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Abstract

This paper concentrates on the approximation power of deep feed-forward neu-

ral networks in terms of width and depth. It is proved by construction that

ReLU networks with width O�max{d�N1�d
�, N + 2}� and depth O(L) can ap-

proximate a Hölder continuous function on [0,1]d with an approximation rate

O��
√
d(N2L2

lnN)−↵�d�, where ↵ ∈ (0,1] and � > 0 are Hölder order and constant,

respectively. Such a rate is optimal up to a constant in terms of width and depth

separately, while existing results are only nearly optimal without the logarithmic

factor in the approximation rate. More generally, for an arbitrary continuous func-

tion f on [0,1]d, the approximation rate becomes O�
√
d!f�(N

2L2
lnN)−1�d� �,

where !f(⋅) is the modulus of continuity. We also extend our analysis to any con-

tinuous function f on a bounded set. Particularly, if ReLU networks with depth

31 and width O(N) are used to approximate one-dimensional Lipschitz continuous

functions on [0,1] with a Lipschitz constant � > 0, the approximation rate in terms

of the total number of parameters, W = O(N2
), becomes O(

�

W lnW ), which has

not been discovered in the literature for fixed-depth ReLU networks.

Key words. Deep ReLU Networks; Optimal Approximation; VC-dimension; Bit Ex-
traction.

1 Introduction

Over the past few decades, the expressiveness of neural networks has been widely
studied from many points of view, e.g., in terms of combinatorics [27], topology [4],
Vapnik-Chervonenkis (VC) dimension [3, 13, 31], fat-shattering dimension [1, 19], infor-
mation theory [30], classical approximation theory [2, 6, 10, 16, 20, 24, 32, 32–36, 41, 44],
optimization [14, 17, 18, 21, 29]. The error analysis of neural networks consists of three
parts: the approximation error, the optimization error, and the generalization error.
This paper focuses on the approximation error for ReLU networks.

The approximation errors of feed-forward neural networks with various activation
functions have been studied for di↵erent types of functions, e.g., smooth functions
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[9,22,24,25,40], piecewise smooth functions [30], band-limited functions [26], continuous
functions [33–35, 41]. In the early works of approximation theory for neural networks,
the universal approximation theorem [6,15,16] without approximation rates showed that
there exists a su�ciently large neural network approximating a target function in a cer-
tain function space within any given error " > 0. In particular, it is shown in [23] that the
ReLU-activated residual neural network with one-neuron hidden layers is a universal ap-
proximator. The universal approximation property for general residual neural networks
was proved in [20] via a dynamical system approach.

An asymptotic analysis of the approximation rate in terms of depth is provided
in [41, 43] for ReLU networks. To be exact, the nearly optimal approximation rates of
ReLU networks with width O(d) and depth O(L) for functions in C([0,1]d) and the
unit ball of Cs([0,1]d) are O(!f(L−2�d)) and O((L� lnL)−2s�d), respectively. These two
papers provide the approximation rate in terms of depth asymptotically for fixed-width
networks. A di↵erent approach is used in [24,33] to obtain a quantitative characterization
of the approximation rate in terms of width, depth, and smoothness order for continuous
and smooth functions.

Particularly, it was shown in [33] that a ReLU network with width C1(d) ⋅N and
depth C2(d) ⋅L can attain an approximation error C3(d) ⋅!f(N−2�dL−2�d) to approximate
a continuous function f on [0,1]d, where C1(d), C2(d), and C3(d) are three constants in
d with explicit formulas to specify their values, and !f(⋅) is the modulus of continuity
of f ∈ C([0,1]d) defined via

!f(r) ∶= sup��f(x) − f(y)� ∶ x,y ∈ [0,1]d, �x − y�2 ≤ r�, for any r ≥ 0.

Such an approximation error is optimal in terms of N and L up to a logarithmic term
and the corresponding optimal approximation theory is still unavailable. To address this
problem, we provide a constructive proof in this paper to show that ReLU networks
of width O(N) and depth O(L) can approximate an arbitrary continuous function f

on [0,1]d with an optimal approximation error O �
√

d!f�(N2L2 lnN)−1�d�� in terms of
N and L. As shown by our main result, Theorem 1.1 below, the approximation rate
obtained here admits explicit formulas to specify its prefactors when !f(⋅) is known.
Theorem 1.1. Given a continuous function f ∈ C([0,1]d), for any N ∈ N+, L ∈ N+,
and p ∈ [1,∞], there exists a function � implemented by a ReLU network with width
C1max�d�N1�d�, N + 2� and depth 11L +C2 such that

�f − ��Lp([0,1]d) ≤ 131
√

d!f��N2
L
2 log3(N + 2)�

−1�d�,
where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p =∞.

Note that 3d+3max�d�N1�d�, N + 2� ≤ 3d+3max�dN, 3N� ≤ 3d+4dN . Given any

Ñ , L̃ ∈ N+ with Ñ ≥ 3d+4d and L̃ ≥ 29 + 2d, there exist N,L ∈ N+ such that

3d+4dN ≤ Ñ < 3d+4d(N + 1) and 11L + 18 + 2d ≤ L̃ < 11(L + 1) + 18 + 2d.

It follows that

N ≥ N + 1
3
> Ñ

3d+5d and L ≥ L + 1
2
> 1

2
⋅ L̃ − 18 − 2d

11
= L̃ − 18 − 2d

22
.

Then we have an immediate corollary of Theorem 1.1.
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Corollary 1.2. Given a continuous function f ∈ C([0,1]d), for any Ñ ∈ N+ and L̃ ∈ N+
with Ñ ≥ 3d+4d and L̃ ≥ 29+2d, there exists a function � implemented by a ReLU network
with width Ñ and depth L̃ such that

�f − ��L∞([0,1]d) ≤ 131
√

d!f��( Ñ

3d+5d)
2( L̃−18−2d22 )2 log3( Ñ

3d+5d + 2)�
−1�d
�.

As a special case of Theorem 1.1 for explicit error characterization, let us take Hölder
continuous functions as an example. Let Hölder([0,1]d,↵,�) denote the space of Hölder
continuous functions on [0,1]d of order ↵ ∈ (0,1] with a Hölder constant � > 0. We have
an immediate corollary of Theorem 1.1 as follows.

Corollary 1.3. Given a Hölder continuous function f ∈ Hölder([0,1]d,↵,�), for any
N ∈ N+, L ∈ N+, and p ∈ [1,∞], there exists a function � implemented by a ReLU
network with width C1max�d�N1�d�, N + 2� and depth 11L +C2 such that

�f − ��Lp([0,1]d) ≤ 131�
√

d�N2
L
2 log3(N + 2)�

−↵�d
,

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p =∞.

To better illustrate the importance of our theory, we summarize our key contribu-
tions as follows.

(1) Upper bound: We provide a quantitative and non-asymptotic approximation rate

131
√

d!f��N2L2 log3(N +2)�
−1�d� in terms of width O(N) and depth O(L) for any

f ∈ C([0,1]d) in Theorem 1.1.

(1.1) This approximation error analysis can be extended to f ∈ C(E) for any E ⊆
[−R,R]d with R > 0 as we shall see later in Theorem 2.5.

(1.2) In the case of one-dimensional Lipschitz continuous functions on [0,1] with
a Lipschitz constant � > 0, the approximation rate in Theorem 1.1 becomes
O( �

W lnW ) for ReLU networks with 31 hidden layers and O(W ) parameters
via setting L = 1 and W = O(N2) therein. To the best of our knowledge,
the approximation rate O( �

W lnW ) is better than existing known results using
fixed-depth ReLU networks to approximate Lipschitz continuous functions on
[0,1].

(2) Lower bound: Through the VC-dimension bounds of ReLU networks given in [13], we

show, in Section 2.3, that the approximation rate 131�
√

d�N2L2 log3(N + 2)�
−↵�d

in
terms of width O(N) and depth O(L) for Hölder([0,1]d,↵,�) is optimal as follows.

(2.1) When the width is fixed, both the approximation upper and lower bounds take
the form of CL−2↵�d for a positive constant C.

(2.2) When the depth is fixed, both the approximation upper and lower bounds take
the form of C(N2 lnN)−↵�d for a positive constant C.
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Figure 1: Our rate is optimal in terms of width O(N) and depth O(L) simultaneously
except for the region marked in cyan characterized by {(N,L) ∈ N2 ∶ C1 ≤ N ≤ LC2},
where Ci = Ci(↵, d) for i = 1,2 are two positive constants. This figure is an example for
C1 = 1000 and C2 = 1�100.

We would like to point out that if N and L vary simultaneously, the rate is optimal
in the N -L plane except for a small region as shown in Figure 1. See Section 2.3 for a de-
tailed discussion. The earlier result in [33] provides a nearly optimal approximation error
that has a gap (a logarithmic term) between the lower and upper bounds. It is technically
challenging to match the upper bound with the lower bound. Compared to the nearly
optimal rate 19�

√
dN−2↵�dL−2↵�d for Hölder continuous functions in Hölder([0,1]d,↵,�)

in [33], this paper achieves the optimal rate 131�
√

d�N2L2 log3(N + 2)�
−↵�d

using more
technical and sophisticated construction. For example, a novel bit extraction technique
di↵erent to that in [3] is proposed, and new ReLU networks are constructed to approx-
imate step functions more e�ciently than those in [33]. The optimal result obtained in
this paper could also be extended to other functions spaces, leading to better under-
standing of deep network approximation.

We have obtained the optimal approximation rate for (Hölder) continuous functions
approximated by ReLU networks. There are two possible directions to improve the
approximation rate or reduce the e↵ect of the curse of dimensionality. The first one is
to consider proper target function spaces, e.g., Barron spaces [2, 8, 12, 37], band-limited
functions [5,26], smooth functions [24,43], and analytic functions [9]. The other direction
is to consider neural networks with other activation functions. For example, the results
of [43] imply that (sin,ReLU)-activated networks with W parameters can achieve an
asymptotic approximation error O(2−cd√W ) for Lipschitz continuous functions defined
on [0,1]d, where cd is an unknown constant depending on d. Floor-ReLU networks with
width O(N) and depth O(L) are constructed in [34] to admit an approximation rate
!f(
√

dN−√L) + 2!f(
√

d)N−√L for any continuous function f ∈ C([0,1]d). It is shown
in [35] that three-hidden-layer networks with O(W ) parameters using the floor function
(�x�), the exponential function (2x), and the step function (1x≥0) as activation functions
can approximate Lipschitz functions defined on [0,1]d with an exponentially small error
O(
√

d2−W ). By the use of more sophisticated activation functions instead of those used
in [34,35,43], a recent paper [42] shows that there exists a network of size depending on
d implicitly, achieving an arbitrary approximation error for any continuous function in
C([0,1]d). A key ingredient of the approaches mentioned above is to use more than one
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activation functions to design neural network architectures.
The error analysis of deep learning is to estimate approximation, generalization, and

optimization errors. Here, we give a brief discussion, the interested reader can find more
details in [24, 34]. Let �(x;✓) denote a function computed by a network parameterized
with ✓. Given a target function f , the final goal is to find the expected risk minimizer

✓D ∶= argmin
✓

RD(✓), where RD(✓) ∶= Ex∼U(X ) [`(�(x;✓), f(x))] ,

with a loss function `(⋅, ⋅) and an unknown data distribution U(X ).
In practice, for given samples {(xi, f(xi))}ni=1, the goal of supervised learning is to

identify the empirical risk minimizer

✓S ∶= argmin
✓

RS(✓), where RS(✓) ∶= 1

n

n

�
i=1
`��(xi;✓), f(xi)�.

