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Abstract

This paper studies an efficient numerical method for solving modified Poisson-Boltzmann
(MPB) equations with the self Green’s function as a state equation to describe electrostatic cor-
relations in ionic systems. Previously, the most expensive point of the MPB solver is the evalu-
ation of Green’s function. The evaluation of Green’s function requires solving high-dimensional
partial differential equations, which is the computational bottleneck for solving MPB equations.
Numerically, the MPB solver only requires the evaluation of Green’s function as the diagonal
part of the inverse of the discrete elliptic differential operator of the Debye-Hiickel equation.
Therefore, we develop a fast algorithm by a coupling of the selected inversion and hierarchical
interpolative factorization. By the interpolative factorization, our new selected inverse algorithm
achieves linear scaling to compute the diagonal of the inverse of this discrete operator. The ac-
curacy and efficiency of the proposed algorithm will be demonstrated by extensive numerical
results for solving MPB equations.

Keywords: Selected Inverse; Hierarchical Interpolative Factorization; Linear Scaling; Elliptic
Operator; Self Green’s Function; Modified Poisson-Boltzmann Equation.
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1 Introduction

arxiv

Electrostatic interaction plays an important role in many fields of physical and biological sciences
[1, 2, 3], as well as materials science such as nanoparticle assembly [4]. The Poisson-Boltzmann
(PB) [5, 6] and Poisson-Nernst-Planck (PNP) equations [7] [8] are often used to describe the
electrostatic phenomena of equilibrium and dynamical systems, respectively. The PB equation
is mean-field theory and fails to capture many-body properties such as dielectric variation and
ion correlation, which are essential components of electrostatic behaviors of many systems. Many
improved theories have been introduced in the literature to take into account these many-body
effects [9, [10, [11] and various numerical methods [12| [13], [I4] have been proposed to solve the
systems efficiently. Among them, the Gaussian variational field theory [15] [16] is promising
to describe the long-range Coulomb correlation including dielectric variation [17, [18], [19]. The
theory introduces the self-energy of a test ion as a correction to the mean-field potential energy,

*Corresponding author.


http://arxiv.org/abs/2105.09200v1

which is described by the self Green’s function. Based on the self-energy, the effect due to
dielectric inhomogeneity is considered in [20] 21] [22]. The Green’s function used in the field
theory satisfies the generalized Debye-Hiickel (DH) equation for which the numerical solution
is expensive due to its high spatial dimensions (including both source and field coordinates).
By finite-difference discretization, the self Green’s function corresponds to the diagonal of the
inverse of the discrete elliptic differential operator of the DH equation.

In this paper, we propose a novel method for solving modified Poisson-Boltzmann (MPB)
equations, particularly, a fast algorithm for obtaining the diagonal of the inverse matrix from
the discretization of the DH equation. To show the basic idea, here we consider the following
elliptic partial differential equation,

— V- (a(r)Vu(r)) + b(r)u(r) = f(r), recQcR? (1.1)

with an appropriate boundary condition, where a(r) > 0, b(r), and f(r) are functions on €,
and d = 2. Then Eq. (1)) leads to a linear system after finite-difference discretization,

AUN :fN7

where A € RV*Y is sparse, uy and fy are the discrete forms of u(r) and f(r), respectively.
Our goal here is to compute the diagonal of A~! in O(N) operations to obtain the self energy
in the DH equation, which accelerates the numerical solver for MPB equations.

Selecting the diagonal of a matrix inverse has been previously studied especially in electronic
structure calculation based on sparsity and low-rankness, e.g., [23} 24} 25] with O(N3/2) compu-
tational complexity for 2D problems, and [26] with O(Npoly(log N)) complexity. The selected
inversion method in [23] applies a hierarchical decomposition of the computational domain
and proposes a two-step procedure to form the diagonal of A~ with O(N?3/2) complexity for 2D
problems. First, hierarchical Schur complements of the interior points for the blocks of the do-
main are constructed in a bottom-up pass. Second, the diagonal entries are extracted efficiently
in a top-down pass by exploiting the hierarchical local dependence of the inverse matrices. The
method in [24] 25] uses a supernode left-looking LDL factorization of A to improve the efficiency
of the selected inversion method in |23] by significantly reducing the prefactor in their complex-
ity. Structured multifrontal LDL factorizations are applied in [26] to obtain O(Npoly(log N))
complexity.

Recently, Hierarchical interpolative factorization (HIF) proposed in [27] can compute a gen-
eralized LDL decomposition of A within O(N) complexity in 2D problems. HIF is a fast ap-
proximation of Multifrontal Factorization (MF) by introducing additional levels of compression
based on skeletonizing separator fronts. Unlike [28] 29] [30] 31 [32] that keep the entire fronts
but work with them implicitly using fast structured methods, HIF allows us to reduce the fronts
explicitly. Inspired by HIF, we can replace the supernode left-looking LDL factorization with
HIF in [24, 25] and revise the extraction procedure to approximate the diagonal of A~! within
O(N) operations for 2D problems. We will present the main idea of skeletonizing separator
fronts in HIF and its application to the selected inversion method with a visible example and a
complexity estimation. For the detailed introduction to the selected inverse and HIF, the reader
is referred to [24] 25] and [27], respectively. Our algorithm is called SellnvHIF in this paper.

