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Optimal Approximation Rate of ReLU Networks in
terms of Width and Depth*

Zuowei Shen' Haizhao Yang? Shijun Zhang$

Abstract

This paper concentrates on the approximation power of deep feed-forward neu-
ral networks in terms of width and depth. It is proved by construction that
ReLU networks with width O(max{d|N'/?], N +2}) and depth O(L) can ap-
proximate a Holder continuous function on [O,I]d with an approximation rate
(’)()\\/E(NQL2 In N)_O‘/d), where a € (0,1] and A > 0 are Holder order and constant,
respectively. Such a rate is optimal up to a constant in terms of width and depth
separately, while existing results are only nearly optimal without the logarithmic
factor in the approximation rate. More generally, for an arbitrary continuous func-
tion f on [0,1]%, the approximation rate becomes (9( \/wa((]\ﬂL2 lnN)‘l/d) ),
where wy(-) is the modulus of continuity. We also extend our analysis to any con-
tinuous function f on a bounded set. Particularly, if ReLU networks with depth
31 and width O(N) are used to approximate one-dimensional Lipschitz continuous
functions on [0, 1] with a Lipschitz constant A > 0, the approximation rate in terms
of the total number of parameters, W = O(N?), becomes O(m), which has
not been discovered in the literature for fixed-depth ReLLU networks.

Key words. Deep ReLLU Networks; Optimal Approximation; VC-dimension; Bit Ex-
traction.

1 Introduction

Over the past few decades, the expressiveness of neural networks has been widely
studied from many points of view, e.g., in terms of combinatorics [27], topology [4],
Vapnik-Chervonenkis (VC) dimension [3, 13, 31], fat-shattering dimension [1, 19], infor-
mation theory [30], classical approximation theory [2,6, 10, 16,20, 24,32, 32-306, 41, 44],
optimization [14,17,18,21,29]. The error analysis of neural networks consists of three
parts: the approximation error, the optimization error, and the generalization error.
This paper focuses on the approximation error for ReLLU networks.

The approximation errors of feed-forward neural networks with various activation
functions have been studied for different types of functions, e.g., smooth functions
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9,22,24,25,40], piecewise smooth functions [30], band-limited functions [26], continuous
functions [33-35,41]. In the early works of approximation theory for neural networks,
the universal approximation theorem [6,15,16] without approximation rates showed that
there exists a sufficiently large neural network approximating a target function in a cer-
tain function space within any given error € > 0. In particular, it is shown in [23] that the
ReLU-activated residual neural network with one-neuron hidden layers is a universal ap-
proximator. The universal approximation property for general residual neural networks
was proved in [20] via a dynamical system approach.

An asymptotic analysis of the approximation rate in terms of depth is provided
in [41,43] for ReLU networks. To be exact, the nearly optimal approximation rates of
ReLU networks with width O(d) and depth O(L) for functions in C([0,1]?) and the
unit ball of C*([0,1]%) are O(w;(L"?)) and O((L/In L)~2%/?), respectively. These two
papers provide the approximation rate in terms of depth asymptotically for fixed-width
networks. A different approach is used in [24,33] to obtain a quantitative characterization
of the approximation rate in terms of width, depth, and smoothness order for continuous
and smooth functions.

Particularly, it was shown in [33] that a ReLU network with width C(d)- N and
depth Cy(d)- L can attain an approximation error Cs(d)-w;(N-2/4L2/?) to approximate
a continuous function f on [0,1]¢, where C1(d), C3(d), and C5(d) are three constants in

d with explicit formulas to specify their values, and w(-) is the modulus of continuity
of feC([0,1]%) defined via

wr(r) =sup{|f(x) - f(y)|: @,y c[0,1]% |x-y|2<r}, foranyr>0.

Such an approximation error is optimal in terms of N and L up to a logarithmic term
and the corresponding optimal approximation theory is still unavailable. To address this
problem, we provide a constructive proof in this paper to show that ReLU networks
of width O(N) and depth O(L) can approximate an arbitrary continuous function f
on [0,1]¢ with an optimal approximation error O (Vdw;((N2L?In N)-1/?)) in terms of
N and L. As shown by our main result, Theorem 1.1 below, the approximation rate
obtained here admits explicit formulas to specify its prefactors when wy(-) is known.

Theorem 1.1. Given a continuous function f € C([0,1]%), for any N € N*, L € N*,
and p € [1,00], there exists a function ¢ implemented by a ReLU network with width
C} max {d[Nl/dJ, N + 2} and depth 11L + Cy such that

-1/d
£ = Bllooay < 131Vdws((N2L21ogy(N +2)) ),

where Cy =16 and Cy =18 if pe[1,00); Cy =343 and Cy =18+ 2d if p = o0.

Note that 3%3max {d|N'¢], N + 2} < 3¥3max {dN, 3N} < 3%4dN. Given any
N,L eN* with N > 3%4d and L > 29 + 2d, there exist N, L ¢ N* such that

3HIN < N <3™4d(N +1) and 11L+18+2d<L<11(L+1)+ 18+ 2d.
It follows that

N+1 N L+1 1 L-18-2d L-18-2d
N > >—— and L> > —- = .
3 3d+5( 2 2 11 29

Then we have an immediate corollary of Theorem 1.1.
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Corollary 1.2. Given a continuous function f € C([0,1]%), for any N eN* and L € N*
with N > Bdffd and L > 29+2d, there exists a function ¢ implemented by a ReL U network
with width N and depth L such that

_ ~ “1/d
| f = Bl L= (jo17¢) < 131\/wa(((3;§%)2(% 210g3(%+2)) )

As a special case of Theorem 1.1 for explicit error characterization, let us take Holder
continuous functions as an example. Let Holder([0,1]¢, a, \) denote the space of Holder
continuous functions on [0, 1]¢ of order « € (0,1] with a Holder constant A > 0. We have
an immediate corollary of Theorem 1.1 as follows.

Corollary 1.3. Given a Hélder continuous function f € Holder([0,1]¢,a,\), for any
N e N*, L € N*, and p € [1,00], there exists a function ¢ implemented by a ReLU
network with width C; max {d|N'4|, N +2} and depth 11L + Cy such that

-afd
I = &l e oagey < 1BIMWA(N? L logy (N +2)) ",

where Cy =16 and Cy =18 if pe[1,00); C; =343 and Cy =18+ 2d if p = o0.

To better illustrate the importance of our theory, we summarize our key contribu-
tions as follows.

(1) Upper bound: We provide a quantitative and non-asymptotic approximation rate
131\/awf((N2L2 log3(N+2))_1/d) in terms of width O(N) and depth O(L) for any
feC([0,1]%) in Theorem 1.1.

(1.1) This approximation error analysis can be extended to f € C(F) for any E ¢
[-R, R]¢ with R >0 as we shall see later in Theorem 2.5.

(1.2) In the case of one-dimensional Lipschitz continuous functions on [0,1] with
a Lipschitz constant A\ > 0, the approximation rate in Theorem 1.1 becomes
O(525) for ReLU networks with 31 hidden layers and O(W) parameters
via setting L = 1 and W = O(N?) therein. To the best of our knowledge,
the approximation rate O(m) is better than existing known results using

fixed-depth ReLLU networks to approximate Lipschitz continuous functions on
[0, 1].

(2) Lower bound: Through the VC-dimension bounds of ReLU networks given in [13], we
show, in Section 2.3, that the approximation rate 131)\\/3(N2L2 logs (N + 2))_a/d in

terms of width O(N) and depth O(L) for Holder([0,1]¢, o, \) is optimal as follows.
(2.1) When the width is fixed, both the approximation upper and lower bounds take
the form of C'L~2¢/d for a positive constant C'.

(2.2) When the depth is fixed, both the approximation upper and lower bounds take
the form of C'(N21In N)-/4 for a positive constant C.
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Figure 1: Our rate is optimal in terms of width O(/N) and depth O(L) simultaneously
except for the region marked in cyan characterized by {(N,L) e N2: C} < N < L},
where C; = C;(a, d) for i = 1,2 are two positive constants. This figure is an example for
Cy = 1000 and Cs = 1/100.

We would like to point out that if NV and L vary simultaneously, the rate is optimal
in the N-L plane except for a small region as shown in Figure 1. See Section 2.3 for a de-
tailed discussion. The earlier result in [33] provides a nearly optimal approximation error
that has a gap (a logarithmic term) between the lower and upper bounds. It is technically
challenging to match the upper bound with the lower bound. Compared to the nearly
optimal rate 19A\/dN-20/d[-2e/d for Holder continuous functions in Holder([0,1]%, a,, \)
in [33], this paper achieves the optimal rate 131/\\/E(N2L2 logs(N + 2))70[/61 using more
technical and sophisticated construction. For example, a novel bit extraction technique
different to that in [3] is proposed, and new ReLU networks are constructed to approx-
imate step functions more efficiently than those in [33]. The optimal result obtained in
this paper could also be extended to other functions spaces, leading to better under-
standing of deep network approximation.

We have obtained the optimal approximation rate for (Ho6lder) continuous functions
approximated by ReLU networks. There are two possible directions to improve the
approximation rate or reduce the effect of the curse of dimensionality. The first one is
to consider proper target function spaces, e.g., Barron spaces [2,8,12,37], band-limited
functions [5,26], smooth functions [24,43], and analytic functions [9]. The other direction
is to consider neural networks with other activation functions. For example, the results
of [43] imply that (sin, ReLU)-activated networks with W parameters can achieve an
asymptotic approximation error O(2‘Cdﬁ) for Lipschitz continuous functions defined
on [0, 1], where ¢4 is an unknown constant depending on d. Floor-ReLU networks with
width O(N) and depth O(L) are constructed in [34] to admit an approximation rate
wi(VAN-VL) + 2w;(\/d)N-VL for any continuous function f e C([0,1]4). It is shown
in [35] that three-hidden-layer networks with O(W') parameters using the floor function
(|x]), the exponential function (27), and the step function (1,) as activation functions
can approximate Lipschitz functions defined on [0, 1]¢ with an exponentially small error
O(v/d27"). By the use of more sophisticated activation functions instead of those used
in [34,35,43], a recent paper [12] shows that there exists a network of size depending on
d implicitly, achieving an arbitrary approximation error for any continuous function in
C([0,1]9). A key ingredient of the approaches mentioned above is to use more than one



activation functions to design neural network architectures.