In fact, one could only get a numerical minimizer ✓N via a numerical optimization
method. The discrepancy between the target function f and the learned function
�(x;✓N ) is measured by RD(✓N ), which is bounded by

RD(✓N ) ≤ RD(✓D)
���������������������������

Approximation error

+ [RS(✓N ) −RS(✓S)]
���������������������������������������������������������������������������������������������������������������������

Optimization error

+ [RD(✓N ) −RS(✓N )] + [RS(✓D) −RD(✓D)]
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Generalization error

.

This paper deals with the approximation error of ReLU networks for continuous functions
and gives an upper bound of RD(✓D) which is optimal up to a constant. Note that
the approximation error analysis given here is independent of data samples and deep
learning algorithms. However, the analysis of optimization and generalization errors
do depend on data samples, deep learning algorithms, models, etc. For example, refer
to [7, 8, 11, 14, 17, 18, 21, 28, 29] for a further understanding of the generalization and
optimization errors.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1
by assuming Theorem 2.1 is true, show the optimality of Theorem 1.1, and extend our
analysis to continuous functions defined on any bounded set. Next, Theorem 2.1 is
proved in Section 3 based on Propositions 3.1 and 3.2, the proofs of which can be found
in Section 4. Finally, Section 5 concludes this paper with a short discussion.

2 Theoretical analysis

In this section, we first prove Theorem 1.1 and discuss its optimality. Next, we ex-
tend our analysis to general continuous functions defined on any bounded set. Notations
throughout this paper are summarized in Section 2.1.

2.1 Notations

Let us summarize all basic notations used in this paper as follows.

• Let R, Q, and Z denote the set of real numbers, rational numbers, and integers,
respectively.
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• Let N and N+ denote the set of natural numbers and positive natural numbers,
respectively. That is, N+ = {1,2,3,�} and N = N+�{0}.

• Matrices are denoted by bold uppercase letters. For instance, A ∈ Rm×n is a real
matrix of size m × n, and AT denotes the transpose of A. Vectors are denoted

as bold lowercase letters. For example, v = [v1,�, vd]T = �
v1
⋮
vd

� ∈ Rd is a column

vector with v(i) = vi being the i-th element. Besides, “[” and “]” are used to
partition matrices (vectors) into blocks, e.g., A = �A11 A12

A21 A22
�.

• For any p ∈ [1,∞), the p-norm (or `p-norm) of a vector x = [x1, x2,�, xd]T ∈ Rd is
defined by

�x�p ∶= ��x1�p + �x2�p +� + �xd�p�
1�p

.

• For any x ∈ R, let �x� ∶=max{n ∶ n ≤ x, n ∈ Z} and �x� ∶=min{n ∶ n ≥ x, n ∈ Z}.

• Assume n ∈ Nd, then f(n) = O(g(n)) means that there exists positive C indepen-
dent of n, f , and g such that f(n) ≤ Cg(n) when all entries of n go to +∞.

• For any ✓ ∈ [0,1), suppose its binary representation is ✓ = ∑∞̀=1 ✓`2−` with ✓` ∈
{0,1}, we introduce a special notation bin0.✓1✓2�✓L to denote the L-term binary
representation of ✓, i.e., bin0.✓1✓2�✓L ∶= ∑L

`=1 ✓`2−`.
• Let µ(⋅) denote the Lebesgue measure.

• Let 1S be the characteristic function on a set S, i.e., 1S is equal to 1 on S and 0
outside S.

• Let �S� denote the size of a set S, i.e., the number of all elements in S.

• The set di↵erence of two sets A and B is denoted by A�B ∶= {x ∶ x ∈ A, x ∉ B}.

• Given any K ∈ N+ and � ∈ (0, 1
K
), define a trifling region ⌦([0,1]d,K, �) of [0,1]d

as

⌦([0,1]d,K, �) ∶=
d

�
j=1�x = [x1, x2,�, xd]T ∈ [0,1]d ∶ xj ∈

K−1
�
k=1 (

k

K
− �, k

K
)�. (2.1)

In particular, ⌦([0,1]d,K, �) = � if K = 1. See Figure 2 for two examples of trifling
regions.

• Let Hölder([0,1]d,↵,�) denote the space of Hölder continuous functions on [0,1]d
of order ↵ ∈ (0,1] with a Hölder constant � > 0.

• For a continuous piecewise linear function f(x), the x values where the slope
changes are typically called breakpoints.

• Let CPwL(R, n) denote the space that consists of all continuous piecewise linear
functions with at most n breakpoints on R.
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Figure 2: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

• Let � ∶ R→ R denote the rectified linear unit (ReLU), i.e. �(x) =max{0, x}. With

a slight abuse of notation, we define � ∶ Rd → Rd as �(x) =
�������

max{0, x1}
⋮

max{0, xd}

�������
for any

x = [x1,�, xd]T ∈ Rd.

• We will use NN to denote a function implemented by a ReLU network for short
and use Python-type notations to specify a class of functions implemented by
ReLU networks with several conditions, e.g., NN (c1; c2; �; cm) is a set of func-
tions implemented by ReLU networks satisfying m conditions given by {ci}1≤i≤m,
each of which may specify the number of inputs (#input), the number of outputs
(#output), the number of hidden layers (depth), the total number of parameters
(#parameter), and the width in each hidden layer (widthvec), the maximum width
of all hidden layers (width), etc. For example, if � ∈ NN (#input = 2; widthvec =
[100,100]; #output = 1), then � is a function satisfying

– � maps from R2 to R.
– � can be implemented by a ReLU network with two hidden layers and the

number of neurons in each hidden layer is 100.

• For any function � ∈ NN (#input = d; widthvec = [N1,N2,�,NL]; #output = 1),
if we set N0 = d and NL+1 = 1, then the architecture of the network implementing
� can be briefly described as follows:

x = h̃0
W0, b0L0

h1
� h̃1 � WL−1, bL−1LL−1 hL

� h̃L

WL, bLLL
hL+1 = �(x),

where Wi ∈ RNi+1×Ni and bi ∈ RNi+1 are the weight matrix and the bias vector in
the i-th a�ne linear transformation Li, respectively, i.e.,

hi+1 =Wi ⋅ h̃i + bi =∶ Li(h̃i), for i = 0,1,�, L,

and
h̃i = �(hi), for i = 1,2,�, L.

In particular, � can be represented in a form of function compositions as follows.

� = LL ○ � ○LL−1 ○ � ○ � ○ � ○L1 ○ � ○L0,
which has been illustrated in Figure 3.
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Figure 3: An example of a ReLU network with width 5 and depth 2.

• The expression “a network with width N and depth L” means

– The maximum width of this network for all hidden layers is no more than
N .

– The number of hidden layers of this network is no more than L.

2.2 Proof of Theorem 1.1

The key point is to construct piecewise constant functions to approximate continu-
ous functions in the proof. However, it is impossible to construct a piecewise constant
function implemented by a ReLU network due to the continuity of ReLU networks.
Thus, we introduce the trifling region ⌦([0,1]d,K, �), defined in Equation (2.1), and use
ReLU networks to implement piecewise constant functions outside the trifling region.
To prove Theorem 1.1, we first introduce a weaker variant of Theorem 1.1, showing how
to construct ReLU networks to pointwisely approximate continuous functions except for
the trifling region.

Theorem 2.1. Given a function f ∈ C([0,1]d), for any N ∈ N+ and L ∈ N+, there exists
a function � implemented by a ReLU network with width max�8d�N1�d�+ 3d, 16N + 30�
and depth 11L + 18 such that ���L∞(Rd) ≤ �f(0)� + !f(

√
d) and

�f(x) − �(x)� ≤ 130
√

d!f��N2
L
2 log3(N + 2)�

−1�d�, for any x ∈ [0,1]d�⌦([0,1]d,K, �),

where K = �N1�d�2�L1�d�2��log3(N + 2)�1�d� and � is an arbitrary number in (0, 1
3K ].

With Theorem 2.1 that will be proved in Section 3, we can easily prove Theorem 1.1
for the case p ∈ [1,∞). To attain the rate in L∞-norm, we need to control the approxi-
mation error in the trifling region. To this end, we introduce a theorem to deal with the
approximation inside the trifling region ⌦([0,1]d,K, �).

Theorem 2.2 (Theorem 3.7 of [44] or Theorem 2.1 of [24]). Given any " > 0, N,L,K ∈
N+, and � ∈ (0, 1

3K ], assume f is a continuous function in C([0,1]d) and �̃ can be
implemented by a ReLU network with width N and depth L. If

�f(x) − �̃(x)� ≤ ", for any x ∈ [0,1]d�⌦([0,1]d,K, �),

8



then there exists a function � implemented by a new ReLU network with width 3d(N +4)
and depth L + 2d such that

�f(x) − �(x)� ≤ " + d ⋅ !f(�), for any x ∈ [0,1]d.

Now we are ready to prove Theorem 1.1 by assuming Theorem 2.1 is true, which
will be proved later in Section 3.

Proof of Theorem 1.1. We may assume f is not a constant function since it is a trivial
case. Then !f(r) > 0 for any r > 0. Let us first consider the case p ∈ [1,∞). Set
K = �N1�d�2�L1�d�2��log3(N + 2)�1�d� and choose a small � ∈ (0, 1

3K ] such that

Kd��2�f(0)� + 2!f(
√

d)�p = �N1�d�2�L1�d�2��log3(N + 2)�1�d�d��2�f(0)� + 2!f(
√

d)�p

≤ �!f��N2
L
2 log3(N + 2)�

−1�d��
p

.

By Theorem 2.1, there exists a function � implemented by a ReLU network with width

max�8d�N1�d� + 3d, 16N + 30� ≤ 16max�d�N1�d�, N + 2�

and depth 11L + 18 such that ���L∞(Rd) ≤ �f(0)� + !f(
√

d) and

�f(x) − �(x)� ≤ 130
√

d!f��N2
L
2 log3(N + 2)�

−1�d�, for any x ∈ [0,1]d�⌦([0,1]d,K, �).

It follows from µ(⌦([0,1]d,K, �)) ≤Kd� and �f�L∞([0,1]d) ≤ �f(0)� + !f(
√

d) that

�f − ��p
Lp([0,1]d) = �⌦([0,1]d,K,�) �f(x) − �(x)�

pdx +�[0,1]d�⌦([0,1]d,K,�) �f(x) − �(x)�
pdx

≤Kd��2�f(0)� + 2!f(
√

d)�p + �130
√

d!f��N2
L
2 log3(N + 2)�

−1�d��
p

≤ �!f��N2
L
2 log3(N + 2)�

−1�d��
p

+ �130
√

d!f��N2
L
2 log3(N + 2)�

−1�d��
p

≤ �131
√

d!f��N2
L
2 log3(N + 2)�

−1�d��
p

.

Hence, �f − ��Lp([0,1]d) ≤ 131
√

d!f��N2L2 log3(N + 2)�
−1�d�.

Next, let us discuss the case p = ∞. Set K = �N1�d�2�L1�d�2��log3(N + 2)�1�d� and
choose a small � ∈ (0, 1

3K ] such that

d ⋅ !f(�) ≤ !f��N2
L
2 log3(N + 2)�

−1�d�.

By Theorem 2.1, there exists a function �̃ implemented by a ReLU network with width
max�8d�N1�d� + 3d, 16N + 30� and depth 11L + 18 such that

�f(x) − �̃(x)� ≤ 130
√

d!f��N2
L
2 log3(N + 2)�

−1�d� =∶ ",
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for any x ∈ [0,1]d�⌦([0,1]d,K, �). By Theorem 2.2, there exists a function � imple-
mented by a ReLU network with width

3d�max�8d�N1�d� + 3d, 16N + 30� + 4� ≤ 3d+3max�d�N1�d�, N + 2�

and depth 11L + 18 + 2d such that

�f(x) − �(x)� ≤ " + d ⋅ !f(�) ≤ 131
√

d!f��N2
L
2 log3(N + 2)�

−1�d�, for any x ∈ [0,1]d.

So we finish the proof.