Organization. The rest of the paper is organized as follows. Section [2 discusses iterative
solvers for MPB equations. In Section 3] we introduce some preliminary tools of skeletonization
of matrix factorization, then the details of SellnvHIF algorithm are presented. Various numerical
results of SellnvHIF are provided in Section [ for solving the MPB equations. The conclusion
and discussion for future work are presented in Section [l



2 Numerical Method for Modified Poisson-Boltzmann Equa-
tion

In this section, we will present mathematical model and numerical scheme for the Poisson-
Boltzmann equation to motivate our study of SellnvHIF. We consider an electrolyte. In di-
mensionless units, the dynamics of the mobile ions can be described by the Nernst-Planck
equations|12],

% =V -D|[Ve¢ + ¢V (2P + Eu)], (2.1)

where ¢; is the ionic concentration of the ith species, z; = 41 is the valence, D is the diffusion
constant. Here, Z is the coupling parameter that describes the strength of the correlation
energy. The Nernst-Planck equations are convection-diffusion equations, where the convection
is due to the electrostatic force on each ion, namely the gradient of the electrostatic energy. In
the modified PNP equations, the electrostatic energy is composed of the mean potential energy
z;® and the self energy Zu. The electric potential satisfies the Poisson equation,

—V - eVe=ps+ >z,

where ¢ is the dielectric coeflicient and p¢ is the fixed charge distribution. We suppose € = 1
in the electrolyte. The self energy is represented by the self Green’s function, described by the
following DH equation,

—V-eVG+ Y 2eiG=6(r—7),
u= lim [G (rfr’) — Gy (r,7")],

r’—r
where Gy = 1/(g|r — 7’|) is the free-space Green’s function. It can be seen that the DH
equation is coupled with the PNP equations as the ionic strength I = 3", 22¢; is determined by
the Nernst-Planck equations. When the correlation effect can be ignored (£ — 0), the whole
systems become the classical PNP equations.
At equilibrium, the ionic flux in Eq. (2.I) becomes zero and there is an explicit relation
between the ionic concentration and the electrostatic energy,

1

o gAejF{)*E",

where A is the fugacity determined by the far-field boundary conditions. The MPB equation
can be obtained when the Boltzmann distributions are used in the Poisson equation, written as,

—V-eV® = p; — Ae="sinh ®.
Together with the DH equation, we have the following system of equations[15] [17],

~V - eV® = p; — Ae="sinh @,

~V -eVG + Ae="G =6 (r—1'), (2.2)
w= lim [G(r,7") — Go (r,7")],
r'—=r

where the bold A indicates that it is A in the electrolyte domain and zero outside.

Without loss of generality, we discuss the numerical method for solving Eq. (2.2)) in this
work. In particular, we focus on the numerical method for the self Green’s function. The
extension to the modified PNP is straightforward. A self-consistent iterative scheme for the
solution of the partial differential equations in Eq. (2.2) was developed in [33]. The iterative
scheme is expressed by,



—V - eV 4 A= sinh @D = 5

—V - eVGEED £ AET QD = § (r 1), (2.3)
uwF ) = lim [G(kﬂ) (r,7") — Gy (r,r’)} )
r —7T
for k=0,1,---, M. The stopping criteria is max |<I)(M) - <I>(M71)} < 0 with a small error criteria
d.

The iterative scheme consists of two alternating steps. We solve the first equation in Eq.
2.3) for ® with the given u. Then for a given u and acquired ®, we solve the second equation
in Eq. (2.3)) to obtain the G and then a new u is computed via the third equation in Eq. (2.3).
These two steps are called PB and DH steps respectively. We repeat these two steps until we
reach the convergence criteria of the solution. Furthermore, the PB step can be efficiently solved
using standard fast direct solvers. The problem at the core of obtaining Green’s functions comes
from the generalized DH equation. In two dimensions, we can approximate the DH equation by,

AG = E,

where G is a matrix representing the lattice Green’s function, F is an identity matrix, and A is a
coefficient matrix. Furthermore, we can arrive at the matrix inverse G = A~! directly to achieve
the solution of the Green’s function with expensive calculation. To reduce the computation cost,
let us express U by

U = diag (G) — diag (Go)

where Gy is the lattice Green’s function in the free space and diag(-) is a vector representing
the diagonals of the argument matrix. Thus, calculating the whole inverse of the matrix directly
is expensive and unnecessary. Our SellnvHIF is used to just obtain the diagonal entries of the
operator matrix inverse to solve our target problem efficiently.

3 The SellnvHIF Algorithm

The SellnvHIF consists of two phases. In the first phase, we construct hierarchical Schur com-
plements for the diagonal blocks of a matrix A discretized from the differential operator in (1]
on a physical domain €. In the second phase, the diagonal of the inverse of A are extracted from
the construction of the hierarchy of Schur complements. The total complexity of the proposed
algorithm is analyzed at the end of this section. Before the formal introduction to our Selln-
vHIF algorithm, we first introduce some preliminary background of skeletonization of matrix
factorization.

3.1 Preliminaries

Suppose A is a matrix, p, ¢, [ and J are index sets. A,, (or A(I,J)) denotes a submatrix of A
corresponding to rows in p (or I) and columns in ¢ (or J). The notation “:” is used to denote
the whole row or column index set, e.g., A. , consists of columns of A corresponding to indices
in g. In the discussion below, we will follow the same notation to denote submatrices.