The error analysis of deep learning is to estimate approximation, generalization, and
optimization errors. Here, we give a brief discussion, the interested reader can find more
details in [24,34]. Let ¢(x;0) denote a function computed by a network parameterized
with 6. Given a target function f, the final goal is to find the expected risk minimizer

0p = arg;nin Rp(0), where Rp(0) =Eg.ux) [((o(x;0), f(x))],

with a loss function £(-,-) and an unknown data distribution U(X').
In practice, for given samples {(z;, f(2;))}}L;, the goal of supervised learning is to
identify the empirical risk minimizer

0s = argmin Rs(0), where Rs(0) := %if(qﬁ(wi; 0),f(wi)).
0 i=1

In fact, one could only get a numerical minimizer @, via a numerical optimization
method. The discrepancy between the target function f and the learned function
¢(x;0y) is measured by Rp(6,), which is bounded by

Rp(6n) < Rp(0p)  + [Rs(Ox) - Rs(6s)] + [Rp(Oy) - Rs(On)] + [Rs(0p) - Rp(6p)] .
—_———
Approximation error Optimization error Generalization error

This paper deals with the approximation error of ReLLU networks for continuous functions
and gives an upper bound of Rp(0p) which is optimal up to a constant. Note that
the approximation error analysis given here is independent of data samples and deep
learning algorithms. However, the analysis of optimization and generalization errors
do depend on data samples, deep learning algorithms, models, etc. For example, refer
to [7,8, 11,14, 17,18,21, 28, 29] for a further understanding of the generalization and
optimization errors.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1
by assuming Theorem 2.1 is true, show the optimality of Theorem 1.1, and extend our
analysis to continuous functions defined on any bounded set. Next, Theorem 2.1 is
proved in Section 3 based on Propositions 3.1 and 3.2, the proofs of which can be found
in Section 4. Finally, Section 5 concludes this paper with a short discussion.

2 Theoretical analysis

In this section, we first prove Theorem 1.1 and discuss its optimality. Next, we ex-
tend our analysis to general continuous functions defined on any bounded set. Notations
throughout this paper are summarized in Section 2.1.

2.1 Notations

Let us summarize all basic notations used in this paper as follows.

e Let R, Q, and Z denote the set of real numbers, rational numbers, and integers,
respectively.



Let N and N* denote the set of natural numbers and positive natural numbers,
respectively. That is, N* = {1,2,3,---} and N = N*J{0}.

Matrices are denoted by bold uppercase letters. For instance, A € R™*" is a real
matrix of size m x n, and AT denotes the transpose of A. Vectors are denoted

U1

as bold lowercase letters. For example, v = [vg,-,v4]7 = [ ] € R? is a column
Vq

vector with v(i) = v; being the i-th element. Besides, “[” and “|” are used to

partition matrices (vectors) into blocks, e.g., A = [ﬁ; ﬁ;g ]

For any p € [1,00), the p-norm (or £P-norm) of a vector @ = [z, xa, -, x4]T € R is
defined by
1
@l = (17 + foal? + -+ foal?) "

For any z € R, let || :=max{n:n <z, neZ} and [x]:=min{n:n >z, neZ}.

Assume n € N9, then f(n) = O(g(n)) means that there exists positive C' indepen-
dent of n, f, and ¢ such that f(n) < Cg(n) when all entries of n go to +oo.

For any 6 € [0,1), suppose its binary representation is 6 = Y72, 6,27¢ with 6, €
{0,1}, we introduce a special notation bin0.0,60---0;, to denote the L-term binary
representation of 6, i.e., bin0.6,6,--0, = Y&, 6,27

Let u(+) denote the Lebesgue measure.

Let 15 be the characteristic function on a set S, i.e., 1g is equal to 1 on S and 0
outside S.

Let |S| denote the size of a set S, i.e., the number of all elements in S.
The set difference of two sets A and B is denoted by A\B:={z:x € A, x ¢ B}.

Given any K € N* and ¢ € (0, %), define a trifling region Q([0,1]¢, K,§) of [0,1]
as

d K-1
(.11 K.0) = U= lononalle 01 e Utk =680} 20
k=1
In particular, 2([0,1]4, K,0) = @ if K = 1. See Figure 2 for two examples of trifling
regions.

Let Holder([0,1]%, o, A) denote the space of Holder continuous functions on [0, 1]¢
of order a € (0, 1] with a Holder constant A > 0.

For a continuous piecewise linear function f(z), the = values where the slope
changes are typically called breakpoints.

Let CPwL(R,n) denote the space that consists of all continuous piecewise linear
functions with at most n breakpoints on R.



m— O((0,1], K,6) for K =5,d =1 (0,17, K,5) for K =4,d=2

0.0 0.2 0.4 0.6 0.8 1.0 0.00 (J.‘Zv-) l).:—>(J (|.‘Tv—) 1.00
(a) (b)
Figure 2: Two examples of trifling regions. (a) K =5,d=1. (b) K =4,d =2.

Let 0 : R - R denote the rectified linear unit (ReLU), i.e. o(z) = max{0,z}. With
max{0, z }

a slight abuse of notation, we define o : R - R? as o(x) = : for any
max{0, x4}

x =[x1,,1q]" € R

We will use AN to denote a function implemented by a ReLU network for short
and use Python-type notations to specify a class of functions implemented by
ReLU networks with several conditions, e.g., NN (cy; co; =+ ¢,,) is a set of func-
tions implemented by ReL.U networks satisfying m conditions given by {¢;}1<i<m,
each of which may specify the number of inputs (#input), the number of outputs
(#output), the number of hidden layers (depth), the total number of parameters
(#parameter), and the width in each hidden layer (widthvec), the maximum width
of all hidden layers (width), etc. For example, if ¢ € NN (#input = 2; widthvec =
[100,100]; #output = 1), then ¢ is a function satisfying

— ¢ maps from R? to R.
— ¢ can be implemented by a ReLLU network with two hidden layers and the

number of neurons in each hidden layer is 100.

For any function ¢ € NN (#input = d; widthvec = [Ny, Ny, ---, N1 ]; #output = 1),
if we set Ny =d and Ny, = 1, then the architecture of the network implementing
¢ can be briefly described as follows:

7T Wy, by o T Wir_1, bp_1 c . 7. Wi, bp _
x = hg Yo hy hy T hy hr L hia=¢(z),

where W; € RVNistxNi and b; € RN+t are the weight matrix and the bias vector in
the ¢-th affine linear transformation £;, respectively, i.e.,

hz‘+1:vvz"77:¢+bi = EZ(EZ), fori=0,1,--, L,

and _
h;=0(h;), fori=1,2 - L.

In particular, ¢ can be represented in a form of function compositions as follows.
¢=£L000[,L_100'0 000£1000£07

which has been illustrated in Figure 3.
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SR Wo. bo ReLLU =~ Wi, b ReLLU >~ W, by
(@1, 22) = b ——F—— My o — s

Figure 3: An example of a ReLU network with width 5 and depth 2.

e The expression “a network with width N and depth L” means

— The maximum width of this network for all hidden layers is no more than
N.

— The number of hidden layers of this network is no more than L.

2.2 Proof of Theorem 1.1

The key point is to construct piecewise constant functions to approximate continu-
ous functions in the proof. However, it is impossible to construct a piecewise constant
function implemented by a ReLU network due to the continuity of ReLU networks.
Thus, we introduce the trifling region ([0, 1]?, K,0), defined in Equation (2.1), and use
ReLU networks to implement piecewise constant functions outside the trifling region.
To prove Theorem 1.1, we first introduce a weaker variant of Theorem 1.1, showing how
to construct ReLU networks to pointwisely approximate continuous functions except for
the trifling region.

Theorem 2.1. Given a function f € C([0,1]%), for any N € N* and L € N*, there exists
a function ¢ implemented by a ReL U network with width max {8d[Nl/dJ +3d, 16N + 30}

and depth 11L + 18 such that ||@| L= gay < |f(0)] +wr(V/d) and
(@) - 6()| < 130V dwy (N2 L logy (N + 2))‘1/d), for any z € [0, 1]\Q([0,1]% K., 8),

where K = [NY4 2| LV [?| [logg(N +2) Y| and § is an arbitrary number in (0, 5k ].

With Theorem 2.1 that will be proved in Section 3, we can easily prove Theorem 1.1
for the case p € [1,00). To attain the rate in L*°-norm, we need to control the approxi-
mation error in the trifling region. To this end, we introduce a theorem to deal with the
approximation inside the trifling region Q([0,1]%, K,0).

Theorem 2.2 (Theorem 3.7 of [44] or Theorem 2.1 of [24]). Given any e >0, N,L, K €
N*, and § € (0,5%], assume f is a continuous function in C([0,1]?) and ¢ can be
implemented by a ReL U network with width N and depth L. If

|f(x) - ¢(x)|<e, for any @ €[0,1]0\Q([0,1]% K, 6),



then there exists a function ¢ implemented by a new ReLU network with width 3%(N +4)
and depth L + 2d such that

|f(x) - ¢(x)|<e+d-wp(d), forany xel0, 1]%.

Now we are ready to prove Theorem 1.1 by assuming Theorem 2.1 is true, which
will be proved later in Section 3.

Proof of Theorem 1.1. We may assume f is not a constant function since it is a trivial
case. Then wy(r) > 0 for any r > 0. Let us first consider the case p € [1,00). Set
K = [NVd 2| L4 ]2| |logs(N +2)]'/4| and choose a small § € (0, 5] such that

) 3K
Kds(2|f(0)] + 2w (Vd))" = [NV 2| LY)?| [logy (N +2)|"¢]d5(2|f (0)] + 2w (Vd))”
< (wf((z\f?L2 log, (N + 2))‘1/d))p.
By Theorem 2.1, there exists a function ¢ implemented by a ReLLU network with width
max {8d| N'/*| +3d, 16N + 30} < 16 max {d[ N'/?], N + 2}
and depth 11 + 18 such that |¢] = (ray < [£(0)] +ws(V/d) and
(@) - ¢(@)] < 130Vdw;((N?L* logy (N + 2))‘1/d), for any z € [0, 1]\0([0, 1]%, K, §).

It follows from p(2([0,1]4, K,0)) < Kdé and | f| 1 ((0,174y < [f(0)] + w;(\/d) that

1 =100y = 10 F@) ~ 0@ | £(2) - o(@))"da

[0,1]9\Q([0,1]¢,K,6)

< Kb (21 (0)] + 2wy (V)" + (130¢wa((NzL2 log (N + 2))_1/d))p
< (Wf<(N2L2 log (N + 2))_1”))[) + (130\/c_lwf((N2L2 logs(N + 2))_1/d))p
< (131¢&wf((N2L2 logs(IV + 2))‘”"))p.