2.3 Optimality

This section will show that the approximation rates in Theorem 1.1 and Corollary 1.3
are optimal and there is no room to improve for the function class Hölder([0,1]d,↵,�).
Therefore, the approximation rate for the whole continuous functions space in terms of
width and depth in Theorem 1.1 cannot be improved. A typical method to characterize
the optimal approximation theory of neural networks is to study the connection between
the approximation error and Vapnik–Chervonenkis (VC) dimension [24, 33, 40, 41, 44].
This method relies on the VC-dimension upper bound given in [13]. In this paper, we
adopt this method with several modifications to simplify the proof.

Let us first present the definitions of VC-dimension and related concepts. Let H be
a class of functions mapping from a general domain X to {0,1}. We say H shatters the
set {x1,x2,�,xm} ⊆ X if

���h(x1), h(x2),�, h(xm)�
T ∈ {0,1}m ∶ h ∈H�� = 2m,

where � ⋅ � denotes the size of a set. This equation means, given any ✓i ∈ {0,1} for
i = 1,2,�,m, there exists h ∈ H such that h(xi) = ✓i for all i. For a general function set
F mapping from X to R, we say F shatters {x1,x2,�,xm} ⊆ X if T ○F does, where

T (t) ∶= � 1, t ≥ 0,
0, t < 0 and T ○F ∶= {T ○ f ∶ f ∈F}.

For any m ∈ N+, we define the growth function of H as

⇧H(m) ∶= max
x1,x2,�,xm∈X ���h(x1), h(x2),�, h(xm)�

T ∈ {0,1}m ∶ h ∈H��.

Definition 2.3 (VC-dimension). Let H be a class of functions from X to {0,1}. The
VC-dimension of H, denoted by VCDim(H), is the size of the largest shattered set,
namely,

VCDim(H) ∶= sup{m ∈ N+ ∶ ⇧H(m) = 2m}
if {m ∈ N+ ∶ ⇧H(m) = 2m} is not empty. In the case of {m ∈ N+ ∶ ⇧H(m) = 2m} = �, we
may define VCDim(H) = 0.

Let F be a class of functions from X to R. The VC-dimension of F , denoted by
VCDim(F ), is defined by VCDim(F ) ∶= VCDim(T ○F ), where

T (t) ∶= � 1, t ≥ 0,
0, t < 0 and T ○F ∶= {T ○ f ∶ f ∈F}.

10



In particular, the expression “VC-dimension of a network (architecture)” means the VC-
dimension of the function set that consists of all functions implemented by this network
(architecture).

We remark that one may also define VCDim(F ) as VCDim(F ) ∶= VCDim(T̃ ○F ),
where

T̃ (t) ∶= � 1, t > 0,
0, t ≤ 0 and T̃ ○F ∶= {T̃ ○ f ∶ f ∈F}.

Note that function spaces generated by networks are closed under linear transformation.
Thus, these two definitions of VC-dimension are equivalent.

The theorem below, similar to Theorem 4.17 of [44], reveals the connection between
VC-dimension and the approximation rate.

Theorem 2.4. Assume F is a set of functions mapping from [0,1]d to R. For any
" > 0, if VCDim(F ) ≥ 1 and

inf
�∈F �� − f�L∞([0,1]d) ≤ ", for any f ∈ Hölder([0,1]d,↵,1), (2.2)

then VCDim(F ) ≥ (9")−d�↵.
This theorem demonstrates the connection between VC-dimension of F and the ap-

proximation rate using elements of F to approximate functions in Hölder([0,1]d,↵,�).
To be precise, the VC-dimension of F determines an approximation rate lower bound
VCDim(F )−↵�d�9, which is the best possible approximation rate. Denote the best ap-
proximation error of functions in Hölder([0,1]d,↵,1) approximated by ReLU networks
with width N and depth L as

E↵,d(N,L) ∶= sup
f∈Hölder([0,1]d,↵,1)� inf

�∈NN (width≤N ; depth≤L) �� − f�L∞([0,1]d)�.

We have three remarks listed below.

(i) A large VC-dimension cannot guarantee a good approximation rate. For example,
it is easy to verify that

VCDim��f ∶ f(x) = cos(ax), a ∈ R�� =∞.

However, functions in �f ∶ f(x) = cos(ax), a ∈ R� cannot approximate Hölder
continuous functions well.

(ii) A large VC-dimension is necessary for a good approximation rate, because the
best possible approximation rate is controlled by an expression of VC-dimension,
as shown in Theorem 2.4. It is shown in Theorem 6 and 8 of [13] that the VC-
dimension of ReLU networks has two types of upper bounds: O(WL lnW ) and
O(WU). Here, W , L, and U are the numbers of parameters, layers, and neurons,
respectively. If we let N denote the maximum width of the network, then W =
O(N2L) and U = O(NL), implying that

WL lnW = O�N2
L ⋅L ln(N2

L)� = O�N2
L
2 ln(NL)�

11



and
WU = O(N2

L ⋅NL) = O(N3
L
2).

It follows that

VCDim�NN (width ≤ N ; depth ≤ L)� ≤min�O�N2
L
2 ln(NL)�,O(N3

L
2)�,

deducing

C1(↵, d)�min{N2
L
2 ln(NL),N3

L
2}�

−↵�d
≤

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
implied by Theorem 2.4

E↵,d(N,L) ≤ C2(↵, d)�N2
L
2 lnN�

−↵�d
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������
implied by Corollaries 1.2 and 1.3

, (2.3)

where C1(↵, d) and C2(↵, d) are two positive constants determined by s, d, and
C2(s, d) can be explicitly expressed.

• When L = L0 is fixed, Equation (2.3) implies

C1(↵, d,L0)(N2 lnN)−↵�d ≤ E↵,d(N,L0) ≤ C2(↵, d,L0)(N2 lnN)−↵�d,
where C1(↵, d,L0) and C2(↵, d,L0) are two positive constants determined by
↵, d,L0.

• When N = N0 is fixed, Equation (2.3) implies

C1(↵, d,N0)L−2↵�d ≤ E↵,d(N0, L) ≤ C2(↵, d,N0)L−2↵�d,
where C1(↵, d,N0) and C2(↵, d,N0) are two positive constants determined by
↵, d,N0.

• It is easy to verify that Equation (2.3) is tight except for the following region

�(N,L) ∈ N2 ∶ C3(↵, d) ≤ N ≤ L
C4(↵,d)�,

C3 = C3(↵, d) and C4 = C4(↵, d) are two positive constants. See Figure 1 for
an illustration for the case C3 = 1000 and C4 = 1�100.

Finally, let us present the detailed proof of Theorem 2.4.

Proof of Theorem 2.4. Recall that the VC-dimension of a function set is defined as the
size of the largest set of points that this class of functions can shatter. So our goal is to
find a subset of F to shatter O("−d�↵) points in [0,1]d, which can be divided into two
steps.

• Construct {f� ∶ � ∈B} ⊆ Hölder([0,1]d,↵,1) that scatters O("−d�↵) points, where
B is a set defined later.

• Design �� ∈F , for each � ∈B, based on f� and Equation (2.2) such that {�� ∶ � ∈
F} ⊆F also shatters O("−d�↵) points.

12



The details of these two steps can be found below.

Step 1∶ Construct {f� ∶ � ∈B} ⊆ Hölder([0,1]d,↵,1) that scatters O("−d�↵) points.
We may assume " ≤ 2�9 since the case " > 2�9 is trivial. In fact, " > 2�9 implies

VCDim(F ) ≥ 1 ≥ 1�2 ≥ 2−d�↵ > (9")−d�↵.
Let K = �(9"�2)−1�↵� ∈ N+ and divide [0,1]d into Kd non-overlapping sub-cubes {Q�}�
as follows:

Q� ∶= �x = [x1, x2,�, xd]T ∈ [0,1]d ∶ xi ∈ [�i

K
,
�i+1
K
], i = 1,2,�, d�,

for any index vector � = [�1,�2,�,�d]T ∈ {0,1,�,K − 1}d.
Let Q(x0, ⌘) denote the closed cube with center x0 ∈ Rd and sidelength ⌘ > 0. Define

a function ⇣Q on [0,1]d corresponding to Q = Q(x0, ⌘) ⊆ [0,1]d such that:

• ⇣Q(x0) = (⌘�2)↵�2;

• ⇣Q(x) = 0 for any x ∉ Q�@Q, where @Q is the boundary of Q;

• ⇣Q is linear on the line that connects x0 and x for any x ∈ @Q.

Define
B ∶= �� ∶ � is a map from {0,1,�,K − 1}d to {−1,1}�.

For each � ∈B, we define

f�(x) ∶= �
�∈{0,1,�,K−1}d

�(�)⇣Q�
(x),

where ⇣Q�
(x) is the associated function introduced just above. It is easy to check that

{f� ∶ � ∈B} ⊆ Hölder([0,1]d,↵,1) can shatter Kd = O("−d�↵) points in [0,1]d.
Step 2∶ Construct {�� ∶ � ∈B} that also scatters O("−d�↵) points.

By Equation (2.2), for each � ∈B, there exists �� ∈F such that

��� − f��L∞([0,1]d) ≤ " + "�81.
Let µ(⋅) denote the Lebesgue measure of a set. Then, for each � ∈ B, there exists
H� ⊆ [0,1]d with µ(H�) = 0 such that

���(x) − f�(x)� ≤ 82
81", for any x ∈ [0,1]�H�.

Set H = ∪�∈BH�, then we have µ(H) = 0 and

���(x) − f�(x)� ≤ 82
81", for any � ∈B and x ∈ [0,1]�H. (2.4)

Since Q� has a sidelength 1
K
= 1�(9"�2)−1�↵� , we have, for each � ∈ {0,1,�,K − 1}d and

any x ∈ 1
10Q�

1○,

�f�(x)� = �⇣Q�
(x)� ≥ 9

10 �⇣Q�
(xQ�

)� = 9
10(

1
2�(9"�2)−1�↵�)↵�2 ≥ 81

80", (2.5)

1○ 1
10Q� denotes the closed cube whose sidelength is 1�10 of that of Q� and which shares the same

center of Q�.
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where xQ�
is the center of Q�.

Note that ( 1
10Q�)�H is not empty, since µ�( 1

10Q�)�H� > 0 for each � ∈ {0,1,�,K −
1}d. Together with Equations (2.4) and (2.5), there exists x� ∈ ( 1

10Q�)�H such that, for
each � ∈ {0,1,�,K − 1}d and each � ∈B,

�f�(x�)� ≥ 81
80" >

82
81" ≥ �f�(x�) − ��(x�)�.

Hence, f�(x�) and ��(x�) have the same sign for each � ∈B and � ∈ {0,1,�,K −
1}d. Then {�� ∶ � ∈ B} shatters �x� ∶ � ∈ {0,1,�,K − 1}d� since {f� ∶ � ∈ B} shatters
�x� ∶ � ∈ {0,1,�,K − 1}d�. Therefore,

VCDim(F ) ≥ VCDim�{�� ∶ � ∈B}� ≥K
d = �(9"�2)−1�↵�d ≥ (9")−d�↵,

where the last inequality comes from the fact �x� ≥ x�2 ≥ x�(21�↵) for any x ∈ [1,∞) and
↵ ∈ (0,1]. So we finish the proof.

2.4 Approximation in irregular domain

We extend our analysis to general continuous functions defined on any irregular
bounded set in Rd. The key idea is to extend the target function to a hypercube while
preserving the modulus of continuity. The extension of continuous (smooth) functions
has been widely studied, e.g., [39] for smooth functions and [38] for continuous functions.
For simplicity, we use Lemma 4.2 of [33]. The proof can be found therein. For a general
set E ⊆ Rd, the modulus of continuity of f ∈ C(E) is defined via

!
E

f
(r) ∶= sup��f(x) − f(y)� ∶ x,y ∈ E, �x − y�2 ≤ r�, for any r ≥ 0.

