
ar
X

iv
:2

10
5.

09
20

0v
1

 [p
hy

si
cs

.c
om

p-
ph

]
19

 M
ay

 2
02

1

Linear-Scaling Selected Inversion based on Hierarchical

Interpolative Factorization for Self Green’s Function for Modified

Poisson-Boltzmann Equation in Two Dimensions

Yihui Tu1, Qiyuan Pang2, Haizhao Yang2∗, Zhenli Xu3

1 School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
2 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
3 School of Mathematical Sciences, Institute of Natural Sciences and MoE-LSC,

Shanghai Jiao Tong University, Shanghai 200240, China

May 20, 2021

Abstract

This paper studies an efficient numerical method for solving modified Poisson-Boltzmann
(MPB) equations with the self Green’s function as a state equation to describe electrostatic cor-
relations in ionic systems. Previously, the most expensive point of the MPB solver is the evalu-
ation of Green’s function. The evaluation of Green’s function requires solving high-dimensional
partial differential equations, which is the computational bottleneck for solving MPB equations.
Numerically, the MPB solver only requires the evaluation of Green’s function as the diagonal
part of the inverse of the discrete elliptic differential operator of the Debye-Hückel equation.
Therefore, we develop a fast algorithm by a coupling of the selected inversion and hierarchical
interpolative factorization. By the interpolative factorization, our new selected inverse algorithm
achieves linear scaling to compute the diagonal of the inverse of this discrete operator. The ac-
curacy and efficiency of the proposed algorithm will be demonstrated by extensive numerical
results for solving MPB equations.

Keywords: Selected Inverse; Hierarchical Interpolative Factorization; Linear Scaling; Elliptic
Operator; Self Green’s Function; Modified Poisson-Boltzmann Equation.

1 Introduction

Electrostatic interaction plays an important role in many fields of physical and biological sciences
[1, 2, 3], as well as materials science such as nanoparticle assembly [4]. The Poisson-Boltzmann
(PB) [5, 6] and Poisson-Nernst-Planck (PNP) equations [7, 8] are often used to describe the
electrostatic phenomena of equilibrium and dynamical systems, respectively. The PB equation
is mean-field theory and fails to capture many-body properties such as dielectric variation and
ion correlation, which are essential components of electrostatic behaviors of many systems. Many
improved theories have been introduced in the literature to take into account these many-body
effects [9, 10, 11] and various numerical methods [12, 13, 14] have been proposed to solve the
systems efficiently. Among them, the Gaussian variational field theory [15, 16] is promising
to describe the long-range Coulomb correlation including dielectric variation [17, 18, 19]. The
theory introduces the self-energy of a test ion as a correction to the mean-field potential energy,

∗Corresponding author.

1

http://arxiv.org/abs/2105.09200v1

which is described by the self Green’s function. Based on the self-energy, the effect due to
dielectric inhomogeneity is considered in [20, 21, 22]. The Green’s function used in the field
theory satisfies the generalized Debye-Hückel (DH) equation for which the numerical solution
is expensive due to its high spatial dimensions (including both source and field coordinates).
By finite-difference discretization, the self Green’s function corresponds to the diagonal of the
inverse of the discrete elliptic differential operator of the DH equation.

In this paper, we propose a novel method for solving modified Poisson-Boltzmann (MPB)
equations, particularly, a fast algorithm for obtaining the diagonal of the inverse matrix from
the discretization of the DH equation. To show the basic idea, here we consider the following
elliptic partial differential equation,

−∇ · (a(r)∇u(r)) + b(r)u(r) = f(r), r ∈ Ω ⊂ R
d (1.1)

with an appropriate boundary condition, where a(r) > 0, b(r), and f(r) are functions on Ω,
and d = 2. Then Eq. (1.1) leads to a linear system after finite-difference discretization,

AuN = fN ,

where A ∈ RN×N is sparse, uN and fN are the discrete forms of u(r) and f(r), respectively.
Our goal here is to compute the diagonal of A−1 in O(N) operations to obtain the self energy
in the DH equation, which accelerates the numerical solver for MPB equations.

Selecting the diagonal of a matrix inverse has been previously studied especially in electronic
structure calculation based on sparsity and low-rankness, e.g., [23, 24, 25] with O(N3/2) compu-
tational complexity for 2D problems, and [26] with O(Npoly(logN)) complexity. The selected
inversion method in [23] applies a hierarchical decomposition of the computational domain Ω
and proposes a two-step procedure to form the diagonal of A−1 with O(N3/2) complexity for 2D
problems. First, hierarchical Schur complements of the interior points for the blocks of the do-
main are constructed in a bottom-up pass. Second, the diagonal entries are extracted efficiently
in a top-down pass by exploiting the hierarchical local dependence of the inverse matrices. The
method in [24, 25] uses a supernode left-looking LDL factorization of A to improve the efficiency
of the selected inversion method in [23] by significantly reducing the prefactor in their complex-
ity. Structured multifrontal LDL factorizations are applied in [26] to obtain O(Npoly(logN))
complexity.

Recently, Hierarchical interpolative factorization (HIF) proposed in [27] can compute a gen-
eralized LDL decomposition of A within O(N) complexity in 2D problems. HIF is a fast ap-
proximation of Multifrontal Factorization (MF) by introducing additional levels of compression
based on skeletonizing separator fronts. Unlike [28, 29, 30, 31, 32] that keep the entire fronts
but work with them implicitly using fast structured methods, HIF allows us to reduce the fronts
explicitly. Inspired by HIF, we can replace the supernode left-looking LDL factorization with
HIF in [24, 25] and revise the extraction procedure to approximate the diagonal of A−1 within
O(N) operations for 2D problems. We will present the main idea of skeletonizing separator
fronts in HIF and its application to the selected inversion method with a visible example and a
complexity estimation. For the detailed introduction to the selected inverse and HIF, the reader
is referred to [24, 25] and [27], respectively. Our algorithm is called SelInvHIF in this paper.

Organization. The rest of the paper is organized as follows. Section 2 discusses iterative
solvers for MPB equations. In Section 3, we introduce some preliminary tools of skeletonization
of matrix factorization, then the details of SelInvHIF algorithm are presented. Various numerical
results of SelInvHIF are provided in Section 4 for solving the MPB equations. The conclusion
and discussion for future work are presented in Section 5.

2

2 Numerical Method for Modified Poisson-Boltzmann Equa-
tion

In this section, we will present mathematical model and numerical scheme for the Poisson-
Boltzmann equation to motivate our study of SelInvHIF. We consider an electrolyte. In di-
mensionless units, the dynamics of the mobile ions can be described by the Nernst-Planck
equations[12],

∂ci
∂t

= ∇ ·D [∇ci + ci∇ (ziΦ+ Ξu)] , (2.1)

where ci is the ionic concentration of the ith species, zi = ±1 is the valence, D is the diffusion
constant. Here, Ξ is the coupling parameter that describes the strength of the correlation
energy. The Nernst-Planck equations are convection-diffusion equations, where the convection
is due to the electrostatic force on each ion, namely the gradient of the electrostatic energy. In
the modified PNP equations, the electrostatic energy is composed of the mean potential energy
ziΦ and the self energy Ξu. The electric potential satisfies the Poisson equation,

−∇ · ε∇Φ = ρf +
∑

i

zici,

where ε is the dielectric coefficient and ρf is the fixed charge distribution. We suppose ε = 1
in the electrolyte. The self energy is represented by the self Green’s function, described by the
following DH equation,







−∇ · ε∇G+
∑

i

z2i ciG = δ (r − r
′) ,

u = lim
r
′→r

[G (r, r′)−G0 (r, r
′)] ,

where G0 = 1/(ε|r − r′|) is the free-space Green’s function. It can be seen that the DH
equation is coupled with the PNP equations as the ionic strength I =

∑

i z
2
i ci is determined by

the Nernst-Planck equations. When the correlation effect can be ignored (Ξ → 0), the whole
systems become the classical PNP equations.

At equilibrium, the ionic flux in Eq. (2.1) becomes zero and there is an explicit relation
between the ionic concentration and the electrostatic energy,

c± =
1

2
Λe∓Φ−Ξu,

where Λ is the fugacity determined by the far-field boundary conditions. The MPB equation
can be obtained when the Boltzmann distributions are used in the Poisson equation, written as,

−∇ · ε∇Φ = ρf − ΛeΞu sinhΦ.

