following corollary, which is essentially
equivalent to Theorem 4.1 of [46].

Corollary 1.3. Given any function f in the unit ball of Cs([0,1]d) with s ∈ N+, there
exists a function � implemented by a ReLU FNN with W parameters such that

�� − f�L∞([0,1]d) ≤ O�( W

lnW
)−2s�d� for large W ∈ N+.

As we can see in this example, it is simple to derive Corollary 1.3 above and The-
orem 4.1 of [46] using Theorem 1.1 in this paper. However, Theorem 1.1 cannot be
derived from any existing result that characterizes approximation errors in terms of the
number of parameters. Therefore, Theorem 1.1 goes beyond existing results on the
approximation of deep neural networks.

Note that the logarithmic term in the approximation error is not significant in the

case of s > 1 since it can be cancelled out in the sense that � W

lnW
�−2s�d � W −2s̃�d for

any s̃ ∈ (1, s). We remark that Theorem 3.3 of [46] provides a better approximation
error by a logarithmic term: ReLU FNNs with W nonzero parameters can approximate
a function f in the unit ball of Cs([0,1]d) within an error O(W −2s�d). However, the
network architecture therein is relatively complex and s-dependent as stated by the
authors of [46]. In fact, it contains many s-dependent blocks (sub-networks), making
it di�cult to implement if s is not known in applications. In contrast, our network
architecture in Corollary 1.2 is simple and can be pre-specified once the width Ñ and
depth L̃ therein are given.

Continuity of the weight selection

We would like to discuss the continuity of the weight selection as a map ⌃ ∶ Fs,d →
RW , where Fs,d denotes the unit ball of the d-dimensional Sobolev space with smooth-
ness s. For a fixed network architecture with a fixed number of parameters W , let
g ∶ RW → C([0,1]d) be the map of realizing a ReLU FNN from a given set of param-
eters in RW to a function in C([0,1]d). Suppose that the map ⌃ is continuous such
that �f − g(⌃(f))�L∞([0,1]d) ≤ " for all f ∈ Fs,d. Then W ≥ c"−d�s with some constant c

depending only on s. This conclusion is given in Theorem 3 of [44], which is a corollary
of Theorem 4.2 of [16] in a more general form. These theorems mean that the weight
selection map ⌃ corresponding to our constructive proof in Theorem 1.1 in this paper is
not continuous, since our error is better than O(W −s�d). Theorem 4.2 of [16] is essentially
a min-max criterion to evaluate weight selection maps maintaining continuity: the ap-
proximation error obtained by minimizing over all continuous selections ⌃ and network
realizations g and maximizing over all target functions is bounded below by O(W −s�d).
In the worst case, a continuous weight selection cannot enjoy an approximation error
beating O(W −s�d). However, Theorem 4.2 of [16] does not exclude the possibility that
most functions of interest in practice may still enjoy a continuous weight selection with
the approximation error in Theorem 1.1. It would be interesting in future work to in-
vestigate whether continuous weight selection is possible for many functions commonly
encountered in real applications.

6



Application scope of our theory in machine learning

In deep learning, given a target function f , the final goal is to train a function
�(x;✓) approximating f well, where �(x;✓) is a function in x ∈ X realized by a network
architecture parameterized with ✓ ∈ RW . To get the best solution, one needs to identify
the expected risk minimizer

✓D ∶= argmin
✓∈RW

RD(✓), where RD(✓) = Ex∼U(X ) �`��(x;✓), f(x)��

with a loss function usually taken as `(y, y′) = 1

2
�y−y′�2 and an unknown data distribution

U(X ).
In practice, only data samples {(xi, f(xi))}ni=1 instead of f and U(X ) are available.

Thus, the empirical risk minimizer ✓S is used to model/approximate the expected risk
minimizer ✓D, where

✓S ∶= argmin
✓∈RW

RS(✓), where RS(✓) ∶= 1

n

n

�
i=1
`��(xi,✓), f(xi)�. (1.1)

In real applications, only a numerical solution (denoted as ✓N ) is achieved when
a numerical optimization method is applied to solve (1.1). Hence, the actually learned
function generated by the network is �(x;✓N ). Since RD(✓N ) is the expected inference
error over all possible data samples, it can quantify how good �(x;✓N ) is. Note that

RD(✓N )= [RD(✓N ) −RS(✓N )]
����������������������������������������������������������������������������������������������������������������������������

GE

+ [RS(✓N ) −RS(✓S)]
���������������������������������������������������������������������������������������������������������������������

OE

+ [RS(✓S) −RS(✓D)]
�������������������������������������������������������������������������������������������������������������������≤ 0 by (1.1)

+ [RS(✓D) −RD(✓D)]
�����������������������������������������������������������������������������������������������������������������������

GE

+RD(✓D)
���������������������������

AE

≤ RD(✓D)
���������������������������

Approximation error (AE)

+ [RS(✓N ) −RS(✓S)]
���������������������������������������������������������������������������������������������������������������������
Optimization error (OE)

+ [RD(✓N ) −RS(✓N )] + [RS(✓D) −RD(✓D)]
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Generalization error (GE)

. (1.2)

Constructive approximation provides an upper bound of RD(✓D) in terms of the
network size. For example, Theorem 1.1 and its corollaries provide an upper bound
O(�f�Cs([0,1]d)N−2s�dL−2s�d) of RD(✓D) for Cs([0,1]d). The second term of (1.2) is
bounded by the optimization error of the numerical algorithm applied to solve the em-
pirical loss minimization problem in (1.1). The study of the bounds for the third and
fourth terms is referred to as the generalization error analysis of neural networks.

One of the key targets in the area of deep learning is to develop algorithms to
reduce RD(✓N ). Our analysis here provides an upper bound of the approximation error
RD(✓D) for smooth functions, which is crucial to control RD(✓N ). Instead of deriving
an approximator to attain the error bound, deep learning algorithms aim to identify a
solution �(x;✓N ) reducing the generalization and optimization errors in (1.2). Solutions
minimizing both generalization and optimization errors will lead to a good solution only
if we also have a good upper bound estimate of RD(✓D) as shown in (1.2). Independent
of whether our analysis here leads to a good approximator, which is an interesting topic
to pursue, the theory here does provide a key ingredient in the error analysis of deep
learning algorithms.

We would like to emphasize that the introduction of the ReLU activation function
to image classification is one of the key techniques that boost the performance of deep
learning [28] with surprising generalization, which is the main reason that we focus on
ReLU FNNs in this paper.

7



Organization: The rest of the present paper is organized as follows. In Section 2,
we prove Theorem 1.1 by combining two theorems (Theorems 2.1 and 2.2) that will be
proved later. We will also discuss the optimality of Theorem 1.1 in Section 2. Next,
Theorem 2.1 will be proved in Section 3 while Theorem 2.2 will be shown in Section 4.
Several propositions supporting Theorem 2.2 will be presented in Section 5. Finally,
Section 6 concludes this paper with a short discussion.

2 Approximation of smooth functions

In this section, we will prove the quantitative approximation error in Theorem 1.1 by
construction and discuss its tightness. Notation throughout the proof will be summarized
in Section 2.1. The proof of Theorem 1.1 is mainly based on Theorems 2.1 and 2.2, which
will be proved in Sections 3 and 4, respectively. To show the tightness of Theorem 1.1,
we will introduce the VC-dimension in Section 2.3.

2.1 Notation

Now let us summarize the main notation of this paper as follows.

• Let R, Q, and Z denote the set of real numbers, rational numbers, and integers,
respectively.

• Let N and N+ denote the set of natural numbers and positive natural numbers,
respectively. That is, N+ = {1,2,3,�} and N = N+�{0}.

• Vectors and matrices are denoted in a bold font. Standard vectorization is adopted
in matrix and vector computation. For example, a scalar plus a vector means
adding the scalar to each entry of the vector. Additionally, “[” and “]” are used

to partition matrices (vectors) into blocks, e.g., A = �A11 A12
A21 A22

� and v = �
v1
⋮
vd

� =

[v1,�, vd]T ∈ Rd.

• Let 1S be the characteristic (indicator) function on a set S; i.e., 1S is equal to 1
on S and 0 outside S.

• Let B(x, r) ⊆ Rd be the closed ball with a center x ⊆ Rd and a radius r ≥ 0.

• Similar to “min” and “max”, let mid(x1, x2, x3) be the middle value of three inputs
x1, x2, and x3

3○. For example, mid(2,1,3) = 2 and mid(3,2,3) = 3.

• The set di↵erence of two sets A and B is denoted by A�B ∶= {x ∶ x ∈ A, x ∉ B}.

• For a real number p ∈ [1,∞), the p-norm of x = [x1, x2,�, xd]T ∈ Rd is defined by

�x�p ∶= ��x1�p + �x2�p +� + �xd�p�
1�p

.

3○“mid” can be defined via mid(x1, x2, x3) = x1 +x2 +x3 −max(x1, x2, x3)−min(x1, x2, x3), which can
be implemented by a ReLU FNN.

8



• For any x ∈ R, let �x� ∶=max{n ∶ n ≤ x, n ∈ Z} and �x� ∶=min{n ∶ n ≥ x, n ∈ Z}.

• Assume n ∈ Nd; then f(n) = O(g(n)) means that there exists positive C indepen-
dent of n, f , and g such that f(n) ≤ Cg(n) when all entries of n go to +∞.

• The modulus of continuity of a continuous function f ∈ C([0,1]d) is defined as

!f(r) ∶= sup��f(x) − f(y)� ∶ �x − y�2 ≤ r, x,y ∈ [0,1]d� for any r ≥ 0.

• A d-dimensional multi-index is a d-tuple ↵ = [↵1,↵2,�,↵d]T ∈ Nd. Several related
notation are listed below.

– �↵�1 = �↵1� + �↵2� +� + �↵d�;
– x↵ = x

↵1
1

x
↵2
2
�x

↵d
d

, where x = [x1, x2,�, xd]T ;

– ↵! = ↵1!↵2!�↵d!;

– @↵ = @
↵1

@x
↵1
1

@
↵2

@x
↵2
2
� @

↵d

@x
↵d
d

.

• For any closed cube Q ⊆ Rd and a real number r > 0, let rQ denote the closed cube
which shares the same center of Q and whose sidelength is the product of r and
the sidelength of Q.

• Given any K ∈ N+ and � ∈ (0, 1

K
), define a trifling region ⌦([0,1]d,K, �) of [0,1]d

as

⌦([0,1]d,K, �) ∶=
d

�
i=1�x = [x1, x2,�, xd]T ∈ [0,1]d ∶ xi ∈ ∪K−1k=1 ( kK − �, k

K
)�. (2.1)

In particular, ⌦([0,1]d,K, �) = � if K = 1. See Figure 1 for two examples of the
trifling region.

0.00 0.25 0.50 0.75 1.00

� � �

�([0, 1]d, K, �) for K = 4, d = 1

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

�([0, 1]d, K, �) for K = 4, d = 2

(b)

Figure 1: Two examples of the trifling region. (a) K = 4, d = 1. (b) K = 4, d = 2.

• Given E ⊆ Rd, let Cs(E) denote the set containing all functions, all k-th order
partial derivatives of which exist and are continuous on E for any k ∈ N with
0 ≤ k ≤ s. In particular, C0(E), also denoted by C(E), is the set of continuous

9



functions on E. For the case s =∞, C∞(E) = �∞s=0 Cs(E). The Cs-norm is defined
by

�f�Cs(E) ∶=max��@↵f�L∞(E) ∶ ↵ ∈ Nd with �↵�1 ≤ s�.
Generally, E is assigned as [0,1]d in this paper. In particular, the closed unit ball
of Cs([0,1]d) is denoted by

C
s

u
([0,1]d) ∶= �f ∈ Cs([0,1]d) ∶ �f�Cs([0,1]d) ≤ 1�.

• We use “NN ” to mean “functions implemented by ReLU FNNs” for short and
use Python-type notation to specify a class of functions implemented by ReLU
FNNs with several conditions. To be precise, we use NN (c1; c2; �; cm) to denote
the function set containing all functions implemented by ReLU FNN architectures
satisfying m conditions given by {ci}1≤i≤m, each of which may specify the number
of inputs (#input), the number of outputs (#output), the total number of nodes
in all hidden layers (#neuron), the number of hidden layers (depth), the number of
total parameters (#parameter), and the width in each hidden layer (widthvec), the
maximum width of all hidden layers (width), etc. For example, if � ∈ NN (#input =
2; widthvec = [100,100]; #output = 1), then � is a function satisfying the following
conditions.

– � maps from R2 to R.

– � is implemented by a ReLU FNN with two hidden layers and the number of
nodes in each hidden layer being 100.

• Let � ∶ R→ R denote the rectified linear unit (ReLU), i.e. �(x) =max{0, x}. With

the abuse of notation, we define � ∶ Rd → Rd as �(x) =
�������

max{0, x1}
⋮

max{0, xd}

�������
for any

x = [x1,�, xd]T ∈ Rd.

• For a function � ∈ NN (#input = d; widthvec = [N1,N2,�,NL]; #output = 1), if
we set N0 = d and NL+1 = 1, then the architecture of the network implementing �
can be briefly described as follows:

x = h̃0

W0, b0 h1

� h̃1 � WL−1, bL−1 hL

� h̃L

WL, bL hL+1 = �(x),
where Wi ∈ RNi+1×Ni and bi ∈ RNi+1 are the weight matrix and the bias vector in
the i-th a�ne linear transform Li in �, respectively, i.e.,

hi+1 =Wi ⋅ h̃i + bi =∶ Li(h̃i) for i = 0,1,�, L

and
h̃i = �(hi) for i = 1,2,�, L.

In particular, � can be represented in a form of function compositions as follows

� = LL ○ � ○LL−1 ○ � ○ � ○ � ○L1 ○ � ○L0,
which has been illustrated in Figure 2.

10



(x1, x2)

x1

x2

h1

h1,1

h1,2

h1,3

h1,4

eh1

eh1,1

eh1,2

eh1,3

eh1,4

h2

h2,1

h2,2

h2,3

h2,4

h2,5

eh2

eh2,1

eh2,2

eh2,3

eh2,4

eh2,5

�(x1, x2)

�(x1, x2)

W0, b0 W1, b1 W2, b2ReLU (�) ReLU (�)

�

�

�

�

�

�

�

�

�

Figure 2: An example of a ReLU FNN with width 5 and depth 2.