Hence, | f = 6| (o < 131\/Zzwf((N2L210g (N+2)) 1/d)

Next, let us discuss the case p = co. Set K = | NV [2| L1/ ]?|[logy(N +2) || and
choose a small 6 € (0, 55z ] such that

d-wp(8) <wp((N2L2logy(N +2)) ™).

By Theorem 2.1, there exists a function 25 implemented by a ReLLU network with width
max {8d| N'/¢] +3d, 16N + 30} and depth 11L + 18 such that

() - B)| < 130V duwy (N L2logy(N +2)) ) = ¢,
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for any x € [0,1]9\Q([0,1]¢, K,§). By Theorem 2.2, there exists a function ¢ imple-
mented by a ReLU network with width

3d( max {8d| N'/4| +3d, 16N + 30} + 4) < 3" max {d|N'], N +2}
and depth 11L + 18 + 2d such that
(@) - ¢(@)] < e+ d-wp(8) < 131Vdwy( (N2 L logy (N + 2))‘1/d), for any € [0, 1]%

So we finish the proof. O

2.3 Optimality

This section will show that the approximation rates in Theorem 1.1 and Corollary 1.3
are optimal and there is no room to improve for the function class Holder([0, 1]¢, o, ).
Therefore, the approximation rate for the whole continuous functions space in terms of
width and depth in Theorem 1.1 cannot be improved. A typical method to characterize
the optimal approximation theory of neural networks is to study the connection between
the approximation error and Vapnik—Chervonenkis (VC) dimension [24, 33, 40,41, 44].
This method relies on the VC-dimension upper bound given in [13]. In this paper, we
adopt this method with several modifications to simplify the proof.

Let us first present the definitions of VC-dimension and related concepts. Let H be
a class of functions mapping from a general domain X" to {0,1}. We say H shatters the
set {x1, g, -, @y} € X if

|{[h(m1),h(m2)7...7h(azm)]T €{0,1)": he H}‘ _om

where | -| denotes the size of a set. This equation means, given any 6; € {0,1} for
i=1,2,---,m, there exists h € H such that h(x;) = 6; for all i. For a general function set
Z mapping from X to R, we say % shatters {x1, s, -, @, } € X if T o.F does, where
0,
0

L,

T(t):={0’ ii and ToF ={Tof:feF}

For any m € N*, we define the growth function of H as

T
y(m)=  max X|{[h(:c1),h(mg),---,h(mm)] e{0,1}"he H}|.
x1,L9, ", Tm€
Definition 2.3 (VC-dimension). Let H be a class of functions from X to {0,1}. The
VC-dimension of H, denoted by VCDim(H ), is the size of the largest shattered set,
namely,
VCDim(H) :=sup{m e N* : Tl (m) = 2™}

if {m e N*: Il (m) = 2™} is not empty. In the case of {m e N* : [Iz(m) = 2™} = &, we
may define VCDim(H) = 0.

Let . be a class of functions from X to R. The VC-dimension of .%, denoted by
VCDim(.%), is defined by VCDim(.%) := VCDim(7 o .%), where

T(t):={(1)’ iig’ and ToF ={Tof:feF}.
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In particular, the expression “VC-dimension of a network (architecture)” means the VC-
dimension of the function set that consists of all functions implemented by this network
(architecture).

We remark that one may also define VCDim(.%) as VCDim(.%) = VCDim(7T o.%),

where

?(t)::{(l): 328 and ToF ={Tof:feF}.

Note that function spaces generated by networks are closed under linear transformation.
Thus, these two definitions of VC-dimension are equivalent.

The theorem below, similar to Theorem 4.17 of [44], reveals the connection between
VC-dimension and the approximation rate.

Theorem 2.4. Assume F is a set of functions mapping from [0,1]¢ to R. For any
>0, if VCDIim(%#) > 1 and
inf ¢ = flp=(o11ey <&, for any f e Holder([0,1]% a,1), (2.2)

PpeF
then VCDIim(F) > (9¢)~4/.

This theorem demonstrates the connection between VC-dimension of .% and the ap-
proximation rate using elements of % to approximate functions in Holder([0, 1]¢, o, ).
To be precise, the VC-dimension of .# determines an approximation rate lower bound
VCDim(.%)~*//9, which is the best possible approximation rate. Denote the best ap-
proximation error of functions in Hélder([0,1]¢,a, 1) approximated by ReLU networks
with width N and depth L as

Eaa(N,L) = su
al ) feH('jlder([(E), 1]d,a’1)(¢e/\[7\/(w1dth<N depth<L)

6= Flumg >)

We have three remarks listed below.

(i) A large VC-dimension cannot guarantee a good approximation rate. For example,
it is easy to verify that

VCDim({f : f(x) =cos(ax), ac R}) =

However, functions in { f: f(x) = cos(ax), a € R} cannot approximate Holder
continuous functions well.

(ii) A large VC-dimension is necessary for a good approximation rate, because the
best possible approximation rate is controlled by an expression of VC-dimension,
as shown in Theorem 2.4. Tt is shown in Theorem 6 and 8 of [13] that the VC-
dimension of ReLLU networks has two types of upper bounds: O(W LInW) and
O(WU). Here, W, L, and U are the numbers of parameters, layers, and neurons,
respectively. If we let N denote the maximum width of the network, then W =
O(N?2L) and U = O(N L), implying that

WLInW = O(N2L-LIn(N?L)) = O(N?L*In(NL))
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and
WU = (D(NQL -NL) = O(N3L2).

It follows that

VCDim (AN (width < N; depth < L)) < min {(9(N2L2 In(NL)), (9(N3L2)},
deducing

. —a/d —a/d
Ci(a,d)(min{ N*L2In(NL), N*L?}) < Eqa(N, L) < Coa,d)(N*L*mN) —,  (2.3)

implied by Theorem 2.4 implied by Corollaries 1.2 and 1.3

where C1(a,d) and Cy(a,d) are two positive constants determined by s,d, and
C5(s,d) can be explicitly expressed.

e When L = L is fixed, Equation (2.3) implies
Chi(a,d, Lo)(N*In N)™/? < &, 4(N, Ly) < Cy(a,d, Lo)(N*In N)=/?

where C(a, d, Ly) and Cy(a,d, Ly) are two positive constants determined by
, d, L().

e When N = Nj is fixed, Equation (2.3) implies
Ci(a,d, Ng) L7214 < &, 4(No, L) < Co(av,d, No) L2/,

where C(a, d, Ng) and Co(a, d, Ny) are two positive constants determined by
, d, N().

e It is easy to verify that Equation (2.3) is tight except for the following region
{(N.L) eN: Cy(a.d) < N < LD,

C3 = C3(a,d) and Cy = Cy(a, d) are two positive constants. See Figure 1 for
an illustration for the case C3 = 1000 and Cy = 1/100.

Finally, let us present the detailed proof of Theorem 2.4.

Proof of Theorem 2.J. Recall that the VC-dimension of a function set is defined as the
size of the largest set of points that this class of functions can shatter. So our goal is to
find a subset of .Z to shatter O(e~%*) points in [0,1]¢, which can be divided into two
steps.

e Construct {f, : x € #} < Holder([0,1]%, v, 1) that scatters O(e~%*) points, where
A is a set defined later.

e Design ¢, € #, for each x € %, based on f, and Equation (2.2) such that {¢, : x €
F} ¢ Z also shatters O(e~%*) points.

12



The details of these two steps can be found below.
Step 1: Construct {f, : x € B} c Holder([0,1]%,«, 1) that scatters O(e~¥<) points.
We may assume ¢ < 2/9 since the case € > 2/9 is trivial. In fact, € > 2/9 implies

VCDim(F) > 1> 1/2> 274> > (9¢)~/,

Let K = [(9¢/2) "] € N* and divide [0,1]? into K non-overlapping sub-cubes {Qs}s
as follows:

Qp = {x = [x1,22,-, xa]" €[0,1]%: e [% %%, i=1,2,d},

for any index vector 3 =[5y, B2, B4]T €{0,1,---, K — 1}
Let Q(xo,n) denote the closed cube with center xg € R? and sidelength n > 0. Define
a function (g on [0,1]¢ corresponding to @ = Q(xo,n) € [0, 1]¢ such that:

* Co(®mo) = (n/2)/2;
e (o(x) =0 for any = ¢ Q\0Q, where 0Q) is the boundary of Q;

® (¢ is linear on the line that connects @y and x for any x € 9Q).

Define
B = {X : x is a map from {0,1,--, K —1}% to {-1, 1}}

For each x € #, we define
fx(w) = Z X(IB)CQﬁ(w)7

ﬁ€{071)"')K_1}d

where (g, () is the associated function introduced just above. It is easy to check that
{fy:xeB}cHolder([0,1]%, a,1) can shatter K¢ = O(e~%*) points in [0,1]%.

Step 2: Construct {¢, : x € B} that also scatters O(e~%*) points.
By Equation (2.2), for each x € &, there exists ¢, € .# such that

|ox = ficl Lo (o,170y < € +€/81.

Let p(-) denote the Lebesgue measure of a set. Then, for each y € %, there exists
M, € [0,1]¢ with p(#H,) = 0 such that
6y () = fr ()| < Be, for any @ € [0,1]\H,.
Set H = U,exH,, then we have u(H) =0 and
|9y () = fr(2)] < B, for any x € Z and x € [0, 1]\ H. (2.4)

S 51¢
Since Qg has a sidelength + we have, for each B € {0,1,---, K —1}¢ and

any € -Qg7,
1)1 = g (@) > lcan (@0,)] = oz /2 > Se. 2.5

@1—10623 denotes the closed cube whose sidelength is 1/10 of that of Q3 and which shares the same
center of Qg.

NICE /2) Vel
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where xq, is the center of Qg.

Note that (&Qg)\H is not empty, since p((&Qg)\H) > 0 for each B e {0,1,-, K -
1}4. Together with Equations (2.4) and (2.5), there exists @g € (15Qp)\H such that, for
each B€{0,1,--, K —1}¢ and each y € 4,

|f(xp)| 2 556 > Soe 2 | fr(xp) — Dy ().