Together with the DH equation, we have the following system of equations[15, 17],











−∇ · ε∇Φ = ρf −ΛeΞu sinhΦ,
−∇ · ε∇G+ΛeΞuG = δ (r − r

′) ,
u = lim

r
′→r

[G (r, r′)−G0 (r, r
′)] ,

(2.2)

where the bold Λ indicates that it is Λ in the electrolyte domain and zero outside.
Without loss of generality, we discuss the numerical method for solving Eq. (2.2) in this

work. In particular, we focus on the numerical method for the self Green’s function. The
extension to the modified PNP is straightforward. A self-consistent iterative scheme for the
solution of the partial differential equations in Eq. (2.2) was developed in [33]. The iterative
scheme is expressed by,

3















−∇ · ε∇Φ(k+1) +ΛeΞu(k)

sinhΦ(k+1) = ρf ,

−∇ · ε∇G(k+1) +ΛeΞu(k)

G(k+1) = δ (r − r
′) ,

u(k+1) = lim
r
′→r

[

G(k+1) (r, r′)−G0 (r, r
′)
]

,

(2.3)

for k = 0, 1, · · · ,M . The stopping criteria is max
∣

∣Φ(M) − Φ(M−1)
∣

∣ < δ with a small error criteria
δ.

The iterative scheme consists of two alternating steps. We solve the first equation in Eq.
(2.3)) for Φ with the given u. Then for a given u and acquired Φ, we solve the second equation
in Eq. (2.3)) to obtain the G and then a new u is computed via the third equation in Eq. (2.3).
These two steps are called PB and DH steps respectively. We repeat these two steps until we
reach the convergence criteria of the solution. Furthermore, the PB step can be efficiently solved
using standard fast direct solvers. The problem at the core of obtaining Green’s functions comes
from the generalized DH equation. In two dimensions, we can approximate the DH equation by,

AG = E,

where G is a matrix representing the lattice Green’s function, E is an identity matrix, andA is a
coefficient matrix. Furthermore, we can arrive at the matrix inverseG = A−1 directly to achieve
the solution of the Green’s function with expensive calculation. To reduce the computation cost,
let us express U by

U = diag (G)− diag (G0)

where G0 is the lattice Green’s function in the free space and diag(·) is a vector representing
the diagonals of the argument matrix. Thus, calculating the whole inverse of the matrix directly
is expensive and unnecessary. Our SelInvHIF is used to just obtain the diagonal entries of the
operator matrix inverse to solve our target problem efficiently.

3 The SelInvHIF Algorithm

The SelInvHIF consists of two phases. In the first phase, we construct hierarchical Schur com-
plements for the diagonal blocks of a matrix A discretized from the differential operator in (1.1)
on a physical domain Ω. In the second phase, the diagonal of the inverse of A are extracted from
the construction of the hierarchy of Schur complements. The total complexity of the proposed
algorithm is analyzed at the end of this section. Before the formal introduction to our SelIn-
vHIF algorithm, we first introduce some preliminary background of skeletonization of matrix
factorization.

3.1 Preliminaries

Suppose A is a matrix, p, q, I and J are index sets. Apq (or A(I, J)) denotes a submatrix of A
corresponding to rows in p (or I) and columns in q (or J). The notation “:” is used to denote
the whole row or column index set, e.g., A:,q consists of columns of A corresponding to indices
in q. In the discussion below, we will follow the same notation to denote submatrices.

Suppose the differential operator in Eq. (1.1) is defined on a domain Ω. A typical discretiza-
tion of a differential operator results in a sparse matrix with special structures. Let A be a
symmetric and nonsingular matrix

A =





App AT
qp

Aqp Aqq AT
rq

Arq Arr



 (3.1)

obtained from the discretization of the differential operator in Eq. (1.1), where p, q, and r
are index sets of A with a special order. In this matrix structure, we order rows and columns

4

carefully such that p is related to the degrees of freedom (DOFs) of the interior points of a small
given domain D ⊂ Ω, q corresponds to the DOFs on the boundary ∂D, and r is for the DOFs
of the external domain Ω/D. In general, the DOFs q separates p from r, which is often very
large.

3.1.1 Block Inversion

The first preliminary tool we are going to use in SelInvHIF comes from the key observation in
the selected inversion method [23]: a diagonal block of the inverse of A can be computed via
a diagonal block of the inverse of a submatrix of A, the repeated application of which could
lead to an efficient recursive algorithm to compute the diagonal of A. The key observation is
based on Lemma 3.1 below. The proof of this lemma is based on block Gaussian elimination as
discussed in [23].

Lemma 3.1. Suppose A is given by (3.1) with a nonsingular App and G = A−1. Let A1 be the
Schur complement of App, i.e.,

A1 =

[

Aqq −AqpA−1
pp A

T
qp AT

rq

Arq Arr

]

,

and let G1 = A−1
1 . Then it holds,

Gpp = A−1
pp +

[

−A−1
pp A

T
qp 0

]

G1

[

−A−1
pp A

T
qp 0

]T
,

where Gpp is the submatrix of G corresponding to the row and column index set p.

According to Lemma 3.1, the calculation of Gpp only requires the values of G1 associated
with row and column indices in q, rather than the whole inverse of the Schur complement, i.e.,
this observation implies that Gpp is determined by (G1)qq = (A−1

1)qq , a diagonal block of the
inverse of the matrix A1 of a smaller size than the original larger matrix A.

3.1.2 Interpolative Decomposition

The second tool repeatedly applied in SelInvHIF is the interpolative decomposition (ID) [34] for
low-rank matrices based on Lemma 3.2 below.

Lemma 3.2. Let A ∈ Rm×n with rank k ≤ min(m,n) and q be the set of all column indices of
A. Then there exist a disjoint partition of q = q̂ ∪ q̌ with |q̂|= k and a matrix Tq ∈ Rk×(n−k)

such that A:,q̌ = A:,q̂Tq.

The sets q̂ and q̌ are called the skeleton and redundant indices, respectively. In particular,
the redundant columns of A can be expressed by its skeleton columns and the associated inter-
polation matrix from Lemma 3.2. The following corollary shows that matrix A can be sparsified
by multiplying a triangular matrix constructed from the interpolation matrix Tq in Lemma 3.2.

Corollary 3.3. With the same assumptions and notations in Lemma 3.2, it holds that

A

[

I
−Tq I

]

=
[

A:,q̌ A:,q̂

]

[

I
−Tq I

]

=
[

0 A:,q̂

]

.

3.1.3 Block Inversion with Skeletonization

The application of Corollary 3.3 can eliminate redundant DOFs of a dense matrix with low-rank
off-diagonal blocks to form a structured matrix of the form (3.1) such that we can apply Lemma
3.1. This idea is called block inversion with skeletonization summarized in Lemma 3.4 below.
The skeletonization idea was originally proposed in the HIF [27].

5

Lemma 3.4. Let

A =

[

App AT
qp

Aqp Aqq

]

be symmetric with Aqp low-rank. Let p = p̂ ∪ p̌ and Tp satisfy Aqp̌ = Aqp̂Tp. Without loss of
generality, rewrite

A =





Ap̌p̌ AT
p̂p̌ AT

qp̌

Ap̂p̌ Ap̂p̂ AT
qp̂

Aqp̌ Aqp̂ Aqq





and define

Qp =





I
−Tp I

I



 .

Then

Ā ! QT
pAQp =





Bp̌p̌ BT
p̂p̌

Bp̂p̌ Ap̂p̂ AT
qp̂

Aqp̂ Aqq



 , (3.2)

where
Bp̌p̌ = Ap̌p̌ − T T

p Ap̂p̌ −AT
p̂p̌Tp + T T

p Ap̂p̂Tp, and Bp̂p̌ = Ap̂p̌ −Ap̂p̂Tp.