Suppose the differential operator in Eq. (L)) is defined on a domain €. A typical discretiza-
tion of a differential operator results in a sparse matrix with special structures. Let A be a
symmetric and nonsingular matrix

App A?I;D
A= Agp Ay AF;Fq (3.1)
Arq Arr

obtained from the discretization of the differential operator in Eq. (1), where p, ¢, and r
are index sets of A with a special order. In this matrix structure, we order rows and columns



carefully such that p is related to the degrees of freedom (DOFs) of the interior points of a small
given domain D C €2, ¢ corresponds to the DOFs on the boundary 9D, and r is for the DOFs
of the external domain Q/D. In general, the DOFs ¢ separates p from r, which is often very
large.

3.1.1 Block Inversion

The first preliminary tool we are going to use in SellnvHIF comes from the key observation in
the selected inversion method [23]: a diagonal block of the inverse of A can be computed via
a diagonal block of the inverse of a submatrix of A, the repeated application of which could
lead to an efficient recursive algorithm to compute the diagonal of A. The key observation is
based on Lemma [B.1] below. The proof of this lemma is based on block Gaussian elimination as
discussed in [23].

Lemma 3.1. Suppose A is given by (3.1) with a nonsingular A,, and G = A~'. Let Ay be the
Schur complement of Ay, i.e.,

A = Agg = AgpApy Ay A, ,

rq Arr
and let G, = Al_l. Then it holds,
_ _ _ T
Gpp = Appl + [_ApplAgp O] Gi [_ApplAgp 0] J
where Gpy, is the submatriz of G corresponding to the row and column index set p.

According to Lemma [B.1] the calculation of G,, only requires the values of G associated
with row and column indices in ¢, rather than the whole inverse of the Schur complement, i.e.,
this observation implies that Gy, is determined by (G1)gq = (A7 ")4q, a diagonal block of the
inverse of the matrix A; of a smaller size than the original larger matrix A.

3.1.2 Interpolative Decomposition

The second tool repeatedly applied in SellnvHIF is the interpolative decomposition (ID) [34] for
low-rank matrices based on Lemma [3.2] below.

Lemma 3.2. Let A € R™*™ with rank k < min(m,n) and q be the set of all column indices of
A. Then there exist o disjoint partition of ¢ = U ¢ with |G|= k and a matriz T, € RFx(n—Fk)
such that A. 3 = A. §14.

The sets ¢ and ¢ are called the skeleton and redundant indices, respectively. In particular,
the redundant columns of A can be expressed by its skeleton columns and the associated inter-
polation matrix from Lemma[3.2l The following corollary shows that matrix A can be sparsified
by multiplying a triangular matrix constructed from the interpolation matrix T;, in Lemma [3.21

Corollary 3.3. With the same assumptions and notations in Lemmal3.2, it holds that
I I
A|: —Tq I :| = [ A;)q A:,lj } |: —Tq I :| = [ O A;@ ]

3.1.3 Block Inversion with Skeletonization

The application of Corollary[3.3]can eliminate redundant DOFs of a dense matrix with low-rank
off-diagonal blocks to form a structured matrix of the form (B.1]) such that we can apply Lemma
[B.I This idea is called block inversion with skeletonization summarized in Lemma [3.4] below.
The skeletonization idea was originally proposed in the HIF [27].



Lemma 3.4. Let

T
A — |: APP qu ]
Agp Agq
be symmetric with Agp low-rank. Let p = pU P and T, satisfy Agp = AgpTyp. Without loss of

generality, rewrite
T T
P Aﬁﬁ AQ:ﬁ

App
A= Ay Ay A
A Agp Agq
and define
1
Qp=| T, I
I
Then "
o Bpp Byp
A2 Q,AQy=| By Ap Ay |, (3.2)
Agp  Agq
where

Bﬁﬁ = Aﬁﬁ — TgAﬁﬁ — Angp + TgAﬁﬁTp, and Bﬁﬁ = Aﬁﬁ — AﬁﬁTp.
Assume that Byp is nonsingular. Let G = A™Y, G = A™Y, G1 = Gpugpug, A1 be the Schur
complement of By, i.e.,

—1nT T
A - [ App = BppByy Bpy Ay ] ,
ab aq

and Gy = AT'. Then the following formulas hold by Lemmal3.1 and (3.2),
~ _ _ ~ _ T
Gpp = Gpp = By + [~ By BY; 0] Gy [=By; By 0]

pp —p P

—1T -1 pT —1pT
Gl_{TpBwT O]+[Tp3ﬁﬁ3ﬁp+1 I]Gl[BﬁﬁBﬁva +1

I

According to Lemma [3.4] the calculation of Gj; only requires the values of Gy associated
with row and column indices in p, rather than the whole inverse of the Schur complement, i.e.,
this observation implies that G is determined by (G1)zp, a diagonal block of the inverse of the
matrix A; of a smaller size than the original larger matrix A. Though A; might be dense, as
long as it has low-rank off-diagonal blocks, the same idea as in (3.2]) can be applied to A; to
compute a diagonal block of the inverse of A;, which forms a recursive algorithm to compute
the diagonal blocks of A efficiently.

This skeletonization is the key contribution of Ho and Ying [27] and the reason why it
is applicable is stated as follows. The key conclusion is that the above Schur complements
have specific low-rank structures. The matrix A;pl from a local differential operator often
has numerically low-rank off-diagonal blocks. Especially, the Schur complement interaction
Agq — AgpA, AT also has the same rank structure, which is verified by numerical experiments.
In the next subsection, we apply Lemma [3.1] and Lemma [3.4] to construct the hierarchical Schur
complements for the diagonal blocks of a matrix A.