Hence, f,(xg) and ¢, (xg) have the same sign for each x € # and B {0,1,--, K -
1}9. Then {¢, : x € B} shatters {xg: B €{0,1,, K — 1}¢} since {f, : x € B} shatters
{:cg :B¢{0,1,- K - 1}d}. Therefore,

VCDim(.%) > VCDim({¢, : x € B}) > K¢ = |(92/2)7V/|? > (9¢) %",

where the last inequality comes from the fact |z| > 2/2 > z/(2'/*) for any z € [1,00) and
a€(0,1]. So we finish the proof. O

2.4 Approximation in irregular domain

We extend our analysis to general continuous functions defined on any irregular
bounded set in R¢. The key idea is to extend the target function to a hypercube while
preserving the modulus of continuity. The extension of continuous (smooth) functions
has been widely studied, e.g., [39] for smooth functions and [38] for continuous functions.
For simplicity, we use Lemma 4.2 of [33]. The proof can be found therein. For a general
set £ ¢ R? the modulus of continuity of f € C(FE) is defined via

wi(r) =sup{|f(z) - f(y)l: @,y € E, [z-y|s<r}), foranyr>0.

[0,1]¢. Then, Theorem 1.1 can

In particular, wy(-) is short of wf(:) in the case of E = [0,
¢ [-R, R]* with R > 0, as shown in

be generalized to f € C(FE) for any bounded set E
the following theorem.

Theorem 2.5. Given any bounded continuous function f € C(E) with E < [-R, R]¢ and
R>0, for any N e N*, L e N*, and p € [1,00], there exists a function ¢ implemented by
a ReLU network with width Cy max{d[Nl/dJ, N + 2} and depth 11L + Cy such that

-1/d
£ = 6lun < 131Q2R) VWP (2R(N* L2 logy(N +2)) "),

where Cy =16 and Co =18 if pe [1,00); Cy = 3%3 and Cy =18 +2d if p = o0.

Proof. Given any bounded continuous function f € C(E), by Lemma 4.2 of [33] via
setting S = [-R, R]%, there exists g € C([-R, R]%) such that

e g(x)=f(x) forany x ¢ Ec S =[-R, R]%
o w(r)=wf(r) for any r > 0.
Define
g(x) = g(2Rx - R), for any x € [0,1]%

14



By applying Theorem 1.1 to § € C([0,1]%), there exists a function ¢ implemented by a
ReLU network with width C; max {d|N'/4], N + 2} and depth 11L + C, such that

1/d
H¢ Gllzr(ro,139) < 131\/3wg((N2L2 logs (N + 2)) )

where C} =16 and Cy =18 if pe [1,00); C; = 393 and Cy = 18 + 2d if p = oo.
Note that f(z) = g(x) = G(%E) for any x € E < S =[-R, R]? and

wy(r) = wy (2Rr) = Wy E(2Rr),  for any r > 0.

Define ¢(x) = (“”R = do L(x) for any x € R, where £ : R - R? is an affine linear
map given by L(x) = £, Clearly, ¢ can be implemented by a ReLU network with width
Clmax{d N1/d|, N+2} and depth 11L + Cy, where C; = 16 and Cy = 18 if p € [1, 00);
Cy = 33 and Cy = 18 + 2d if p = 0. Moreover, for any x € £ ¢ S = [-R, R]?, we have

2+l ¢ [0,1]%, implying
16 = Flloey = 6 = gliriey = 160 L=Fo Ll oy
<[ ¢oL-TFoLlorr = CRY" |6 =Tl o019
< 131(2R) "/ duwy((N* L logy (N +2)) ")
= 131(2R)""/dwF (2R(N? L2 logy(N +2)) ™).
With the discussion above, we have proved Theorem 2.5. O

3 Proof of Theorem 2.1

We will prove Theorem 2.1 in this section. We first present the key ideas in Sec-
tion 3.1. The detailed proof is presented in Section 3.3, based on two propositions in
Section 3.1, the proofs of which can be found in Section 4.

3.1 Key ideas of proving Theorem 2.1

Given an arbitrary f € C([0,1]¢), our goal is to construct an almost piecewise
constant function ¢ implemented by a ReLLU network to approximate f well. To this end,
we introduce a piecewise constant function f, ~ f serving as an intermediate approximant
in our construction in the sense that

f~f,on[0,1]* and f,~¢ on [0,1]\Q([0,1]% K,).

The approximation in f » f, is a simple and standard technique in constructive approx-
imation. The most technical part is to design a ReLU network with the desired width
and depth to implement a function ¢ with ¢ ~ f,, outside €2([0,1]¢, K, ). See Figure 4
for an illustration. The introduction of the trifling region is to ease the construction
of ¢, which is a continuous piecewise linear function, to approximate the discontinuous
function f, by removing the difficulty near discontinuous points, essentially smoothing
fp by restricting the approximation domain in [0, 1]9\Q([0,1]%, K, ¢).
Now let us discuss the detailed steps of construction.
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I

¢

Q:’f

Q([0,1], K, 9)

(-m, f(l‘ﬂ>)

=
<[]

0.0

Qo 1 Q> Q3 Q4 Qs Qs Q7 Qs
0 1/9 2/9 3/9 4/9 59 6/9 79 89 1

Figure 4: An illustration of f, f,, ¢, x5, @z, and the trifling region Q([0,1]%, K,9) in the
one-dimensional case for 8 € {0,1,---, K = 1}, where K = N2L?|log;(N +2)| and d = 1
with N =1 and L = 3. f is the target function; f, is the piecewise constant function
approximating f; ¢ is a function, implemented by a ReLLU network, approximating f;
and x is a representative of Q3. The measure of ([0, 1]¢, K, ) can be arbitrarily small
as we shall see in the proof of Theorem 1.1.

(i)

(i)

(iii)

First, divide [0,1]¢ into a union of important regions {Qg}g and the trifling re-
gion ([0,1]¢, K,¢), where each Qg is associated with a representative xg € Qg
such that f,(xzg) = f(xg) for each index vector 8 € {0,1,---, K — 1}, where
K = O((N?L?In N)'/4) is the partition number per dimension (see Figure 7 for
examples for d =1 and d = 2).

Next, we design a vector function ®;(x) constructed via

&, (@) = [01(21), 61 (22), - 61 (2a)]

to project the whole cube QY3 to a d-dimensional index @3 for each 3, where each
one-dimensional function ¢, is a step function implemented by a ReLLU network.

The third step is to solve a point fitting problem. To be precise, we construct a
function ¢y implemented by a ReL.U network to map 3 € {0, 1,---, K — 1} approxi-
mately to f,(xg) = f(xg). Then ¢y 0 ®1(x) = p2(B) ~ f(xg) = f(xp) » f(x) for
any « € Qg and each B, implying ¢ = g9 0 ®1 ~ f, » f on [0,1]\Q([0,1]¢, K, ).
We would like to point out that we only need to care about the values of ¢9 at
a set of points {0,1,--, K = 1}? in the construction of ¢ according to our design
¢ = ¢ o P as illustrated in Figure 5. Therefore, it is not necessary to care about
the values of ¢y sampled outside the set {0,1,---, K — 1}¢, which is a key point to
ease the design of a ReLLU network to implement ¢, as we shall see later.

We remark that in Figure 5, we have

H(x) = gy o By () = u(B) % f(p) % f(2)

for any @ € Qg and each B8 €{0,1,---, K —1}9. Thus, ¢ — f is bounded by & + & outside
the trifling region. Observe that &5 is bounded by wf(\/a/K ). As we shall see later in
Section 3.3, & can also be bounded by wf(\/a/K ) by applying Proposition 3.2. Hence,
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mm Q0,1 K,8) for K=4,d=2 _

Qpfor B e {U.l.‘l.‘.‘;}-’ (1’1(:12) =8 d-di A.Set (l)f dices:
x wplorBe{0.1,2,3)° F—— -dimensional 1n 1cesd.
l,l)(l"'""ii --------- — A """" B ﬁ € {0; 17 e 7K - 1}

' || #20)~ s

A set of function values
at representatives:

{fxp): Be{0,1, - K —1}9}

0.00

0.00 0.25 0.50 0.75 1.00

Figure 5: An illustration of the desired function ¢ = ¢ o ®;. Note that ¢ » f on

[0, 1]N\Q([0,1]4, K, 6), since ¢(x) = do 0 P1(x) = ¢2(B) » f(zp) » f(z) for any x € Qg
and each B€{0,1,---, K - 1}

¢ — f is controlled by 2w;(v/d/K) outside the trifling region, which deduces the desired
approximation error.

Finally, we discuss how to implement ®; and ¢, by deep ReLLU networks with width
O(N) and depth O(L) using two propositions as we shall prove in Sections 4.2 and 4.3
later. We first show how to construct a ReLU network with the desired width and depth
by Proposition 3.1 to implement a one-dimensional step function ¢;. Then ®; can be
attained via defining

() = [¢1(21), d1(z2), -, gzﬁl(xd)]T, for any @ = [x1, 29, -, 24]" € R%

Proposition 3.1. For any N,L,d ¢ N* and 6 € (0, 5= ] with

K = | NY42| LY4 2], where n = [logs(N +2)],

there exists a one-dimensional function ¢ implemented by a ReLU network with width
8| NVd| +3 and depth 2| LY4| +5 such that

Pp(x) =k, ifwe[s, Bl-§ -1y o], fork=0,1,- K-1.

The setting K = | NV4|2| L2 nt/d| = O(N?/1L2/4pl/) is not neat here, but it is
very convenient for later use. The construction of ¢, is a direct result of Proposition 3.2
below, the proof of which relies on the bit extraction technique in [3].

Proposition 3.2. Given any e > 0 and arbitrary N, L, J € N* with J < N2L?|logs(N+2) |,
assume y; >0 for j=0,1,---,J =1 are samples with

lyj —yj1l <e, forj=1,2,-- J-1.

Then there exists ¢ € NN (#input = 1; width < 16 N + 30; depth < 6L + 10; #output = 1)
such that

(i) 16(j) = yjl <€ for j=0,1,--,J - 1.
(i) 0 < ¢(x) <max{y;:j=0,1,--,J -1} for any x e R.
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3.2 Construction of final network

We will discuss the construction of the final network approximating the target func-
tion with the same setting as in Section 3.1. There are two main parts: 1) Construct the
final network architecture based on Propositions 3.1 and 3.2; 2) Implement the network
architectures in Propositions 3.1 and 3.2.

Final network architecture based on Propositions 3.1 and 3.2

By the idea mentioned in Figure 5, the final network architecture can be imple-
mented as shown in Figure 6.

S Ok
T1e O(NY4) ¢1 )
Toe O(NY%) ¢1 .
Yrooe OWN) 4y ()
Tqe O(NY/?) ;;1, b
®y() = [p1(21), -+, da(2a)] b2 =1r 09
Figure 6: An illustration of the final network architecture with width

max{O(dN'4), O(N)} and depth O(L). 1, : RY - R is a linear function. ¢; and
1 are implemented via Propositions 3.1 and 3.2, respectively.