Assume that Bp̌p̌ is nonsingular. Let G = A−1, Ḡ = Ā−1, G1 = Gp̂∪q,p̂∪q, Ā1 be the Schur
complement of Bp̌p̌, i.e.,

Ā1 =

[

Ap̂p̂ −Bp̂p̌B
−1
p̌p̌ B

T
p̂p̌ AT

qp̂

Aqp̂ Aqq

]

,

and Ḡ1 = Ā−1
1 . Then the following formulas hold by Lemma 3.1 and (3.2),

Gp̌p̌ = Ḡp̌p̌ = B−1
p̌p̌ +

[

−B−1
p̌p̌ B

T
p̂p̌ 0

]

Ḡ1

[

−B−1
p̌p̌ B

T
p̂p̌ 0

]T
,

G1 =

[

TpB
−1
p̌p̌ T

T
p

0

]

+

[

TpB
−1
p̌p̌ B

T
p̂p̌ + I

I

]

Ḡ1

[

Bp̂p̌B
−1
p̌p̌ T

T
p + I

I

]

.

According to Lemma 3.4, the calculation of Gp̌p̌ only requires the values of Ḡ1 associated
with row and column indices in p̂, rather than the whole inverse of the Schur complement, i.e.,
this observation implies that Gp̌p̌ is determined by (Ḡ1)p̂p̂, a diagonal block of the inverse of the
matrix Ā1 of a smaller size than the original larger matrix A. Though Ā1 might be dense, as
long as it has low-rank off-diagonal blocks, the same idea as in (3.2) can be applied to Ā1 to
compute a diagonal block of the inverse of Ā1, which forms a recursive algorithm to compute
the diagonal blocks of A efficiently.

This skeletonization is the key contribution of Ho and Ying [27] and the reason why it
is applicable is stated as follows. The key conclusion is that the above Schur complements
have specific low-rank structures. The matrix A−1

pp from a local differential operator often
has numerically low-rank off-diagonal blocks. Especially, the Schur complement interaction
Aqq −AqpA−1

pp A
T
qp also has the same rank structure, which is verified by numerical experiments.

In the next subsection, we apply Lemma 3.1 and Lemma 3.4 to construct the hierarchical Schur
complements for the diagonal blocks of a matrix A.

3.2 Hierarchy of Schur Complements

We discuss the differential operator domain with a grid size
√
N ×

√
N = r02L−1 × r02L−1 and

an initial index set J0 (e.g., row-major ordering). The corresponding matrix A is of size N ×N .
A hierarchical disjoint partition of the domain Ω (bipartition in each dimension) is performed
with r0 × r0 as the size of leaf domains and L as the total number of integer levels. Between L
integer levels, L− 1 fractional levels are designed to take advantage of the low-rankness of A as

6

much as possible. The hierarchy construction of Schur complements will be conducted at levels
1, 3

2 , 2,
5
2 , . . . , and L.

For simplicity, consider the case of r0 = 5 and L = 3. The whole domain is considered as the
top level (Level 3) and is divided into four blocks at the next level (Level 2). Each block is again
partitioned into four sub-blocks at a lower level (Level 1). Between two adjacent integral levels,
one fractional level will be added to skeletonize low-rank matrices corresponding to the fronts
between domain blocks. Hence, the whole domain is divided into 2L−1 × 2L−1 = 16 blocks at
the bottom level (Level 1) as shown in Figure 1.

I1;11

J1;11

I1;14

J1;14

Figure 1: The DOFs in the first level. The domain is partitioned into 16 blocks in the Level 1 and
the dash lines show two of blocks in the decomposition. In this and following integral levels, the
interior points are marked in gray and the boundary points are marked in black. It’s noted that
the blocks share edge in practice to reduce the prefactor.

3.2.1 Level % = 1

The domain Ω is partitioned into 2L−!× 2L−! = 4× 4 disjoint blocks at Level % = 1. All points
are separated into interior points and boundary points in each block. The interior points indicate
that they are not related to the points of other blocks, and the boundary points indicate that
they are related to the points of other blocks, i.e., having neighboring points in other blocks.
The index set of the interior points are denoted as I1;ij for each block (gray points in Figure
1), and the index set of the boundary points are denoted as J1;ij of each block (black points
in Figure 1), where i, j = 1, 2, 3, 4 are the indices of blocks in each dimension. The locality of
differential operators leads to A(I1;ij , I1;i′j′) = 0 (or A(I1;ij , J1;i′j′) = 0) if (i, j) *= (i′, j′).

7

Firstly, Gauss elimination is used to eliminate the interior points, thereby shifting the focus
of the problem to the boundary points. To do this, we need to apply necessary row and column
permutations to the matrix A defined with the index set J0 such that all the interior points are
in front of the boundary points, that is, the indices J0 is changed to

J0
P1−→ (I1;11I1;12...I1;44|J1;11J1;12...J1;44)

by a permutation matrix P1. Then all interior points and boundary points are separated by
notation |. In fact, the permutation matrix P1 can permute the matrix A into a new matrix

A1 = P−1
1 AP1

with index set (I1|J1), where I1 = I1;11I1;12...I1;44 gathering all the interior points, and J1 =
J1;11J1;12...J1;44 for all the boundary points. Represent A1 via

A1 = P−1
1 AP1 =

[

U1 V T
1

V1 W1

]

, (3.3)

where U1 is a block diagonal matrix as follows because the interior points of different blocks in
Figure 1 are not related to the points of other blocks:

U1 = A1(I1, I1) =











U1;11

U1;12

. . .
U1;44











with U1;ij = A1(I1;ij , I1;ij). Moreover, V1 is also a block diagonal matrix as follows because the
interior points of each block just is related to the boundary points of the same block:

V1 = A1(J1, I1) =











V1;11

V1;12

. . .
V1;44











with V1;ij = A1(J1;ij , I1;ij). As for W1, we just write it with index set,

W1 = A1(J1, J1).

The inverse of U1 can be computed directly as follows since it is a block diagonal matrix with
diagonal blocks of a small size (r0 − 2)2 × (r0 − 2)2,

U−1
1 =











U−1
1;11

U−1
1;12

. . .

U−1
1;44











.

Therefore, we can obtain the following inverse by Gaussian elimination,

A−1
1 =

[

U1 V T
1

V1 W1

]−1

= LT
1

[

U−1
1

(W1 − V1U
−1
1 V T

1)−1

]

L1 (3.4)

with L1 =

[

I
−V1U

−1
1 I

]

. Furthermore, V1U
−1
1 can be computed independently within each

block with block diagonal matrices V1 and U−1
1 ,

V1U
−1
1 =











V1;11U
−1
1;11

V1;12U
−1
1;12

. . .

V1;44U
−1
1;44











.

8

Moreover, the block diagonal matrix V1U
−1
1 V T

1 also can be represented as

V1U
−1
1 V T

1 =











V1;11U
−1
1;11V

T
1;11

V1;12U
−1
1;12V

T
1;12

. . .

V1;44U
−1
1;44V

T
1;44











.

Combining (3.3) and (3.4), we have

G = A−1 = P1A
−1
1 P−1

1 = P1L
T
1

[

U−1
1

G1

]

L1P
−1
1 , (3.5)

where G1 = (W1 − V1U
−1
1 V T

1)−1 is the inverse of the Schur complement of U1. Therefore, we
reduce the problem to a smaller matrix W1 − V1U

−1
1 V T

1 by eliminating interior points, which is
essentially the block inversion idea in Lemma 3.1.

I3/2;1
J3/2;1

I3/2;24

J3/2;24

(a)

I2;11

J2;11

(b)

I5/2;1

J5/2;1

(c)

I3

J3

(d)

Figure 2: (a): The DOFs in the Level 3/2. The domain is partitioned into 24 Voronoi cells about
the edge centers. In this and following fractional level, the redundant DOFs are marked in gray and
the skeleton DOFs are marked in black. (b): The DOFs in the Level 2. The domain is partitioned
into 4 blocks in Level 2 and the dash lines show one of blocks in the decomposition. (c): The DOFs
in the Level 5/2. The domain is partitioned into 4 Voronoi cells about the edge centers. (d): The
DOFs in the Level 3. This is the top level.