• The expression “a network (architecture) with (of) width N and depth L” means

– The maximum width of this network (architecture) for all hidden layers is
no more than N .

– The number of hidden layers of this network (architecture) is no more than
L.

• For any ✓ ∈ [0,1), suppose its binary representation is ✓ = ∑∞̀=1 ✓`2−` with ✓` ∈
{0,1}. We introduce a special notation bin0.✓1✓2�✓L to denote the L-term binary
representation of ✓, i.e., bin0.✓1✓2�✓L ∶= ∑L

`=1 ✓`2−` ≈ ✓.

2.2 Proof of Theorem 1.1

The introduction of the trifling region ⌦([0,1]d,K, �) is due to the fact that ReLU
FNNs cannot approximate a step function uniformly well (as the ReLU activation func-
tion is continuous), which is also the reason for the main di�culty in obtaining approxi-
mation errors in the L∞([0,1]d)-norm in our previous papers [40,41]. The trifling region
is a key technique to simplify the proofs of theories in [40, 41] as well as the proof of
Theorem 1.1.

First, we present Theorem 2.1 to show that, as long as good uniform approximation
by a ReLU FNN can be obtained outside the trifling region, the uniform approximation
error can also be well controlled inside the trifling region when the network size is slightly
increased. Second, as a simplified version of Theorem 1.1 ignoring the approximation
error in the trifling region ⌦([0,1]d,K, �), Theorem 2.2 shows the existence of a ReLU
FNN approximating a target smooth function uniformly well outside the trifling region.
Finally, Theorems 2.1 and 2.2 immediately lead to Theorem 1.1. Theorem 2.1 can
be applied to improve the theories in [40, 41] to obtain approximation errors in the
L∞([0,1]d)-norm.

Theorem 2.1. Given any " > 0, N,L,K ∈ N+, and � ∈ (0, 1

3K
], assume f ∈ C([0,1]d)

and �̃ is a function implemented by a ReLU FNN with width N and depth L. If

��̃(x) − f(x)� ≤ " for any x ∈ [0,1]d�⌦([0,1]d,K, �),

then there exists a new function � implemented by a ReLU FNN with width 3d(N + 4)
and depth L + 2d such that

��(x) − f(x)� ≤ " + d ⋅ !f(�) for any x ∈ [0,1]d.

11



Theorem 2.2. Assume that f ∈ Cs([0,1]d) satisfies �@↵f�L∞([0,1]d) ≤ 1 for any ↵ ∈ Nd

with �↵�1 ≤ s. For any N,L ∈ N+, there exists a function � implemented by a ReLU
FNN with width 16sd+1d(N + 2) log

2
(8N) and depth 18s2(L + 2) log

2
(4L) such that

��(x) − f(x)� ≤ 84(s + 1)d8sN−2s�dL−2s�d for any x ∈ [0,1]d�⌦([0,1]d,K, �),

where K = �N1�d�2�L2�d� and � is an arbitrary number in (0, 1

3K
].

We first prove Theorem 1.1 by assuming Theorems 2.1 and 2.2 are true. The proofs
of Theorems 2.1 and 2.2 can be found in Sections 3 and 4, respectively.

Proof of Theorem 1.1. We may assume �f�Cs([0,1]d) > 0 since �f�Cs([0,1]d) = 0 is a trivial

case. Define f̃ ∶= f�f�Cs([0,1]d) ∈ Cs
u
([0,1]d). Set K = �N1�d�2�L2�d� and choose a small

� ∈ (0, 1

3K
] such that

d ⋅ !
f̃
(�) ≤ N

−2s�d
L
−2s�d

.

Clearly, �@↵f̃�L∞([0,1]d) ≤ 1 for any ↵ ∈ Nd with �↵�1 ≤ s. By Theorem 2.2, there

exists a function �̂ implemented by a ReLU FNN with width 16sd+1d(N + 2) log
2
(8N)

and depth 18s2(L + 2) log
2
(4L) such that

��̂(x) − f̃(x)� ≤ 84(s + 1)d8sN−2s�dL−2s�d =∶ " for any x ∈ [0,1]d�⌦([0,1]d,K, �).

By Theorem 2.1, there exists a new function �̃ implemented by a ReLU FNN with width

3d�16sd+1d(N + 2) log
2
(8N) + 4� ≤ 17sd+13dd(N + 2) log

2
(8N)

and depth 18s2(L + 2) log
2
(4L) + 2d such that

��̃ − f̃�L∞([0,1]d) ≤ " + d ⋅ !
f̃
(�) = 84(s + 1)d8sN−2s�dL−2s�d + d ⋅ !

f̃
(�)

≤ 85(s + 1)d8sN−2s�dL−2s�d.

Finally, set � = �f�Cs([0,1]d) ⋅ �̃; then

�� − f�L∞([0,1]d) = �f�Cs([0,1]d) ⋅ ��̃ − f̃�L∞([0,1]d)
≤ 85(s + 1)d8s�f�Cs([0,1]d)N−2s�dL−2s�d,

and � can also be implemented by a ReLU FNN with width 17sd+13dd(N + 2) log
2
(8N)

and depth 18s2(L + 2) log
2
(4L) + 2d. So we finish the proof.

2.3 Optimality of Theorem 1.1

In this section, we will show that the approximation error in Theorem 1.1 is nearly
tight in terms of VC-dimension. The key is the VC-dimension upper bound of ReLU
FNNs in [22] will lead to a contradiction if our approximation is not optimal. This
idea was used in [44] to prove its tightness for ReLU FNNs of width O(d) and depth
su�ciently large to approximate smooth functions.

12



Let us first present the definitions of VC-dimension and related concepts. Let H be
a class of functions mapping from a general domain X to {0,1}. We say H shatters the
set {x1,x2,�,xm} ⊆ X if

���h(x1), h(x2),�, h(xm)�
T ∈ {0,1}m ∶ h ∈H�� = 2m,

where � ⋅ � means the size of a set. This equation means, given any ✓i ∈ {0,1} for i =
1,2,�,m, there exists h ∈ H such that h(xi) = ✓i for all i. For a general function set F
mapping from X to R, we say F shatters {x1,x2,�,xm} ⊆ X if T ○F does, where

T (t) ∶= �1, t ≥ 0,

0, t < 0
and T ○F ∶= {T ○ f ∶ f ∈F}.

For any m ∈ N+, we define the growth function of H as

⇧H(m) ∶= max
x1,x2,�,xm∈X ���h(x1), h(x2),�, h(xm)�

T ∈ {0,1}m ∶ h ∈H��.

Definition 2.3 (VC-dimension). Let H be a class of functions from X to {0,1}. The
VC-dimension of H, denoted by VCDim(H), is the size of the largest shattered set,
namely,

VCDim(H) ∶= sup �{0}��m ∈ N+ ∶ ⇧H(m) = 2m��.

Let F be a class of functions from X to R. The VC-dimension of F , denoted by
VCDim(F ), is defined by VCDim(F ) ∶= VCDim(T ○F ), where

T (t) ∶= �1, t ≥ 0,

0, t < 0
and T ○F ∶= {T ○ f ∶ f ∈F}.

In particular, the expression “VC-dimension of a network (architecture)” means the VC-
dimension of the function set that consists of all functions implemented by this network
(architecture).

Recall that Cs
u
([0,1]d) denotes the unit ball of Cs([0,1]d). Theorem 2.4 below shows

that the best possible approximation error of functions in Cs
u
([0,1]d) approximated by

functions in F is bounded by a formula characterized by VCDim(F ).

Theorem 2.4. Given any s, d ∈ N+, there exists a (small) positive constant Cs,d deter-
mined by s and d such that: For any " > 0 and a function set F with all elements defined
on [0,1]d, if VCDim(F ) ≥ 1 and

inf
�∈F �� − f�L∞([0,1]d) ≤ " for any f ∈ Cs

u
([0,1]d), (2.2)

then VCDim(F ) ≥ Cs,d "
−d�s. 4○

4○In fact, Cs,d can be expressed by s and d with a explicitly formula as we remark in the proof of
this theorem. However, the formula may be very complicated.

13



This theorem demonstrates the connection between the VC-dimension of F and
the approximation error using elements of F to approximate functions in Cs

u
([0,1]d).

To be precise, the best possible approximation error is controlled by VCDim(F )−s�d up
to a constant. It is shown in [22] that the VC-dimension of ReLU FNNs with a fixed
architecture with W parameters and L layers has an upper bound O(WL lnW ). It
follows that the VC-dimension of ReLU FNNs with width N and depth L is bounded
by O(N2L ⋅ L ⋅ ln(N2L)) ≤ O(N2L2 ln(NL)). That is, VCDim(F ) ≤ O(N2L2 ln(NL)),
where

F = NN (#input = d; width ≤ N ; depth ≤ L; #output = 1).

Hence, the approximation error of functions in Cs
u
([0,1]d), approximated by ReLU FNNs

with width N and depth L, has a lower bound

C(s, d) ⋅ �N2
L
2 ln(NL)�−s�d

for some positive constant C(s, d) determined by s and d. When the width and depth
become O(N lnN) and O(L lnL), respectively, the lower bound of the approximation
error becomes

C(s, d) ⋅ �N2
L
2(lnN)3(lnL)3�−s�d

for some positive constant C(s, d) determined by s and d. These two lower bounds mean
that our approximation errors in Theorem 1.1 and Corollary 1.2 are nearly optimal.

Now let us present the detailed proof of Theorem 2.4.

Proof of Theorem 2.4. To find a subset of F shattering O("−d�s) points in [0,1]d, we
divided the proof into two steps.

• Construct {f� ∶ � ∈X } ⊆ Cs
u
([0,1]d) that scatters O("−d�s) points, where X is a

function set defined later.

• Design �� ∈ F , for each � ∈ X , based on f� and Equation (2.2) such that {�� ∶
� ∈X } ⊆F also shatters O("−d�s) points.

The details of these two steps can be found below.

Step 1∶ Construct {f� ∶ � ∈X } ⊆ Cs
u
([0,1]d) that scatters O("−d�s) points.

Let K = O("−1�s) be an integer determined later and divide [0,1]d into Kd non-
overlapping sub-cubes {Q�}� as follows:

Q� ∶= �x = [x1, x2,�, xd]T ∈ [0,1]d ∶ xi ∈ [�i

K
,
�i+1
K
] for i = 1,2,�, d�

for any index vector � = [�1,�2,�,�d]T ∈ {0,1,�,K − 1}d.
There exists g̃ ∈ C∞(Rd) such that g̃(0) = 1 and g̃(x) = 0 for �x�2 ≥ 1�3. 5○ Then,

g ∶= g̃�C̃s,d ∈ Cs
u
([0,1]d) by setting C̃s,d ∶= �g̃�Cs([0,1]d) > 0.

Define
X ∶= �� ∶ � is a map from {0,1,�,K − 1}d to {−1,1}�

5○In fact, such a function g̃ is called “bump function”. An example can be attained by setting
g̃(x) = C exp( 1�3x�22−1) if �x�2 < 1�3 and g̃(x) = 0 if �x�2 ≥ 1�3, where C is a proper constant such that

g̃(0) = 1.

14



and
g� ∶=K

−s
g�K(x −xQ�

)� for each � ∈ {0,1,�,K − 1}d,
where xQ�

is the center of Q�.
Next, for each � ∈X , we can define f� via

f�(x) ∶= �
�∈{0,1,�,K−1}d

�(�)g�(x).

Then f� ∈ Cs
u
([0,1]d) for each � ∈X , since it satisfies the following two conditions.

• By the definition of g� and �, we have

�x ∶ �(�)g�(x) ≠ 0� ⊆ B(xQ�
,

1

3K
) ⊆ 2

3
Q� for each � ∈ {0,1,�,K − 1}d,

which implies that f� ∈ C∞([0,1]d).
• For any x ∈ Q�, � ∈ {0,1,�,K − 1}d, and ↵ ∈ Nd with �↵�1 ≤ s,

@
↵
f�(x) = �(�)@↵g�(x) =K

−s
�(�)K�↵�1@↵g�K(x −x�)�,

from which we deduce �@↵f�(x)� = �K−(s−�↵�1)@↵g�K(x −x�)�� ≤ 1.

It is easy to check that {f� ∶ � ∈ X } ⊆ Cs
u
([0,1]d) can shatter Kd = O("−d�s) points in

[0,1]d.

Step 2∶ Construct {�� ∶ � ∈X } that also scatters O("−d�s) points.

By Equation (2.2), for each � ∈X , there exists �� ∈F such that

��� − f��L∞([0,1]d) ≤ " + "�2.
Let µ(⋅) denote the Lebesgue measure of a set. Then, for each � ∈ X , there exists
H� ⊆ [0,1]d with µ(H�) = 0 such that

���(x) − f�(x)� ≤ 3

2
" for any x ∈ [0,1]d�H�.

Set H = ��∈X H�; then we have µ(H) = 0 and

���(x) − f�(x)� ≤ 3

2
" for any � ∈X and x ∈ [0,1]d�H. (2.3)

Clearly, there exists r ∈ (0,1) such that

g�(x) ≥ 1

2
g�(xQ�

) > 0 for any x ∈ rQ�,

where xQ�
is the center of Q�.

Note that (rQ�)�H is not empty, since µ�(rQ�)�H� > 0 for each �. Then, for any
� ∈X and � ∈ {0,1,�,K − 1}d, there exists x� ∈ (rQ�)�H such that

�f�(x�)� = �g�(x�)� ≥ 1

2
�g�(xQ�

)� = 1

2
K
−s

g(0) = 1

2
K
−s�C̃s,d ≥ 2", (2.4)

where the last inequality is attained by setting K = �(4"C̃s,d)−1�s�. Note that it is
necessary to verify K ≠ 0; we do this later in the proof.