Note that ¢, in Figure 6 is a step function mapping z € [%, % —0-Ljpex-ny] to k
for each k€ {0,1,---, K — 1}. It can be easily implemented via Proposition 3.1. Clearly,
by defining ®,(x) = [¢1(x1),¢1(:v2), ---,¢1(xd)]T, ®, maps x € Qg to S.

As shown in Figure 5, we need to design a network to compute ¢ mapping 3 €
{0,1,--, K-1}4 approximately to f(xg). To this end, we first construct a linear function
1 : R4 > R mapping 3 € {0,1,--, K — 1}¢ to R for the purpose of converting a d-
dimensional point-fitting problem to a one-dimensional one, and then construct a network
to compute ¥y with ¥2(¢1(8)) ~ f(xg) via applying Proposition 3.2. Thus, we have
02(B) =201 (B) ~ f(xp) as desired.

Network architectures in Propositions 3.1 and 3.2

To prove Proposition 3.1, we need to construct a ReLU network with width O(N1/®)
and depth O(LY?) to compute a step function with O((N2L2In N)'/?) “steps” outside
the trifling region. It is easy to construct a ReLLU network with O(W') parameters to
compute a step function with W “steps” outside a small region. As we shall see later
in Section 4.2, the composition architecture of ReLU networks can help to implement
step functions with much more “steps”. Refer to Section 4.2 for the detailed proof of
Proposition 3.1.

Proposition 3.2 essentially solves a point-fitting problem with N2L?|logs(N + 2) |
points via a ReLU network with width O(N) and depth O(L). Set M = N2L, L =
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L|logs(N+2)], and represent j € {0, 1, -, ML-1} via j = mL+k, where m € {0,1, -, M1}
and k€ {0,1,---, L —1}.
Define ay, i = |ymr/c| where ypx =y, 7., Then

|am,k€ - ymk| = “Z/m,k/ng - ym,k| <e.

It suffices to prove ¢(m, k) = a, . The assumption |y; — y;_1| < € implies that by, =
Ak — Q-1 € {—1,0,1}. Thus, there exist ¢, € {0,1} and d,,,x € {0,1} such that
bm,k =Cmk — deﬁ.

Note that

k k k k
Am,k = Amo T Z(am,j - am,jfl) =amot Z bm,j =amot Z Cm,j — Z dm,j-
=1 j=1 j=1 j=1
It is easy to construct a ReLU network with width O(N') and depth O(L) (O(N2L)
parameters in total) to compute ¢; such that ¢,(m) = ap, o for each m e {0,1,---, M -1}
with M = N2L. By the bit extraction technique in [3], one could construct ¢s, @3 €
NN (width < O(N); depth < O(L)) such that ¢s(m,k) = ¥ ¢y and ¢3(m, k) =
Z?:l dm ;- Thus, ¢(m, k) = ¢1(m) + p2(m, k) — ¢p3(m, k) = a,, i, as desired.
In order to use the bit extraction technique (two types of bits 0 or 1) to solve the
point-fitting problem, we essentially simplify the target as discussed above. That is,

. . 13
non-negative number y,, , — integer a, x = |Ym.x/E|~ Ymi
- bm,k = Am,k — Am k-1 € {_17 07 1}

—> bmJg =Cmk — dm,k with Cm,ks dm,k € {0, 1}

The detailed proof of Proposition 3.2 can be found in Section 4.3.

3.3 Detailed proof

We essentially construct an almost piecewise constant function implemented by a
ReLU network with width O(N) and depth O(L) to approximate f. We may assume f
is not a constant function since it is a trivial case. Then ws(r) > 0 for any r > 0. It is
clear that |f(z) - £(0)| < wf(V/d) for any x € [0,1]¢. Define f = f - f(0) +ws(\/d), then
0 < f(x) < 2w;(V/d) for any z € [0,1]7.

Let M = N2L, n = |logg(N +2)|, K = | NY4]2| L'/4]2|n!/?| and § be an arbitrary
number in (0, SLK] The proof can be divided into four steps as follows:

1. Normalize f as f, divide [0, 1] into a union of sub-cubes {Qa} gefo,1,..,k-13¢ and the
trifling region Q([0,1]%, K, ), and denote xg as the vertex of g with minimum
|- x norm;

2. Construct a sub-network to implement a vector function ®; projecting the whole
cube Qg to the d-dimensional index 3 for each 3, i.e., ®1(x) = 8 for all x € Qg;

3. Construct a sub-network to implement a function ¢, mapping the index 3 approx-
imately to f(xg). This core step can be further divided into three sub-steps:
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3.1. Construct a sub-network to implement ¢, bijectively mapping the index set
{0,1,--, K = 1}% to an auxiliary set A; C {2’? :7 =0, 1,---,2Kd} defined later
(see Figure 8 for an illustration);

3.2. Determine a continuous piecewise linear function g with a set of breakpoints
A1 u Ay u {1} satisfying: 1) assign the values of g at breakpoints in .4; based
on {f(x)}s, i.e., goy(B) = f(xp); 2) assign the values of g at breakpoints
in Ay U {1} to reduce the variation of g for applying Proposition 3.2;

3.3. Apply Proposition 3.2 to construct a sub-network to implement a function 1,
approximating g well on A; U A; U {1}. Then the desired function ¢, is given

by ¢y = by 0 9y satistying ¢o(8) =120 91 (B) » go1(B) = fv(wﬁ);

4. Construct the final network to implement the desired function ¢ such that ¢(x) =
20 ®1(@) + f(0) ~w(Vd) » fap) + f(0)~w;(Vd) = f(xp) » f() for any x € Qp
and B€{0,1,, K -1}

The details of these steps can be found below.

Step 1: Divide [0, 1]¢ into {Qa} ge{o,1,,k-13¢ and Q([0, 1], K, §).
Define g = 3/K and

Qo= {@ = [w1, 20, € [0,1] s € [%, 52— 6 Lypan )], i=1,2,d}
for each d-dimensional index 3 = [, 32, -+, B4]T € {0, 1, -+, K—1}4. Recall that Q([0,1]¢, K,0)

is the trifling region defined in Equation (2.1). Apparently, g is the vertex of ()g with
minimum | - ||; norm and

[0; 1]d = ( UBe{0,1,, K-1}4 Qﬁ) UQ([Ov 1]d7 K? 5)

See Figure 7 for illustrations.

([0, 1)%, K,0) for K=4,d=1 . Q0,1 K,0) for K =4,d=2

Qp for B € {0,1,2,3} Qg for B € {0,1,2,3}

* xpfor Be{0,1,2,3} * xgfor B e{0,1,23)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 7: Ilustrations of Q([0,1]¢, K,¢), Qg, and &g for B {0,1,---, K -1}4. (a) K =4
and d=1. (b) K =4 and d=2.

Step 2: Construct ®; mapping x € Qs to 8.
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By Proposition 3.1, there exists ¢; € NNV (width < 8| N'/¢| + 3; depth < 2| L'/¢] +5)
such that

pr(z) =k, ifwe[£ Bl 154 9] fork=01 K-1.

It follows that ¢1(z;) = B; if @ = [x1, 29, -+, x4]T € Qg for each B =[S, Ba, -+, Ba]T.

By defining

D (x) = [¢1(l‘1)7 ¢1(w2), -, ¢1(~’17d)]T, for any @ = [x17x27"'7xd]T € Rd;
we have ®,(x) = 3 if ¢ € Qg for each B¢ {0,1,--, K - 1}

Step 3: Construct ¢, mapping 3 approximately to f(wg)
The construction of the sub-network implementing ¢, is essentially based on Propo-
sition 3.2. To meet the requirements of applying Proposition 3.2, we first define two
auxiliary sets A; and Aj as

Ay ={ps +587:0=0,1,- K¥'-1 and  k=0,1,~+, K -1}

and

Ap={t=+Lk:i=0,1, K"'-1 and k=0,1, K-1}.

Clearly, A1 U Ay U {1} = {547 : j = 0,1,~+,2K9} and A; n Ay = @. See Figure 7 for an
illustration of A; and A,. Next, we further divide this step into three sub-steps.

Step 3.1: Construct ; bijectively mapping {0, 1,--, K — 1}¢ to A;.

Inspired by the binary representation, we define

d-1
Tq Z; T d
(x)=—==+) —, forany x=[x,29,, 4] €R™ (3.1)
TN

Then 1; is a linear function bijectively mapping the index set {0,1,---, K = 1}? to

(e + 3 :8e{0,1, K - 1))
iy k201 KT21 and k:O,l’...,K—l}ZAL

Step 3.2: Construct g to satisfy g o ¢y (3) = f(m@) and to meet the requirements of
applying Proposition 3.2.

~Let g:[0,1] = R be a continuous piecewise linear function with a set of breakpoints
{2% 15 =0, 1,---,2Kd} = A; u Ay u {1} and the values of g at these breakpoints satisfy
the following properties:

e The values of g at the breakpoints in A; = {%(5) :B€{0,1, K- 1}d} are set as
9(¢1(5)):f($5)> for aHyIBG{O,l,---,K—l}d; (32)
e At the breakpoint 1, let ¢(1) = f(1), where 1=[1,1,---,1]7 e R%;
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Figure 8: An illustration of Aj, Ay, {1}, and ¢ for d =2 and K =4.

e The values of g at the breakpoints in As are assigned to reduce the variation of g,
which is a requirement of applying Proposition 3.2. Note that

(i - K i Ve A u {1}, fori=1,2,- K%,

Kd-1 2Kdy [Kd-1

implying the values of g at ﬁ—% and # have been assigned fori = 1,2, -+, K1,

Thus, the values of g at the breakpoints in Ay can be successfully assigned by

letting ¢ linear on each interval [ - %, i) for i = 1,2, K41 since

AN , ; . .
Ay € UK] [ — %, 7). See Figure § for an illustration.