In particular, !f(⋅) is short of !E

f
(⋅) in the case of E = [0,1]d. Then, Theorem 1.1 can

be generalized to f ∈ C(E) for any bounded set E ⊆ [−R,R]d with R > 0, as shown in
the following theorem.

Theorem 2.5. Given any bounded continuous function f ∈ C(E) with E ⊆ [−R,R]d and
R > 0, for any N ∈ N+, L ∈ N+, and p ∈ [1,∞], there exists a function � implemented by
a ReLU network with width C1max�d�N1�d�, N + 2� and depth 11L +C2 such that

�f − ��Lp(E) ≤ 131(2R)d�p
√

d!
E

f
�2R�N2

L
2 log3(N + 2)�

−1�d�,

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p =∞.

Proof. Given any bounded continuous function f ∈ C(E), by Lemma 4.2 of [33] via
setting S = [−R,R]d, there exists g ∈ C([−R,R]d) such that

• g(x) = f(x) for any x ∈ E ⊆ S = [−R,R]d;

• !S
g
(r) = !E

f
(r) for any r ≥ 0.

Define
g̃(x) ∶= g(2Rx −R), for any x ∈ [0,1]d.
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By applying Theorem 1.1 to g̃ ∈ C([0,1]d), there exists a function �̃ implemented by a
ReLU network with width C1max�d�N1�d�, N + 2� and depth 11L +C2 such that

��̃ − g̃�Lp([0,1]d) ≤ 131
√

d!g̃��N2
L
2 log3(N + 2)�

−1�d�,
where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p =∞.

Note that f(x) = g(x) = g̃(x+R2R ) for any x ∈ E ⊆ S = [−R,R]d and

!g̃(r) = !S

g
(2Rr) = !E

f
(2Rr), for any r ≥ 0.

Define �(x) ∶= �̃(x+R2R ) = �̃ ○ L(x) for any x ∈ Rd, where L ∶ Rd → Rd is an a�ne linear
map given by L(x) = x+R

2R . Clearly, � can be implemented by a ReLU network with width
C1max�d�N1�d�, N + 2� and depth 11L + C2, where C1 = 16 and C2 = 18 if p ∈ [1,∞);
C1 = 3d+3 and C2 = 18 + 2d if p = ∞. Moreover, for any x ∈ E ⊆ S = [−R,R]d, we have
x+R
2R ∈ [0,1]d, implying

�� − f�Lp(E) = �� − g�Lp(E) = ��̃ ○L − g̃ ○L�Lp(E)
≤ ��̃ ○L − g̃ ○L�Lp([−R,R]d) = (2R)d�p��̃ − g̃�Lp([0,1]d)
≤ 131(2R)d�p√d!g̃��N2

L
2 log3(N + 2)�

−1�d�
= 131(2R)d�p√d!

E

f
�2R�N2

L
2 log3(N + 2)�

−1�d�.
With the discussion above, we have proved Theorem 2.5.

3 Proof of Theorem 2.1

We will prove Theorem 2.1 in this section. We first present the key ideas in Sec-
tion 3.1. The detailed proof is presented in Section 3.3, based on two propositions in
Section 3.1, the proofs of which can be found in Section 4.

3.1 Key ideas of proving Theorem 2.1

Given an arbitrary f ∈ C([0,1]d), our goal is to construct an almost piecewise
constant function � implemented by a ReLU network to approximate f well. To this end,
we introduce a piecewise constant function fp ≈ f serving as an intermediate approximant
in our construction in the sense that

f ≈ fp on [0,1]d and fp ≈ � on [0,1]d�⌦([0,1]d,K, �).

The approximation in f ≈ fp is a simple and standard technique in constructive approx-
imation. The most technical part is to design a ReLU network with the desired width
and depth to implement a function � with � ≈ fp outside ⌦([0,1]d,K, �). See Figure 4
for an illustration. The introduction of the trifling region is to ease the construction
of �, which is a continuous piecewise linear function, to approximate the discontinuous
function fp by removing the di�culty near discontinuous points, essentially smoothing
fp by restricting the approximation domain in [0,1]d�⌦([0,1]d,K, �).

Now let us discuss the detailed steps of construction.
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Figure 4: An illustration of f , fp, �, x�, Q�, and the trifling region ⌦([0,1]d,K, �) in the
one-dimensional case for � ∈ {0,1,�,K − 1}d, where K = N2L2�log3(N + 2)� and d = 1
with N = 1 and L = 3. f is the target function; fp is the piecewise constant function
approximating f ; � is a function, implemented by a ReLU network, approximating f ;
and x� is a representative of Q�. The measure of ⌦([0,1]d,K, �) can be arbitrarily small
as we shall see in the proof of Theorem 1.1.

(i) First, divide [0,1]d into a union of important regions {Q�}� and the trifling re-
gion ⌦([0,1]d,K, �), where each Q� is associated with a representative x� ∈ Q�

such that fp(x�) = f(x�) for each index vector � ∈ {0,1,�,K − 1}d, where
K = O((N2L2 lnN)1�d) is the partition number per dimension (see Figure 7 for
examples for d = 1 and d = 2).

(ii) Next, we design a vector function �1(x) constructed via

�1(x) = ��1(x1), �1(x2), �, �1(xd)�
T

to project the whole cube Q� to a d-dimensional index � for each �, where each
one-dimensional function �1 is a step function implemented by a ReLU network.

(iii) The third step is to solve a point fitting problem. To be precise, we construct a
function �2 implemented by a ReLU network to map � ∈ {0,1,�,K − 1}d approxi-
mately to fp(x�) = f(x�). Then �2 ○�1(x) = �2(�) ≈ fp(x�) = f(x�) ≈ f(x) for
any x ∈ Q� and each �, implying � ∶= �2 ○�1 ≈ fp ≈ f on [0,1]d�⌦([0,1]d,K, �).
We would like to point out that we only need to care about the values of �2 at
a set of points {0,1,�,K − 1}d in the construction of �2 according to our design
� = �2 ○�1 as illustrated in Figure 5. Therefore, it is not necessary to care about
the values of �2 sampled outside the set {0,1,�,K − 1}d, which is a key point to
ease the design of a ReLU network to implement �2 as we shall see later.

We remark that in Figure 5, we have

�(x) = �2 ○�1(x) = �2(�)
E1≈ f(x�)

E2≈ f(x)

for any x ∈ Q� and each � ∈ {0,1,�,K − 1}d. Thus, � − f is bounded by E1 + E2 outside
the trifling region. Observe that E2 is bounded by !f(

√
d�K). As we shall see later in

Section 3.3, E1 can also be bounded by !f(
√

d�K) by applying Proposition 3.2. Hence,
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d
 

Figure 5: An illustration of the desired function � = �2 ○ �1. Note that � ≈ f on
[0,1]d�⌦([0,1]d,K, �), since �(x) = �2 ○�1(x) = �2(�) ≈ f(x�) ≈ f(x) for any x ∈ Q�

and each � ∈ {0,1,�,K − 1}d.

� − f is controlled by 2!f(
√

d�K) outside the trifling region, which deduces the desired
approximation error.

Finally, we discuss how to implement �1 and �2 by deep ReLU networks with width
O(N) and depth O(L) using two propositions as we shall prove in Sections 4.2 and 4.3
later. We first show how to construct a ReLU network with the desired width and depth
by Proposition 3.1 to implement a one-dimensional step function �1. Then �1 can be
attained via defining

�1(x) ∶= ��1(x1), �1(x2), �, �1(xd)�
T

, for any x = [x1, x2,�, xd]T ∈ Rd.

Proposition 3.1. For any N,L, d ∈ N+ and � ∈ (0, 1
3K ] with

K = �N1�d�2�L1�d�2�n1�d�, where n = �log3(N + 2)�,

there exists a one-dimensional function � implemented by a ReLU network with width
8�N1�d� + 3 and depth 2�L1�d� + 5 such that

�(x) = k, if x ∈ [ k
K

,
k+1
K
− � ⋅ 1{k≤K−2}], for k = 0,1,�,K − 1.

The setting K = �N1�d�2�L1�d�2�n1�d� = O(N2�dL2�dn1�d) is not neat here, but it is
very convenient for later use. The construction of �2 is a direct result of Proposition 3.2
below, the proof of which relies on the bit extraction technique in [3].

Proposition 3.2. Given any " > 0 and arbitrary N,L,J ∈ N+ with J ≤ N2L2�log3(N+2)�,
assume yj ≥ 0 for j = 0,1,�, J − 1 are samples with

�yj − yj−1� ≤ ", for j = 1,2,�, J − 1.

Then there exists � ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤ 6L+ 10; #output = 1)
such that

(i) ��(j) − yj � ≤ " for j = 0,1,�, J − 1.

(ii) 0 ≤ �(x) ≤max{yj ∶ j = 0,1,�, J − 1} for any x ∈ R.
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3.2 Construction of final network

We will discuss the construction of the final network approximating the target func-
tion with the same setting as in Section 3.1. There are two main parts: 1) Construct the
final network architecture based on Propositions 3.1 and 3.2; 2) Implement the network
architectures in Propositions 3.1 and 3.2.

Final network architecture based on Propositions 3.1 and 3.2

By the idea mentioned in Figure 5, the final network architecture can be imple-
mented as shown in Figure 6.

x1 O(N1/d
)

O(L1/d
)

�1

x2 O(N1/d
)

O(L1/d
)

�1

xd O(N1/d
)

O(L1/d
)

�1

 1 O(N)

O(L)

 2 �(x)

�1(x) = [�1(x1), · · · ,�1(xd)]T �2 =  2 �  1

Figure 6: An illustration of the final network architecture with width
max{O(dN1�d), O(N)} and depth O(L).  1 ∶ Rd → R is a linear function. �1 and
 2 are implemented via Propositions 3.1 and 3.2, respectively.

Note that �1 in Figure 6 is a step function mapping x ∈ [ k
K

,
k+1
K
− � ⋅ 1{k≤K−2}] to k

for each k ∈ {0,1,�,K − 1}. It can be easily implemented via Proposition 3.1. Clearly,

by defining �1(x) = ��1(x1),�1(x2),�,�1(xd)�
T

, �1 maps x ∈ Q� to �.
As shown in Figure 5, we need to design a network to compute �2 mapping � ∈

{0,1,�,K−1}d approximately to f(x�). To this end, we first construct a linear function
 1 ∶ Rd → R mapping � ∈ {0,1,�,K − 1}d to R for the purpose of converting a d-
dimensional point-fitting problem to a one-dimensional one, and then construct a network
to compute  2 with  2( 1(�)) ≈ f(x�) via applying Proposition 3.2. Thus, we have
�2(�) ∶=  2 ○  1(�) ≈ f(x�) as desired.

Network architectures in Propositions 3.1 and 3.2

To prove Proposition 3.1, we need to construct a ReLU network with width O(N1�d)
and depth O(L1�d) to compute a step function with O�(N2L2 lnN)1�d� “steps” outside
the trifling region. It is easy to construct a ReLU network with O(W ) parameters to
compute a step function with W “steps” outside a small region. As we shall see later
in Section 4.2, the composition architecture of ReLU networks can help to implement
step functions with much more “steps”. Refer to Section 4.2 for the detailed proof of
Proposition 3.1.

Proposition 3.2 essentially solves a point-fitting problem with N2L2�log3(N + 2)�
points via a ReLU network with width O(N) and depth O(L). Set M = N2L, L̂ =
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L�log3(N+2)�, and represent j ∈ {0,1,�,ML̂−1} via j =mL̂+k, where m ∈ {0,1,�,M−1}
and k ∈ {0,1,�, L̂ − 1}.

Define am,k ∶= �ym,k�"� where ym,k = y
mL̂+k. Then

�am,k" − ym,k� = ��ym,k�"�" − ym,k� ≤ ".