15



By Equations (2.3) and (2.4), we have, for each � ∈ {0,1,�,K−1}d and each � ∈X ,

�f�(x�)� ≥ 2" > 3

2
" ≥ �f�(x�) − ��(x�)�,

implying f�(x�) and ��(x�) have the same sign. Then {�� ∶ � ∈X } shatters �x� ∶ � ∈
{0,1,�,K − 1}d� since {f� ∶ � ∈X } shatters �x� ∶ � ∈ {0,1,�,K − 1}d�. Hence,

VCDim(F ) ≥ VCDim�{�� ∶ � ∈X }� ≥K
d = �(4"C̃s,d)−1�s�d ≥ 2−d(4"C̃s,d)−d�s,

where the last inequality comes from the fact that �x� ≥ x�2 for any x ∈ [1,∞).
Finally, by setting

Cs,d = 2−d(4C̃s,d)−d�s = 2−d�4�g̃�Cs([0,1]d)�−d�s,
we have

VCDim(F ) ≥ 2−d(4"C̃s,d)−d�s = 2−d(4C̃s,d)−d�s"−d�s = Cs,d"
−d�s

and
K = �(4"C̃s,d)−1�s� = �"−1�s(4C̃s,d)−1�s� = �"−1�s(2dCs,d)1�d� ≥ 1,

where the last inequality comes from the assumption " ≤ (2dCs,d)s�d. Such an assumption
is reasonable since " > (2dCs,d)s�d is a trivial case, which implies

VCDim(F ) ≥ 1 ≥ 2−d = Cs,d�(2dCs,d)s�d�
−d�s
> Cs,d"

−d�s
.

So we finish the proof.

3 Proof of Theorem 2.1

Intuitively speaking, Theorem 2.1 shows that if a ReLU FNN can implement a
function g approximating the target function f well except for the trifling region, then
we can design a new ReLU network with a similar size to approximate f well on the
whole domain. For example, if g approximates a one-dimensional continuous function
f well except for a region in R with a su�ciently small measure �, then mid�g(x +
�), g(x), g(x − �)� can approximate f well on the whole domain, where mid(⋅, ⋅, ⋅) is a
function returning the middle value of three inputs and can be implemented via a ReLU
FNN as shown in Lemma 3.1. This key idea is called the horizontal shift (translation)
of g in this paper.

Lemma 3.1. The middle value function mid(x1, x2, x3) can be implemented by a ReLU
FNN with width 14 and depth 2.

Proof. Recall the fact that

x = �(x) − �(−x) and �x� = �(x) + �(−x) for any x ∈ R. (3.1)

Therefore,

max(x, y) = x + y + �x − y�
2

= 1

2
�(x + y) − 1

2
�(−x − y) + 1

2
�(x − y) + 1

2
�(−x + y),

(3.2)

16



x1

x2

x3

�(x1 + x2)

�(�x1 � x2)

�(x1 � x2)

�(�x1 + x2)

�(x3)

�(�x3)

�
�
max(x1, x2) + x3

�

�
�

� max(x1, x2) � x3

�

�
�
max(x1, x2) � x3

�

�
�

� max(x1, x2) + x3

�

max
�
max(x1, x2), x3

�
= max(x1, x2, x3)

Figure 3: An illustration of the network architecture implementing max(x1, x2, x3) based
on Equations (3.1) and (3.2).

for any x, y ∈ R. Thus, max(x1, x2, x3) can be implemented by the network shown in
Figure 3.

Clearly,
max(x1, x2, x3) ∈ NN (#input = 3; widthvec = [6,4]).

Similarly, we have

min(x1, x2, x3) ∈ NN (#input = 3; widthvec = [6,4]).

It is easy to check that

mid(x1, x2, x3) = x1 + x2 + x3 −max(x1, x2, x3) −min(x1, x2, x3)
= �(x1 + x2 + x3) − �(−x1 − x2 − x3) −max(x1, x2, x3) −min(x1, x2, x3).

Hence,
mid(x1, x2, x3) ∈ NN (#input = 3; widthvec = [14,10]).

That is, mid(x1, x2, x3) can be implemented by a ReLU FNN with width 14 and depth
2. So we finish the proof.

The next lemma shows a simple but useful property of the mid(x1, x2, x3) function
that helps to exclude poor approximation in the trifling region.

Lemma 3.2. For any " > 0, if at least two elements of {x1, x2, x3} are in B(y, "), then
mid(x1, x2, x3) ∈ B(y, ").

Proof. Without loss of generality, we may assume x1, x2 ∈ B(y, ") and x1 ≤ x2. Then the
proof can be divided into three cases.

1. If x3 < x1, then x3 < x1 ≤ x2, implying mid(x1, x2, x3) = x1 ∈ B(y, ").

2. If x1 ≤ x3 ≤ x2, then mid(x1, x2, x3) = x3 ∈ B(y, ") since y − " ≤ x1 ≤ x3 ≤ x2 ≤ y + ".

3. If x2 < x3, then x1 ≤ x2 < x3, implying mid(x1, x2, x3) = x2 ∈ B(y, ").

So we finish the proof.

17



Next, given a function g approximating f well on [0,1] except for the trifling region,
Lemma 3.3 below shows how to use the mid(x1, x2, x3) function to construct a new
function � uniformly approximating f well on [0,1], leveraging the useful property of
mid(x1, x2, x3) in Lemma 3.2.

Lemma 3.3. Given any " > 0, K ∈ N+, and � ∈ (0, 1

3K
], assume f ∈ C([0,1]) and

g ∶ R→ R is a general function with

�g(x) − f(x)� ≤ ", i.e., g(x) ∈ B�f(x), "� for any x ∈ [0,1]�⌦([0,1],K, �). (3.3)

Then
��(x) − f(x)� ≤ " + !f(�) for any x ∈ [0,1],

where
�(x) ∶=mid�g(x − �), g(x), g(x + �)� for any x ∈ R.

Proof. Divide [0,1] into K small intervals denoted by Qk = [ kK ,
k+1
K
] for k = 0,1,�,K −1.

For each k ∈ {0,1,�,K − 1}, we further divide Qk into four small closed intervals as
shown in Figure 4, i.e.,

Qk = Qk,1�Qk,2�Qk,3�Qk,4,

where Qk,1 = [ kK ,
k

K
+ �], Qk,2 = [ kK + �,

k+1
K
− 2�], Qk,3 = [k+1K

− 2�, k+1
K
− �], and Qk,4 =

[k+1
K
− �, k+1

K
].

�

Qk,1

1/K � 3�

Qk,2

�

Qk,3

�

Qk,4

k

K

k

K
+ �

k+1
K

� 2� k+1
K

� �
k+1
K

Figure 4: An illustration of Qk,i for i = 1,2,3,4.

It is easy to verify that

• Qk,i ⊆ [0,1]�⌦([0,1],K, �) for k = 0,1,�,K − 1 and i = 1,2,3;

• QK−1,4 ⊆ [0,1]�⌦([0,1],K, �).

To estimate the di↵erence between �(x) and f(x), we consider the following four
cases of x in [0,1] for each k ∈ {0,1,�,K − 1}.

Case 1∶ x ∈ Qk,1.

If x ∈ Qk,1, then x ∈ [0,1]�⌦([0,1],K, �) and

x + � ∈ Qk,2�Qk,3 ⊆ [0,1]�⌦([0,1],K, �).

It follows from Equation (3.3) that

g(x) ∈ B�f(x), "� ⊆ B�f(x), " + !f(�)�

and
g(x + �) ∈ B�f(x + �), "� ⊆ B�f(x), " + !f(�)�.

18



By Lemma 3.2, we get

mid�g(x − �), g(x), g(x + �)� ∈ B�f(x), " + !f(�)�.

Case 2∶ x ∈ Qk,2.

If x ∈ Qk,2, then

x − �, x, x + � ∈ Qk,1�Qk,2�Qk,3 ⊆ [0,1]�⌦([0,1],K, �).

It follows from Equation (3.3) that

g(x − �) ∈ B�f(x − �), "� ⊆ B�f(x), " + !f(�)�,

g(x) ∈ B�f(x), "� ⊆ B�f(x), " + !f(�)�,
and

g(x + �) ∈ B�f(x + �), "� ⊆ B�f(x), " + !f(�)�.
Then, by Lemma 3.2, we have

mid�g(x − �), g(x), g(x + �)� ∈ B�f(x), " + !f(�)�.

Case 3∶ x ∈ Qk,3.

If x ∈ Qk,3, then x ∈ [0,1]�⌦([0,1],K, �) and

x − � ∈ Qk,1�Qk,2 ⊆ [0,1]�⌦([0,1],K, �).

It follows from Equation (3.3) that

g(x) ∈ B�f(x), "� ⊆ B�f(x), " + !f(�)�

and
g(x − �) ∈ B�f(x − �), "� ⊆ B�f(x), " + !f(�)�.

By Lemma 3.2, we get

mid�g(x − �), g(x), g(x + �)� ∈ B�f(x), " + !f(�)�.

Case 4∶ x ∈ Qk,4.

If x ∈ Qk,4, we can divide this case into two sub-cases.

• If k ∈ {0,1,�,K − 2}, then x − � ∈ Qk,3 ∈ [0,1]�⌦([0,1],K, �) and x + � ∈ Qk+1,1 ⊆
[0,1]�⌦([0,1],K, �). It follows from Equation (3.3) that

g(x − �) ∈ B�f(x − �), "� ⊆ B�f(x), " + !f(�)�

and
g(x + �) ∈ B�f(x + �), "� ⊆ B�f(x), " + !f(�)�.

By Lemma 3.2, we get

mid�g(x − �), g(x), g(x + �)� ∈ B�f(x), " + !f(�)�.

19



• If k = K − 1, then x ∈ Qk,4 = QK−1,4 ⊆ [0,1]�⌦([0,1],K, �) and x − � ∈ Qk,3 ⊆
[0,1]�⌦([0,1],K, �). It follows from Equation (3.3) that

g(x) ∈ B�f(x), "� ⊆ B�f(x), " + !f(�)�

and
g(x − �) ∈ B�f(x − �), "� ⊆ B�f(x), " + !f(�)�.

By Lemma 3.2, we get

mid�g(x − �), g(x), g(x + �)� ∈ B�f(x), " + !f(�)�.

Since [0,1] = �K−1
k=0 ��4

i=1 Qk,i�, we have

mid�g(x − �), g(x), g(x + �)� ∈ B�f(x), " + !f(�)� for any x ∈ [0,1].

Recall that �(x) =mid�g(x − �), g(x), g(x + �)�. Then we have

��(x) − f(x)� ≤ " + !f(�) for any x ∈ [0,1].

So we finish the proof.

The next lemma below extend Lemma 3.3 to the multidimensional case.

Lemma 3.4. Given any " > 0, K ∈ N+, and � ∈ (0, 1

3K
], assume f ∈ C([0,1]d) and

g ∶ Rd → R is a general function with

�g(x) − f(x)� ≤ ", i.e., g(x) ∈ B�f(x), "� for any x ∈ [0,1]d�⌦([0,1]d,K, �).

Then
��(x) − f(x)� ≤ " + d ⋅ !f(�) for any x ∈ [0,1]d,

where � ∶= �d is defined by induction through

�i+1(x) ∶=mid��i(x − �ei+1),�i(x),�i(x + �ei+1)� for i = 0,1,�, d − 1, (3.4)

where �0 = g and {ei}di=1 is the standard basis in Rd.

Proof. For ` = 0,1,�, d, we define

E` ∶= �x = [x1, x2,�, xd]T ∶ xi ∈ � [0,1], if i≤`,[0,1]�⌦([0,1],K,�), if i>` �.

Clearly, E0 = [0,1]d�⌦([0,1]d,K, �) and Ed = [0,1]d. See Figure 5 for the illustrations of
E` for ` = 0,1,�, d when K = 4 and d = 2.

We would like to construct a sequence of functions �0,�1,�,�d by induction, based
on Equation (3.4), such that, for each ` ∈ {0,1,�, d},

�`(x) ∈ B�f(x), " + ` ⋅ !f(�)� for any x ∈ E`. (3.5)

20



0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

E` for ` = 0

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

E` for ` = 1

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

E` for ` = 2

Figure 5: Illustrations of E` for ` = 0,1,2 when K = 4 and d = 2.

Let us first consider the case ` = 0. Note that �0 = g, E0 = [0,1]d�⌦([0,1]d,K, �),
and �g(x) − f(x)� ≤ " for any x ∈ [0,1]d�⌦([0,1]d,K, �). Then we have

�0(x) = g(x) ∈ B�f(x), "� for any x ∈ E0.

That is, Equation (3.5) is true for ` = 0.
Now assume Equation (3.5) is true for ` = i. We will prove that it also holds for

` = i + 1. By the hypothesis of induction, we have

�i(x1,�, xi, t, xi+2,�, xd) ∈ B�f(x1,�, xi, t, xi+2,�, xd), " + i ⋅ !f(�)� (3.6)

for any x1,�, xi ∈ [0,1] and t, xi+2,�, xd ∈ [0,1]�⌦([0,1],K, �).
For fixed x1,�, xi ∈ [0,1] and xi+2,�, xd ∈ [0,1]�⌦([0,1],K, �), denote

x[i] ∶= [x1,�, xi, xi+2,�, xd]T ∈ [0,1]d−1.
Then define

 x[i](t) ∶= �i(x1,�, xi, t, xi+2,�, xd) for any t ∈ R
and

fx[i](t) ∶= f(x1,�, xi, t, xi+2,�, xd) for any t ∈ R.

It follows from Equation (3.6) that

 x[i](t) ∈ B�fx[i](t), " + i ⋅ !f(�)� for any t ∈ [0,1]�⌦([0,1],K, �).

Then by Lemma 3.3 (set g =  x[i] and f = fx[i] therein), we get, for any t ∈ [0,1],

mid� x[i](t − �), x[i](t), x[i](t + �)� ∈ B�fx[i](t), " + i ⋅ !f(�) + !f
x[i](�)�

⊆ B�fx[i](t), " + (i + 1)!f(�)�.

That is, for any xi+1 = t ∈ [0,1],

mid��i(x1,�, xi, xi+1 − �, xi+2,�, xd),�i(x1,�, xd),�i(x1,�, xi, xi+1 + �, xi+2,�, xd)�

∈ B�f(x1,�, xd), " + (i + 1)!f(�)�.