3.2 Hierarchy of Schur Complements

We discuss the differential operator domain with a grid size VN x /N = rg2E1 x rg2L1 and
an initial index set Jy (e.g., row-major ordering). The corresponding matrix A is of size N x N.
A hierarchical disjoint partition of the domain € (bipartition in each dimension) is performed
with rg X rg as the size of leaf domains and L as the total number of integer levels. Between L
integer levels, L — 1 fractional levels are designed to take advantage of the low-rankness of A as



much as possible. The hierarchy construction of Schur complements will be conducted at levels
1, %, 2, g, ...,and L.

For simplicity, consider the case of ro = 5 and L = 3. The whole domain is considered as the
top level (Level 3) and is divided into four blocks at the next level (Level 2). Each block is again
partitioned into four sub-blocks at a lower level (Level 1). Between two adjacent integral levels,
one fractional level will be added to skeletonize low-rank matrices corresponding to the fronts
between domain blocks. Hence, the whole domain is divided into 2¢~! x 2¢~1 = 16 blocks at

the bottom level (Level 1) as shown in Figure[ll

Figure 1: The DOFs in the first level. The domain is partitioned into 16 blocks in the Level 1 and
the dash lines show two of blocks in the decomposition. In this and following integral levels, the
interior points are marked in gray and the boundary points are marked in black. It’s noted that
the blocks share edge in practice to reduce the prefactor.

3.2.1 Level /=1

The domain € is partitioned into 217¢ x 2L=¢ = 4 x 4 disjoint blocks at Level £ = 1. All points
are separated into interior points and boundary points in each block. The interior points indicate
that they are not related to the points of other blocks, and the boundary points indicate that
they are related to the points of other blocks, i.e., having neighboring points in other blocks.
The index set of the interior points are denoted as I;,;; for each block (gray points in Figure
[1), and the index set of the boundary points are denoted as Ji.;; of each block (black points
in Figure [1), where 7, = 1,2, 3,4 are the indices of blocks in each dimension. The locality of
differential operators leads to A(I1.j, [1,5,) = 0 (or A(I1,5, Ji.50) = 0) if (4,7) # (7, 7).



Firstly, Gauss elimination is used to eliminate the interior points, thereby shifting the focus
of the problem to the boundary points. To do this, we need to apply necessary row and column
permutations to the matrix A defined with the index set Jy such that all the interior points are
in front of the boundary points, that is, the indices Jy is changed to

Py
Jo — (I;nliaz.Jvaal Ji1 12 J144)

by a permutation matrix P;. Then all interior points and boundary points are separated by
notation |. In fact, the permutation matrix P; can permute the matrix A into a new matrix

Ay =P AP

with index set (I1|J1), where It = I1.1111;12...J1,44 gathering all the interior points, and J; =
Ji;11J1;512...J1;44 for all the boundary points. Represent A; via

Uy VlT}

Ay = P[TAP = [ VoW,

(3.3)

where U; is a block diagonal matrix as follows because the interior points of different blocks in
Figure [L are not related to the points of other blocks:

Uit
Ui2
Ur=A(h,h)=

Uia4

with U1, = A1(L1.45, [1;i5)- Moreover, V3 is also a block diagonal matrix as follows because the
interior points of each block just is related to the boundary points of the same block:

Vi
Viie
Vi=A(J1,h) =

V44
with Vi, = A1(J1.i5, [145). As for W1, we just write it with index set,
Wi = Al(Jl, Jl)

The inverse of U; can be computed directly as follows since it is a block diagonal matrix with
diagonal blocks of a small size (rg — 2)? x (ro — 2)?,

-1
Uin

-1 ;
U, =

Therefore, we can obtain the following inverse by Gaussian elimination,

-1 _
Allz[Ul VlT] =L1T[U11

Vi W, L (3.4)

(W1 = ViU 'V

with Ly = [ VIU_l I ] . Furthermore, V1U; ! can be computed independently within each
-WU;
block with block diagonal matrices V; and U,

—1
Vin Uy X
. ViaaUyp
‘/lUl =

-1
V1;44 U1~,44



Moreover, the block diagonal matrix V U, 1V1T also can be represented as
VinUpn Vil

Vi2Up s Vils
Vv = Tt

-1 v,T
V1;44 U1;44 V1;44

Combining (3.3) and (3.4), we have
1 “1p-1 r[ Ut 1
G=A"=P APt = P L] G | P (3.5)

where Gy = (W; — ViU, 'ViT)~! is the inverse of the Schur complement of U;. Therefore, we
reduce the problem to a smaller matrix W; — ViU 1VIT by eliminating interior points, which is
essentially the block inversion idea in Lemma [3.1]
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Figure 2: (a): The DOFs in the Level 3/2. The domain is partitioned into 24 Voronoi cells about
the edge centers. In this and following fractional level, the redundant DOFs are marked in gray and
the skeleton DOFs are marked in black. (b): The DOFs in the Level 2. The domain is partitioned
into 4 blocks in Level 2 and the dash lines show one of blocks in the decomposition. (c): The DOFs
in the Level 5/2. The domain is partitioned into 4 Voronoi cells about the edge centers. (d): The
DOFs in the Level 3. This is the top level.