It su�ces to prove �(m,k) = am,k. The assumption �yj − yj−1� ≤ " implies that bm,k ∶=
am,k − am,k−1 ∈ {−1,0,1}. Thus, there exist cm,k ∈ {0,1} and dm,k ∈ {0,1} such that
bm,k = cm,k − dm,k.

Note that

am,k = am,0 +
k

�
j=1
(am,j − am,j−1) = am,0 +

k

�
j=1

bm,j = am,0 +
k

�
j=1

cm,j −
k

�
j=1

dm,j.

It is easy to construct a ReLU network with width O(N) and depth O(L) (O(N2L)
parameters in total) to compute �1 such that �1(m) = am,0 for each m ∈ {0,1,�,M − 1}
with M = N2L. By the bit extraction technique in [3], one could construct �2,�3 ∈
NN (width ≤ O(N); depth ≤ O(L)) such that �2(m,k) = ∑k

j=1 cm,j and �3(m,k) =
∑k

j=1 dm,j. Thus, �(m,k) ∶= �1(m) + �2(m,k) − �3(m,k) = am,k as desired.
In order to use the bit extraction technique (two types of bits 0 or 1) to solve the

point-fitting problem, we essentially simplify the target as discussed above. That is,

non-negative number ym,k �→ integer am,k = �ym,k�"�
"≈ ym,k

�→ bm,k = am,k − am,k−1 ∈ {−1,0,1}
�→ bm,k = cm,k − dm,k with cm,k, dm,k ∈ {0,1}.

The detailed proof of Proposition 3.2 can be found in Section 4.3.

3.3 Detailed proof

We essentially construct an almost piecewise constant function implemented by a
ReLU network with width O(N) and depth O(L) to approximate f . We may assume f

is not a constant function since it is a trivial case. Then !f(r) > 0 for any r > 0. It is
clear that �f(x)−f(0)� ≤ !f(

√
d) for any x ∈ [0,1]d. Define f̃ ∶= f −f(0)+!f(

√
d), then

0 ≤ f̃(x) ≤ 2!f(
√

d) for any x ∈ [0,1]d.
Let M = N2L, n = �log3(N + 2)�, K = �N1�d�2�L1�d�2�n1�d�, and � be an arbitrary

number in (0, 1
3K ]. The proof can be divided into four steps as follows:

1. Normalize f as f̃ , divide [0,1]d into a union of sub-cubes {Q�}�∈{0,1,�,K−1}d and the
trifling region ⌦([0,1]d,K, �), and denote x� as the vertex of Q� with minimum
� ⋅ �1 norm;

2. Construct a sub-network to implement a vector function �1 projecting the whole
cube Q� to the d-dimensional index � for each �, i.e., �1(x) = � for all x ∈ Q�;

3. Construct a sub-network to implement a function �2 mapping the index � approx-
imately to f̃(x�). This core step can be further divided into three sub-steps:
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3.1. Construct a sub-network to implement  1 bijectively mapping the index set
{0,1,�,K − 1}d to an auxiliary set A1 ⊆ � j

2Kd ∶ j = 0,1,�,2Kd� defined later
(see Figure 8 for an illustration);

3.2. Determine a continuous piecewise linear function g with a set of breakpoints
A1 ∪A2 ∪ {1} satisfying: 1) assign the values of g at breakpoints in A1 based
on {f̃(x�)}�, i.e., g ○ 1(�) = f̃(x�); 2) assign the values of g at breakpoints
in A2 ∪ {1} to reduce the variation of g for applying Proposition 3.2;

3.3. Apply Proposition 3.2 to construct a sub-network to implement a function  2

approximating g well on A1 ∪A2 ∪ {1}. Then the desired function �2 is given
by �2 =  2 ○  1 satisfying �2(�) =  2 ○  1(�) ≈ g ○  1(�) = f̃(x�);

4. Construct the final network to implement the desired function � such that �(x) =
�2 ○�1(x)+f(0)−!f(

√
d) ≈ f̃(x�)+f(0)−!f(

√
d) = f(x�) ≈ f(x) for any x ∈ Q�

and � ∈ {0,1,�,K − 1}d.

The details of these steps can be found below.

Step 1∶ Divide [0,1]d into {Q�}�∈{0,1,�,K−1}d and ⌦([0,1]d,K, �).
Define x� ∶= ��K and

Q� ∶= �x = [x1, x2,�, xd]T ∈ [0,1]d ∶ xi ∈ [�i

K
,
�i+1
K
− � ⋅ 1{�i≤K−2}], i = 1,2,�, d�

for each d-dimensional index � = [�1,�2,�,�d]T ∈ {0,1,�,K−1}d. Recall that ⌦([0,1]d,K, �)
is the trifling region defined in Equation (2.1). Apparently, x� is the vertex of Q� with
minimum � ⋅ �1 norm and

[0,1]d = � ∪�∈{0,1,�,K−1}d Q���⌦([0,1]d,K, �).

See Figure 7 for illustrations.

0.00 0.25 0.50 0.75 1.00

�

Q0

�

Q1

�

Q2 Q3

�([0, 1]
d
, K, �) for K = 4, d = 1

Q� for � 2 {0, 1, 2, 3}

x� for � 2 {0, 1, 2, 3}

(a)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Q0,0 Q1,0 Q2,0 Q3,0

Q0,1 Q1,1 Q2,1 Q3,1

Q0,2 Q1,2 Q2,2 Q3,2

Q0,3 Q1,3 Q2,3 Q3,3

�([0, 1]
d
, K, �) for K = 4, d = 2

Q� for � 2 {0, 1, 2, 3}
2

x� for � 2 {0, 1, 2, 3}
2

(b)

Figure 7: Illustrations of ⌦([0,1]d,K, �), Q�, and x� for � ∈ {0,1,�,K − 1}d. (a) K = 4
and d = 1. (b) K = 4 and d = 2.

Step 2∶ Construct �1 mapping x ∈ Q� to �.
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By Proposition 3.1, there exists �1 ∈ NN (width ≤ 8�N1�d� + 3; depth ≤ 2�L1�d� + 5)
such that

�1(x) = k, if x ∈ [ k
K

,
k+1
K
− � ⋅ 1{k≤K−2}], for k = 0,1,�,K − 1.

It follows that �1(xi) = �i if x = [x1, x2,�, xd]T ∈ Q� for each � = [�1,�2,�,�d]T .
By defining

�1(x) ∶= ��1(x1), �1(x2), �, �1(xd)�
T

, for any x = [x1, x2,�, xd]T ∈ Rd
,

we have �1(x) = � if x ∈ Q� for each � ∈ {0,1,�,K − 1}d.

Step 3∶ Construct �2 mapping � approximately to f̃(x�).
The construction of the sub-network implementing �2 is essentially based on Propo-

sition 3.2. To meet the requirements of applying Proposition 3.2, we first define two
auxiliary sets A1 and A2 as

A1 ∶= � i

Kd−1 + k

2Kd ∶ i = 0,1,�,K
d−1−1 and k = 0,1,�,K − 1�

and
A2 ∶= � i

Kd−1 + K+k
2Kd ∶ i = 0,1,�,K

d−1−1 and k = 0,1,�,K − 1�.

Clearly, A1 ∪A2 ∪ {1} = { j

2Kd ∶ j = 0,1,�,2Kd} and A1 ∩A2 = �. See Figure 7 for an
illustration of A1 and A2. Next, we further divide this step into three sub-steps.

Step 3.1∶ Construct  1 bijectively mapping {0,1,�,K − 1}d to A1.

Inspired by the binary representation, we define

 1(x) ∶=
xd

2Kd
+

d−1
�
i=1

xi

Ki
, for any x = [x1, x2,�, xd]T ∈ Rd. (3.1)

Then  1 is a linear function bijectively mapping the index set {0,1,�,K − 1}d to

� �d

2Kd +
d−1
�
i=1

�i

Ki ∶ � ∈ {0,1,�,K − 1}d�

= � i

Kd−1 + k

2Kd ∶ i = 0,1,�,K
d−1−1 and k = 0,1,�,K − 1� = A1.

Step 3.2∶ Construct g to satisfy g ○  1(�) = f̃(x�) and to meet the requirements of
applying Proposition 3.2.

Let g ∶ [0,1]→ R be a continuous piecewise linear function with a set of breakpoints
� j

2Kd ∶ j = 0,1,�,2Kd� = A1 ∪A2 ∪ {1} and the values of g at these breakpoints satisfy
the following properties:

• The values of g at the breakpoints in A1 = � 1(�) ∶ � ∈ {0,1,�,K −1}d� are set as

g( 1(�)) = f̃(x�), for any � ∈ {0,1,�,K − 1}d; (3.2)

• At the breakpoint 1, let g(1) = f̃(1), where 1 = [1,1,�,1]T ∈ Rd;
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Figure 8: An illustration of A1, A2, {1}, and g for d = 2 and K = 4.

• The values of g at the breakpoints in A2 are assigned to reduce the variation of g,
which is a requirement of applying Proposition 3.2. Note that

� i

Kd−1 − K+1
2Kd ,

i

Kd−1� ⊆ A1 ∪ {1}, for i = 1,2,�,K
d−1,

implying the values of g at i

Kd−1−K+1
2Kd and i

Kd−1 have been assigned for i = 1,2,�,Kd−1.
Thus, the values of g at the breakpoints in A2 can be successfully assigned by
letting g linear on each interval [ i

Kd−1 − K+1
2Kd ,

i

Kd−1 ] for i = 1,2,�,Kd−1, since

A2 ⊆ �K
d−1

i=1 [ i

Kd−1 − K+1
2Kd ,

i

Kd−1 ]. See Figure 8 for an illustration.

Apparently, such a function g exists (see Figure 8 for an example) and satisfies

�g( j

2Kd ) − g( j−12Kd )� ≤max�!f( 1
K
),!f(

√
d)�K� ≤ !f(

√
d

K
), for j = 1,2,�,2Kd

,

and
0 ≤ g( j

2Kd ) ≤ 2!f(
√

d), for j = 0,1,�,2Kd
.

Step 3.3∶ Construct  2 approximating g well on A1 ∪A2 ∪ {1}.
Note that

2Kd = 2��N1�d�2�L1�d�2�n1�d��d ≤ 2�N2
L
2
n� ≤ N

2�
√
2L�2�log3(N + 2)�.

By Proposition 3.2 (set yj = g( j

2K2 ) and " = !f(
√
d

K
) > 0 therein), there exists

 ̃2 ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤ 6�
√
2L� + 10; #output = 1)

such that
� ̃2(j) − g( j

2Kd )� ≤ !f(
√
d

K
), for j = 0,1,�,2Kd − 1,

and

0 ≤  ̃2(x) ≤max{g( j

2Kd ) ∶ j = 0,1,�,2Kd − 1} ≤ 2!f(
√

d), for any x ∈ R.

By defining  2(x) ∶=  ̃2(2Kdx) for any x ∈ R, we have  2 ∈ NN (#input = 1; width ≤
16N + 30; depth ≤ 6�

√
2L� + 10; #output = 1),

0 ≤  2(x) =  ̃2(2Kd
x) ≤ 2!f(

√
d), for any x ∈ R, (3.3)
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and

� 2( j

2Kd ) − g( j

2Kd )� = � ̃2(j) − g( j

2Kd )� ≤ !f(
√
d

K
), for j = 0,1,�,2Kd − 1. (3.4)

Let us end Step 3 by defining the desired function �2 as �2 ∶=  2 ○  1. Note that
 1 ∶ Rd → R is a linear function and  2 ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤
6�
√
2L� + 10; #output = 1). Thus, �2 ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤

6�
√
2L� + 10; #output = 1). By Equations (3.2) and (3.4), we have

��2(�) − f̃(x�)� = � 2( 1(�)) − g( 1(�))� ≤ !f(
√
d

K
), (3.5)

for any � ∈ {0,1,�,K − 1}d. Equation (3.3) and �2 =  2 ○  1 implies

0 ≤ �2(x) ≤ 2!f(
√

d), for any x ∈ Rd
. (3.6)

Step 4∶ Construct the final network to implement the desired function �.