21



Note that x1,�, xi ∈ [0,1], xi+1 = t ∈ [0,1], and xi+2,�, xd ∈ [0,1]�⌦([0,1],K, �) are
arbitrary. Thus, for any x ∈ Ei+1, we have

mid��i(x − �ei+1),�i(x),�i(x + �ei+1)� ∈ B�f(x), " + (i + 1)!f(�)�,

which implies

�i+1(x) ∈ B�f(x), " + (i + 1)!f(�)� for any x ∈ Ei+1.
So Equation (3.5) is true for ` = i+1, which means we finish the process of mathematical
induction.

By the principle of induction, we have

�(x) ∶= �d(x) ∈ B�f(x), " + d ⋅ !f(�)� for any x ∈ Ed = [0,1]d.

Therefore,
��(x) − f(x)� ≤ " + d ⋅ !f(�) for any x ∈ [0,1]d,

which means we finish the proof.

With Lemma 3.4 in hand, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Set �0 = �̃ and define �i for i ∈ {1,2,�, d} by induction as follows:

�i+1(x) ∶=mid��i(x − �ei+1),�i(x),�i(x + �ei+1)� for i = 0,1,�, d − 1,

where {ei}di=1 is the standard basis in Rd. Then by Lemma 3.4 with � = �d, we have

��(x) − f(x)� ≤ " + d ⋅ !f(�) for any x ∈ [0,1]d.

It remains to determine the network architecture implementing � = �d. Clearly, �0 = �̃ ∈
NN (width ≤ N ; depth ≤ L) implies

�0(⋅ − �e1),�0(⋅),�0(⋅ + �e1) ∈ NN (width ≤ N ; depth ≤ L).

By defining a vector-valued function �0 ∶ Rd → R3 as

�0(x) ∶= ��0(x − �e1),�0(x),�0(x + �e1)� for any x ∈ Rd,

we have �0 ∈ NN (#input = d; width ≤ 3N ; depth ≤ L; #output = 3). Recall that
mid(⋅, ⋅, ⋅) ∈ NN (width ≤ 14; depth ≤ 2) by Lemma 3.1. Therefore, �1 = min(⋅, ⋅, ⋅) ○�0

can be implemented by a ReLU FNN with width max{3N,14} ≤ 3(N + 4) and depth
L + 2. Similarly, � = �d can be implemented by a ReLU FNN with width 3d(N + 4) and
depth L + 2d. So we finish the proof.

4 Proof of Theorem 2.2

In this section, we prove Theorem 2.2, a weaker version of the main theorem of
this paper (Theorem 1.1) targeting a ReLU FNN constructed to approximate a smooth
function outside the trifling region. The main idea is to construct ReLU FNNs through
Taylor expansions of smooth functions. We first discuss the proof sketch in Section 4.1
and give the detailed proof in Section 4.2.

22



4.1 Proof sketch of Theorem 2.2

Set K = O(N2�dL2�d) and let ⌦([0,1]d,K, �) partition [0,1]d into Kd cubes Q�

for � ∈ {0,1,�,K − 1}d. As we shall see later, the introduction of the trifling region
⌦([0,1]d,K, �) can reduce the di�culty in constructing ReLU FNNs to achieve the op-
timal approximation error simultaneously in width and depth, since it is only required
to uniformly control the approximation error outside the trifling region and there is
no requirement for the ReLU FNN inside the trifling region. In particular, for each
� = [�1,�2,�,�d]T ∈ {0,1,�,K − 1}d, we define x� ∶= ��K and

Q� ∶= �x = [x1, x2,�, xd]T ∶ xi ∈ [�i

K
,
�i+1
K
− � ⋅ 1{�i≤K−2}] for i = 1,2,�, d�.

Clearly, [0,1]d = ⌦([0,1]d,K, �)� � ∪�∈{0,1,�,K−1}d Q�� and x� is the vertex of Q� with
minimum � ⋅ �1 norm. See Figure 6 for the illustrations of Q� and x�.

0.00 0.25 0.50 0.75 1.00

�

Q0

�

Q1

�

Q2 Q3

�([0, 1]d, K, �) for K = 4, d = 1

Q� for � � {0, 1, 2, 3}
x� for � � {0, 1, 2, 3}

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q0,1 Q0,2 Q0,3

Q1,0 Q1,1 Q1,2 Q1,3

Q2,0 Q2,1 Q2,2 Q2,3

Q3,0 Q3,1 Q3,2 Q3,3

�([0, 1]d, K, �) for K = 4, d = 2

Q� for � � {0, 1, 2, 3}2

x� for � � {0, 1, 2, 3}2

(b)

Figure 6: Illustrations of ⌦([0,1]d,K, �), Q�, and x� for � ∈ {0,1,�,K − 1}d. (a) K = 4
and d = 1. (b) K = 4 and d = 2.

For any � ∈ {0,1,�,K − 1}d and x ∈ Q�, there exists ⇠x ∈ (0,1) such that

f(x) = ��↵�1≤s−1
@
↵
f(x�)
↵!

h↵

�����������������������������������������������������������������������������������������������������
T1

+ ��↵�1=s
@
↵
f(x�+⇠xh)

↵!
h↵

���������������������������������������������������������������������������������������������������������������������
T2

=∶ T1 +T2,
6○ (4.1)

where h(x) = x −x� = x −��K. Clearly, the magnitude of T2 is bounded by O(K−s) =
O(N−2s�dL−2s�d). So we only need to construct a ReLU FNN with width O(N lnN) and
depth O(L lnL) to approximate

T1 = ��↵�1≤s−1
@
↵
f(x�)
↵!

h↵

within an error O(N−2s�dL−2s�d). To approximate T1 well by ReLU FNNs, we need three
key steps as follows.

6○
∑�↵�1=s is short for ∑�↵�1=s,↵∈Nd . The same notation is used throughout this paper.

23



(i) Construct a ReLU FNN to implement a function P↵ ∶ Rd → R approximating the
polynomial h↵ well for each ↵ ∈ Nd with �↵�1 ≤ s − 1.

(ii) Construct a ReLU FNN to implement a vector-valued function  ∶ Rd → Rd pro-
jecting the whole cube Q� to a point x� = �

K
, i.e.,  (x) = x� for any x ∈ Q� and

each � ∈ {0,1,�,K − 1}d.

(iii) Construct a ReLU FNN to implement a function �↵ ∶ Rd → R approximating @↵f

via solving a point fitting problem, i.e., �↵ should fit @↵f well at all points in
�x� ∶ � ∈ {0,1,�,K − 1}d� for each ↵ ∈ Nd with �↵�1 ≤ s − 1. That is, for each
↵ ∈ Nd with �↵�1 ≤ s − 1, we need to design �↵ satisfying

��↵(x�) − @↵f(x�)� ≤ O(N−2s�dL−2s�d) for any � ∈ {0,1,�,K − 1}d. (4.2)

We will establish three propositions corresponding to these three steps above. They
will be applied to support the construction of the desired ReLU FNNs. Their proofs will
be available in Section 5.

First, we establish a general proposition, Proposition 4.1 below, showing how to use
ReLU FNNs to approximate multivariate polynomials. With Proposition 4.1 in hand,
Step (i) is straightforward.

Proposition 4.1. Assume P (x) = x↵ = x
↵1
1

x
↵2
2
�x

↵d
d

for ↵ ∈ Nd with �↵�1 ≤ k ∈ N+.
For any N,L ∈ N+, there exists a function � implemented by a ReLU FNN with width
9(N + 1) + k − 1 and depth 7k2L such that

��(x) − P (x)� ≤ 9k(N + 1)−7kL for any x ∈ [0,1]d.

Proposition 4.1 shows that ReLU FNNs with width O(N) and depth O(L) are
able to approximate polynomials with an error O(N−L). This reveals the power of
depth in ReLU FNNs for approximating polynomials, from the perspective of function
compositions. The starting point of a good approximation of functions is to approximate
polynomials with high accuracy. In classical approximation theory, the approximation
power of any numerical scheme depends on the degree of polynomials that can be locally
reproduced. Being able to approximate polynomials by ReLU FNNs with high accuracy
plays a vital role in the proof of Theorem 1.1. It is interesting to study whether there
is any other function space with reasonable size, besides polynomial space, having an
exponential error O(N−L) when approximated by ReLU FNNs. Obviously, the space of
smooth functions is too big due to the optimality of Theorem 1.1 as shown in Section 2.3.

Proposition 4.1 can be generalized to the case of polynomials defined on an arbitrary
hypercube [a, b]d. Let us give an example for the polynomial xy below. Its proof will be
provided later in Section 5.1.

Lemma 4.2. For any N,L ∈ N+ and a, b ∈ R with a < b, there exists a function �

implemented by a ReLU FNN with width 9N + 1 and depth L such that

��(x, y) − xy� ≤ 6(b − a)2N−L for any x, y ∈ [a, b].

24



Second, our goal is to construct a step function mapping x ∈ Q� to x� = �
K

for any
� ∈ {0,1,�,K − 1}d. We only need to approximate one-dimensional step functions, be-
cause in the multidimensional case we can simply set  (x) = [ (x1), (x2),�, (xd)]T ,
where  is a one-dimensional step function. Therefore, to implement Step (ii), we
need to construct ReLU FNNs with width O(N) and depth O(L) to approximate one-
dimensional step functions with O(K) = O(N2�dL2�d) “steps” as shown in Proposition 4.3
below.

Proposition 4.3. For any N,L, d ∈ N+ and � ∈ (0, 1

3K
] with K = �N1�d�2�L2�d�, there

exists a one-dimensional function � implemented by a ReLU FNN with width 4�N1�d�+3
and depth 4L + 5 such that

�(x) = k if x ∈ [ k
K

,
k+1
K
− � ⋅ 1{k≤K−2}] for k = 0,1,�,K − 1.

Next, the aim of Step (iii) is to construct �↵ implemented by a ReLU FNN such that
Equation (4.2) holds for each ↵. To this end, we establish a proposition, Proposition 4.4
below, to show that ReLU FNNs with width O(sN lnN) and depth O(L lnL) can be
constructed to fit N2L2 points within an error N−2sL−2s.
Proposition 4.4. Given any N,L, s ∈ N+ and ⇠i ∈ [0,1] for i = 0,1,�,N2L2 − 1, there
exists a function � implemented by a ReLU FNN with width 16s(N + 1) log

2
(8N) and

depth 5(L + 2) log
2
(4L) such that

(i) ��(i) − ⇠i� ≤ N−2sL−2s for i = 0,1,�,N2L2 − 1;

(ii) 0 ≤ �(x) ≤ 1 for any x ∈ R.

The proofs of Propositions 4.1, 4.3, and 4.4 can be found in Sections 5.1, 5.2, and
5.3, respectively. The main ideas of proving Theorem 1.1 are summarized in Table 2.

Table 2: A list of sub-networks for approximating smooth functions. Recall that h =
x − (x) = x −x� for x ∈ Q�.

target function function implemented by network width depth approximation error

step function  (x) O(N) O(L) no error outside ⌦([0,1]d,K, �)
x1x2 '(x1, x2) O(N) O(L) E1 = 216(N + 1)−2s(L+1)
h↵ P↵(h) O(N) O(L) E2 = 9s(N + 1)−7sL

@↵f( (x)) �↵( (x)) O(N lnN) O(L lnL) E3 = 2N−2sL−2s

∑�↵�≤s−1
@
↵
f( (x))
↵!

h↵ ∑�↵�≤s−1'�
�↵( (x))

↵!
, P↵(h)� O(N lnN) O(L lnL) O(E1 + E2 + E3)

f(x) �(x) ∶= ∑�↵�≤s−1'�
�↵( (x))

↵!
, P↵(x − (x))� O(N lnN) O(L lnL) O(�h�−s

2
+ E1 + E2 + E3)

≤ O(K−s) = O(N−2s�dL−2s�d)

Finally, we would like to compare our analysis with that in [46]. Both [46] and our
analysis rely on local Taylor expansions as in Equation (4.1) to approximate the target
function f . Both analysis methods construct ReLU FNNs to approximate polynomials
and encode the Taylor expansion coe�cients into ReLU FNNs. However, the way to lo-
calize the Taylor expansion (i.e., defining the local neighborhood such that the expansion
is valid) and the approach to constructing ReLU FNNs are di↵erent. We will discuss the
details as follows.

25



Localization. In [46], a “two-scale” partition procedure and a standard triangula-
tion divide [0,1]d into simplexes and a partition of unity is constructed using compactly
supported functions that are linear on each simplex, which implies that these functions
in the partition of unity can be represented by ReLU FNNs. Taylor expansions of f

are constructed within each support of the functions in the partition of unity. In this
paper, we simply divide the domain into small hypercubes of uniform size as visualized
in Figure 6. Taylor expansions of f are constructed within each hypercube. The reader
can understand our approach as a simple way to construct a partition of unity using
piecewise constant functions with binary values. The introduction of the trifling region
allows us to simply construct ReLU FNNs to approximate these piecewise constant func-
tions without caring about the approximation error within the trifling region. Hence, our
construction can be much simplified and makes it easy to estimate all constant prefactors
in our error estimates, which is challenging in [46].

ReLU FNNs for Taylor expansions. In [46], very deep ReLU FNNs with width
O(1) are constructed to approximate polynomials in local Taylor expansions, and hence,
the optimal approximation error in width was not explored in [46]. In this paper, we
construct ReLU FNNs with arbitrary width and depth to approximate polynomials in
local Taylor expansions using Proposition 4.1, which allows us to explore the optimal
approximation error in width and is more challenging. In [46], the coe�cients of adjacent
local Taylor expansions, i.e., @↵f in Equation (4.1), are encoded into ReLU FNNs via bit
extraction, which is the key to achieving a better approximation error of ReLU FNNs to
approximate f than the original local Taylor expansions, since the number of coe�cients
can be significantly reduced via encoding. Actually, the error in depth by bit extraction
is nearly optimal. In this paper, the approximation to @↵f is reduced to a point fitting
problem that can be solved by constructing ReLU FNNs using bit extraction as sketched
out in the previous paragraphs. Hence, we can also achieve the optimal approximation
error in depth. The key to achieving the optimal approximation error in width in the
above approximation is the application of Lemma 5.4 that essentially fits O(N2) samples
with ReLU FNNs of width O(N) and depth 2. Due to the simplicity of our analysis, we
can construct ReLU FNNs with arbitrary width and depth to approximate f and specify
all constant prefactors in our approximation error.