Apparently, such a function g exists (see Figure 8 for an example) and satisfies
[9(aka) ~ ()| < masc {wy (). s (VA)[K } < wy (), for j=1,2,+, 2K,

and '
0<g(5k7) <2wp(Vd), for j=0,1,- 2K

Step 3.3: Construct 1, approximating g well on A; u A4, U {1}.
Note that

2K4 = 2(| NV LY 2 n4)) " < 2( N2L2n) < N2[V2L 2 |logy(N +2) .
By Proposition 3.2 (set y; = 9(2]?) and € = wf(%l) > 0 therein), there exists
Yy € NN (#input = 1; width < 16N + 30; depth < 6[v/2L] + 10; #output = 1)

such that B ‘
102(5) - 9(55) < wp (), for j=0,1,--2K% -1,

and
0<Uo(z) < max{g(5L7):j=0,1,~,2K-1} < 2wp(Vd), for any xR,

By defining 15 (2) = (2K 9x) for any z € R, we have by € NV (#input = 1; width <
16N +30; depth < 6[\/2L]+ 10; #output = 1),

0 < hy(x) = o (2K%x) < 2wp(Vd), for any z € R, (3.3)
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and

[Va(gka) = 9(g)| = [02(5) — 9(ga)| Swp(¥2), for j=0,1,,2K" 1. (3.4)

Let us end Step 3 by defining the desired function ¢, as ¢o = 95 o 9)1. Note that

1 : R? > R is a linear function and 1, € NN (#input = 1; width < 16N + 30; depth <

6[v/2L] + 10; #output = 1). Thus, ¢ € NNV (#input = 1; width < 16N + 30; depth <
6[v/2L] + 10; #output = 1). By Equations (3.2) and (3.4), we have

62(8) - F(@p)| = [2(1(8)) - 911 (B))| < w; (), (3.5)

for any B €{0,1,--, K — 1}4. Equation (3.3) and ¢3 = 15 0 ¢; implies

0 < ¢go(x) < 2wp(Vd), for any x € R (3.6)

Step 4: Construct the final network to implement the desired function ¢.

Define ¢ = ¢y 0 ®; + £(0) — ws(V/d). Since ¢y € NNV (width < 8| NV/4| + 3; depth <
2| LY4] + 5]), we have ®; € NN (#input = d; width < 8d|NY4| + 3d; depth < 2L +
5; #output = d). It follows from the fact [v/2L] < [3L] < 2L+1 that 6[\/2L]+10 < 9L+13,
implying

¢2 € NN (#input = 1; width < 16N + 30; depth < 6[v/2L] + 10; #output = 1)
c NN (#input = 1; width < 16N + 30; depth < 9L +13; #output =1).
Thus, ¢ = ¢y 0 &, + £(0) -~ w(Vd) is in
AN (width < max{8d| N**|+3d,16N +30}; depth < (2L +5) + (9L +13) = 11L + 18).

Now let us estimate the approximation error. Note that f = f+ f(0) - wf(\/g). By
Equation (3.5), for any € Qg and B € {0,1,---, K — 1}4, we have
1f(®) - ¢(x)] = | f(®) - 92(P1 ()| = | () - $2(B3)|
<|f() - f(zp)|+|f(zs) - 2(B))
<w(L) +wp(F) < 2y (64v/d( N2 L2 ogy (N +2)) ),

where the last inequality comes from the fact

_ 1d121 r1/d121 . 1/d N2/dp2/dy1/d N2/A12/d)log, (N+2) [V (N2L?log,(N+2))'/4
K = [NV LYt > 32 = 32 2 64 ,

for any N,L € N*. Recall the fact ws(j-7) < j-ws(r) for any j € N* and r € [0, o0).
Therefore, for any a € Ugefo,1,...x-13¢ @p=[0, 1]"\Q([0,1]¢, K, 0), we have

[F() = ()] < 20 (64VA( N2 L2 logy (N + 2))‘1/d)
< 2[64v/d |y (N2 L logy(N + 2)) ")
< 130Vdwy (V2L logy (N +2)) 7).

It remains to show the upper bound of ¢. By Equation (3.6) and ¢ = ¢oo0®;+ f(0) -
w;(V/d), it holds that |#] Lo ray < |£(0)] +ws(V/d). Thus, we finish the proof.
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4 Proofs of propositions in Section 3.1

In this section, we will prove Propositions 3.1 and 3.2. We first introduce several
basic results of ReLU networks. Next, we prove these two propositions based on these
basic results.

4.1 Basic results of ReLU networks

To simplify the proofs of two propositions in Section 3.1, we introduce three lemmas
below, which are basic results of ReLU networks

Lemma 4.1. For any Ni,Ny € N*, given Ni(No + 1) + 1 samples (x;,y;) € R? with
To < Ty < <Tny(Npe1) and y; 20 fori=0,1,--, Ny (Na+1), there exists ¢ € NN (#input =
1; widthvec = [2N7,2N5 + 1]; #output = 1) satisfying the following conditions.

(i) ¢(z;) =vy; fori=0,1,---, N;(Ny+1).
(i1) ¢ is linear on each interval [x;_1,x;] for i ¢ {(No+1)j:5=1,2,--- Nq}.
Lemma 4.2. Given any N, L,d € N*, it holds that

NN (#input = d; widthvec = [N, NL]; #output =1)
c NN (#input = d; width <2N +2; depth < L + 1; #output =1).

Lemma 4.3. For any n € N*, it holds that
CPwL(R,n) € MV (#input = 1; widthvec = [n + 1]; #output = 1). (4.1)

Lemma 4.1 is a part of Theorem 3.2 in [44] or Lemma 2.2 in [32]. Lemma 4.1 is
Theorem 3.1 in [44] or Lemma 3.4 in [32]. It remains to prove Lemma 4.3.

Proof of Lemma /.3. We use the mathematical induction to prove Equation (4.1). First,
consider the case n=1. Given any f € CPWL(R, 1), there exist aq, as, x¢ € R such that

) ar(z —xo) + (o), if x>,
f(z) = { as(zo—x) + f(xo), if x <.
Thus, f(z) = ajo(x —x0) + azo(xo— ) + f(x0) for any z € R, implying
f € NN (#input = 1; widthvec = [2]; #output = 1).

Thus, Equation (4.1) holds for n = 1.

Now assume Equation (4.1) holds for n = k € N*, we would like to show it is also
true for n = k+1. Given any f € CPWL(R, k+ 1), we may assume the biggest breakpoint
of f is xg since it is trivial for the case that f has no breakpoint. Denote the slopes of
the linear pieces left and right next to xg by a; and aq, respectively. Define

f(x) = f(x) - (az - ar)o(x - xp), for any z € R.
Then fhas at most £ breakpoints. By the induction hypothesis, we have
fe CPwL(R, k) € NV (#input = 1; widthvec = [k + 1]; #output = 1).
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Thus, there exist wy ;, by j,wy ;,b1 for 7 =1,2
k+1

.k + 1 such that
f(l') Zwlij'(wojflf-l-boj)-i-bl,
j=1
Therefore, for any x € R, we have

for any x e R

k+1

(r) = (aa —ar)o(z —x0) + f(2) = (a2 — a1)o(x - x0) Zw1]0(w03$+boj)+bh

M = |NYa2| L1/

+ .
implying f € AN (#input = 1; widthvec = [k + 2]; #output = 1). Thus, Equation (4.1)
Now, let us present the detailed proof of Proposition 3.1

j=1 ’
holds for £+1, which means we finish the induction process. So we complete the proof
4.2 Proof of Proposition 3.1

[logs(N +2)], and L

O

{(1,M-1),(2,0)} U{(
Its size is

Denote K = M - L, where
| LY/4||n'/?|. Consider the sample set
m):m=0,1,
U{(57

M -1}
o,m):m=0,1,
OM +1=2|NV4 2| LY +
By Lemma 4.1 (set N; =

-, M -2},

Nl/d
| Nd] and N, =

such that

(L
I

ANV LM = 1) 4 1) + 1.
2| NV || LY/4] -1 therein), there exists
¢1 € NV (widthvec = [2| NY] 2(2| N4 LY] - 1) + 1])
= NV (widthvec = [2| NY4] 4| NY|| L] - 1])
o 1) =6:(1) =

e ¢ is linear on [

—1 and ¢1( ) =1 (m+1
M-1 4
J’\}[’ 9
Then, for m=0,1, - M

8) =m for m=0,1,-, M -2
: m m+l AT
1] and each interval [, =2 — 6] for m =0,1,-+, M - 2.
-, M -1, we have
¢1(x) =m, for any x e [&, m —
Now consider another sample set

Its size is

0- ]l{m<M 2}]
{(L-1),2,0U{(z.0:£=01,-L-1}
U{(K+1

By Lemma 4.1 (set N;

(4.2)

5,0):£=0,1,-,L -2},

2L +1=2[LY|[n*4] + 1 = [n]- ((2LLY?]-1) +1) +1
|n'/d] and Ny = 2| LY4] -

|

¢o € NV (widthvec = [2[n'/?], 2(2] L] - 1) + 1])
such that

1 therein), there exists
= NV (widthvec = [2|n/4], 4| LY4] - 1])
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¢( 1) = ¢o(L) = L- 1 and ¢o(5) = ¢o(t - 5) =L for £=0,1,-+,L-2.

® ¢, is linear on [%, %] and each interval [ML, ﬁi 6] for €=0,1,---, L - 2.

It follows that, for m=0,1,--,M -1 and £ =0,1,--, L -1,

go(x—2) =1, foranyxe [ml\jzz, % 6 Lypg oyl (4.3)

K=M-L implies any k € {0,1,--, K — 1} can be unique represented by k = mL + ¢
for m € {0,1,-,M -1} and ¢ € {0,1,---,L — 1}. Then the desired function ¢ can be
implemented by a ReLLU network shown in Figure 9.

¢ () =m (m)
.\. \ mb[mz +l=k= (;5(:(‘)]

7"7% 579/ ¢2(T7ﬁ):é

Figure 9: An illustration of the network architecture implementing ¢ based on Equa-

tions (4.2) and (4.3) for x € [Ik{, kBl _ 5. Liper-2y] = [”}‘\Z[Z, mﬁ;i” 0 Lieif2 or ESZ—2}]7

Wherekzmz+£form:0,1,--,M land =0,1,--, L 1.

Clearly,
p(x) =k, fze[L£ B0 -1yep o], forany ke{0,1,-- K-1}.
By Lemma 4.2, we have

¢1 € NN (#input = 1; widthvec = [2| NY4[ 4| N4 LY4] - 1]; #output =1)
c NV (#input = 1; width < 8| N'/?] +2; depth < [ LY4] +1; #output = 1)

and

¢o € NN (##input = 1; widthvec = [2[n"/?], 4| L] - 1]; #output = 1)
c NV (#input = 1; width < 8[n"/?] +2; depth < | LY¢|+1; #output = 1).