Define � ∶= �2 ○�1 + f(0) − !f(
√

d). Since �1 ∈ NN (width ≤ 8�N1�d� + 3; depth ≤
2�L1�d� + 5]), we have �1 ∈ NN (#input = d; width ≤ 8d�N1�d� + 3d; depth ≤ 2L +
5; #output = d). It follows from the fact �

√
2L� ≤ �32L� ≤

3
2L+

1
2 that 6�

√
2L�+10 ≤ 9L+13,

implying

�2 ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤ 6�
√
2L� + 10; #output = 1)

⊆ NN (#input = 1; width ≤ 16N + 30; depth ≤ 9L + 13; #output = 1).

Thus, � = �2 ○�1 + f(0) − !f(
√

d) is in

NN �width ≤max{8d�N1�d� + 3d,16N + 30}; depth ≤ (2L + 5) + (9L + 13) = 11L + 18�.

Now let us estimate the approximation error. Note that f = f̃ + f(0)−!f(
√

d). By
Equation (3.5), for any x ∈ Q� and � ∈ {0,1,�,K − 1}d, we have

�f(x) − �(x)� = �f̃(x) − �2(�1(x))� = �f̃(x) − �2(�)�
≤ �f̃(x) − f̃(x�)� + �f̃(x�) − �2(�)�

≤ !f(
√
d

K
) + !f(

√
d

K
) ≤ 2!f�64

√
d�N2

L
2 log3(N + 2)�

−1�d�,
where the last inequality comes from the fact

K = �N1�d�2�L1�d�2�n1�d� ≥ N
2�d

L
2�d

n
1�d

32 = N
2�d

L
2�d�log3(N+2)�1�d

32 ≥ (N2
L
2 log3(N+2))1�d

64 ,

for any N,L ∈ N+. Recall the fact !f(j ⋅ r) ≤ j ⋅ !f(r) for any j ∈ N+ and r ∈ [0,∞).
Therefore, for any x ∈ ��∈{0,1,�,K−1}d Q�=[0,1]d�⌦([0,1]d,K, �), we have

�f(x) − �(x)� ≤ 2!f�64
√

d�N2
L
2 log3(N + 2)�

−1�d�
≤ 2�64

√
d�!f��N2

L
2 log3(N + 2)�

−1�d�
≤ 130

√
d!f��N2

L
2 log3(N + 2)�

−1�d�.
It remains to show the upper bound of �. By Equation (3.6) and � = �2○�1+f(0)−

!f(
√

d), it holds that ���L∞(Rd) ≤ �f(0)� + !f(
√

d). Thus, we finish the proof.
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4 Proofs of propositions in Section 3.1

In this section, we will prove Propositions 3.1 and 3.2. We first introduce several
basic results of ReLU networks. Next, we prove these two propositions based on these
basic results.

4.1 Basic results of ReLU networks

To simplify the proofs of two propositions in Section 3.1, we introduce three lemmas
below, which are basic results of ReLU networks

Lemma 4.1. For any N1,N2 ∈ N+, given N1(N2 + 1) + 1 samples (xi, yi) ∈ R2 with
x0 < x1 < � < xN1(N2+1) and yi ≥ 0 for i = 0,1,�,N1(N2+1), there exists � ∈ NN (#input =
1; widthvec = [2N1,2N2 + 1]; #output = 1) satisfying the following conditions.

(i) �(xi) = yi for i = 0,1,�,N1(N2 + 1).

(ii) � is linear on each interval [xi−1, xi] for i ∉ {(N2 + 1)j ∶ j = 1,2,�,N1}.

Lemma 4.2. Given any N,L, d ∈ N+, it holds that
NN (#input = d; widthvec = [N,NL]; #output = 1)
⊆ NN (#input = d; width ≤ 2N + 2; depth ≤ L + 1; #output = 1).

Lemma 4.3. For any n ∈ N+, it holds that
CPwL�R, n� ⊆ NN (#input = 1; widthvec = [n + 1]; #output = 1). (4.1)

Lemma 4.1 is a part of Theorem 3.2 in [44] or Lemma 2.2 in [32]. Lemma 4.1 is
Theorem 3.1 in [44] or Lemma 3.4 in [32]. It remains to prove Lemma 4.3.

Proof of Lemma 4.3. We use the mathematical induction to prove Equation (4.1). First,
consider the case n = 1. Given any f ∈ CPwL�R,1�, there exist a1, a2, x0 ∈ R such that

f(x) = � a1(x − x0) + f(x0), if x ≥ x0,

a2(x0 − x) + f(x0), if x < x0.

Thus, f(x) = a1�(x − x0) + a2�(x0 − x) + f(x0) for any x ∈ R, implying

f ∈ NN (#input = 1; widthvec = [2]; #output = 1).

Thus, Equation (4.1) holds for n = 1.
Now assume Equation (4.1) holds for n = k ∈ N+, we would like to show it is also

true for n = k+1. Given any f ∈ CPwL�R, k+1�, we may assume the biggest breakpoint
of f is x0 since it is trivial for the case that f has no breakpoint. Denote the slopes of
the linear pieces left and right next to x0 by a1 and a2, respectively. Define

f̃(x) ∶= f(x) − (a2 − a1)�(x − x0), for any x ∈ R.

Then f̃ has at most k breakpoints. By the induction hypothesis, we have

f̃ ∈ CPwL�R, k� ⊆ NN (#input = 1; widthvec = [k + 1]; #output = 1).
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Thus, there exist w0,j, b0,j, w1,j, b1 for j = 1,2,�, k + 1 such that

f̃(x) =
k+1
�
j=1

w1,j�(w0,jx + b0,j) + b1, for any x ∈ R.

Therefore, for any x ∈ R, we have

f(x) = (a2 − a1)�(x − x0) + f̃(x) = (a2 − a1)�(x − x0) +
k+1
�
j=1

w1,j�(w0,jx + b0,j) + b1,

implying f ∈ NN (#input = 1; widthvec = [k + 2]; #output = 1). Thus, Equation (4.1)
holds for k+1, which means we finish the induction process. So we complete the proof.

4.2 Proof of Proposition 3.1

Now, let us present the detailed proof of Proposition 3.1. Denote K = �M ⋅ L̃, where
�M = �N1�d�2�L1�d�, n = �log3(N + 2)�, and L̃ = �L1�d��n1�d�. Consider the sample set

�(1,�M − 1), (2,0)���(m�M ,m) ∶m = 0,1,�,�M − 1�

��(m+1�M − �,m) ∶m = 0,1,�,�M − 2�.

Its size is

2�M + 1 = 2�N1�d�2�L1�d� + 1 = �N1�d� ⋅ ��2�N1�d��L1�d� − 1� + 1� + 1.
By Lemma 4.1 (set N1 = �N1�d� and N2 = 2�N1�d��L1�d� − 1 therein), there exists

�1 ∈ NN �widthvec = �2�N1�d�,2(2�N1�d��L1�d� − 1) + 1��
= NN �widthvec = �2�N1�d�,4�N1�d��L1�d� − 1��

such that

• �1(
�M−1�M ) = �1(1) = �M − 1 and �1(m�M ) = �1(m+1�M − �) =m for m = 0,1,�,�M − 2.

• �1 is linear on [�M−1�M ,1] and each interval [m�M ,
m+1�M − �] for m = 0,1,�,�M − 2.

Then, for m = 0,1,�,�M − 1, we have

�1(x) =m, for any x ∈ [m�M ,
m+1�M − � ⋅ 1{m≤�M−2}]. (4.2)

Now consider another sample set

�( 1�M , L̃ − 1), (2,0)���( `�ML̃
, `) ∶ ` = 0,1,�, L̃ − 1�

��( `+1�ML̃
− �, `) ∶ ` = 0,1,�, L̃ − 2�.

Its size is
2L̃ + 1 = 2�L1�d��n1�d� + 1 = �n1�d� ⋅ �(2�L1�d� − 1) + 1� + 1.

By Lemma 4.1 (set N1 = �n1�d� and N2 = 2�L1�d� − 1 therein), there exists

�2 ∈ NN �widthvec = �2�n1�d�,2(2�L1�d� − 1) + 1��
= NN �widthvec = �2�n1�d�,4�L1�d� − 1��

such that
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• �2( L̃−1�ML̃
) = �2( 1�M ) = L̃ − 1 and �2( `�ML̃

) = �2( `+1�ML̃
− �) = ` for ` = 0,1,�, L̃ − 2.

• �2 is linear on [ L̃−1�ML̃
,

1�M ] and each interval [ `�ML̃
,
`+1�ML̃
− �] for ` = 0,1,�, L̃ − 2.

It follows that, for m = 0,1,�,�M − 1 and ` = 0,1,�, L̃ − 1,

�2(x − m�M ) = `, for any x ∈ [mL̃+`�ML̃
,
mL̃+`+1�ML̃

− � ⋅ 1{`≤L̃−2}]. (4.3)

K = �M ⋅ L̃ implies any k ∈ {0,1,�,K − 1} can be unique represented by k = mL̃ + `
for m ∈ {0,1,�,�M − 1} and ` ∈ {0,1,�, L̃ − 1}. Then the desired function � can be
implemented by a ReLU network shown in Figure 9.

x

�1(x) = m

x

m

x �
m
fM

m

�2(x �
m
fM
) = `

meL+ ` = k =: �(x)
�1

�2

Figure 9: An illustration of the network architecture implementing � based on Equa-
tions (4.2) and (4.3) for x ∈ [ k

K
,
k+1
K
− � ⋅ 1{k≤K−2}] = [mL+`�ML̃

,
mL+`+1�ML̃

− � ⋅ 1{m≤�M−2 or `≤L̃−2}],
where k =mL̃ + ` for m = 0,1,�,�M − 1 and ` = 0,1,�, L̃ − 1.

Clearly,

�(x) = k, if x ∈ [ k
K

,
k+1
K
− � ⋅ 1{k≤K−2}], for any k ∈ {0,1,�,K − 1}.

By Lemma 4.2, we have

�1 ∈ NN �#input = 1; widthvec = �2�N1�d�,4�N1�d��L1�d� − 1�; #output = 1�
⊆ NN �#input = 1; width ≤ 8�N1�d� + 2; depth ≤ �L1�d� + 1; #output = 1�

and

�2 ∈ NN �#input = 1; widthvec = �2�n1�d�,4�L1�d� − 1�; #output = 1�
⊆ NN �#input = 1; width ≤ 8�n1�d� + 2; depth ≤ �L1�d� + 1; #output = 1�.

Recall that n = �log3(N + 2)� ≤ N . It follows from Figure 9 that � can be implemented
by a ReLU network with width

max�8�N1�d� + 2 + 1,8�n1�d� + 2 + 1� = 8�N1�d� + 3
and depth

(�L1�d� + 1) + 2 + (�L1�d� + 1) + 1 = 2�L1�d� + 5.
So we finish the proof.

26



4.3 Proof of Proposition 3.2

The proof of Proposition 3.2 is based on the bit extraction technique in [3, 13]. To
simplify the proof, we first prove Lemmas 4.4, 4.5, 4.6, and 4.7, which serve as four
important intermediate steps. Next, we will apply Lemma 4.7 to prove Proposition 3.2.
In fact, we modify this technique to extract the sum of many bits rather than one bit
and this modification can be summarized in Lemmas 4.4 and 4.5 below.

Lemma 4.4. For any n ∈ N+, there exists a function � in

NN �#input = 2; width ≤ (n + 1)2n+1; depth ≤ 3; #output = 1�

such that: Given any ✓j ∈ {0,1} for j = 1,2,�, n, we have

�(bin0.✓1✓2�✓n, i) =
i

�
j=1
✓j, for any i ∈ {0,1,2,�, n}. 2○

Proof. Set ✓ = bin0.✓1✓2�✓n. Clearly,

✓j = �2j✓��2 − �2j−1✓�, for any j ∈ {1,2,�, n}.