4.2 Constructive proof

According to the key ideas of proving Theorem 2.2 summarized in Section 4.1, let
us present the detailed proof.

Proof of Theorem 2.2. The detailed proof can be divided into four steps as follows.

Step 1∶ Set up.

Set K = �N1�d�2�L2�d� and let ⌦([0,1]d,K, �) partition [0,1]d into Kd cubes Q� for
� ∈ {0,1,�,K − 1}d. In particular, for each � = [�1,�2,�,�d]T ∈ {0,1,�,K − 1}d, we
define x� ∶= ��K and

Q� ∶= �x = [x1, x2,�, xd]T ∶ xi ∈ [�i

K
,
�i+1
K
− � ⋅ 1{�i≤K−2}] for i = 1,2,�, d�.

Clearly, [0,1]d = ⌦([0,1]d,K, �)� � ∪�∈{0,1,�,K−1}d Q�� and x� is the vertex of Q� with
minimum � ⋅ �1 norm. See Figure 6 for the illustrations of Q� and x�.

26



By Proposition 4.3, there exists  ∈ NN (width ≤ 4N + 3; depth ≤ 4N + 5) such that

 (x) = k if x ∈ [ k
K

,
k+1
K
− � ⋅ 1{k≤K−2}] for k = 0,1,�,K − 1.

Then for each � ∈ {0,1,�,K − 1}d,  (xi) = �i for all x ∈ Q� for i = 1,2,�, d.
Define

 (x) ∶= � (x1), (x2),�, (xd)�
T �K for any x ∈ [0,1]d,

then
 (x) = ��K = x� if x ∈ Q� for � ∈ {0,1,�,K − 1}d.

For any x ∈ Q� and � ∈ {0,1,�,K − 1}d, by the Taylor expansion, there exists
⇠x ∈ (0,1) such that

f(x) = ��↵�1≤s−1
@
↵
f( (x))
↵!

h↵ + ��↵�1=s
@
↵
f( (x)+⇠xh)

↵!
h↵

, where h = x − (x).

Step 2∶ Construct the desired function �.

By Lemma 4.2, there exists

' ∈ NN �width ≤ 9(N + 1) + 1; depth ≤ 2s(L + 1)�

such that

�'(x1, x2) − x1x2� ≤ 216(N + 1)−2s(L+1) =∶ E1 for any x1, x2 ∈ [−3,3]. (4.3)

For each ↵ ∈ Nd with �↵�1 ≤ s, by Proposition 4.1, there exists

P↵ ∈ NN �width ≤ 9(N + 1) + s − 1; depth ≤ 7s2L�

such that
�P↵(x) −x↵� ≤ 9s(N + 1)−7sL =∶ E2 for any x ∈ [0,1]d. (4.4)

For each i ∈ {0,1,�,Kd − 1}, define

⌘(i) = [⌘1, ⌘2,�, ⌘d]T ∈ {0,1,�,K − 1}d

such that∑d

j=1 ⌘jKj−1 = i. Such a map ⌘ is a bijection from {0,1,�,Kd−1} to {0,1,�,K−
1}d. For each ↵ ∈ Nd with �↵�1 ≤ s − 1, define

⇠↵,i = �@↵f(⌘(i)
K
) + 1��2 for i ∈ {0,1,�,K

d − 1}.

Then �@↵f�L∞([0,1]d) ≤ 1 implies ⇠↵,i ∈ [0,1] for i = 0,1,�,Kd − 1 and each ↵. Note that

Kd = ��N1�d�2�L2�d��d ≤ N2L2. By Proposition 4.4, there exists

�̃↵ ∈ NN �width ≤ 16s(N + 1) log
2
(8N); depth ≤ 5(L + 2) log

2
(4L)�

such that, for each ↵ ∈ Nd with �↵�1 ≤ s − 1, we have

��̃↵(i) − ⇠↵,i� ≤ N
−2s

L
−2s for i = 0,1,�,K

d − 1.

27



For each ↵ ∈ Nd with �↵�1 ≤ s − 1, define

�↵(x) ∶= 2�̃↵�
d

�
j=1

xjK
j−1� − 1 for any x = [x1, x2,�, xd]T ∈ Rd.

It is easy to verify that

�↵ ∈ NN �width ≤ 16s(N + 1) log
2
(8N); depth ≤ 5(L + 2) log

2
(4L)�.

Then, for each ↵ ∈ Nd with �↵�1 ≤ s−1 and each ⌘ = ⌘(i) = [⌘1, ⌘2,�, ⌘d]T ∈ {0,1,�,K −
1}d corresponding to i = ∑d

j=1 ⌘jKj−1 ∈ {0,1,�,Kd − 1}, we have

��↵( ⌘K ) − @
↵
f( ⌘

K
)� = �2�̃↵�

d

�
j=1
⌘jK

j−1� − 1 − (2⇠↵,i − 1)�

= 2��̃↵(i) − ⇠↵,i� ≤ 2N−2sL−2s.
Therefore, for each � ∈ {0,1,�,K − 1}d and each ↵ ∈ Nd with �↵�1 ≤ s − 1, we have

��↵(x�) − @↵f(x�)� = ��↵( �K ) − @
↵
f( �

K
)� ≤ 2N−2sL−2s =∶ E3. (4.5)

Now we can construct the desired function � as

�(x) ∶= ��↵�1≤s−1
'��↵( (x))

↵!
, P↵�x − (x)�� for any x ∈ Rd. (4.6)

It remains to estimate the approximation error and determine the size of the network
implementing �.

Step 3∶ Estimate approximation error.

Fix � ∈ {0,1,�,K − 1}d, let us estimate the approximation error for a fixed x ∈ Q�.
See Table 2 for a summary of the approximation errors. Recall that  (x) = x� and
h = x − (x) = x −x�. It is easy to check that �f(x) − �(x)� is bounded by

�����������
��↵�1≤s−1

@
↵
f( (x))
↵!

h↵ + ��↵�1=s
@
↵
f( (x)+⇠xh)

↵!
h↵ − ��↵�1≤s−1

'��↵( (x))
↵!

, P↵�x − (x)��
�����������

≤ ��↵�1=s
�@

↵
f(x�+⇠xh)

↵!
h↵�

�������������������������������������������������������������������������������������������������������������������������������
I1

+ ��↵�1≤s−1
�@

↵
f(x�)
↵!

h↵ −'��↵(x�)
↵!

, P↵(h)��

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
I2

=∶I1 +I2.

Recall the fact that

��↵�1=s
1 = ��↵ ∈ Nd ∶ �↵�1 = s�� ≤ (s + 1)d−1 7○

and

��↵�1≤s−1
1 =

s−1
�
i=0
� ��↵�1=i

1� ≤
s−1
�
i=0
(i + 1)d−1 ≤ s ⋅ (s − 1 + 1)d−1 = s

d
.

7○In fact, we have ��↵ ∈ Nd
∶ �↵�1 = s�� = �

s+d−1
d−1 �, implying (s�d+ 1)d−1 ≤ ∑�↵�1=s 1 ≤ (s+ 1)d−1. Thus,

the lower bound of the estimate is still exponentially large in d. To the best of our knowledge, we cannot
avoid a constant prefactor that is exponentially large in d when Taylor expansion is used in the analysis.

28



For the first part I1, we have

I1 = ��↵�1=s
�@

↵
f(x�+⇠xh)

↵!
h↵� ≤ ��↵�1=s

� 1↵!
h↵� ≤ (s + 1)d−1K−s.

For the second part I2, we have

I2 = ��↵�1≤s−1
�@

↵
f(x�)
↵!

h↵ −'��↵(x�)
↵!

, P↵(h)��
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

I2(↵)
=∶ ��↵�1≤s−1

I2(↵).

Fix ↵ ∈ Nd with �↵�1 ≤ s − 1, we have

I2(↵) = �@
↵
f(x�)
↵!

h↵ −'��↵(x�)
↵!

, P↵(h)��

≤ �@
↵
f(x�)
↵!

h↵ −'�@
↵
f(x�)
↵!

, P↵(h)��
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

I2,1(↵)
+ �'�@

↵
f(x�)
↵!

, P↵(h)� −'��↵(x�)
↵!

, P↵(h)��
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

I2,2(↵)
=∶I2,1(↵) +I2,2(↵).

Note that E2 = 9s(N + 1)−7sL ≤ 9s(2)−7s ≤ 2. By h↵ ∈ [0,1] and Equation (4.4), we
have P↵(h) ∈ [−2,3] ⊆ [−3,3]. Then by @↵f(x�) ∈ [−1,1] and Equations (4.3) and (4.4),
we have

I2,1(↵) = �@
↵
f(x�)
↵!

h↵ −'�@
↵
f(x�)
↵!

, P↵(h)��

≤ �@
↵
f(x�)
↵!

h↵ − @
↵
f(x�)
↵!

P↵(h)� + �@
↵
f(x�)
↵!

P↵(h) −'�@
↵
f(x�)
↵!

, P↵(h)��
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������≤ E1 by Eq. (4.3)

≤ 1

↵!
�h↵ − P↵(h)�
���������������������������������������������������������������≤ E2 by Eq. (4.4)

+E1 ≤ 1

↵!
E2 + E1 ≤ E1 + E2.

To estimate I2,2(↵), we need the following fact derived from Equation (4.3):

�'(x1, x2) −'(x̃1, x2)� ≤ �'(x1, x2) − x1x2�
������������������������������������������������������������������������������������������������≤ E1 by Eq. (4.3)

+ �'(x̃1, x2) − x̃1x2�
������������������������������������������������������������������������������������������������≤ E1 by Eq. (4.3)

+�x1x2 − x̃1x2�

≤ 2E1 + 3�x1 − x̃1�,
(4.7)

for any x1, x̃1, x2 ∈ [−3,3].
Since E3 = 2N−2sL−2s ≤ 2 and @↵f(x�) ∈ [−1,1], we have �↵(x�) ∈ [−3,3] by

Equation (4.5). Then by P↵(h) ∈ [−3,3] and Equations (4.7) and (4.5), we have

I2,2(↵) = �'�@
↵
f(x�)
↵!

, P↵(h)� −'��↵(x�)
↵!

, P↵(h)��

≤ 2E1 + 3 �@
↵
f(x�)
↵!

− �↵(x�)
↵!
�

�������������������������������������������������������������������������������������������������≤ E3 by Eq. (4.5)

≤ 2E1 + 3E3.

29



Therefore, we get

�f(x) − �(x)� ≤I1 +I2 ≤I1 + ��↵�1≤s−1
I2(↵) ≤I1 + ��↵�1≤s−1

�I2,1(↵) +I2,2(↵)�

≤ (s + 1)d−1K−s + s
d�(E1 + E2) + (2E1 + 3E3)�

≤ (s + 1)d(K−s + 3E1 + E2 + 3E3).

Since � ∈ {0,1,�,K − 1}d and x ∈ Q� are arbitrary and

[0,1]d = ⌦([0,1]d,K, �)�� ∪�∈{0,1,�,K−1}d Q��,

we have, for any x ∈ [0,1]d�⌦([0,1]d,K, �),

�f(x) − �(x)� ≤ (s + 1)d(K−s + 3E1 + E2 + 3E3).

Recall that K = �N1�d�2�L2�d� ≥ N
2�d

L
2�d

8
and

(N + 1)−7sL ≤ (N + 1)−2s(L+1) ≤ (N + 1)−2s2−2sL ≤ N
−2s

L
−2s

.

Then we have

(s + 1)d(K−s + 3E1 + E2 + 3E3)

= (s + 1)d�K−s + 648(N + 1)−2s(L+1) + 9s(N + 1)−7sL + 6N−2sL−2s�
≤ (s + 1)d�8sN−2s�dL−2s�d + (654 + 9s)N−2sL−2s�
≤ (s + 1)d(8s + 654 + 9s)N−2s�dL−2s�d ≤ 84(s + 1)d8sN−2s�dL−2s�d.

Step 4∶ Determine the size of the network implementing �.

It remains to estimate the width and depth of the network implementing �. Recall
that, for ↵ ∈ Nd with �↵�1 ≤ s − 1,

���������������

 ∈ NN �width ≤ d(4N + 3); depth ≤ 4L + 5�,
�↵ ∈ NN �width ≤ 16s(N + 1) log

2
(8N); depth ≤ 5(L + 2) log

2
(4L)�,

P↵ ∈ NN �width ≤ 9(N + 1) + s − 1; depth ≤ 7s2L�,
' ∈ NN �width ≤ 9(N + 1) + 1; depth ≤ 2s(L + 1)�.

x

 (x)

x

�↵( (x))

x � (x)

�↵( (x))
↵!

P↵

�
x � (x)

�
'

✓
�↵

�
 (x)

�

↵!
, P↵

⇣
x � (x)

⌘◆ 

P↵

�↵

'

Figure 7: An illustration of the sub-network architecture implementing each component

of �, '��↵( (x))
↵!

, P↵�x − (x)�� for each ↵ ∈ Nd with �↵� ≤ s − 1.

30



By Equation (4.6) and Figure 7, it easy to verify that � can be implemented by a
ReLU FNN with width

��↵�1≤s−1
16sd(N + 2) log

2
(8N) ≤ s

d ⋅ 16sd(N + 2) log
2
(8N)

= 16sd+1d(N + 2) log
2
(8N)

and depth

(4L + 5) + 2s(L + 1) + 7s2L + 5(L + 2) log
2
(4L) + 3 ≤ 18s2(L + 2) log

2
(4L)

as desired. So we finish the proof.

5 Proofs of Propositions in Section 4.1

In this section, we will prove all propositions in Section 4.1.