Recall that n = |[log;(N +2)| < N. It follows from Figure 9 that ¢ can be implemented
by a ReLU network with width

max {8 N[ +2+1,8[n'/*] + 2+ 1} = § N'/¢] + 3

and depth
(LLY4] + 1) + 2+ (|LY4] + 1) + 1 = 2| LY?] + 5.

So we finish the proof.
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4.3 Proof of Proposition 3.2

The proof of Proposition 3.2 is based on the bit extraction technique in [3, 13]. To
simplify the proof, we first prove Lemmas 4.4, 4.5, 4.6, and 4.7, which serve as four
important intermediate steps. Next, we will apply Lemma 4.7 to prove Proposition 3.2.
In fact, we modify this technique to extract the sum of many bits rather than one bit
and this modification can be summarized in Lemmas 4.4 and 4.5 below.

Lemma 4.4. For any n € N*, there exists a function ¢ in
/\/N(#input =2; width < (n +1)2"*; depth < 3; #output = 1)

such that: Given any 6; € {0,1} for j=1,2,---,n, we have
¢(bin0.6,65---0,,, i) = > 0;, for any i€ {0,1,2,--,n}. @
j=1

Proof. Set 6 = bin0.6,05---6,,. Clearly,
0;=1270]/2-277'6], for any je{1,2,-,n}.

We shall use a ReLLU network to replace |-]. Let g € CPwL(R, 27! — 2) be the function
satisfying two conditions:

e ¢ matches set of samples

2"-1

U {(k;yk)7(k+]._57k)}7 Where 5:2—(n+1);
k=0

e The breakpoint set of g is

2"-1

( U {k. e+ 1=0})\ ({03 Uf2" - 6}).

Then g(z) = |z] for any z € U.;' [k, k + 1 -6]. Clearly, 0 = bin0.6,6---0,, implies

2"-1
210 e | J [k,k+1-6], forany je{0,1,2,--,n}.
k=0

Thus,
0;=1270]/2-27710] = g(270) /2 - g(227'6), for any j e {1,2,-,n}. (4.4)

It is easy to design a ReLU network to output 6y,0s,---,6,, by Equation (4.4) when
using 6 = bin0.6,6,---0, as the input. However, it is highly non-trivial to construct
a ReLU network to output Z;-:l ¢; with another input 7, since many operations like
multiplication and comparison are not allowed in designing ReLLU networks. Now let us
establish a formula to represent Z§'=1 6; in a form of a ReLU network as follows.

@By convention, YL, aj =0 if n>m, no matter what a; is for each j.
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Define T(n) =o(n+1)-o(n) = {(1) 2% for any integer n. Then, by Equation (4.4)
and the fact zyxs = o0(x1 + 22— 1) for any xq1,29 € {0,1}, we have, for 1 =0,1,2,--, n,

iej:iej-fr(i—jpim FT( ) 1)
io(@ +o(i-j+1)-o(i-j)- 1)

- ano(g 23’9)/2 -9 ) +o(i-j+1)-0o(i-j) - 1).

<
1l
—_

Define
2g=0(9(20)[2-g(270) +o(i-j+1) -0 (i-j) - 1), (4.5)

for any 4,7 € {0,1,2,---,n}. Then the goal is to design ¢ satisfying

(0,1 :Z => 2, foranyic{0,1,2,- n}. (4.6)
= j:l

See Figure 10 for the network architecture implementing the desired function ¢.

Input 1 2 3 Output

A|9(0)
[0 ‘. 9(20) k
/#Q/)/m [a (9(29)/2 —g(0) + (i) —o(i—1) — 1) = ;MJ
m 1[0(51(229)/2 ~9(@0) +ali= 1) —o(i-2)~1) = “}\

/u
O‘(l
\%
o(i—n)

Figure 10: An illustration of the network implementing the desired function ¢ with
the input [#,4i]7 = [bin0.0,65---0,, i]* for any i € {0,1,2,---,;n} and 6,0,,---,0, € {0,1}.
g(27-) can be implemented by a one-hidden-layer network with width 27*! -1 for each
j€40,1,2,-,n}. The red numbers above the architecture indicate the order of hidden
layers. The network architecture is essentially determined by Equations (4.5) and (4.6),
which are valid no matter what 60,6, 6, € {0,1} are. Thus, the desired function ¢
is independent of 6y,0s,---,0, € {0,1}. We omit ReLU (o) for a neuron if its output is
non-negative without ReLLU. Such a simplification is applied to similar figures in this

paper.

a

[0(5}(2"0)/2 —g(2"'0) +o(i—n+1)—o(i—n) — l) = ,zm}

By Lemma 4.3, we have

g € CPwL(R, 2" - 2) c NN(#input = 1; widthvec = [2"*! - 1]; #toutput = 1),
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implying

g(27.) e CPwL(R, 2" - 2) c NN(#input =1; widthvec = [2"*! - 1]; #output = 1),

for 7=0,1,2,---,n. Clearly, the network in Figure 10 has width
(n+1)2" -1)+(n+1)=(n+1)2"*!
and depth 3. So we finish the proof.

Lemma 4.5. For any n, L € N*, there exists a function ¢ in

NN(#input =2; width < (n +3)2"*"! + 4; depth < 4L +2; #output = 1)

such that: Gwen any 6; € {0,1} for j=1,2,--- Ln, we have

k
¢(bin0.0104---01,, k) = ZQj, for any ke {1,2,---, Ln}.

j=1
Proof. Let g1 € CPwL(R,27*! - 2) be the function satisfying:

e ¢, matches the set of samples

2"-1

U {(l’ Z)’ (Z +1- 6a Z)}, where 5 = 2—(Ln+1)'
1=0

e The breakpoint set of gy is

2"-1

( U {0, G+ 1 5.0 )\ (foy Utz - 6}).

Then g, (z) = |x| for any = € U%;'[i,i + 1 - §]. Note that
9n_1
2" -bin0.0ps1--0pn € |J [,i+1-4], for any £€{0,1,-, L—1}.
i=0
Thus, for any ¢ € {0,1,---, L — 1}, we have
127 bin0.0ger-Orn]  g1(27 - bin0.Ogpar-+0r,)
2n B 2n '
Define go(x) = 2"x — g1(2"x) for any x € R. Then g ¢ CPwL(R, 2"*! - 2) and

bin 0~9€n+1 " 'eén-%-n =

bin0-0(6+l)n+1"'8Ln = 2n(bin0“9€n+1"'0Ln - bin0'88n+1'“‘9€n+n)

91(2" - bin0.9¢p41---01r)
2n

= 2"(bin0.¢94n+1---9m - ) = 92(bin0.0ps1-01,).

By Lemma 4.4, there exists

01 € N/\/(#input =2; width < (n +1)2"*; depth < 3; #output = 1)
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such that: For any &;,&,-, &, € {0,1}, we have
b1 (bin0.6,Exe-Epr, 1) = fjgj, for i=0,1,2,-,n
j=1
It follows that
&1(bin0.0p, 110012 Opmsn, 1) = i@gmj, for ¢=0,1,-L-1and i=0,1,---,n. (4.9)
j=1
Define ¢9(x) = min{o(z - ¢n), n} for any z € R and ¢ € {0,1,---,L — 1}. For any

ke{1,2,---,Ln}, there exist ky € {0,1,--, L—1} and ko € {1,2,---,n} such that k = kyn+ks,
implying

k k1n+k2 kl L-1

IUEITED 3 U B>l S0 Bl D 30

i=1 l=ky l=k1+1
-1 / min{o(k—¥¢n),n} 1 [ ¢2,0(k) (410)
Z ( Z; 0€n+j) Z ( Z 06n+j)-
¢=0 j= =0 —

Then, the desired function ¢ can be implemented by the network architecture in Fig-
ure 11.

(bin0.01 - -00,)—G2— (bin0 s+ 01.) —G2— (bin0.0sn1 01 —G2— (bin0.gus1 01

(bin0.6:--0.] 0.0y O 0003011+ Oz

7;[502’“” } {Z Z’f 7207 (bin0.0; - 01 A)}

L—3 é2.(k
/011:—1

o o

Figure 11: An illustration of the network implementing the desired function ¢ with the
input [bin0.61605---01,,, k]T for any k € {1,2,---, Ln} and 0y,05,---,01,, € {0,1}. The network
architecture is essentially determined by Equations (4.7), (4.8), (4.9), and (4.10), which
are valid no matter what 6;,0s,--- 0, € {0,1} are. Thus, the desired function ¢ is
independent of 60y,0y,---,0r, € {0,1}. We omit ReLU (¢) for a neuron if its output is
non-negative without ReLLU.

By Lemma 4.3, we have
g1, 9> € CPwL(R, 2! - 2) ¢ AW (#input = 1; widthvec = [2"* —1]; #output = 1).

Recall that ¢; € NV (width < (n +1)271; depth < 3). As shown in Figure 12,
Gae(z) € NN (width < 4; depth < 2) for £ = 0,1,--,L — 1. Therefore, the network in
Figure 11 has width

2 -1) + (2" -1) + (n+1)2" + 1 + 4 + 1=(n+3)2"" +4

and depth
2+ L(1+3)=4L+2.

So we finish the proof. O
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40( o(x —fn) — 7) [ o), n} . (z)]
s o(x — fn 7 / s P2,

Figure 12: An illustration of the network implementing the desired function ¢., for each
0e{0,1,, L -1}, based on min{y,n} = 3(c(y+n) —o(-y-n) —o(y-n) —o(-y +n)).

Next, we introduce Lemma 4.6 to map indices to the partial sum of given bits.

Lemma 4.6. Given any N, L € N* and arbitrary 0,, € {0,1} for m=0,1,---,M -1 and
k=0,1,--,Ln—-1, where M = N2L and n = |logs(N +2)|, there exists

Q€ NN(#input =2; width < 6N + 14; depth < 5L +4; #output = 1)

such that
k
gb(m,k;):ZHm,j, form=0,1,M-1 and k=0,1,---,Ln-1.
=0

Proof. Define
Ym = bin0.0,, 00110 -1, for m=0,1,--- M —1.
Consider the sample set {(m,y,,) :m =0,1,---, M}, whose cardinality is
M+1=N((NL-1)+1)+1.
By Lemma 4.1 (set Ny = N and Ny = NL -1 therein), there exists

¢1 € NN (#input = 1; widthvec = [2N,2(NL - 1) + 1]; #output = 1)
= NN (#input = 1; widthvec = [2N,2NL —1]; #output = 1)

such that
¢1(m):ym7 forsz,l,---,M—l.