3.2.2 Level { =3/2

At this level, our goal is to find G; in (B.5]), which is defined on the index set J; corresponding
to boundary points of domain blocks in the first level (i.e., the black points in Figure[l). We will
apply Lemma [3.4] to skeletonize the fronts. Partition the domain € into 2-—¢+3(2L—t+z — 1)
Voronoi cells [35] about the edge centers (red points in Figure 2 (a)). In this example, there
are 24 Voronoi cells in total since L = 3. In Figure 2 (a), a Voronoi cell is an area centered
at a redpoint with dashed lined compassed. Each DOF on the boundary between two adjacent
Voronoi cells is randomly assigned to one and only one of these two cells. Thus a Voronoi cell
includes the DOF's inside the corresponding area and some of the DOFs on its boundary. Since
the DOFs of a Voronoi cell only interact with the DOF's of a few other cells nearby, that is, the
matrix allows low-rank off-diagonal blocks. We can apply an ID to select the redundant and
skeleton DOF's approximately in each cell and record the interpolation matrix 7j as in Lemma
3.2l In the ith cell (see Figure[2 (a)), the redundant DOF's (gray points) are denoted by I3 ;, the
skeleton DOFs (black points) are denoted by J ) and the corresponding interpolation matrix
is denoted by Tg ;- As in the former level, we reindex J; by a permutation matrix P% such that

Pg3

Ji =2 (Is T3 005,04l T30 T3 0T 3.00) = (Is|3).

Denote
As = PYY(Wh — iU VE)py = | U8 vy
L B T I P
with
Us :AQ(IQ,IQ), V;ZA;(J;,I;), and W3 :AQ(J§,J§).
2 2 2 2 2 2 2 2 2 2 2 2
Arrange 111, ..., T1;24 in a block diagonal matrix
_T%;l
T§ = 9
2
—Tg;24
and construct a |Jp|x|J;| matrix
1
@3 = { Ty I }
Then we have B B
o . VI
W=aha =y ow, |
2 2

U%(I%,zalgg)_ov %(‘]%15[%,]):05 VZ#]
Then .
7, vl ]~ 1
_ U
-1 _ 2 3 T 3
el W] It T i
2 2 2
with
Ly = L Gs =(Ws —VsU; 'Vt
5T -VaUt 1|0 TR TR T e T
2
as in Lemma [3.4] Note that —Vg U;*' and 7% U; 'V are block diagonal. Therefore,
2 2 2

L:QYP;t.
2 2 2

Therefore, we reduce the inversion problem to a smaller matrix W% — Vg U; 1V§T by elimi-
2 2
nating the redundant DOFs as in Lemma [3.4

10



3.2.3 Level /=2

At Level £ = 2, the domain Q is partitioned into 2X=¢ x 2L=¢ = 2 x 2 blocks with interior and
boundary points as shown in Figure [2 (b). Similarly, we reindex the points in J 5 into I and
J2, by a permutation matrix P, such that

Js — == (In;1112:1202;21 I2:92| Jo;11 J2:12 2,01 Jo;22) := (12| J2).
Apply a similar procedure as at Level 1 and denote

Us VI
Voo Wh

with
Uy = As(I2, I3), Vo= As(Jo,I2), and Wy = As(Js, J2).

Note that Us and V5 are block diagonal. Analogously,

Ga

—1
= PLY { Us ] LoPyt,

Go

where

I _ _
Note that the update VoUy 1V2T is block diagonal. Now we have eliminated the interior points
and the inversion problem is reduced to a smaller matrix Wy — VoUy 1V2T as in Lemma [3.1]

3.2.4 Level { =5/2

Just as in Section 3.2.2] at this level, we want to find G5 indexed by Jo. Again, we divide the
domain € into 2L-¢+2 (2L—4+2 —1) = 4 Voronoi cells (see Figure2 (¢)). Again, the DOFs on the
boundary between two cells are randomly assigned to one of cells. Through ID, we distinguish
the redundant DOF's T 5 ; and the skeleton DOF's Js 5. ; in the ith cell, and record the interpolation
matrix TQ)’» Remdexmg Jo with a permutation matrlx P) such that

Ps
7 pp—
o = (Isalsols sls ylJs,1J5.005.305.4) == (5] J3).

Denote
~Ts 4
3
Ts =
2
~Ts 4
and a |Ja|x|Ja| matrix
I
QE) - |: Ts 1 :|
2
Then
_ Js Vi
Ay = QP (We = Rl V)P Qy = [ A
2 2
with - -
Ug(]é’l,fg;]):(), %(Jéz,lé;j)—o, Vi # j
Therefore,
-1
Go~PyQiLY | "8 | L3QiP; Y,

11



where
I

_ _ _ (1, rr—1y,7\—1
Ly=| pop 1|0 Gy=Wy=V0g' v
2

5 5
2 2

Nl

5
2

S]]
wlan

Note that U% and V% are block diagonal. The matrix inversion problem now has been reduced
to Wﬁ — ‘75 17;1f/?
2 2 3 3

3.2.5 Level /=3

The domain € is partitioned into 2~¢ x 2£=¢ = 1 x 1 block, i.e., no partition at this level. The
interior and boundary points are shown in Figure [2 (d). Similarly to previous integer levels,
reindexing J 5 into the union of an interiors index set Is and a boundary index set Js with a
permutation matrix Ps such that

Js =2 (Is] Js).
Finally,
Gs = PsLT Uy L3P;?
2 343 G3 343 >
where
I _ _
L3 = |: _‘/‘3U§1 I :| 7G3 = (W?) - ‘/E’)US 1‘/:’)T) 1'

We calculate the inverse of G directly at this point.