5.1 Proof of Proposition 4.1 for polynomial approximation

To prove Proposition 4.1, we will construct ReLU FNNs to approximate multivariate
polynomials following the four steps below.

• f(x) = x2. We approximate f(x) = x2 by the combinations and compositions of
“sawtooth” functions as shown in Figures 8 and 9.

• f(x, y) = xy. To approximate f(x, y) = xy, we use the result of the previous step
and the fact that xy = 2�(x+y

2
)2 − (x

2
)2 − (y

2
)2�.

• f(x1, x2,�, xk) = x1x2�xk. We approximate f(x1, x2,�, xk) = x1x2�xk for any
k ≥ 2 via mathematical induction based on the result of the previous step.

• A general polynomial P (x) = x↵ = x
↵1
1

x
↵2
2
�x

↵d
d

with �↵�1 ≤ k. Any one-term
polynomial of degree ≤ k can be written as Cz1z2�zk with some entries equaling
1, where C is a constant and z = [z1, z2,�, zk]T can be attained via an a�ne linear
map with x as the input. Then use the result of the previous step.

The idea of using “sawtooth” functions (see Figure 8) was first raised in [44] for
approximating x2 using FNNs with width 6 and depth O(L) and achieving an error
O(2−L); our construction is di↵erent from and more general than that in [44], working
for ReLU FNNs of width O(N) and depth O(L) for any N and L, and achieving an
error O(N−L). As discussed below Proposition 4.1, this O(N−L) approximation error of
polynomial functions shows the power of depth in ReLU FNNs via function composition.

First, let us show how to construct ReLU FNNs to approximate f(x) = x2.

Lemma 5.1. For any N,L ∈ N+, there exists a function � implemented by a ReLU FNN
with width 3N and depth L such that

��(x) − x
2� ≤ N

−L for any x ∈ [0,1].

31



Proof. Define a set of “sawtooth” functions Ti ∶ [0,1] → [0,1] by induction as follows.
Set

T1(x) = �
2x, if x ∈ [0, 1

2
],

2(1 − x), if x ∈ (1
2
,1],

and
Ti = Ti−1 ○ T1 for i = 2,3,�.

It is easy to check that Ti has 2i−1 “sawteeth” and

Tm+n = Tm ○ Tn for any m,n ∈ N+.
See Figure 8 for illustrations of Ti for i = 1,2,3,4.

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T1

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T2

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T3

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T4

Figure 8: Examples of “sawtooth” functions T1, T2, T3, and T4.

Define piecewise linear functions fs ∶ [0,1]→ [0,1] for s ∈ N+ satisfying the following
two requirements (see Figure 9 for several examples of fs).

• fs( j

2s
) = � j

2s
�2 for j = 0,1,2,�,2s.

• fs(x) is linear between any two adjacent points of { j

2s
∶ j = 0,1,2,�,2s}.

0 1/2 1

0.0

0.2

0.4

0.6

0.8

1.0
x

2

f1(x)

0 1/4 2/4 3/4 1

0.0

0.2

0.4

0.6

0.8

1.0
x

2

f2(x)

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

0.0

0.2

0.4

0.6

0.8

1.0
x

2

f3(x)

0 1/8 2/8
0.00

0.02

0.04

0.06

0.08

0.10
x

2

f3(x)

Figure 9: Illustrations of f1, f2, and f3 for approximating x2.

Recall the fact

0 ≤ tx
2

1 + (1 − t)x2

2 − �tx1 + (1 − t)x2�
2

≤ (x2 − x1)2
4

for any t, x1, x2 ∈ [0,1].

Thus, we have

0 ≤ fs(x) − x
2 ≤ (2

−s)2
4
= 2−2(s+1) for any x ∈ [0,1] and s ∈ N+. (5.1)

32



Note that fi−1(x) = fi(x) = x2 for x ∈ { j

2i−1 ∶ j = 0,1,2,�,2i−1} and the graph of fi−1 − fi

is a symmetric “sawtooth” between any two adjacent points of { j

2i−1 ∶ j = 0,1,2,�,2i−1}.
It is easy to verify that

fi−1(x) − fi(x) = Ti(x)
22i

for any x ∈ [0,1] and i = 2,3,�.

Therefore, for any x ∈ [0,1] and s ∈ N+, we have

fs(x) = f1(x) +
s

�
i=2
(fi − fi−1) = x − (x − f1(x)) −

s

�
i=2

Ti(x)
22i
= x −

s

�
i=1

Ti(x)
22i

.

Given N ∈ N+, there exists a unique k ∈ N+ such that (k − 1)2k−1 + 1 ≤ N ≤ k2k.
For this k, using s = Lk, we can construct a ReLU FNN as shown in Figure 10 to
implement a function � = fLk approximating x2 well. Note that Ti can be implemented
by a one-hidden-layer ReLU FNN with width 2i. Hence, the network in Figure 10 has
width k2k + 1 ≤ 3N 8○ and depth 2L.

x

T1

T2

Tk

x

Tk+1

Tk+2

Tk+k

x �
kX

i=1

Ti(x)

22i

Tjk+1

Tjk+2

Tjk+k

x �
jkX

i=1

Ti(x)

22i

T(j+1)k+1

T(j+1)k+2

T(j+1)k+k

x �
(j+1)kX

i=1

Ti(x)

22i

T(L�1)k+1

T(L�1)k+2

T(L�1)k+k

x �
(L�1)kX

i=1

Ti(x)

22i
x �

LkX

i=1

Ti(x)

22i
= fLk(x) =: �(x)

Input 1 2 3 4 2(j+1) 2(j+1)+1 2(j+2) 2L Output

Tk Tk

Tk Tk

Tk Tk

Tk

T2

T1
... ... ... ... ...· · · · · ·

Figure 10: An illustration of the target network architecture for approximating x2 on
[0,1]. Ti can be implemented by a one-hidden-layer ReLU FNN with width 2i for
i = 1,2,�,K. The red numbers below the architecture indicate the order of hidden
layers.

As shown in Figure 10, the (2`)-th hidden layer of the network has the identify
function as activation functions for ` = 1,2,�, L. Thus, the network in Figure 10 can
be interpreted as a ReLU FNN with width 3N and depth L. In fact, if all activation
functions in a certain hidden layer are identity maps, the depth can be reduced by one via
combining two adjacent linear transforms into one. For example, suppose W1 ∈ RN1×N2 ,
W2 ∈ RN2×N3 , and % is an identity map that can be applied to vectors or matrices
elementwisely; then W1%(W2x) =W3x for any x ∈ RN3 , where W3 =W1 ⋅W2 ∈ RN1×N3 .

It remains to estimate the approximation error of �(x) ≈ x2. By Equation (5.1), for
any x ∈ [0,1], we have

��(x) − x
2� = �fLk(x) − x

2� ≤ 2−2(Lk+1) ≤ 2−2Lk ≤ N
−L

,

where the last inequality comes from N ≤ k2k ≤ 22k. So we finish the proof.

8○This inequality is clear for k = 1,2,3,4. In the case k ≥ 5, we have k2k + 1 ≤ k2k+1
N N ≤ (k+1)2k(k−1)2k−1N ≤

2k+1
k−1N ≤ 3N .

33



We have constructed a ReLU FNN to approximate f(x) = x2. By the fact that
xy = 2�(x+y

2
)2 − (x

2
)2 − (y

2
)2�, it is easy to construct a new ReLU FNN to approximate

f(x, y) = xy as follows.

Lemma 5.2. For any N,L ∈ N+, there exists a function � implemented by a ReLU FNN
with width 9N and depth L such that

��(x, y) − xy� ≤ 6N−L for any x, y ∈ [0,1].

Proof. By Lemma 5.1, there exists a function  implemented by a ReLU FNN with
width 3N and depth L such that

�x2 − (x)� ≤ N
−L for any x ∈ [0,1].

Inspired by the fact

xy = 2�(x+y
2
)2 − (x

2
)2 − (y

2
)2� for any x, y ∈ R,

we construct the desired function � as

�(x, y) ∶= 2� (x+y
2
) − (x

2
) − (y

2
)� for any x, y ∈ R. (5.2)

Then � can be implemented by the network architecture in Figure 11.

x

y

x
2

y
2

x+y
2

 (x2 )

 (y2 )

 (x+y
2 )

�(x, y)

 

 

 

Figure 11: An illustration of the network architecture implementing � for approximating
xy on [0,1]2.

It follows from  ∈ NN (width ≤ 3N ; depth ≤ L) that the network in Figure 11 is
with width 9N and depth L + 2. Similar to the discussion in the proof of Lemma 5.1,
the network in Figure 11 can be interpreted as a ReLU FNN with width 9N and depth
L, since two of the hidden layers have the identify function as their activation functions.
Moreover, for any x, y ∈ [0,1],

�xy − �(x, y)� = �2�(x+y
2
)2 − (x

2
)2 − (y

2
)2� − 2� (x+y

2
) − (x

2
) − (y

2
)��

≤ 2 �(x+y
2
)2 − (x+y

2
)� + 2 �(x

2
)2 − (x

2
)� + 2 �(y

2
)2 − (y

2
)� ≤ 6N−L.

Therefore, we have finished the proof.

Now let us prove Lemma 4.2, which shows how to construct a ReLU FNN to approx-
imate f(x, y) = xy on [a, b]2 with arbitrary a < b, i.e., a rescaled version of Lemma 5.2.

34



Proof of Lemma 4.2. By Lemma 5.2, there exists a function  implemented by a ReLU
FNN with width 9N and depth L such that

� (x̃, ỹ) − x̃ỹ� ≤ 6N−L for any x̃, ỹ ∈ [0,1].

By setting x̃ = x−a
b−a and ỹ = y−a

b−a for any x, y ∈ [a, b], we have x̃, ỹ ∈ [0,1], implying

� (x−a
b−a ,

y−a
b−a ) − x−a

b−a y−a
b−a � ≤ 6N−L for any x, y ∈ [a, b].

It follows that, for any x, y ∈ [a, b],

�(b − a)2 (x−a
b−a ,

y−a
b−a ) + a(x + y) − a

2 − xy� ≤ 6(b − a)2N−L.

Define, for any x, y ∈ R,

�(x, y) ∶= (b − a)2 (x−a
b−a ,

y−a
b−a ) + a ⋅ �(x + y + 2�a�) − a

2 − 2a�a�.

Then � can be implemented by the network architecture in Figure 12.

x

y

x�a
b�a

y�a
b�a

x+ y + 2|a|

 
⇣

x�a
b�a ,

y�a
b�a

⌘

�(x+ y + 2|a|)

�(x, y)

 

Figure 12: An illustration of the network architecture implementing � for approximating
xy on [a, b]2. Two of the hidden layers have the identify function as their activation
functions, since the red “�” comes from the red arrow “�→”, where the red arrow “�→”
is a ReLU FNN with width 1 and depth L.

It follows from  ∈ NN (width ≤ 9N ; depth ≤ L) that the network in Figure 12 is
with width 9N +1 and depth L+2. Similar to the discussion in the proof of Lemma 5.1,
the network in Figure 12 can be interpreted as a ReLU FNN with width 9N + 1 and
depth L, since two of the hidden layers have the identify function as their activation
functions.

Note that x + y + 2�a� ≥ 0 for any x, y ∈ [a, b], implying

�(x, y) = (b − a)2 (x−a
b−a ,

y−a
b−a ) + a(x + y) − a

2 for any x, y ∈ [a, b].

Hence,
��(x, y) − xy� ≤ 6(b − a)2N−L for any x, y ∈ [a, b].

So we finish the proof.

The next lemma shows how to construct a ReLU FNN to approximate a multivariate
function f(x1, x2,�, xk) = x1x2�xk on [0,1]k.

Lemma 5.3. For any N,L, k ∈ N+ with k ≥ 2, there exists a function � implemented by
a ReLU FNN with width 9(N + 1) + k − 1 and depth 7kL(k − 1) such that

��(x) − x1x2�xk� ≤ 9(k − 1)(N + 1)−7kL for any x = [x1, x2,�, xk]T ∈ [0,1]k.

35



Proof. By Lemma 4.2, there exists a function �1 implemented by a ReLU FNN with
width 9(N + 1) + 1 and depth 7kL such that

��1(x, y) − xy� ≤ 6(1.2)2(N + 1)−7kL ≤ 9(N + 1)−7kL for any x, y ∈ [−0.1,1.1]. (5.3)

Next, we construct a sequence of functions �i ∶ [0,1]i+1 → [0,1] for i ∈ {1,2,�, k − 1} by
induction such that

(i) �i can be implemented by a ReLU FNN with width 9(N + 1) + i and depth 7kLi

for each i ∈ {1,2,�, k − 1}.

(ii) For any i ∈ {1,2,�, k − 1} and x1, x2,�, xi+1 ∈ [0,1], it holds that

��i(x1,�, xi+1) − x1x2�xi+1� ≤ 9i(N + 1)−7kL. (5.4)

First, let us consider the case i = 1, it is obvious that the two required conditions
are true: 1) 9(N + 1)+ i = 9(N + 1)+ 1 and 7kLi = 7kL if i = 1; 2) Equation (5.3) implies
Equation (5.4) for i = 1.

Now assume �i has been defined; we then define

�i+1(x1,�, xi+2) ∶= �1��i(x1,�, xi+1),�(xi+2)� for any x1,�, xi+2 ∈ R.