9

3.2.2 Level % = 3/2

At this level, our goal is to find G1 in (3.5), which is defined on the index set J1 corresponding
to boundary points of domain blocks in the first level (i.e., the black points in Figure 1). We will
apply Lemma 3.4 to skeletonize the fronts. Partition the domain Ω into 2L−!+ 3

2 (2L−!+ 1
2 − 1)

Voronoi cells [35] about the edge centers (red points in Figure 2 (a)). In this example, there
are 24 Voronoi cells in total since L = 3. In Figure 2 (a), a Voronoi cell is an area centered
at a redpoint with dashed lined compassed. Each DOF on the boundary between two adjacent
Voronoi cells is randomly assigned to one and only one of these two cells. Thus a Voronoi cell
includes the DOFs inside the corresponding area and some of the DOFs on its boundary. Since
the DOFs of a Voronoi cell only interact with the DOFs of a few other cells nearby, that is, the
matrix allows low-rank off-diagonal blocks. We can apply an ID to select the redundant and
skeleton DOFs approximately in each cell and record the interpolation matrix Tq as in Lemma
3.2. In the ith cell (see Figure 2 (a)), the redundant DOFs (gray points) are denoted by I 3

2 ;i
, the

skeleton DOFs (black points) are denoted by J 3
2 ;i

, and the corresponding interpolation matrix
is denoted by T 3

2 ;i
. As in the former level, we reindex J1 by a permutation matrix P 3

2
such that

J1
P 3

2−→ (I 3
2 ;1

I 3
2 ;2

...I 3
2 ;24

|J 3
2 ;1

J 3
2 ;2

...J 3
2 ;24

) = (I 3
2
|J 3

2
).

Denote

A 3
2
= P−1

3
2

(W1 − V1U
−1
1 V T

1)P 3
2
=

[

U 3
2

V T
3
2

V 3
2

W 3
2

]

with
U 3

2
= A 3

2
(I 3

2
, I 3

2
), V 3

2
= A 3

2
(J 3

2
, I 3

2
), and W 3

2
= A 3

2
(J 3

2
, J 3

2
).

Arrange T1;1, . . . , T1;24 in a block diagonal matrix

T 3
2
=







−T 3
2 ;1

. . .
−T 3

2 ;24






,

and construct a |J1|×|J1| matrix

Q 3
2
=

[

I
T 3

2
I

]

.

Then we have

Ā 3
2
= QT

3
2
A 3

2
Q 3

2
=

[

Ū 3
2

V̄ T
3
2

V̄ 3
2

W 3
2

]

,

where Ū 3
2
and V̄ 3

2
are block diagonal matrices with

Ū 3
2
(I 3

2 ;i
, I 3

2 ;j
) = 0, V̄ 3

2
(J 3

2 ;i
, I 3

2 ;j
) = 0, ∀i *= j.

Then

Ā−1
3
2

=

[

Ū 3
2

V̄ T
3
2

V̄ 3
2

W 3
2

]−1

= LT
3
2

[

Ū−1
3
2

G 3
2

]

L 3
2

with

L 3
2
=

[

I
−V̄ 3

2
Ū−1

3
2

I

]

, G 3
2
= (W 3

2
− V̄ 3

2
Ū−1

3
2

V̄ T
3
2
)−1

as in Lemma 3.4. Note that −V̄ 3
2
Ū−1

3
2

and V̄ 3
2
Ū−1

3
2

V̄ T
3
2

are block diagonal. Therefore,

G1 ≈ P 3
2
Q 3

2
LT

3
2

[

Ū−1
3
2

G 3
2

]

L 3
2
QT

3
2
P−1

3
2

.

Therefore, we reduce the inversion problem to a smaller matrix W 3
2
− V̄ 3

2
Ū−1

3
2

V̄ T
3
2

by elimi-

nating the redundant DOFs as in Lemma 3.4.

10

3.2.3 Level % = 2

At Level % = 2, the domain Ω is partitioned into 2L−! × 2L−! = 2× 2 blocks with interior and
boundary points as shown in Figure 2 (b). Similarly, we reindex the points in J 3

2
into I2 and

J2, by a permutation matrix P2 such that

J 3
2

P2−→ (I2;11I2;12I2;21I2;22|J2;11J2;12J2;21J2;22) := (I2|J2).

Apply a similar procedure as at Level 1 and denote

A2 = P−1
2 (W 3

2
− V̄ 3

2
Ū−1

3
2

V̄ T
3
2
)P2 =

[

U2 V T
2

V2 W2

]

with
U2 = A2(I2, I2), V2 = A2(J2, I2), and W2 = A2(J2, J2).

Note that U2 and V2 are block diagonal. Analogously,

G 3
2
= P2L

T
2

[

U−1
2

G2

]

L2P
−1
2 ,

where

L2 =

[

I
−V2U

−1
2 I

]

, G2 = (W2 − V2U
−1
2 V T

2)−1.

Note that the update V2U
−1
2 V T

2 is block diagonal. Now we have eliminated the interior points
and the inversion problem is reduced to a smaller matrix W2 − V2U

−1
2 V T

2 as in Lemma 3.1.

3.2.4 Level % = 5/2

Just as in Section 3.2.2, at this level, we want to find G2 indexed by J2. Again, we divide the
domain Ω into 2L−!+ 3

2 (2L−!+ 1
2 −1) = 4 Voronoi cells (see Figure 2 (c)). Again, the DOFs on the

boundary between two cells are randomly assigned to one of cells. Through ID, we distinguish
the redundant DOFs I 5

2 ;i
and the skeleton DOFs J 5

2 ;i
in the ith cell, and record the interpolation

matrix T 5
2 ;i

. Reindexing J2 with a permutation matrix P 5
2
such that

J2
P 5

2−→ (I 5
2 ;1

I 5
2 ;2

I 5
2 ;3

I 5
2 ;4

|J 5
2 ;1

J 5
2 ;2

J 5
2 ;3

J 5
2 ;4

) := (I 5
2
|J 5

2
).

Denote

T 5
2
=







−T 5
2 ;1

. . .
−T 5

2 ;4







and a |J2|×|J2| matrix

Q 5
2
=

[

I
T 5

2
I

]

.

Then

Ā 5
2
= QT

5
2
P−1

5
2

(W2 − V2U
−1
2 V T

2)P 5
2
Q 5

2
=

[

Ū 5
2

V̄ T
5
2

V̄ 5
2

W 5
2

]

with
Ū 5

2
(I 5

2 ;i
, I 5

2 ;j
) = 0, V̄ 5

2
(J 5

2 ;i
, I 5

2 ;j
) = 0, ∀i *= j.

Therefore,

G2 ≈ P 5
2
Q 5

2
LT

5
2

[

Ū−1
5
2

G 5
2

]

L 5
2
QT

5
2
P−1

5
2

,

11

where

L 5
2
=

[

I
−V̄ 5

2
Ū−1

5
2

I

]

, G 5
2
= (W̄ 5

2
− V̄ 5

2
Ū−1

5
2

V̄ T
5
2
)−1.

Note that U 5
2
and V 5

2
are block diagonal. The matrix inversion problem now has been reduced

to W̄ 5
2
− V̄ 5

2
Ū−1

5
2

V̄ T
5
2
.

3.2.5 Level % = 3

The domain Ω is partitioned into 2L−!× 2L−! = 1× 1 block, i.e., no partition at this level. The
interior and boundary points are shown in Figure 2 (d). Similarly to previous integer levels,
reindexing J 5

2
into the union of an interiors index set I3 and a boundary index set J3 with a

permutation matrix P3 such that

J 5
2

P3−→ (I3|J3).

Finally,

G 5
2
= P3L

T
3

[

U−1
3

G3

]

L3P
−1
3 ,

where

L3 =

[

I
−V3U

−1
3 I

]

, G3 = (W3 − V3U
−1
3 V T

3)−1.

We calculate the inverse of G3 directly at this point.

3.2.6 Summary of Construction

We start with the hierarchical domain decomposition scheme and the skeletonization technique.
To construct the hierarchical structure of Schur complements of the matrix A on the grid of
size N ×N , at each integral level, the points in each block are divided into interior points and
boundary points. So the interior points only interact with the points within the same block. We
reindex the points and eliminate the interior points accordingly. At each fractional level, the
domain is divided into Voronoi cells, and ID is applied to each unit to distinguish redundant
points and skeleton points such that the redundant points only interact with the points within
the same cell. We will reindex these points accordingly and eliminate the redundant points.