By Lemma 4.5, there exists
¢ € NN (#input = 2; width < (n+3)2"*" +4; depth <4L +2; #output =1)

such that, for any &, &, -+, &, € {0, 1}, we have

k
G2 (bin0.61&Epn, k) = 253'7 for k=1,2,---, Ln.

j=1

It follows that, for any &y, &1, o1 € {0,1}, we have

k
ngQ(binO.{O{l---an_l, k+ 1) = Zgj’ for k = O, ]_,"',LTL -1

=0
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(f—er—(ae)— | k
¢2 [¢2 (¢1 (m)7 k+ 1) = Zj:(] 0m,j = ¢(m7 k)]
k

()
Figure 13: An illustration of the network implementing the desired function ¢ for m =
0,1, M-1and k=0,1,---,Ln—1.

Thus, for m=0,1,---,M -1 and k=0,1,---, Ln — 1, we have

k
P2(P1(m), k+1) = pa(ym, k+1) = ¢2(0-9m,09m,1'“9m,Ln—1> k+1)= Z O, j-

J=0

Hence, the desired function ¢ can be implemented by the network shown in Fig-
ure 13. By Lemma 4.2, ¢; € NN (widthvec = [2N,2NL - 1]) € NN (width < 4N +
2; depth < L +1). It holds that

(n+3)2"" +4<6-(3")+2=06-(31es(N21) L 2 <6(N +2)+2=6N + 14,
implying

¢ € NN (#input = 2; width < (n+3)2"*" +4; depth <4L +2; #output =1)
c NV (#input = 2; width < 6N + 14; depth < 4L+ 2; #output = 1).

Therefore, the network in Figure 13 is with width max{(4N +2)+1,6N + 14} =6N + 14
and depth (4L +2)+1+(L+1)=5L+4. So we finish the proof. O

Next, we apply Lemma 4.6 to prove Lemma 4.7 below, which is a key intermediate
conclusion to prove Proposition 3.2.

Lemma 4.7. For any € >0 and N,L € N*, denote M = N2L and n = |logs(N + 2)].
Assume Y, 20 form=0,1,--- M -1and k=0,1,---,Ln -1 are samples with

Yme = Ymi-1| <€, form=0,1,-- M-1 and k=1,2,---Ln-1.

Then there exists ¢ € NN (#input = 2; width < 16N + 30; depth < 5L + 7; #output = 1)
such that

(i) |p(m, k) = ymp| <€ form=0,1, M -1 and k=0,1,---,Ln—1;

(it) 0 < ¢(z1,72) < max{y,r:m =0,1,-- M -1 and k =0,1,---,Ln—1} for any
T1,T2 e R.

Proof. Define
am g = Ympr/e], form=0,1,--M-1 and k=0,1,-,Ln-1.
We will construct a function implemented by a ReLU network to map the index (m, k)

t0 @y e for m=0,1,-,M -1 and k=0,1,-- Ln - 1.
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Define by, 0 =0 and by, i, = @ — @ -1 for m=0,1,--- M -1 and k=1,2,--, Ln-1.
Since |Ymk — Ymi-1| < € for all m and k, we have b, € {-1,0,1}. Hence, there exist
Cmk €{0,1} and dp, x € {0, 1} such that by, = ¢y — dimk, which implies

k k k

Ak = Gmo T Z(am,i - am,ifl) =amo t Z bm,i =amo t Z bm,i
=1 l=1 Z=0

k k
=0amo t Z Cmyi — Z iy
i=0 i=0

for m=0,1,--M-1and k=0,1,---, Ln-1.
Consider the sample set

{(m,amo) :m =01, M -1} | J{(M,0)}.

Its size is M +1=N-((NL-1)+1)+1, by Lemma 4.1 (set Ny = N and No = NL-1
therein), there exists

Yy € NN (widthvec = [2N,2(NL - 1) + 1]) = NN (widthvec = [2N,2N L - 1])

such that
Y1 (m) = amp, form=0,1,--- M -1.

By Lemma 4.6, there exist v, 13 € NNV (width < 6N + 14; depth < 5L +4) such that

k k
o(m, k) = Zcm,i and  Ys3(m, k) = de,i,
i=0 i=0

form=0,1,--M-1and k=0,1,---, Ln — 1. Hence, it holds that

k k
Am,k = Amo T Zcm,i - de,z = wl(m) + wQ(m7 k) - w3(m7 k)v (411)
=0 =0

form=0,1,-M-1and k=0,1,---,Ln—1.
Define

Ymax = Max{Ymp:m=0,1,-M-1 and k=0,1,---,Ln-1}.

Then the desired function can be implemented by two sub-networks shown in Figure 14.
By Lemma 4.2,

Yy € NN (#input = 1; widthvec = [2N,2NL - 1]; #output = 1)
c NN (#input = 1; width <4N +2; depth < L + 1; #output = 1).

Recall that 19,13 € NN (width < 6N + 14; depth < 5L +4). Thus, ¢; € NNV (width <
(AN +2) +2(6N +14) = 16N + 30; depth < (5L +4)+1=5L+5) as shown in Figure 14.
And it is clear that ¢, € NNV (width < 4; depth < 2), implying ¢ = ¢, o ¢; € NN (width <
16N +30; depth < (BL+5)+2=5L+T7).

Clearly, 0 < ¢(x1,22) < Ymax for any x1,z5 € R, since ¢(z1,22) = ¢ 0 ¢1(x1,22) =
max{o(¢1(x1,%2)), Ymax } -
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(a) ¢1 (b) ¢2

Figure 14: Tllustrations of two sub-networks implementing the desired function ¢ = ¢50¢,
for m = 0,1, M -1 and k = 0,1,---,Ln - 1, based on Equation (4.11) and the fact

min{xl,xQ} — $1+$2—2|1?1—12| — a’(:r1+1‘2)—a’(—l‘l—172)—0'(11—I2)—0'(—Il+272).

Note that 0 < @y k8 = |Ymi/€]e < Ymax. Then we have ¢p(m, k) = ¢g 0 d1(m, k) =
G2(am k) = max{o(ami€), Ymax} = amie. Therefore,

6(m, k) = Yomoi| = [@m ke = Yokl = |[Ymn/ElE = Ymr| <&,
form=0,1,--M-1and k=0,1,---, Ln — 1. Hence, we finish the proof. O

Finally, we apply Lemma 4.7 to prove Proposition 3.2.

Proof of Proposition 5.2. Denote M = N2L, n = [logg(N +2)], and L= Ln. We may
assume J = M Ln = ML since we can set yj_1 =Yy =Yjs1 = =Yy1.q if J<ML.
Consider the sample set

{(mf,m):m=0,1,--~,M}U{(mf+f—1,m) :m=0,1,---,M—1}.

Its size is 2M +1=N-((2NL-1)+1) + 1. By Lemma 4.1 (set Ny = N and N = NL-1
therein), there exists

¢1 € NN (widthvec = [2N,2(2NL - 1) + 1]) = NN (widthvec = [2N,4N L - 1])
such that
o ¢.(ML) =M and ¢y(mL) =¢(mL+L—-1)=mform=0,1,---, M -1.
e ¢, is linear on each interval [mL,mL + L - 1] for m=0,1,---, M - 1.
It follows that
$1(j)=m, and j-L¢1(j) =k, wherej=mL+k, (4.12)

form=0,1,-, M -1and k=0,1,--, L - 1.

Since J = ML, any j € {0,1,---,J — 1} can be uniquely indexed as j = mL + k for
me{0,1,--,M -1} and k€ {0,1,--,Z - 1}. So we can denote Yj = YT &S Ymp- LThen
by Lemma 4.7, there exists ¢ € NN (width < 16 N + 30; depth < 5L + 7) such that

|2 (m, k) =yl <€, form=0,1,-M-1 and k=0,1,-- L-1, (4.13)

and
0< ¢o(x1,%2) € Ymax, for any zy, 75 € R, (4.14)
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e L A )
j b $) = 62(61(3),3 — Lo (1)) = d2(m. 0) = 6(3) = s = 5
O T

J=Len(d)

Figure 15: An illustration of the ReLU network implementing the desired function ¢
based Equation (4.12). The index j € {0,1,---, M L-1} is unique represented by j = mL+k
for me{0,1,--, M -1} and k€ {0,1,---, L —1}.

where Ymax = max{y,r:m=0,1,---, M-1and k=0,1,--, f—l} =max{y;:j=0,1,-,J-
1}.
By Lemma 4.2,
@1 € NN (#input = 1; widthvec = [2N,4NL - 1]; #output = 1)
c NN (#input = 1; width < 8N +2;depth < L + 1; #output = 1).

Recall that ¢o € NNV (width < 16N + 30; depth < 5L + 7). So ¢ € NN (width < 16N +
30; depth< (L+1)+2+ (5L +7)=6L+10) as shown in Figure 15.
Equation (4.14) implies

0< () € Ymax, for any z e R,

since ¢ is given by ¢(x) = ¢2(¢1(x),x - Zgzﬁl(x)).
Represent j € {0,1,--, ML -1} via j = mL+k for m = 0,1, M -1 and k =
0,1,--,L = 1. Then, by Equation (4.13), we have

16(5) =yl = 162(61(5) .5 = Lor () = w5l = |2 (m, k) = ymul <,
for any j € {0, 1, ML - 1} ={0,1,--,J = 1}. So we finish the proof. ]

We would like to remark that the key idea in the proof of Proposition 3.2 is the bit
extraction technique in Lemma 4.5, which allows us to store Ln bits in a binary number
bin0.6,05---01,, and extract each bit ;. The extraction operator can be efficiently carried
out via a deep ReLLU neural network demonstrating the power of depth.

5 Conclusion and future work

This paper aims at a quantitative and optimal approximation rate for ReLU net-
works in terms of the width and depth to approximate continuous functions. It is
shown by construction that ReLU networks with width O(N) and depth O(L) can
approximate an arbitrary continuous function f on [0,1]¢ with an approximation rate
(9( wf((N 2[2In N )‘1/d) ) By connecting the approximation property to VC-dimension,
we prove that such a rate is optimal for Holder continuous functions on [0,1]? in terms
of the width and depth separately, and hence this rate is also optimal for the whole
continuous function class. We also extend our analysis to general continuous functions
on any bounded subset of R?. We would like to remark that our analysis was based on
the fully connected feed-forward neural networks and the ReLLU activation function. It
would be very interesting to extend our conclusions to neural networks with other types
of architectures (e.g., convolutional neural networks) and activation functions (e.g., tanh
and sigmoid functions).
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