3.2.6 Summary of Construction

We start with the hierarchical domain decomposition scheme and the skeletonization technique.
To construct the hierarchical structure of Schur complements of the matrix A on the grid of
size N x N, at each integral level, the points in each block are divided into interior points and
boundary points. So the interior points only interact with the points within the same block. We
reindex the points and eliminate the interior points accordingly. At each fractional level, the
domain is divided into Voronoi cells, and ID is applied to each unit to distinguish redundant
points and skeleton points such that the redundant points only interact with the points within
the same cell. We will reindex these points accordingly and eliminate the redundant points.
The following relationship is defined for each level

G=A1, (= 0;
Ge =< Gy = (W, = VU7 'VI)=Y, £ is integral; (3.6)
Gy= (W, — ‘74(7[1\75T)’1, / is fractional.

Based on (B.6]), it follows the recursive relation with integral ¢,

Ul
Gio1~ P, 1 LT 3 L, .QT P!
-1 efiQefg 1 G, 1 E*§Qé—% =L

2

G, —prr | U LeP!
f—§ (27 GE Ly -
Therefore, we can construct the hierarchy of Schur complements from the bottom. We organize

this algorithm in Algorithm [l Note that the reindexing is implicitly included in Algorithm [T,
when we use the index sets Ip,;; and Jy,;; or Ip; and Jg,; for Ay.

12



Algorithm 1: Constructing the hierarchy of Schur complements of A

1 Determine /,,,x and decompose the domain hierarchically.
2 Generate index sets I1,;; and Jy.;; -

3 A «— A.

4 for £ =1 to ly.x do

5 AZ—!—% (—Ag(Jg,Jg).
6 for (i,j)e {block index at level ¢ } do
7 Usij < Ae(Luzijs Lui)-
8 Viij < Ae(Jeiz, Lesij)-
9 Calculate U, Zi
10 Calculate Ky.;; < —Vg;,-jU;%.
11 Calculate A“_% (Jg;ij, Jg;ij) — Aé—i—% (Jg;ij, Jg;ij) + Kg;,'jVé’;j.
12 end
13 if / < fpax then
14 Construct Voronoi cells at level £ + %
15 for k € {block index at level { + 3} do
16 I}se ID to compute Tz+%;k= IH%;k and J“_%;k.
17 Upih AZ+%(I£+%;k’IZ+%;k)‘
18 Vierw < A (o Iy1g)-
7 T
19 Calculate £z+§;k — Vé+%;kTZ+%;k'
20 Calculate Vé-i—%;k - VZ-%—%;I@ B AZ—%—%(JH-%;I@? JZ-%—%;k)Té-i-%;k'
_ A _ A
21 Calculate U“_%;k — U“_%;k _£z+%;k — Tz+%;kvﬁ+%;k‘
22 end
23 Appr = A1 (1, Jpp ).
24 for k € {block index at level { + 3} do
—1
25 Calculate U£+§;k'
% Y 7—1
26 Calculate Ké+%;k — _Vé+%;kU5+%;k'
7 T
28 end
29 Construct Ip4q1 and Jyyq.
30 end
31 end
32 Calculate Gy, <+ AZ_1 1
n)ax+§
Output:
1y, Jg,IH%, J“_%, U[;i;, U[__:%;k’K&ij’KZ“r%;k’Gémax’ for each ¢,1,j, k

13



3.3 Extracting the Diagonal of the Inverse of Matrix

After obtaining the hierarchical structure of Schur complements, we now apply the observation
in Lemma [B.1] to extract the diagonal of the inverse matrix G. The point is that it is not
necessary to compute the whole Schur complement Gy. More precisely, our observations show
that:
Gg_l(lg;ing;ij, Ig;ing;ij) is determined by Gg7% (Jg;ij, Jg;ij),
(CTREN O VRSP /!

— 5510

Ie 1 JZ é

1y _1.) is determined by Gg(Jlié;i, Jei%;i).
Therefore, we can develop a linear scaling algorithm to exact the diagonal elements of G re-
cursively. We organize this algorithm in Algorithm 2l Note that the reindexing is implicitly

included in Algorithm [2, when we use the index sets Jy,;; or Jo,; for Gy.

3.3.1 Level /=3

We start from the top level / = L = 3 to extract information of interest. Given G3, G 5 is
obtained by the following formula:

U3—1 + U3_1‘/3TG3‘/3U3_1 _U3—1V'3TG3

G —GsVaU; ! Gs

:Pg Pl;l

5
2
Submatrices in the bracket are indexed by (/3|J3). G5 is indexed by J5 = Js,1J5,9J5.3J5.4
due to the permutation matrix Ps. In fact, we only need to focus on G% (J%;i, J%;i) instead of
off-diagonal blocks in order to extract the diagonal entries of G 5. Hence, represent G 5 as

Gs., * * *
5
*  Gsg * *
Gs = 2’
2 * * Gs.q *
PR
ES * * Gg;4
with
G§'i:G§(J§'i7J§'i)'
29 2 27 2
3.3.2 Level { =5/2
At Level £ =5/2, we now have
. G U, 'ViGs +GT ] |
~ _ 2 2 2 -
2 P% —GsVsUs; ' +T:G, B 5 (37)
2 2 3 2
where o o
Go=U;' + U, VG VU,
2 2 2z 2 2 3
and

Gy = ngng—GngU?lT;)T—Tgﬁglngg +Gs.
2 2 2 2 2 2 2 2 2 2 2

Note that Tg, U gl, and Vg are block diagonal. We have
2
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as well as

Therefore, the corresponding diagonal blocks of Go can be computed just using block-block
multiplication accordingly. Furthermore, similar operations can be applied to ®s.