We shall use a ReLU network to replace �⋅�. Let g ∈ CPwL(R,2n+1 − 2) be the function
satisfying two conditions:

• g matches set of samples

2n−1
�
k=0 �(k, k), (k + 1 − �, k)�, where � = 2−(n+1);

• The breakpoint set of g is

�
2n−1
�
k=0 �k, k + 1 − �����{0}�{2n − �}�.

Then g(x) = �x� for any x ∈ �2n−1
k=0 [k, k + 1 − �]. Clearly, ✓ = bin0.✓1✓2�✓n implies

2j✓ ∈
2n−1
�
k=0 [k, k + 1 − �], for any j ∈ {0,1,2,�, n}.

Thus,

✓j = �2j✓��2 − �2j−1✓� = g(2j✓)�2 − g(2j−1✓), for any j ∈ {1,2,�, n}. (4.4)

It is easy to design a ReLU network to output ✓1, ✓2,�, ✓n by Equation (4.4) when
using ✓ = bin0.✓1✓2�✓n as the input. However, it is highly non-trivial to construct
a ReLU network to output ∑i

j=1 ✓j with another input i, since many operations like
multiplication and comparison are not allowed in designing ReLU networks. Now let us
establish a formula to represent ∑i

j=1 ✓j in a form of a ReLU network as follows.

2○
By convention, ∑

m
j=n aj = 0 if n >m, no matter what aj is for each j.
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Define T (n) ∶= �(n+ 1)− �(n) = � 1, n≥0,0, n<0 for any integer n. Then, by Equation (4.4)
and the fact x1x2 = �(x1 + x2 − 1) for any x1, x2 ∈ {0,1}, we have, for i = 0,1,2,�, n,

i

�
j=1
✓j =

n

�
j=1
✓j ⋅ T (i − j) =

n

�
j=1
��✓j + T (i − j) − 1�

=
n

�
j=1
��✓j + �(i − j + 1) − �(i − j) − 1�

=
n

�
j=1
��g(2j✓)�2 − g(2j−1✓) + �(i − j + 1) − �(i − j) − 1�.

Define

zi,j ∶= ��g(2j✓)�2 − g(2j−1✓) + �(i − j + 1) − �(i − j) − 1�, (4.5)

for any i, j ∈ {0,1,2,�, n}. Then the goal is to design � satisfying

�(✓, i) =
i

�
j=1
✓j =

n

�
j=1

zi,j, for any i ∈ {0,1,2,�, n}. (4.6)

See Figure 10 for the network architecture implementing the desired function �.

Input 1 2 3 Output

g(·)

g(2·)

g(2
2
·)

g(2
n�1

·)

g(2
n
·)

✓

i

g(✓)

g(2✓)

g(22✓)
...

g(2n�1
✓)

g(2n✓)

�(i)

�(i � 1)

�(i � 2)
...

�(i � n + 1)

�(i � n)

�

⇣
g(2✓)/2 � g(✓) + �(i) � �(i � 1) � 1

⌘
= zi,1

�

⇣
g(22✓)/2 � g(21✓) + �(i � 1) � �(i � 2) � 1

⌘
= zi,2

...

�

⇣
g(2n✓)/2 � g(2n�1

✓) + �(i � n + 1) � �(i � n) � 1
⌘
= zi,n

nX

j=1

zi,j =
iX

j=1

✓j =: �(✓, i)

Figure 10: An illustration of the network implementing the desired function � with
the input [✓, i]T = [bin0.✓1✓2�✓n, i]T for any i ∈ {0,1,2,�, n} and ✓1, ✓2,�, ✓n ∈ {0,1}.
g(2j ⋅) can be implemented by a one-hidden-layer network with width 2n+1 − 1 for each
j ∈ {0,1,2,�, n}. The red numbers above the architecture indicate the order of hidden
layers. The network architecture is essentially determined by Equations (4.5) and (4.6),
which are valid no matter what ✓1, ✓2,�, ✓n ∈ {0,1} are. Thus, the desired function �

is independent of ✓1, ✓2,�, ✓n ∈ {0,1}. We omit ReLU (�) for a neuron if its output is
non-negative without ReLU. Such a simplification is applied to similar figures in this
paper.

By Lemma 4.3, we have

g ∈ CPwL(R,2n+1 − 2) ⊆ NN �#input = 1; widthvec = [2n+1 − 1]; #output = 1�,
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implying

g(2j ⋅) ∈ CPwL(R,2n+1 − 2) ⊆ NN �#input = 1; widthvec = [2n+1 − 1]; #output = 1�,

for j = 0,1,2,�, n. Clearly, the network in Figure 10 has width

(n + 1)(2n+1 − 1) + (n + 1) = (n + 1)2n+1

and depth 3. So we finish the proof.

Lemma 4.5. For any n,L ∈ N+, there exists a function � in

NN �#input = 2; width ≤ (n + 3)2n+1 + 4; depth ≤ 4L + 2; #output = 1�

such that: Given any ✓j ∈ {0,1} for j = 1,2,�, Ln, we have

�(bin0.✓1✓2�✓Ln, k) =
k

�
j=1
✓j, for any k ∈ {1,2,�, Ln}.

Proof. Let g1 ∈ CPwL(R,2n+1 − 2) be the function satisfying:

• g1 matches the set of samples

2n−1
�
i=0 �(i, i), (i + 1 − �, i)�, where � = 2−(Ln+1).

• The breakpoint set of g1 is

�
2n−1
�
i=0 �(i, i), (i + 1 − �, i)����{0}�{2

n − �}�.

Then g1(x) = �x� for any x ∈ �2n−1
i=0 [i, i + 1 − �]. Note that

2n ⋅ bin0.✓`n+1�✓Ln ∈
2n−1
�
i=0 [i, i + 1 − �], for any ` ∈ {0,1,�, L − 1}.

Thus, for any ` ∈ {0,1,�, L − 1}, we have

bin0.✓`n+1�✓`n+n = �2
n ⋅ bin0.✓`n+1�✓Ln�

2n
= g1(2n ⋅ bin0.✓`n+1�✓Ln)

2n
. (4.7)

Define g2(x) ∶= 2nx − g1(2nx) for any x ∈ R. Then g2 ∈ CPwL(R,2n+1 − 2) and

bin0.✓(`+1)n+1�✓Ln = 2n�bin0.✓`n+1�✓Ln − bin0.✓`n+1�✓`n+n�

= 2n�bin0.✓`n+1�✓Ln − g1(2n ⋅ bin0.✓`n+1�✓Ln)
2n

� = g2(bin0.✓`n+1�✓Ln).
(4.8)

By Lemma 4.4, there exists

�1 ∈ NN �#input = 2; width ≤ (n + 1)2n+1; depth ≤ 3; #output = 1�
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such that: For any ⇠1, ⇠2,�, ⇠n ∈ {0,1}, we have

�1(bin0.⇠1⇠2�⇠n, i) =
i

�
j=1
⇠j, for i = 0,1,2,�, n.

It follows that

�1(bin0.✓`n+1✓`n+2�✓`n+n, i) =
i

�
j=1
✓`n+j, for ` = 0,1,�, L − 1 and i = 0,1,�, n. (4.9)

Define �2,`(x) ∶= min{�(x − `n), n} for any x ∈ R and ` ∈ {0,1,�, L − 1}. For any
k ∈ {1,2,�, Ln}, there exist k1 ∈ {0,1,�, L−1} and k2 ∈ {1,2,�, n} such that k = k1n+k2,
implying

k

�
i=1
✓i =

k1n+k2
�
i=1

✓i =
k1−1
�
`=0
�

n

�
j=1
✓`n+j� +

k1

�
`=k1
�

k2

�
j=1
✓`n+j� +

L−1
�

`=k1+1
�

0

�
j=1
✓`n+j�

=
L−1
�
`=0
�

min{�(k−`n), n}
�
j=1

✓`n+j� =
L−1
�
`=0
�

�2,`(k)
�
j=1

✓`n+j�.
(4.10)

Then, the desired function � can be implemented by the network architecture in Fig-
ure 11.

bin0.✓1 · · · ✓Ln

k

bin0.✓n+1 · · · ✓Ln

bin0.✓1 · · · ✓n

�2,0(k)

k

bin0.✓2n+1 · · · ✓Ln

bin0.✓n+1 · · · ✓n+n

�2,1(k)

�2,0(k)X

j=1

✓j

k

bin0.✓3n+1 · · · ✓Ln

bin0.✓2n+1 · · · ✓2n+n

�2,2(k)

1X

`=0

�2,`(k)X

j=1

✓`n+j

k

bin0.✓(L�1)n+1 · · · ✓Ln

bin0.✓(L�2)n+1 · · · ✓(L�2)n+n

�2,L�2(k)

L�3X

`=0

�2,`(k)X

j=1

✓`n+j

k

· · ·

bin0.✓(L�1)n+1 · · · ✓(L�1)n+n

�2,L�1(k)

L�2X

`=0

�2,`(k)X

j=1

✓`n+j

L�1X

`=0

�2,`(k)X

j=1

✓`n+j =
kX

i=1

✓i =: �(bin0.✓1 · · · ✓Ln, k)

g2 g2 g2

g1 g1 g1

�1 �1 �1 �1

�2,0 �2,1 �2,2 �2,L�1

Figure 11: An illustration of the network implementing the desired function � with the
input [bin0.✓1✓2�✓Ln, k]T for any k ∈ {1,2,�, Ln} and ✓1, ✓2,�, ✓Ln ∈ {0,1}. The network
architecture is essentially determined by Equations (4.7), (4.8), (4.9), and (4.10), which
are valid no matter what ✓1, ✓2,�, ✓Ln ∈ {0,1} are. Thus, the desired function � is
independent of ✓1, ✓2,�, ✓Ln ∈ {0,1}. We omit ReLU (�) for a neuron if its output is
non-negative without ReLU.

By Lemma 4.3, we have

g1, g2 ∈ CPwL(R,2n+1 − 2) ⊆ NN �#input = 1; widthvec = [2n+1 − 1]; #output = 1�.

Recall that �1 ∈ NN �width ≤ (n + 1)2n+1; depth ≤ 3�. As shown in Figure 12,
�2,`(x) ∈ NN (width ≤ 4; depth ≤ 2) for ` = 0,1,�, L − 1. Therefore, the network in
Figure 11 has width

(2n+1 − 1) + (2n+1 − 1) + (n + 1)2n+1 + 1 + 4 + 1 = (n + 3)2n+1 + 4
and depth

2 +L(1 + 3) = 4L + 2.
So we finish the proof.
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x �(x � `n)

�
⇣
�(x � `n) + n

⌘

�
⇣

� �(x � `n) � n
⌘

�
⇣
�(x � `n) � n

⌘

�
⇣

� �(x � `n) + n
⌘

min

n
�(x � `n), n

o
=: �2,`(x)

Figure 12: An illustration of the network implementing the desired function �2,` for each
` ∈ {0,1,�, L − 1}, based on min{y, n} = 1

2��(y + n) − �(−y − n) − �(y − n) − �(−y + n)�.

Next, we introduce Lemma 4.6 to map indices to the partial sum of given bits.

Lemma 4.6. Given any N,L ∈ N+ and arbitrary ✓m,k ∈ {0,1} for m = 0,1,�,M − 1 and
k = 0,1,�, Ln − 1, where M = N2L and n = �log3(N + 2)�, there exists

� ∈ NN �#input = 2; width ≤ 6N + 14; depth ≤ 5L + 4; #output = 1�

such that

�(m,k) =
k

�
j=0
✓m,j, for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1.