Note that �i ∈ NN (width ≤ 9(N + 1)+ i; depth ≤ 7kLi) and �1 ∈ NN (width ≤ 9(N + 1)+
1; depth ≤ 7kL). Then �i+1 can be implemented via a ReLU FNN with width

max{9(N + 1) + i + 1,9(N + 1) + 1} = 9(N + 1) + (i + 1)

and depth 7kLi + 7kL = 7kL(i + 1).
By the hypothesis of induction, we have

��i(x1,�, xi+1) − x1x2�xi+1� ≤ 9i(N + 1)−7kL. (5.5)

Recall the fact that 9i(N + 1)−7kL ≤ 9k2−7k ≤ 9k 2
−7
k
≤ 0.1 for any N,L, k ∈ N+ and

i ∈ {1,2,�, k − 1}. It follows that

�i(x1,�, xi+1) ∈ [−0.1,1.1] for any x1,�, xi+1 ∈ [0,1].
Therefore, by Equations (5.3) and (5.5), we have

��i+1(x1,�, xi+2) − x1x2�xi+2�
= ��1��i(x1,�, xi+1),�(xi+2)� − x1x2�xi+2�
≤ ��1��i(x1,�, xi+1), xi+2� − �i(x1,�, xi+1)xi+2� + ��i(x1,�, xi+1)xi+2 − x1x2�xi+2�
≤ 9(N + 1)−7kL + 9i(N + 1)−7kL = 9(i + 1)(N + 1)−7kL,

for any x1, x2,�, xi+2 ∈ [0,1], which means we finish the process of induction.
Now let � ∶= �k−1, by the principle of induction, we have

��(x1,�, xk) − x1x2�xk� ≤ 9(k − 1)(N + 1)−7kL for any x1,�, xk ∈ [0,1].

So � is the desired function implemented by a ReLU FNN with width 9(N + 1) + k − 1
and depth 7kL(k − 1), which means we finish the proof.

36



With Lemma 5.3 in hand, we are ready to prove Proposition 4.1 for approximating
general multivariate polynomials by ReLU FNNs.

Proof of Proposition 4.1. The case k = 1 is trivial, so we assume k ≥ 2 below. Set
k̃ = �↵�1 ≤ k, denote ↵ = [↵1,↵2,�,↵d]T , and let [z1, z2,�, z

k̃
]T ∈ Rk̃ be the vector such

that

z` = xj if
j−1
�
i=1
↵i < ` ≤

j

�
i=1
↵i for j = 1,2,�, d.

That is,

[z1, z2,�, z
k̃
]T = �

↵1 times

�����������������������������
x1,�, x1,

↵2 times

�����������������������������
x2,�, x2,�,

↵d times

�����������������������������
xd,�, xd �

T ∈ Rk̃
.

Then we have P (x) = x↵ = z1z2�z
k̃
.

We construct the target ReLU FNN in two steps. First, there exists an a�ne linear
map L ∶ Rd → Rk that duplicates x to form a new vector [z1, z2,�, z

k̃
,1,�,1]T ∈ Rk,

i.e., L(x) = [z1, z2,�, z
k̃
,1,�,1]T ∈ Rk. Second, by Lemma 5.3, there exists a function

 ∶ Rk → R implemented by a ReLU FNN with width 9(N + 1) + k − 1 and depth
7kL(k − 1) such that  maps [z1, z2,�, z

k̃
,1,�,1]T ∈ Rk to z1z2�z

k̃
within an error

9(k−1)(N+1)−7kL. Hence, we can construct the desired function via � ∶=  ○L. Then � can
be implemented by a ReLU FNN with width 9(N+1)+k−1 and depth 7kL(k−1) ≤ 7k2L,
and

��(x) − P (x)� = ��(x) −x↵� = � ○L(x) − x
↵1
1

x
↵2
2
�x

↵d
d
�

= � (z1, z2,�, z
k̃
,1,�,1) − z1z2�z

k̃
�

≤ 9(k − 1)(N + 1)−7kL ≤ 9k(N + 1)−7kL

for any x1, x2,�, xd ∈ [0,1]. So, we finish the proof.

5.2 Proof of Proposition 4.3 for step function approximation

To prove Proposition 4.3 in this sub-section, we will discuss how to pointwisely
approximate step functions by ReLU FNNs except for the trifling region. Before proving
Proposition 4.3, let us first introduce a basic lemma about fitting O(N1N2) samples
using a two-hidden-layer ReLU FNN with O(N1 +N2) neurons.

Lemma 5.4. For any N1,N2 ∈ N+, given N1(N2 + 1) + 1 samples (xi, yi) ∈ R2 with
x0 < x1 < � < xN1(N2+1) and yi ≥ 0 for i = 0,1,�,N1(N2+1), there exists � ∈ NN (#input =
1;widthvec = [2N1,2N2 + 1]) satisfying the following conditions:

1. �(xi) = yi for i = 0,1,�,N1(N2 + 1).

2. � is linear on each interval [xi−1, xi] for i ∉ {(N2 + 1)j ∶ j = 1,2,�,N1}.

The above lemma is Lemma 2.2 of [40]; and the reader is referred to [40] for its
proof. Essentially, this lemma shows the equivalence of one-hidden-layer ReLU FNNs of
size O(N2) and two-hidden-layer ones of size O(N) to fit O(N2) samples.

The next lemma below shows that special shallow and wide ReLU FNNs can be
represented by deep and narrow ones. This lemma was proposed as Proposition 2.2
in [41].

37



Lemma 5.5. For any N,L, d ∈ N+, it holds that
NN (#input = d; widthvec = [N,NL]; #output = 1)

⊆ NN (#input = d; width ≤ 2N + 2; depth ≤ L + 1; #output = 1).

With Lemmas 5.4 and 5.5 in hand, let us present the detailed proof of Proposi-
tion 4.3.

Proof of Proposition 4.3. We divide the proof into two cases: d = 1 and d ≥ 2.

Case 1∶ d = 1.

In this case, K = �N1�d�2�L2�d� = N2L2. Denote M = N2L and consider the sample
set

�(1,M − 1), (2,0)���(m
M

,m) ∶m = 0,1,�,M − 1�
��(m+1

M
− �,m) ∶m = 0,1,�,M − 2�.

Its size is 2M +1 = N ⋅ �(2NL−1)+1�+1. By Lemma 5.4 (set N1 = N and N2 = 2NL−1
therein), there exists

�1 ∈ NN (widthvec = [2N,2(2NL − 1) + 1])
= NN (widthvec = [2N,4NL − 1])

such that

• �1(M−1M
) = �1(1) =M − 1 and �1(mM ) = �1(m+1M

− �) =m for m = 0,1,�,M − 2;

• �1 is linear on [M−1
M

,1] and each interval [m
M

,
m+1
M
− �] for m = 0,1,�,M − 2.

Then
�1(x) =m if x ∈ [m

M
,
m+1
M
− � ⋅ 1{m≤M−2}] for m = 0,1,�,M − 1. (5.6)

Now consider another sample set

�( 1

M
, L − 1), (2,0)���( `

ML
, `) ∶ ` = 0,1,�, L − 1�

��( `+1
ML
− �, `) ∶ ` = 0,1,�, L − 2�.

Its size is 2L + 1 = 1 ⋅ �(2L − 1) + 1� + 1. By Lemma 5.4 (set N1 = 1 and N2 = 2L − 1
therein), there exists

�2 ∈ NN (widthvec = [2,2(2L − 1) + 1])
= NN (widthvec = [2,4L − 1])

such that

• �2(L−1ML
) = �2( 1

M
) = L − 1 and �2( `

ML
) = �2( `+1ML

− �) = ` for ` = 0,1,�, L − 2;

• �2 is linear on [L−1
ML

,
1

M
] and each interval [ `

ML
,
`+1
ML
− �] for ` = 0,1,�, L − 2.

38



It follows that, for m = 0,1,�,M − 1 and ` = 0,1,�, L − 1,

�2(x − m

M
) = ` for x ∈ [mL+`

ML
,
mL+`+1

ML
− � ⋅ 1{`≤L−2}]. (5.7)

K =ML implies that any k ∈ {0,1,�,K−1} can be unique represented by k =mL+`
for m ∈ {0,1,�,M − 1} and ` ∈ {0,1,�, L − 1}. Then the desired function � can be
implemented by ReLU FNN as shown in Figure 13.

x

�1(x) = m

x

m

x � m
M

m

�2(x � m
M ) = `

mL+ ` = k =: �(x)
�1

�2

Figure 13: An illustration of the network architecture implementing � based on Equa-
tions (5.6) and (5.7) with x ∈ [ k

K
,
k+1
K
− � ⋅1{k≤K−2}] = [mL+`

ML
,
mL+`+1

ML
− � ⋅1{m≤M−2 or `≤L−2}],

where k =mL + ` for m = 0,1,�,M − 1 and ` = 0,1,�, L − 1.

Clearly,

�(x) = k if x ∈ [ k
K

,
k+1
K
− � ⋅ 1{k≤K−2}] for k ∈ {0,1,�,K − 1}.

By Lemma 5.5, �1 ∈ NN (widthvec = [2N,4NL − 1]) ⊆ NN (width ≤ 4N + 2; depth ≤
2L + 1) and �2 ∈ NN (widthvec = [2,4L − 1]) ⊆ NN (width ≤ 6; depth ≤ 2L + 1), implying
� ∈ NN (width ≤max{4N +2+1,6+1} = 4N +3; depth ≤ (2L+1)+2+(2L+1)+1 = 4L+5).
So we finish the proof for the case d = 1

Case 2∶ d ≥ 2.

Now we consider the case when d ≥ 2. Consider the sample set

�(1,K − 1), (2,0)���( k
K

, k) ∶ k = 0,1,�,K − 1�
��(k+1

K
− �, k) ∶ k = 0,1,�,K − 2�,

whose size is 2K +1 = �N1�d��(2�N1�d��L2�d�−1)+1�+1. By Lemma 5.4 (set N1 = �N1�d�
and N2 = 2�N1�d��L2�d� − 1 therein), there exists

� ∈ NN (widthvec = [2�N1�d�,2(2�N1�d��L2�d� − 1) + 1])
= NN (widthvec = [2�N1�d�,4�N1�d��L2�d� − 1])

such that

• �(K−1
K
) = �(1) =K − 1, and �( k

K
) = �(k+1

K
− �) = k for k = 0,1,�,K − 2;

• � is linear on [K−1
K

,1] and each interval [ k
K

,
k+1
K
− �] for k = 0,1,�,K − 2.

Then
�(x) = k if x ∈ [ k

K
,
k+1
K
− � ⋅ 1{k≤K−2}] for k = 0,1,�,K − 1.

By Lemma 5.5,

� ∈ NN (widthvec = [2�N1�d�,4�N1�d��L2�d� − 1])
⊆ NN (width ≤ 4�N1�d� + 2; depth ≤ 2�L2�d� + 1)
⊆ NN (width ≤ 4�N1�d� + 3; depth ≤ 4L + 5).

which means we have finished the proof for the case d ≥ 2.

39



5.3 Proof of Proposition 4.4 for point fitting

In this sub-section, we will discuss how to use ReLU FNNs to fit a collection of points
in R2. 9○ It is trivial to fit n points via one-hidden-layer ReLU FNNs with O(n) param-
eters. However, to prove Proposition 4.4, we need to fit O(n) points with much fewer
parameters, which is the main di�culty of our proof. Our proof below is mainly based
on the “bit extraction” technique and the composition architecture of neural networks.

Let us first introduce a basic lemma based on the “bit extraction” technique, which
is actually Lemma 2.6 of [41].

Lemma 5.6. For any N,L ∈ N+, any ✓m,` ∈ {0,1} for m = 0,1,�,M−1 and ` = 0,1,�, L−
1, where M = N2L, there exists a function � implemented by a ReLU FNN with width
4N + 3 and depth 3L + 3 such that

�(m, `) =
`

�
j=0
✓m,j for m = 0,1,�,M − 1 and ` = 0,1,�, L − 1.

Next, let us introduce Lemma 5.7, a variant of Lemma 5.6 for a di↵erent mapping
for the “bit extraction”. Its proof is based on Lemmas 5.4, 5.5, and 5.6.

Lemma 5.7. For any N,L ∈ N+ and any ✓i ∈ {0,1} for i = 0,1,�,N2L2 − 1, there exists
a function � implemented by a ReLU FNN with width 8N +6 and depth 5L+7 such that

�(i) = ✓i for i = 0,1,�,N
2
L
2 − 1.

Proof. The case L = 1 is clear. We assume L ≥ 2 below.
Denote M = N2L, for each i ∈ {0,1,�,N2L2−1}, there exists a unique representation

i = mL + ` for m ∈ {0,1,�,M − 1} and ` ∈ {0,1,�, L − 1}. Thus, we can define, for
m = 0,1,�,M − 1 and ` = 0,1,�, L − 1,

am,` ∶= ✓i, where i =mL + `.

Then, for m = 0,1,�,M − 1, we set bm,0 = 0 and bm,` = am,`−1 for ` = 1,2,�, L − 1.
By Lemma 5.6, there exist �1,�2 ∈ NN (width ≤ 4N + 3; depth ≤ 3L + 3) such that

�1(m, `) =
`

�
j=0

am,j and �2(m, `) =
`

�
j=0

bm,j

for m = 0,1,�,M − 1 and ` = 0,1,�, L − 1.
We consider the sample set

{(mL,m) ∶m = 0,1,�,M}���(m + 1)L − 1,m� ∶m = 0,1,�,M − 1�.

Its size is 2M +1 = N ⋅ �(2NL−1)+1�+1. By Lemma 5.4 (set N1 = N and N2 = 2NL−1
therein), there exists

 ∈ NN (widthvec = [2N,2(2NL − 1) + 1])
= NN (widthvec = [2N,4NL − 1])

such that
9○Fitting a collection of points {(xi, yi)}i in R2 means that the target ReLU FNN takes a value close

to yi at the location xi.

40



•  (ML) =M and  (mL) =  �(m + 1)L − 1� =m for m = 0,1,�,M − 1;

•  is linear on each interval [mL, (m + 1)L − 1] for m = 0,1,�,M − 1.

It follows that

 (x) =m if x ∈ [mL, (m + 1)L − 1] for m = 0,1,�,M − 1,

implying
 (mL + `) =m for m = 0,1,�,M − 1 and ` = 0,1,�, L − 1.

For i = 0,1,�,N2L2 − 1, by representing i = mL + ` for m = 0,1,�,M − 1 and
` = 0,1,�, L− 1, we have  (i) =  (mL+ `) =m and i−L (i) = `, from which we deduce

�1� (i), i −L (i)� − �2� (i), i −L (i)�

= �1(m, `) − �2(m, `) =
`

�
j=0

am,j −
`

�
j=0

bm,j

=
`

�
j=0

am,j −
`

�
j=1

am,j−1 − b0 = am,` = ✓i.