The following relationship is defined for each level

G! =











G = A−1, % = 0;

G! = (W! − V!U
−1
! V T

!)−1, % is integral;

G! = (W! − V̄!Ū
−1
! V̄ T

!)−1, % is fractional.

(3.6)

Based on (3.6), it follows the recursive relation with integral %,

G!−1 ≈ P!− 1
2
Q!− 1

2
LT
!− 1

2

[

Ū−1
!− 1

2

G!− 1
2

]

L!− 1
2
QT

!− 1
2
P−1
!− 1

2
,

G!− 1
2
= P!L

T
!

[

U−1
!

G!

]

L!P
−1
! .

Therefore, we can construct the hierarchy of Schur complements from the bottom. We organize
this algorithm in Algorithm 1. Note that the reindexing is implicitly included in Algorithm 1,
when we use the index sets I!;ij and J!;ij or I!;i and J!;i for A!.

12

Algorithm 1: Constructing the hierarchy of Schur complements of A

1 Determine %max and decompose the domain hierarchically.
2 Generate index sets I1;ij and J1;ij .
3 A1 ← A.
4 for % = 1 to %max do

5 A!+ 1

2

← A!(J!, J!).

6 for (i, j)∈ {block index at level % } do

7 U!;ij ← A!(I!;ij, I!;ij).
8 V!;ij ← A!(J!;ij , I!;ij).

9 Calculate U−1
!;ij.

10 Calculate K!;ij ← −V!;ijU
−1
!;ij.

11 Calculate A!+ 1

2

(J!;ij , J!;ij)← A!+ 1

2

(J!;ij , J!;ij) +K!;ijV T
!;ij.

12 end

13 if % < %max then

14 Construct Voronoi cells at level %+ 1
2
.

15 for k ∈ {block index at level %+ 1
2
} do

16 Use ID to compute T!+ 1

2
;k, I!+ 1

2
;k and J!+ 1

2
;k.

17 Ū!+ 1

2
;k ← A!+ 1

2

(I!+ 1

2
;k, I!+ 1

2
;k).

18 V̄!+ 1

2
;k ← A!+ 1

2

(J!+ 1

2
;k, I!+ 1

2
;k).

19 Calculate %̄!+ 1

2
;k ← V̄ T

!+ 1

2
;k
T!+ 1

2
;k.

20 Calculate V̄!+ 1

2
;k ← V̄!+ 1

2
;k −A!+ 1

2

(J!+ 1

2
;k, J!+ 1

2
;k)T!+ 1

2
;k.

21 Calculate Ū!+ 1

2
;k ← Ū!+ 1

2
;k − %̄!+ 1

2
;k − T T

!+ 1

2
;k
V̄!+ 1

2
;k.

22 end

23 A!+1 ← A!+ 1

2

(J!+ 1

2

, J!+ 1

2

).

24 for k ∈ {block index at level %+ 1
2
} do

25 Calculate Ū−1

!+ 1

2
;k
.

26 Calculate K̄!+ 1

2
;k ← −V̄!+ 1

2
;kŪ

−1

!+ 1

2
;k
.

27 Calculate A!+1(J!+ 1

2
;k, J!+ 1

2
;k)← A!+1(J!+ 1

2
;k, J!+ 1

2
;k) + K̄!+ 1

2
;kV̄

T
!+ 1

2
;k
.

28 end

29 Construct I!+1 and J!+1.

30 end

31 end

32 Calculate G!max
← A−1

!max+
1

2

.

Output:

I!, J!, I!+ 1

2

, J!+ 1

2

, U−1
!;ij, Ū

−1

!+ 1

2
;k
,K!;ij , K̄!+ 1

2
;k, G!max

, for each %, i, j, k

13

3.3 Extracting the Diagonal of the Inverse of Matrix

After obtaining the hierarchical structure of Schur complements, we now apply the observation
in Lemma 3.1 to extract the diagonal of the inverse matrix G. The point is that it is not
necessary to compute the whole Schur complement G!. More precisely, our observations show
that:

G!−1(I!;ijJ!;ij , I!;ijJ!;ij) is determined by G!− 1
2
(J!;ij , J!;ij),

G!− 1
2
(I!− 1

2 ;i
J!− 1

2 ;i
, I!− 1

2 ;i
J!− 1

2 ;i
) is determined by G!(J!− 1

2 ;i
, J!− 1

2 ;i
).

Therefore, we can develop a linear scaling algorithm to exact the diagonal elements of G re-
cursively. We organize this algorithm in Algorithm 2. Note that the reindexing is implicitly
included in Algorithm 2, when we use the index sets J!;ij or J!;i for G!.

3.3.1 Level % = 3

We start from the top level % = L = 3 to extract information of interest. Given G3, G 5
2
is

obtained by the following formula:

G 5
2
= P3

[

U−1
3 + U−1

3 V T
3 G3V3U

−1
3 −U−1

3 V T
3 G3

−G3V3U
−1
3 G3

]

P−1
3 .

Submatrices in the bracket are indexed by (I3|J3). G 5
2
is indexed by J 5

2
= J 5

2 ;1
J 5

2 ;2
J 5

2 ;3
J 5

2 ;4

due to the permutation matrix P3. In fact, we only need to focus on G 5
2
(J 5

2 ;i
, J 5

2 ;i
) instead of

off-diagonal blocks in order to extract the diagonal entries of G 5
2
. Hence, represent G 5

2
as

G 5
2
=











G 5
2 ;1

∗ ∗ ∗
∗ G 5

2 ;2
∗ ∗

∗ ∗ G 5
2 ;3

∗
∗ ∗ ∗ G 5

2 ;4











with
G 5

2 ;i
= G 5

2
(J 5

2 ;i
, J 5

2 ;i
).

3.3.2 Level % = 5/2

At Level % = 5/2, we now have

G2 ≈ P 5
2

[

G2 −Ū−1
5
2

V̄ T
5
2
G 5

2
+ G2T T

5
2

−G 5
2
V̄ 5

2
Ū−1

5
2

+ T 5
2
G2 G2

]

P−1
5
2

(3.7)

where
G2 = Ū−1

5
2

+ Ū−1
5
2

V̄ T
5
2
G 5

2
V̄ 5

2
Ū−1

5
2

,

and
G2 = T 5

2
G2T

T
5
2
−G 5

2
V̄ 5

2
Ū−1

5
2

T T
5
2
− T 5

2
Ū−1

5
2

V̄ T
5
2
G 5

2
+G 5

2
.

Note that T 5
2
, U−1

5
2

, and V 5
2
are block diagonal. We have

Ū−1
5
2

V̄ T
5
2
G 5

2
V̄ 5

2
Ū−1

5
2

=









Ū−1
5
2 ;1

V̄ T
5
2 ;1

G 5
2 ;1

V̄ 5
2 ;1

Ū−1
5
2 ;1

· · · ∗
...

. . .
...

∗ · · · Ū−1
5
2 ;4

V̄ T
5
2 ;4

G 5
2 ;4

V̄ 5
2 ;4

Ū−1
5
2 ;4









,

14

as well as

G 5
2
V̄ 5

2
Ū−1

5
2

T T
5
2
=









G 5
2 ;1

V̄ 5
2 ;1

Ū−1
5
2 ;1

T T
5
2 ;1

· · · ∗
...

. . .
...

∗ · · · G 5
2 ;4

V̄ 5
2 ;4

Ū−1
5
2 ;4

T T
5
2 ;4









.

Therefore, the corresponding diagonal blocks of G2 can be computed just using block-block
multiplication accordingly. Furthermore, similar operations can be applied to G2.

All matrices in the bracket of (3.7) are indexed by (I 5
2
|J 5

2
). G 5

2
is indexed by J2 =

J2;11J2;12J2;21J2;22 due to the permutation matrix P 5
2
. Similarly to the previous level, we only

need to seek the diagonal blocks G2(J2;ij , J2;ij).

Algorithm 2: Extracting the diagonal of A−1

Input:

Output of Algorithm 1.
1 for % = %max to 1 do

2 for (i, j)∈ {block index at level % } do

3 Calculate G!− 1

2

(I!;ij, I!;ij)← U−1
!;ij +KT

!;ijG!(J!;ij , J!;ij)K!;ij .

4 Calculate G!− 1

2

(J!;ij, I!;ij)← G!(J!;ij , J!;ij)K!;ij .