All matrices in the bracket of ([ﬂ]) are indexed by (I5]Js). G3 is indexed by Jo =
Jo:11J2;12J2;,21 J2;22 due to the permutation matrix P% Slmllarly to the previous level, we only
need to seek the diagonal blocks Ga(Ja,i5, J2.i5)-

Algorithm 2: Extracting the diagonal of A~}

1
2
3
4

[}

© ® N o

10

11

12

13

14

15
16
17

Input:
Output of Algorithm [T

for { = {,ax to 1 do
for (i,j)e {block index at level ¢ } do
Calculate GZ_%(IZ;Z‘]',I@;U) — UZ%- + thg(Jg s J0:ij ) Kpsig -
Calculate Gé_% (Jg;ij, [Z;ij) — Gg(Jg;ij, Jg;w)Kg;ij.
Gyt Ueij Jeig) < Go_s (Jeigs Toig) T
G 1 (Jeijs Jeig) = GolJigs Jesij)
end
if /> 1 then
for k € {block index at level { — 3 } do
Calculate Gé—l(lf_%-kalg_%-k) «— Ut 1 —I—KT 1 kGZ—%(JZ—%-IwJZ %k)KZ—% k
— ' ’ - — 27 ’ ' ’
Calculate Wf—l(']f—%;kvlé—%;k) «~ G, 1 i
GZ—I(JZ—%;M Ié—%;k) — Wf—l(‘]ﬁ—%;lwlﬁ—%;k) + TZ—%;kGZ—l([e—%;kv Ié—%;k)'
Gé—l(lz_l ko J,_ : k) <~ Gé—l(']z_%;kv Ig_%;k)T-
Gy 1(Jz_l o Jo 1)
Gé—l(*]é—%;k’If—a;k)ngl%;k+TZ—%;kW€—1(JZ—%;k7 L 1) G 1 (p i Joo1)-
end
end
end

3.3.3 Level /=2
At Level £ = 2, we have

Uy ' 4+ U W GoVoUy b U 'V Gy

G —GaVaU;y ! Ga

=P Pyt (3.8)

[V

Analogously to Level 3, submatrices in the bracket of (3.8)) are indexed by (I2]J2). G 5 is indexed
by Js = Js,y -+ Ja5, due to the permutation matrix P,. Again, only G3(Jz,;,Js,;) needs to
be computed.

15



3.3.4 Level { =3/2

Proceeding to Level 3/2, now

O~ p g1 _0%—1 7%TG% +91T§ . 29
VE5E | —GaValU ' +T:Gy (3] 37 (39)
2 2 3 2
where - o
G =U;'+U;'ViGsVsU; ",
5 5 3 2 2 3%
and

(3] :ngng—GngU{ngT—TQUEIVETGg +Gs.
2 2 2 2 2 p) 2 2 p) 2 2

Similarly to Level £ = 5/2, diagonal blocks of Go and 5 can be computed quickly using block-
block multiplication accordingly. Submatrices in the bracket of (3.9) are indexed by (Iz|J3).
G, is indexed by Ji; = Ji;11J1;12 - - - J1;:44 due to the permutation matrix P%. Again, only the
diagonal blocks G1(J1.i5, J1;:;) are needed.

3.3.5 Level /=1

At Level 1, the same procedure is done as at Level 2 and Level 3. We can obtain G (J1,i5, J1;i5)
from Level % and G(Jo,ij, Jo,ij) is computed directly. Finally, the diagonal elements in G can
be obtained by combining the diagonal elements of each level.

3.4 Complexity Estimates

We next investigate the computation complexity of SellnvHIF. Let us assume the domain con-
tains N = v/N x v/N points and set v N = 2F with ;. < L.
We denote the number of blocks at level £ as ng(¢), and have following fomurla

(0) = 22(bmax—L) { is integral;
NBV) = g2tmax—2(6-1) _ 2lmax—l+3 ¢ ig fractional.

The number of points of each block or cell is denoted as np(¢). Note that interior or redundant
points of the previous level are not counted because they have been eliminated in previous levels.
To approximate np(f) , we use the assumption about the skeletonization in [27]. Then it can
be shown that the typical skeleton size of a cell is

ke = O(2).
Then we have
9AL—lmax+1) ¢ —
np(f) = O(2Ftmax) ¢ =3,
O(4), (>3
Firstly, the construction step is considered and the following steps are shown in Algorithm
[[L At an integral level ¢, we need to compute the inverse of U;; (Step 9) for each block.
Then multiply the inverse with Vp,; to obtain Kp;; (Step 10) and finally update the new
Ap (Jusij> Jesij) (Step 11). At a fractional level £+ £, for each cell, we need to compute Tyy1y
using ID (Step 16, since each cell only interact with O(1) cells, then the cost for this step is
O(np(¢)?)). Then apply it (Step 19, 20, and 21) and multiply the inverse of Ue+%;k (Step
25) with 1_/“%;,6 to get I_{H%;k (Step 26). Finally, update Ag1(Jpy 145 Joq 1) (Step 27). The
computational cost for these steps at each level is O(np(£)?). Furthermore, the total cost for
level £ is O(np(€)np(€)®) for £ > 3, since there are np(¢) blocks at Level £.
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Since

Lmax
22(Zmax71)26(L7€max+1)+22£max7123L73£max+ Z (nB(é)nP(g)B‘)
=23
Lrax
< C(2z(emax—1)26@*fnmx“) 4 92lmax—193L—3lmax | Z (2%,,,6,(—2@@3))
=25

< 00(26L74£max + 23L7£max + 22gmax)7

where C and Cj are constant. Let £y,,x = O(L), the total computational cost for the construction
step is O(N) (the cost for Step 32 is O(np(£)?)).