(5.8)

Therefore, the desired function � can be implemented by the network architecture
described in Figure 14.

i

 (i)

i

 (i)

i � L (i)

�1
�
 (i), i � L (i)

�

�2
�
 (i), i � L (i)

�
✓i =: �(i)

 �1

�2

Figure 14: An illustration of the network architecture implementing the desired function
� based on Equation (5.8).

Note that
�1,�2 ∈ NN (width ≤ 4N + 3; depth ≤ 3L + 3).

And by Lemma 5.5,

 ∈ NN (widthvec = [2N,4NL − 1])
⊆ NN (width ≤ 4N + 2; depth ≤ 2L + 1).

Hence, the network architecture shown in Figure 14 is with width max{4L+2+1,2(4L+
3)} = 8N + 6 and depth (2L + 1) + 2 + (3L + 3) + 1 = 5L + 7, implying � ∈ NN (width ≤
8N + 6; depth ≤ 5L + 7). So we finish the proof.

With Lemma 5.7 in hand, we are now ready to prove Proposition 4.4.

Proof of Proposition 4.4. Set J = �2s log
2
(NL + 1)� ∈ N+. For each ⇠i ∈ [0,1], there exist

⇠i,1, ⇠i,2,�, ⇠i,J ∈ {0,1} such that

�⇠i − bin0.⇠i,1⇠i,2�⇠i,J � ≤ 2−J for i = 0,1,�,N
2
L
2 − 1.

41



By Lemma 5.7, there exist

�1,�2,�,�J ∈ NN (width ≤ 8N + 6; depth ≤ 5L + 7)

such that
�j(i) = ⇠i,j for i = 0,1,�,N

2
L
2 − 1 and j = 1,2,�, J .

Define

�̃(x) ∶=
J

�
j=1

2−j�j(x) for any x ∈ R.

It follows that, for i = 0,1,�,N2L2 − 1,

��̃(i) − ⇠i� = �
J

�
j=1

2−j�j(i) − ⇠i� = �
J

�
j=1

2−j⇠i,j − ⇠i�

= �bin0.⇠i,1⇠i,2�⇠i,J − ⇠i� ≤ 2−J ≤ N
−2s

L
−2s

,

where the last inequality comes from

2−J = 2−�2s log2(NL+1)� ≤ 2−2s log2(NL+1) = (NL + 1)−2s ≤ N
−2s

L
−2s

.

Now let us estimate the width and depth of the network implementing �̃. Recall
that

J = �2s log
2
(NL + 1)� ≤ 2s�1 + log

2
(NL + 1)� ≤ 2s�1 + log

2
(2N) + log

2
L�

≤ 2s�1 + log
2
(2N)��1 + log

2
L� ≤ 2s�log

2
(4N)��log

2
(2L)�,

and �j ∈ NN (width ≤ 8N + 6; depth ≤ 5L + 7) for each j.

i i

�1(i)

�m(i)

i

�m+1(i)

�m+m(i)

Pm
j=1 2

�j�j(i)

i

�2m+1(i)

�2m+m(i)

P2m
j=1 2

�j�j(i)

i

�(n�1)m+1(i)

�(n�1)m+m(i)

P(n�1)m
j=1 2�j�j(i)

Pnm
j=1 2

�j�j(i) =: e�(i)

... ... ... ...· · ·

�1

�m

�m+1

�m+m

�2m+1

�2m+m

Figure 15: An illustration of the network architecture implementing �̃ = ∑J

j=1 2−j�j for
any i ∈ {0,1,�,N2L2 − 1}. We assume J = mn, where m = 2s�log

2
(4N)� and n =

�log
2
(2L)�, since we can set �J+1 = � = �nm = 0 if J < nm.

As we can see from Figure 15, �̃ = ∑J

j=1 2−j�j can be implemented by a ReLU FNN
with width

(8N + 6)m + (1 +m + 1) = (8N + 6)2s�log
2
(4N)� + 2s�log

2
(4N)� + 2

≤ 16s(N + 1) log
2
(8N)

and depth
�(5L + 7) + 1�n = (5L + 8)�log

2
(2L)� ≤ (5N + 8) log

2
(4L).

42



Finally, we define

�(x) ∶=min����̃(x)),1� =min�max{0, �̃(x)},1� for any x ∈ R.

Then 0 ≤ �(x) ≤ 1 for any x ∈ R and � can be implemented by a ReLU FNN with width
16s(N + 1) log

2
(8N) and depth (5L + 8) log

2
(4L) + 3 ≤ 5(L + 2) log

2
(4L). See Figure 16

for the network architecture implementing �. Note that

�̃(i) =
J

�
j=1

2−j�j(i) =
J

�
j=1

2−j⇠i,j ∈ [0,1] for i = 0,1,�,N
2
L
2 − 1.

i e�(i) �
�e�(i)

�

�
�
�(e�(i)) + 1

�

�
�

� �(e�(i)) � 1
�

�
�
�(e�(i)) � 1

�

�
�

� �(e�(i)) + 1
�

min
�
�(e�(i)), 1

 
= �(i)e�

Figure 16: An illustration of the network architecture implementing the desired function
� based on the fact that min{x1, x2} = x1+x2−�x1−x2�

2
= �(x1+x2)−�(−x1−x2)−�(x1−x2)−�(−x1+x2)

2
.

It follows that

��(i) − ⇠i� = �min�max{0, �̃(i)},1� − ⇠i� = ��̃(i) − ⇠i� ≤ N
−2s

L
−2s

,

for i = 0,1,�,N2L2 − 1. The proof is complete.

6 Conclusions

This paper has established a nearly optimal approximation error of ReLU FNNs
in terms of both width and depth to approximate smooth functions. It is shown that
ReLU FNNs with width O(N lnN) and depth O(L lnL) can approximate functions in
the unit ball of Cs([0,1]d) with an approximation error O(N−2s�dL−2s�d). Through VC-
dimension, it is also proved that this approximation error is asymptotically nearly tight
for the closed unit ball of Cs([0,1]d).

We would like to remark that our analysis is for the fully connected feed-forward
neural networks with the ReLU activation function. It would be an interesting direction
for further study to generalize our results to neural networks with other architectures
(e.g., convolutional neural networks and ResNet) and activation functions (e.g., tanh
and sigmoid functions). These will be subjects of future work.

Acknowledgments

The work of J. Lu is supported in part by the National Science Foundation via
grants DMS-1415939, CCF-1934964, and DMS-2012286. Z. Shen is supported by Tan
Chin Tuan Centennial Professorship. H. Yang H. Yang was partially supported by the
National Science Foundation under award DMS-1945029.

43



References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in
overparameterized neural networks, going beyond two layers. arXiv e-prints, page
arXiv:1811.04918, November 2018.

[2] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foun-
dations. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[3] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained
analysis of optimization and generalization for overparameterized two-layer neural
networks. In ICML, 2019.

[4] Chenglong Bao, Qianxiao Li, Zuowei Shen, Cheng Tai, Lei Wu, and Xueshuang
Xiang. Approximation analysis of convolutional neural networks. 2019.

[5] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39(3):930–945, May 1993.

[6] Andrew R. Barron and Jason M. Klusowski. Approximation and estimation for
high-dimensional deep learning networks. arXiv e-prints, page arXiv:1809.03090,
September 2018.

[7] Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC-dimension bounds
for piecewise polynomial networks. Neural Computation, 10:2159–2173, 1998.

[8] M. Bianchini and F. Scarselli. On the complexity of neural network classifiers: A
comparison between shallow and deep architectures. IEEE Transactions on Neural
Networks and Learning Systems, 25(8):1553–1565, Aug 2014.

[9] Helmut. Bölcskei, Philipp. Grohs, Gitta. Kutyniok, and Philipp. Petersen. Optimal
approximation with sparsely connected deep neural networks. SIAM Journal on
Mathematics of Data Science, 1(1):8–45, 2019.

[10] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent
for wide and deep neural networks. CoRR, abs/1905.13210, 2019.

[11] Liang Chen and Congwei Wu. A note on the expressive power of deep rectified linear
unit networks in high-dimensional spaces. Mathematical Methods in the Applied
Sciences, 42(9):3400–3404, 2019.

[12] Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. E�cient approx-
imation of deep ReLU networks for functions on low dimensional manifolds. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8174–8184.
Curran Associates, Inc., 2019.

[13] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much
over-parameterization is su�cient to learn deep ReLU networks? CoRR,
arXiv:1911.12360, 2019.

44



[14] Charles K. Chui, Shao-Bo Lin, and Ding-Xuan Zhou. Construction of neural net-
works for realization of localized deep learning. Frontiers in Applied Mathematics
and Statistics, 4:14, 2018.

[15] George Cybenko. Approximation by superpositions of a sigmoidal function. MCSS,
2:303–314, 1989.

[16] Ronald A. Devore. Optimal nonlinear approximation. Manuskripta Math, pages
469–478, 1989.

[17] Weinan E, Chao Ma, and Qingcan Wang. A priori estimates of the population risk
for residual networks. ArXiv, abs/1903.02154, 2019.

[18] Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-
layer neural networks. Communications in Mathematical Sciences, 17(5):1407–1425,
2019.

[19] Weinan E and Qingcan Wang. Exponential convergence of the deep neural network
approximation for analytic functions. CoRR, abs/1807.00297, 2018.

[20] Rémi Gribonval, Gitta Kutyniok, Morten Nielsen, and Felix Voigtlaender. Approxi-
mation spaces of deep neural networks. arXiv e-prints, page arXiv:1905.01208, May
2019.

[21] Ingo Gühring, Gitta Kutyniok, and Philipp Petersen. Error bounds for approx-
imations with deep ReLU neural networks in W s,p norms. arXiv e-prints, page
arXiv:1902.07896, Feb 2019.

[22] Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension
bounds for piecewise linear neural networks. In Satyen Kale and Ohad Shamir,
editors, Proceedings of the 2017 Conference on Learning Theory, volume 65 of Pro-
ceedings of Machine Learning Research, pages 1064–1068, Amsterdam, Netherlands,
07–10 Jul 2017. PMLR.

[23] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991.

[24] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

[25] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. CoRR, abs/1806.07572, 2018.

[26] Ziwei Ji and Matus Telgarsky. Polylogarithmic width su�ces for gradient de-
scent to achieve arbitrarily small test error with shallow ReLU networks. ArXiv,
abs/1909.12292, 2020.

[27] Michael J. Kearns and Robert E. Schapire. E�cient distribution-free learning of
probabilistic concepts. J. Comput. Syst. Sci., 48(3):464–497, June 1994.

45



[28] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25, pages 1097–1105. Curran Associates, Inc., 2012.

[29] Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical systems: An
approximation perspective. Journal of European Mathematical Society, to appear.

[30] Shiyu Liang and R. Srikant. Why deep neural networks? CoRR, abs/1610.04161,
2016.

[31] Hadrien Montanelli and Qiang Du. New error bounds for deep networks using sparse
grids. SIAM Journal on Mathematics of Data Science, 1(1):78–92, 2019.

[32] Hadrien Montanelli and Haizhao Yang. Error bounds for deep ReLU networks using
the Kolmogorov–Arnold superposition theorem. Neural Networks, 129:1–6, 2020.

[33] Hadrien Montanelli, Haizhao Yang, and Qiang Du. Deep ReLU networks over-
come the curse of dimensionality for bandlimited functions. arXiv e-prints, page
arXiv:1903.00735, March 2019.

[34] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the
number of linear regions of deep neural networks. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 2924–2932. Curran Associates, Inc., 2014.

[35] Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and generalization
of deep neural network with intrinsic dimensionality. Journal of Machine Learning
Research, 21(174):1–38, 2020.

[36] J. A. A. Opschoor, Ch. Schwab, and J. Zech. Exponential ReLU DNN expression
of holomorphic maps in high dimension. Technical Report 2019-35, Seminar for
Applied Mathematics, ETH Zürich, Switzerland., 2019.

[37] Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise
smooth functions using deep ReLU neural networks. Neural Networks, 108:296–
330, 2018.

[38] T. Poggio, H. N. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. Why and when
can deep—but not shallow—networks avoid the curse of dimensionality: A review.
International Journal of Automation and Computing, 14:503–519, 2017.

[39] Akito Sakurai. Tight bounds for the VC-dimension of piecewise polynomial net-
works. In Advances in Neural Information Processing Systems, pages 323–329.
Neural information processing systems foundation, 1999.

[40] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Nonlinear approximation via com-
positions. Neural Networks, 119:74–84, 2019.

46



[41] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation
characterized by number of neurons. Communications in Computational Physics,
28(5):1768–1811, 2020.

[42] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of
ReLU networks in terms of width and depth. Journal de Mathématiques Pures et
Appliquées, to appear.

[43] Taiji Suzuki. Adaptivity of deep ReLU network for learning in Besov and mixed
smooth Besov spaces: optimal rate and curse of dimensionality. In International
Conference on Learning Representations, 2019.

[44] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks.
Neural Networks, 94:103–114, 2017.

[45] Dmitry Yarotsky. Optimal approximation of continuous functions by very deep
ReLU networks. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet,
editors, Proceedings of the 31st Conference On Learning Theory, volume 75 of Pro-
ceedings of Machine Learning Research, pages 639–649. PMLR, 06–09 Jul 2018.

[46] Dmitry Yarotsky and Anton Zhevnerchuk. The phase diagram of approximation
rates for deep neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 13005–13015. Curran Associates, Inc., 2020.

[47] Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and
Computational Harmonic Analysis, 48(2):787–794, 2020.

47


	1 Introduction
	1.1 Main result
	1.2 Contributions and related work
	1.3 Discussion

	2 Approximation of smooth functions
	2.1 Notation
	2.2 Proof of Theorem 1.1
	2.3 Optimality of Theorem 1.1

	3 Proof of Theorem 2.1
	4 Proof of Theorem 2.2
	4.1 Proof sketch of Theorem 2.2
	4.2 Constructive proof

	5 Proofs of Propositions in Section 4.1
	5.1 Proof of Proposition 4.1 for polynomial approximation
	5.2 Proof of Proposition 4.3 for step function approximation
	5.3 Proof of Proposition 4.4 for point fitting

	6 Conclusions