5 G!− 1

2

(I!;ij, J!;ij)← G!− 1

2

(J!;ij , I!;ij)T .

6 G!− 1

2

(J!;ij, J!;ij)← G!(J!;ij , J!;ij)

7 end

8 if % > 1 then

9 for k ∈ {block index at level %− 1
2
} do

10 Calculate G!−1(I!− 1

2
;k, I!− 1

2
;k)← Ū−1

!− 1

2
;k
+ K̄T

!− 1

2
;k
G!− 1

2

(J!− 1

2
;k, J!− 1

2
;k)K̄!− 1

2
;k.

11 Calculate W̄!−1(J!− 1

2
;k, I!− 1

2
;k)← G!− 1

2

K̄!− 1

2
;k.

12 G!−1(J!− 1

2
;k, I!− 1

2
;k)← W̄!−1(J!− 1

2
;k, I!− 1

2
;k) + T!− 1

2
;kG!−1(I!− 1

2
;k, I!− 1

2
;k).

13 G!−1(I!− 1

2
;k, J!− 1

2
;k)← G!−1(J!− 1

2
;k, I!− 1

2
;k)

T .

14 G!−1(J!− 1

2
;k, J!− 1

2
;k)←

G!−1(J!− 1

2
;k, I!− 1

2
;k)T

T
!− 1

2
;k
+T!− 1

2
;kW̄!−1(J!− 1

2
;k, I!− 1

2
;k)+G!− 1

2

(J!− 1

2
;k, J!− 1

2
;k).

15 end

16 end

17 end

3.3.3 Level % = 2

At Level % = 2, we have

G 3
2
= P2

[

U−1
2 + U−1

2 V T
2 G2V2U

−1
2 −U−1

2 V T
2 G2

−G2V2U
−1
2 G2

]

P−1
2 . (3.8)

Analogously to Level 3, submatrices in the bracket of (3.8) are indexed by (I2|J2). G 3
2
is indexed

by J 3
2
= J 3

2 ;1
· · · J 3

2 ;24
due to the permutation matrix P2. Again, only G 3

2
(J 3

2 ;i
, J 3

2 ;i
) needs to

be computed.

15

3.3.4 Level % = 3/2

Proceeding to Level 3/2, now

G1 ≈ P 3
2

[

G1 −Ū−1
3
2

V̄ T
3
2
G 3

2
+ G1T T

3
2

−G 3
2
V̄ 3

2
Ū−1

3
2

+ T 3
2
G1 G1

]

P−1
3
2

, (3.9)

where
G1 = Ū−1

3
2

+ Ū−1
3
2

V̄ T
3
2
G 3

2
V̄ 3

2
Ū−1

3
2

,

and
G1 = T 3

2
G1T

T
3
2
−G 3

2
V̄ 3

2
Ū−1

3
2

T T
3
2
− T 3

2
Ū−1

3
2

V̄ T
3
2
G 3

2
+G 3

2
.

Similarly to Level % = 5/2, diagonal blocks of G2 and G2 can be computed quickly using block-
block multiplication accordingly. Submatrices in the bracket of (3.9) are indexed by (I 3

2
|J 3

2
).

G1 is indexed by J1 = J1;11J1;12 · · · J1;44 due to the permutation matrix P 3
2
. Again, only the

diagonal blocks G1(J1;ij , J1;ij) are needed.

3.3.5 Level % = 1

At Level 1, the same procedure is done as at Level 2 and Level 3. We can obtain G1(J1;ij , J1;ij)
from Level 3

2 and G(J0;ij , J0;ij) is computed directly. Finally, the diagonal elements in G can
be obtained by combining the diagonal elements of each level.

3.4 Complexity Estimates

We next investigate the computation complexity of SelInvHIF. Let us assume the domain con-
tains N =

√
N ×

√
N points and set

√
N = 2L with %max < L.

We denote the number of blocks at level % as nB(%), and have following fomurla

nB(%) =

{

22(!max−!), % is integral;

22!max−2(!−1) − 2!max−!+ 3
2 , % is fractional.

The number of points of each block or cell is denoted as nP (%). Note that interior or redundant
points of the previous level are not counted because they have been eliminated in previous levels.
To approximate nP (%) , we use the assumption about the skeletonization in [27]. Then it can
be shown that the typical skeleton size of a cell is

k! = O(%).

Then we have

nP (%) =











22(L−!max+1), % = 1;

O(2L−!max), % = 3
2 ;

O(%), % > 3
2 .

Firstly, the construction step is considered and the following steps are shown in Algorithm
1. At an integral level %, we need to compute the inverse of U!;ij (Step 9) for each block.
Then multiply the inverse with V!;ij to obtain K!;ij (Step 10) and finally update the new
A!+ 1

2
(J!;ij , J!;ij) (Step 11). At a fractional level %+ 1

2 , for each cell, we need to compute T!+ 1
2 ;k

using ID (Step 16, since each cell only interact with O(1) cells, then the cost for this step is
O(nP (%)3)). Then apply it (Step 19, 20, and 21) and multiply the inverse of Ū!+ 1

2 ;k
(Step

25) with V̄!+ 1
2 ;k

to get K̄!+ 1
2 ;k

(Step 26). Finally, update A!+1(J!+ 1
2 ;k

, J!+ 1
2 ;k

) (Step 27). The

computational cost for these steps at each level is O(nP (%)3). Furthermore, the total cost for
level % is O(nB(%)nP (%)3) for % >

3
2 , since there are nB(%) blocks at Level %.

16

Since

22(!max−1)26(L−!max+1) + 22!max−123L−3!max +
!max
∑

!=2, 52

(nB(%)nP (%)
3)

≤ C(22(!max−1)26(L−!max+1)

+ 22!max−123L−3!max +
!max
∑

!=2, 52

(22!max−2!%3))

≤ C0(2
6L−4!max + 23L−!max + 22!max),

where C and C0 are constant. Let %max = O(L), the total computational cost for the construction
step is O(N) (the cost for Step 32 is O(nP (%)3)).

Furthermore, the extraction step is analyzed now and the following steps are considered in
Algorithm 2. At an integral level %, G!− 1

2
(I!;ij , I!;ij) (Step 3) and G!− 1

2
(J!;ij , I!;ij) (Step 4)

are calculated for each block. At a fractional level % − 1
2 , for each cell, we need to calculate

G!−1(I!− 1
2 ;k

, I!− 1
2 ;k

) (Step 10), G!−1(J!− 1
2 ;k

, I!− 1
2 ;k

) (Step 12) and G!−1(J!− 1
2 ;k

, J!− 1
2 ;k

) (Step

14). The computational cost for these steps at each level is O(nP (%)3). Hence, the total cost
for level % is O(nB(%)nP (%)3) for % > 3

2 , since there are nB(%) blocks at Level %. Similarly, the
complexity for the extraction step is also O(N).

Therefore, the total computational complexity is O(N) by combining the construction step
and extraction step if the assumption in [27] holds.

4 Numerical results

We show numerical results for the MPB equations in two dimensions to verify the performance
of the proposed SelInvHIF. In particular, the scaling of the computational time of SelInvHIF
is concerned. We set a uniform fugacity parameter Λ = 0.2 and a coupling parameter Ξ = 1.
The error criteria of the PB solver and the self-consistent iteration are both 10−8. The relative
precision of the ID step is 10−8. The initial values for the potentials in the iteration are always
constant Φ(0) = 0 in our examples. Dirichlet boundary conditions are used for both the PB
and the DH steps. The calculation is performed on a machine with Intel Xeon a 2.2GHz and
2TB memory. The statistics of calculation time are averaged over five times. We compute the
relative L2 to measure the accuracy of SelInvHIF:

‖Φ− Φref‖2
‖Φref‖2

where Φ is the electric potential computed using SelInvHIF and Φref is the electric potential
computed with sufficiently large grid size. To measure the accuracy of the whole algorithm and
the convergence with respect to the grid size, we also compute the absolute L2 error ‖Φ−Φref‖2√

N
using a reference solution Φref computed with sufficiently large grid size.

4.1 Example 1: The Discrete Elliptic Differential Operator

We consider the diagonal part of the inverse of the discrete elliptic differential operator as the
first example. Using the five-point stencil discretization, a 5-diagonal N ×N sparse matrix D5

is denoted as:

D5 =













M −I 0

−I
. . .