Proof. Define

ym ∶= bin0.✓m,0✓m,1�✓m,Ln−1, for m = 0,1,�,M − 1.

Consider the sample set {(m,ym) ∶m = 0,1,�,M}, whose cardinality is

M + 1 = N�(NL − 1) + 1� + 1.

By Lemma 4.1 (set N1 = N and N2 = NL − 1 therein), there exists

�1 ∈ NN (#input = 1; widthvec = [2N,2(NL − 1) + 1]; #output = 1)
= NN (#input = 1; widthvec = [2N,2NL − 1]; #output = 1)

such that
�1(m) = ym, for m = 0,1,�,M − 1.

By Lemma 4.5, there exists

�2 ∈ NN �#input = 2; width ≤ (n + 3)2n+1 + 4; depth ≤ 4L + 2; #output = 1�

such that, for any ⇠1, ⇠2,�, ⇠Ln ∈ {0,1}, we have

�2(bin0.⇠1⇠2�⇠Ln, k) =
k

�
j=1
⇠j, for k = 1,2,�, Ln.

It follows that, for any ⇠0, ⇠1,�, ⇠Ln−1 ∈ {0,1}, we have

�2(bin0.⇠0⇠1�⇠Ln−1, k + 1) =
k

�
j=0
⇠j, for k = 0,1,�, Ln − 1.
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�
=

Pk
j=0 ✓m,j =: �(m, k)

�1

�2

Figure 13: An illustration of the network implementing the desired function � for m =
0,1,�,M − 1 and k = 0,1,�, Ln − 1.

Thus, for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1, we have

�2(�1(m), k + 1) = �2(ym, k + 1) = �2(0.✓m,0✓m,1�✓m,Ln−1, k + 1) =
k

�
j=0
✓m,j.

Hence, the desired function � can be implemented by the network shown in Fig-
ure 13. By Lemma 4.2, �1 ∈ NN (widthvec = [2N,2NL − 1]) ⊆ NN (width ≤ 4N +
2; depth ≤ L + 1). It holds that

(n + 3)2n+1 + 4 ≤ 6 ⋅ (3n) + 2 = 6 ⋅ (3�log3(N+2)�) + 2 ≤ 6(N + 2) + 2 = 6N + 14,
implying

�2 ∈ NN �#input = 2; width ≤ (n + 3)2n+1 + 4; depth ≤ 4L + 2; #output = 1�
⊆ NN �#input = 2; width ≤ 6N + 14; depth ≤ 4L + 2; #output = 1�.

Therefore, the network in Figure 13 is with width max{(4N + 2)+ 1,6N + 14} = 6N + 14
and depth (4L + 2) + 1 + (L + 1) = 5L + 4. So we finish the proof.

Next, we apply Lemma 4.6 to prove Lemma 4.7 below, which is a key intermediate
conclusion to prove Proposition 3.2.

Lemma 4.7. For any " > 0 and N,L ∈ N+, denote M = N2L and n = �log3(N + 2)�.
Assume ym,k ≥ 0 for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1 are samples with

�ym,k − ym,k−1� ≤ ", for m = 0,1,�,M − 1 and k = 1,2,�, Ln − 1.

Then there exists � ∈ NN (#input = 2; width ≤ 16N + 30; depth ≤ 5L + 7; #output = 1)
such that

(i) ��(m,k) − ym,k� ≤ " for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1;

(ii) 0 ≤ �(x1, x2) ≤ max{ym,k ∶ m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1} for any
x1, x2 ∈ R.

Proof. Define

am,k ∶= �ym,k�"�, for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1.

We will construct a function implemented by a ReLU network to map the index (m,k)
to am,k" for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1.
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Define bm,0 ∶= 0 and bm,k ∶= am,k − am,k−1 for m = 0,1,�,M − 1 and k = 1,2,�, Ln− 1.
Since �ym,k − ym,k−1� ≤ " for all m and k, we have bm,k ∈ {−1,0,1}. Hence, there exist
cm,k ∈ {0,1} and dm,k ∈ {0,1} such that bm,k = cm,k − dm,k, which implies

am,k = am,0 +
k

�
i=1
(am,i − am,i−1) = am,0 +

k

�
i=1

bm,i = am,0 +
k

�
i=0

bm,i

= am,0 +
k

�
i=0

cm,i −
k

�
i=0

dm,i,

for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1.
Consider the sample set

�(m,am,0) ∶m = 0,1,�,M − 1��{(M,0)}.

Its size is M + 1 = N ⋅ �(NL − 1) + 1� + 1, by Lemma 4.1 (set N1 = N and N2 = NL − 1
therein), there exists

 1 ∈ NN (widthvec = [2N,2(NL − 1) + 1]) = NN (widthvec = [2N,2NL − 1])

such that
 1(m) = am,0, for m = 0,1,�,M − 1.

By Lemma 4.6, there exist  2, 3 ∈ NN (width ≤ 6N + 14; depth ≤ 5L + 4) such that

 2(m,k) =
k

�
i=0

cm,i and  3(m,k) =
k

�
i=0

dm,i,

for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1. Hence, it holds that

am,k = am,0 +
k

�
i=0

cm,i −
k

�
i=0

dm,i =  1(m) + 2(m,k) − 3(m,k), (4.11)

for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1.
Define

ymax ∶=max{ym,k ∶m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1}.

Then the desired function can be implemented by two sub-networks shown in Figure 14.
By Lemma 4.2,

 1 ∈ NN (#input = 1; widthvec = [2N,2NL − 1]; #output = 1)
⊆ NN (#input = 1; width ≤ 4N + 2; depth ≤ L + 1; #output = 1).

Recall that  2, 3 ∈ NN (width ≤ 6N + 14; depth ≤ 5L + 4). Thus, �1 ∈ NN (width ≤
(4N + 2) + 2(6N + 14) = 16N + 30; depth ≤ (5L + 4) + 1 = 5L + 5) as shown in Figure 14.
And it is clear that �2 ∈ NN (width ≤ 4; depth ≤ 2), implying � = �2 ○ �1 ∈ NN (width ≤
16N + 30; depth ≤ (5L + 5) + 2 = 5L + 7).

Clearly, 0 ≤ �(x1, x2) ≤ ymax for any x1, x2 ∈ R, since �(x1, x2) = �2 ○ �1(x1, x2) =
max{�(�1(x1, x2)), ymax}.
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�
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� �(x) � ymax

�

�
�
�(x) � ymax

�

�
�

� �(x) + ymax

�

min
�
�(x), ymax

 
=: �2(x)

(b) �2

Figure 14: Illustrations of two sub-networks implementing the desired function � = �2○�1

for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1, based on Equation (4.11) and the fact
min{x1, x2} = x1+x2−�x1−x2�

2 = �(x1+x2)−�(−x1−x2)−�(x1−x2)−�(−x1+x2)
2 .

Note that 0 ≤ am,k" = �ym,k�"�" ≤ ymax. Then we have �(m,k) = �2 ○ �1(m,k) =
�2(am,k") =max{�(am,k"), ymax} = am,k". Therefore,

��(m,k) − ym,k� = �am,k" − ym,k� = ��ym,k�"�" − ym,k� ≤ ",

for m = 0,1,�,M − 1 and k = 0,1,�, Ln − 1. Hence, we finish the proof.

Finally, we apply Lemma 4.7 to prove Proposition 3.2.

Proof of Proposition 3.2. Denote M = N2L, n = �log3(N + 2)�, and L̂ = Ln. We may
assume J =MLn =ML̂ since we can set yJ−1 = yJ = yJ+1 = � = y

ML̂−1 if J <ML̂.
Consider the sample set

�(mL̂,m) ∶m = 0,1,�,M���(mL̂ + L̂ − 1,m) ∶m = 0,1,�,M − 1�.

Its size is 2M + 1 = N ⋅ �(2NL− 1)+ 1�+ 1. By Lemma 4.1 (set N1 = N and N2 = NL− 1
therein), there exists

�1 ∈ NN (widthvec = [2N,2(2NL − 1) + 1]) = NN (widthvec = [2N,4NL − 1])

such that

• �1(ML̂) =M and �1(mL̂) = �1(mL̂ + L̂ − 1) =m for m = 0,1,�,M − 1.

• �1 is linear on each interval [mL̂,mL̂ + L̂ − 1] for m = 0,1,�,M − 1.

It follows that

�1(j) =m, and j − L̂�1(j) = k, where j =mL̂ + k, (4.12)

for m = 0,1,�,M − 1 and k = 0,1,�, L̂ − 1.
Since J = ML̂, any j ∈ {0,1,�, J − 1} can be uniquely indexed as j = mL̂ + k for

m ∈ {0,1,�,M − 1} and k ∈ {0,1,�, L̂ − 1}. So we can denote yj = y
mL̂+k as ym,k. Then

by Lemma 4.7, there exists �2 ∈ NN (width ≤ 16N + 30; depth ≤ 5L + 7) such that

��2(m,k) − ym,k� ≤ ", for m = 0,1,�,M − 1 and k = 0,1,�, L̂ − 1, (4.13)

and
0 ≤ �2(x1, x2) ≤ ymax, for any x1, x2 ∈ R, (4.14)
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Figure 15: An illustration of the ReLU network implementing the desired function �

based Equation (4.12). The index j ∈ {0,1,�,ML̂−1} is unique represented by j =mL+k
for m ∈ {0,1,�,M − 1} and k ∈ {0,1,�, L̂ − 1}.

where ymax ∶=max{ym,k ∶m = 0,1,�,M−1 and k = 0,1,�, L̂−1} =max{yj ∶ j = 0,1,�, J−
1}.

By Lemma 4.2,

�1 ∈ NN (#input = 1; widthvec = [2N,4NL − 1]; #output = 1)
⊆ NN (#input = 1; width ≤ 8N + 2; depth ≤ L + 1; #output = 1).

Recall that �2 ∈ NN (width ≤ 16N + 30; depth ≤ 5L + 7). So � ∈ NN (width ≤ 16N +
30; depth ≤ (L + 1) + 2 + (5L + 7) = 6L + 10) as shown in Figure 15.

Equation (4.14) implies

0 ≤ �(x) ≤ ymax, for any x ∈ R,

since � is given by �(x) = �2��1(x), x − L̂�1(x)�.
Represent j ∈ {0,1,�,ML̂ − 1} via j = mL̂ + k for m = 0,1,�,M − 1 and k =

0,1,�, L̂ − 1. Then, by Equation (4.13), we have

��(j) − yj � = ��2��1(j), j − L̂�1(j)� − yj � = ��2(m,k) − ym,k� ≤ ",

for any j ∈ {0,1,�,ML̂ − 1} = {0,1,�, J − 1}. So we finish the proof.

We would like to remark that the key idea in the proof of Proposition 3.2 is the bit
extraction technique in Lemma 4.5, which allows us to store Ln bits in a binary number
bin0.✓1✓2�✓Ln and extract each bit ✓i. The extraction operator can be e�ciently carried
out via a deep ReLU neural network demonstrating the power of depth.

5 Conclusion and future work

This paper aims at a quantitative and optimal approximation rate for ReLU net-
works in terms of the width and depth to approximate continuous functions. It is
shown by construction that ReLU networks with width O(N) and depth O(L) can
approximate an arbitrary continuous function f on [0,1]d with an approximation rate
O�!f�(N2L2 lnN)−1�d� �. By connecting the approximation property to VC-dimension,
we prove that such a rate is optimal for Hölder continuous functions on [0,1]d in terms
of the width and depth separately, and hence this rate is also optimal for the whole
continuous function class. We also extend our analysis to general continuous functions
on any bounded subset of Rd. We would like to remark that our analysis was based on
the fully connected feed-forward neural networks and the ReLU activation function. It
would be very interesting to extend our conclusions to neural networks with other types
of architectures (e.g., convolutional neural networks) and activation functions (e.g., tanh
and sigmoid functions).
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