. . .
. . .

. . . −I
0 −I M













, M =













4 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 4













17

We then calculate the diagonal part of inverse of matrix D5 by SelInvHIF and the exact method
in [23], respectively. In Table 1, the absolute L2 error between the numerical results and the
reference solution obtained with corresponding matrix size by exact method are displayed. Table
1 also shows the relative L2 errors, which verify the accuracy of SelInvHIF. Finally, Table 1 also
shows the computational time of the algorithm and verifies the linear scaling of SelInvHIF.

Matrix size
√
N SelInvHIF time Absolute error Relative error

256 3.25E + 1 4.78E − 13 3.53E − 8
512 1.54E + 2 2.05E − 13 5.39E − 8
1024 6.15E + 2 2.88E − 13 2.73E − 7
2048 2.43E + 3 5.80E − 13 2.00E − 6

Table 1: The CPU time, accuracy, and matrix size. The SelInvHIF time means
the execution time spent for one step SelInvHIF.

4.2 Example 2: The Charge Density is a Continuous Function

The second example is a continuous charged distribution in the region [0, L]2 with L = 32. The
distribution of charge density is

ρf (x) =
sin(πxL)

32
.

We then calculate the results of the MPB equations by SelInvHIF. Similarly, the left panel of
Figure 3 visualizes the distribution of the convergent potential in this system with different
matrix sizes N = 2562, 5122 and 10242. The right panel of Figure 3 displays the absolute error
in different locations between the numerical results and the reference solution with a sufficiently
large grid size N = 20482. The relative L2 errors maintain approximate accuracy of first-order
in Table 2 due to the discontinuous of the derivative of the potential at x = L/2. Table 2 also
shows the accuracy of the whole algorithm to compute the potential Φ compared to a reference
potential computed with a sufficiently large grid size N = 20482, which verifies the convergence
of our algorithm. In addition, Table 2 also shows the computational time of the algorithm to
verify the linear scaling of SelInvHIF. Finally, the scaling results of the SelInvHIF algorithm are
shown in Figure 6.

Matrix size
√
N Total time SelInvHIF time Absolute error Relative error

256 3.16E + 1 3.10E + 1 7.13E − 3 5.06E − 2
512 1.35E + 2 1.32E + 2 3.01E − 3 2.16E − 2
1024 5.81E + 2 5.69E + 2 1.02E − 3 7.27E − 3
2048 2.40E + 3 2.35E + 3 - -

Table 2: The CPU time, accuracy, and matrix size. The total time and the
SelInvHIF time mean the execution time spent for the one step iteration in the
whole program and the time for one step SelInvHIF, respectively.

4.3 Example 3: The Charge Density is a Delta Function

In last two examples, we consider discontinuous charged distribution in a region [0, L]2 with
L = 32. Let the charge density be

ρf (x) = δ(x − L/2).

18

0 10 20 30

0.1

0.2

0.3

0.4

0.5
Po

te
nt

ia
l

0 10 20 30

0.005

0.01

0.015

0.02

0.025

N
um

er
ic

al
 E

rro
r

Figure 3: Numerical results about the continuous charge density. Left: potential
distributions with different matrix size; Right: the absolute error between the
numerical results and the reference solution with N = 20482.

We then calculate the results of the MPB equations by SelInvHIF. Similarly, the left panel of
Figure 4 visualizes the distribution of the convergent potential in this system with different
matrix sizes N = 2562, 5122 and 10242. The right panel of Figure 4 displays the absolute L2

error between the numerical results and the reference solution obtained with a sufficiently large
grid size N = 20482. The relative L2 errors maintain approximate accuracy of first-order in
Table 3 due to the discontinuous of the derivative of the potential at x = 0.5L. Table 3 also
shows the accuracy of the whole algorithm to compute the potential Φ compared to a reference
potential computed with a sufficiently large grid size N = 20482, which verifies the convergence
of our algorithm. Furthermore, Table 3 also shows the computational time of the algorithm to
verify the linear scaling of SelInvHIF. Finally, the scaling results of the SelInvHIF algorithm are
shown in Figure 6.

0 10 20 30

0.5

1

1.5

Po
te

nt
ia

l

0 10 20 30

0.02
0.04
0.06
0.08

0.1
0.12
0.14

N
um

er
ic

al
 E

rro
r

Figure 4: Numerical results about the charge density with a delta function.
Left: potential distributions with different matrix size. Right: the absolute
error between the numerical results and the reference solution with N = 20482.

19

Matrix size
√
N Total time SelInvHIF time Absolute error Relative error

256 3.51E + 1 3.34E + 1 3.08E − 2 6.25E − 2
512 1.49E + 2 1.41E + 2 1.13E − 2 2.30E − 2
1024 6.23E + 2 5.93E + 2 4.54E − 3 9.22E − 3
2048 2.53E + 3 2.42E + 3 - -

Table 3: The CPU time, accuracy, and matrix size. The total time and the
SelInvHIF time mean the execution time spent for one step iteration in the
whole program and the time for one step SelInvHIF, respectively.

4.4 Example 4: The Charge Density is a Combined Delta Function

In the last example, we have two charged lines dividing a plane into three parts. The computa-
tional interval is [0, L] with L = 32, where the region of [0.4L, 0.6L] is inaccessible to ions. The
fixed charge density is

ρf (x) = δ(x− 0.4L)− δ(x− 0.6L).

We solve the MPB equations using SelInvHIF. The left panel of Figure 5 visualizes the distribu-
tion of the convergent potential in this system with different matrix sizes N = 2562, 5122, and
10242. The right panel of Figure 5 displays the absolute L2 error between the numerical results
and the reference solution obtained with a sufficiently large grid size N = 20482. The relative
L2 errors maintain approximate accuracy of first-order in Table 4 due to the discontinuous of
the derivative of the potential at x = 0.4L and x = 0.6L. Table 4 also shows the accuracy of the
whole algorithm to compute the potential Φ compared to a reference potential, which verifies
the convergence of our algorithm. Furthermore, Table 4 also shows the computational time of
the algorithm verify the linear scaling of SelInvHIF. Finally, the scaling results of the SelInvHIF
algorithm are shown in Figure 6.

0 10 20 30

-2

-1

0

1

2

Po
te

nt
ia

l

0 10 20 30

0.05

0.1

0.15

0.2

N
um

er
ic

al
 E

rro
r

Figure 5: Numerical results about the charge density with a combined delta
function. Left: potential distributions with different matrix size; Right: the
absolute error between the numerical results and the reference solution with
N = 20482 .

20

Matrix size
√
N Total time SelInvHIF time Absolute error Relative error

256 2.99E + 1 2.90E + 1 1.08E − 1 1.22E − 1
512 1.47E + 2 1.42E + 2 4.75E − 1 5.34E − 2
1024 6.06E + 2 5.86E + 2 1.59E − 2 1.79E − 2
2048 2.54E + 3 2.45E + 3 - -

Table 4: The CPU time, accuracy, and matrix size. The total time and the
SelInvHIF time mean the execution time spent for one step iteration in the
whole program and the time for one step SelInvHIF, respectively.

105 106 107101

102

103

104

105

Se
lIn

v
Ti

m
e(

s)

Figure 6: Scaling results for SelInvHIF time in solving MPB equations. The
solid lines represent the computational time for one step SelInvHIF under the
different charge distribution. The reference scalings (black dashed lines) of
O(N) and O(N3/2).

5 Conclusions

A fast algorithm, SelInvHIF, is proposed to solve the MPB equations by combining the hierarchi-
cal interpolative factorization and the original selected inverse method. An O(N) computational
complexity in terms of the number of operations and memory is achieved to obtain the diagonal
of the inverse of a sparse matrix discretized from an elliptic differential operator. We applied
this algorithm to the two-dimensional MPB problems and attractive performance is obtained in
terms of both accuracy and efficiency in solving the MPB equations. In the future, we will try
to develop another fast algorithm with O(N) complexity for three-dimensional problems based

21

on a similar construction.

Acknowledgment

Y. Tu and Z. Xu acknowledge the financial support from the National Natural Science Founda-
tion of China (grant No. 12071288), Science and Technology Commission of Shanghai Munici-
pality (grant No. 20JC1414100) and Strategic Priority Research Program of Chinese Academy
of Sciences (grant No. XDA25010403). Q. Pang and H. Yang thank the support of the US
National Science Foundation under award DMS-1945029.

References

[1] R. B. Schoch, J. Han, and P. Renaud. Transport phenomena in nanofluidics. Rev. Mod.
Phys., 80:839–883, 2008.

[2] H. Daiguji, P. Yang, and A. Majumdar. Ion transport in nanofluidic channels. Nano Lett.,
4(1):137–142, 2004.

[3] H. Boroudjerdi, Y.-W. Kim, A. Naji, R. R. Netz, X. Schlagberger, and A. Serr. Statics and
dynamics of strongly charged soft matter. Phys. Rep., 416:129–199, 2005.

[4] V. Liljeström, J. Seitsonen, and M. Kostiainen. Electrostatic self-assembly of soft matter
nanoparticle cocrystals with tunable lattice parameters. ACS Nano, 9(11):11278–85, 2015.

[5] G. Gouy. Constitution of the electric charge at the surface of an electrolyte. J. Phys.,
9:457–468, 1910.

[6] D. L. Chapman. A contribution to the theory of electrocapillarity. Phil. Mag., 25:475–481,
1913.

[7] M. Z. Bazant, K. Thornton, and A. Ajdari. Diffuse-charge dynamics in electrochemical
systems. Phys. Rev. E, 70:021506, 2004.

[8] Z. Schuss, B. Nadler, and R. Eisenberg. Derivation of Poisson and Nernst-Planck equations
in a bath and channel from a molecular model. Phys. Rev. E Stat. Nonlin. Soft Matter
Phys., 64:036116, 2001.

[9] I. Borukhov, D. Andelman, and H. Orland. Steric effects in electrolytes: A modified
Poisson-Boltzmann equation. Phys. Rev. Lett., 79(3):435–438, 1998.

[10] M. Z. Bazant, B. D. Storey, and A. A. Kornyshev. Double layer in ionic liquids: overscreen-
ing versus crowding. Phys. Rev. Lett., 106(4):046102, 2011.

[11] J.-L. Liu and R.S. Eisenberg. Molecular mean-field theory of ionic solutions: a Poisson-
Nernst-Planck-Bikerman model. arXiv:2004.10300, 2020.

[12] Z. Xu, M. Ma, and P. Liu. Self-energy-modified Poisson-Nernst-Planck equations: WKB
approximation and finite-difference approaches. Phys. Rev. E, 90(1):013307, 2014.

[13] H. Liu and Z. Wang. A free energy satisfying finite difference method for Poisson–Nernst–
Planck equations. J. Comput. Phys., 268(2):363–376, 2014.

[14] C. Liu, C. Wang, S. Wise, X. Yue, and S. Zhou. A positivity-preserving, energy stable
and convergent numerical scheme for the Poisson-Nernst-Plancksystem. arXiv:2009.08076,
2020.

[15] R. R. Netz and H. Orland. Beyond Poisson-Boltzmann: Fluctuation effects and correlation
functions. The European Physical Journal E, 1(2):203–214, 2000.

[16] R. Podgornik. Electrostatic correlation forces between surfaces with surface specific ionic
interactions. Journal of Chemical Physics, 91:5840–5849, 1989.

[17] R. R. Netz and H. Orland. Variational charge renormalization in charged systems. European
Physical Journal E, 11(3):301–311, 2003.

22

[18] P. Liu, X. Ji, and Z. Xu. Modified Poisson-Nernst-Planck model with accurate coulomb
correlation in variable media. SIAM J. Appl. Math., 78:226–245, 2018.

[19] M. Ma, Z. Xu, and L. Zhang. Modified Poisson-Nernst-Planck model with coulomb and
hard-sphere correlations. arXiv: 2002.07489, 2020.

[20] B. Corry, S. Kuyucak, and S. H. Chung. Dielectric self-energy in Poisson-Boltzmann and
Poisson-Nernst-Planck models of ion channels. Biophysical Journal, 84(6):3594–3606, 2003.

[21] Z.-G. Wang. Fluctuation in electrolyte solutions: The self energy. Phys. Rev. E, 81:021501,
2010.

[22] M. Ma and Z. Xu. Self-consistent field model for strong electrostatic correlations and
inhomogeneous dielectric media. J. Chem. Phys., 141(24):244903, 2014.

[23] L. Lin, J. Lu, L. Ying, R. Car, and W. E. Fast algorithm for extracting the diagonal of
the inverse matrix with application to the electronic structure analysis of metallic systems.
Commun. Math. Sci., 7(3):755–777, 2009.

[24] L. Lin, C. Yang, J. Lu, L. Ying, and W. E. A fast parallel algorithm for selected inversion of
structured sparse matrices with application to 2D electronic structure calculations. SIAM
J. Sci. Comput., 33(3):1329–1351, 2011.

[25] L. Lin, C. Yang, Juan C. Meza, J. Lu, L. Y, and W. E. SelInv—An algorithm for selected
inversion of a sparse symmetric matrix. ACM Trans. Math. Softw., 37(4):40:1–40:19, 2011.

[26] J. Xia, Y. Xi, S. Cauley, and V. Balakrishnan. Fast sparse selected inversion. SIAM Journal
on Matrix Analysis and Applications, 36(3):1283–1314, 2015.

[27] K. L. Ho and L. Ying. Hierarchical interpolative factorization for elliptic operators: Dif-
ferential equations. Comm. Pure and Appl. Math., 69(8):1415–1451, 2015.

[28] A. Gillman and P. G. Martinsson. A direct solver with O(N) complexity for variable
coefficient elliptic PDEs discretized via a high-order composite spectral collocation method.
SIAM J. Sci. Comput., 36(4):2023–2046, 2013.

[29] A. Gillman and P. G. Martinsson. An O(N) algorithm for constructing the solution op-
erator to 2D elliptic boundary value problems in the absence of body loads. Advances in
Computational Mathematics, 40(4):773–796, 2014.

[30] L. Grasedyck, R. Kriemann, and S. L. Borne. Domain-decomposition based H-LU precon-
ditioners. Numerische Mathematik, 112(4):565–600, 2009.

[31] P. G. Schmitz and L. Ying. A fast direct solver for elliptic problems on general meshes in
2D. J. Comput. Phys., 231(4):1314–1338, 2012.

[32] J. Xia, S. Chandrasekaran, M. Gu, and X. Li. Superfast multifrontal method for large
structured linear systems of equations. SIAM J. Matrix Anal. Appl., 31(3):1382–1411,
2009.

[33] Z. Xu and A.C. Maggs. Solving fluctuation-enhanced Poisson–Boltzmann equations. J.
Comput. Phys., 36(3):310–322, 2014.

[34] H. Cheng, Z. Gimbutas, P. Martinsson, and V. Rokhlin. On the compression of low rank
matrices. SIAM J. Sci. Comput., 26(4):1389–1404, 2005.

[35] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data struc-
ture. ACM Comput. Surv., 23(3):345–405, 1991.

23

	1 Introduction
	2 Numerical Method for Modified Poisson-Boltzmann Equation
	3 The SelInvHIF Algorithm
	3.1 Preliminaries
	3.1.1 Block Inversion
	3.1.2 Interpolative Decomposition
	3.1.3 Block Inversion with Skeletonization

	3.2 Hierarchy of Schur Complements
	3.2.1 Level =1
	3.2.2 Level =3/2
	3.2.3 Level =2
	3.2.4 Level =5/2
	3.2.5 Level =3
	3.2.6 Summary of Construction

	3.3 Extracting the Diagonal of the Inverse of Matrix
	3.3.1 Level =3
	3.3.2 Level =5/2
	3.3.3 Level =2
	3.3.4 Level =3/2
	3.3.5 Level =1

	3.4 Complexity Estimates

	4 Numerical results
	4.1 Example 1: The Discrete Elliptic Differential Operator
	4.2 Example 2: The Charge Density is a Continuous Function
	4.3 Example 3: The Charge Density is a Delta Function
	4.4 Example 4: The Charge Density is a Combined Delta Function

	5 Conclusions