Furthermore, the extraction step is analyzed now and the following steps are considered in
Algorithm 2 At an integral level £, Gy_1(I¢5,1e:5) (Step 3) and Gy_1(Juij; Lesij) (Step 4)
are calculated for each block. At a fractional level ¢ — %, for each cell, we need to calculate
Goe1(Lp_ 14 Ly 1) (Step 10), Ge—1(Jp_ 1. 1) (Step 12) and Goo1(Jp_ 15 Jp— 1) (Step
14). The computational cost for these steps at each level is O(np(£)?). Hence, the total cost
for level £ is O(np(¢)np(£)3) for £ > 3, since there are np(¢) blocks at Level £. Similarly, the
complexity for the extraction step is also O(N).

Therefore, the total computational complexity is O(NN) by combining the construction step

and extraction step if the assumption in [27] holds.

4 Numerical results

We show numerical results for the MPB equations in two dimensions to verify the performance
of the proposed SellnvHIF. In particular, the scaling of the computational time of SellnvHIF
is concerned. We set a uniform fugacity parameter A = 0.2 and a coupling parameter = = 1.
The error criteria of the PB solver and the self-consistent iteration are both 10~8. The relative
precision of the ID step is 1078, The initial values for the potentials in the iteration are always
constant ®© = 0 in our examples. Dirichlet boundary conditions are used for both the PB
and the DH steps. The calculation is performed on a machine with Intel Xeon a 2.2GHz and
2TB memory. The statistics of calculation time are averaged over five times. We compute the
relative L? to measure the accuracy of SellnvHIF:

||(I> — (I)refH2
||q)rcfH2

where @ is the electric potential computed using SellnvHIF and @, is the electric potential
computed with sufficiently large grid size. To measure the accuracy of the whole algorithm and
the convergence with respect to the grid size, we also compute the absolute L? error %
using a reference solution ®,.s computed with sufficiently large grid size.

4.1 Example 1: The Discrete Elliptic Differential Operator

We consider the diagonal part of the inverse of the discrete elliptic differential operator as the
first example. Using the five-point stencil discretization, a 5-diagonal N x N sparse matrix D5
is denoted as:

M I 0 4 1 0

D5 = -1 - - , M = -1
’ ' -1 -1
0 - M 0 -1 4
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We then calculate the diagonal part of inverse of matrix D5 by SellnvHIF and the exact method
in [23], respectively. In Table [T, the absolute L? error between the numerical results and the
reference solution obtained with corresponding matrix size by exact method are displayed. Table
[L also shows the relative L? errors, which verify the accuracy of SellnvHIF. Finally, Table[L also
shows the computational time of the algorithm and verifies the linear scaling of SellnvHIF.

Matrix size VN  SelInvHIF time Absolute error Relative error

256 3.20F +1 4.78F — 13 3.53E -8
512 1.04E + 2 2.0bF —13 0.39F — 8
1024 6.15E + 2 2.88E —13 2.13E -7
2048 243F +3 5.80E — 13 2.00E -6

Table 1: The CPU time, accuracy, and matrix size. The SellnvHIF time means
the execution time spent for one step SellnvHIF.

4.2 Example 2: The Charge Density is a Continuous Function

The second example is a continuous charged distribution in the region [0, L]? with L = 32. The
distribution of charge density is

We then calculate the results of the MPB equations by SellnvHIF. Similarly, the left panel of
Figure B visualizes the distribution of the convergent potential in this system with different
matrix sizes N = 2562, 5122 and 10242. The right panel of Figure [ displays the absolute error
in different locations between the numerical results and the reference solution with a sufficiently
large grid size N = 20482, The relative L? errors maintain approximate accuracy of first-order
in Table 2 due to the discontinuous of the derivative of the potential at z = L/2. Table 2 also
shows the accuracy of the whole algorithm to compute the potential ® compared to a reference
potential computed with a sufficiently large grid size N = 20482, which verifies the convergence
of our algorithm. In addition, Table 2 also shows the computational time of the algorithm to
verify the linear scaling of SellnvHIF. Finally, the scaling results of the SelInvHIF algorithm are
shown in Figure [0l

Matrix size VN Total time SellnvHIF time Absolute error Relative error

256 3.16E +1 3.10E +1 713E -3 0.06F — 2
512 1.35E + 2 1.32E + 2 3.01F -3 2.16F — 2
1024 59.81E + 2 9.69E + 2 1.02E -3 7T27TE —3
2048 240F +3 2.35E +3 - -

Table 2: The CPU time, accuracy, and matrix size. The total time and the
SellnvHIF time mean the execution time spent for the one step iteration in the
whole program and the time for one step SellnvHIF, respectively.

4.3 Example 3: The Charge Density is a Delta Function

In last two examples, we consider discontinuous charged distribution in a region [0, L]? with
L = 32. Let the charge density be

ps() = 6(a — L/2).
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We then calculate the results of the MPB equations by SellnvHIF. Similarly, the left panel of
Figure [ visualizes the distribution of the convergent potential in this system with different
matrix sizes N = 2562, 5122 and 10242. The right panel of Figure [ displays the absolute L?
error between the numerical results and the reference solution obtained with a sufficiently large
grid size N = 20482. The relative L? errors maintain approximate accuracy of first-order in
Table [3 due to the discontinuous of the derivative of the potential at x = 0.5L. Table [3 also
shows the accuracy of the whole algorithm to compute the potential ® compared to a reference
potential computed with a sufficiently large grid size N = 20482, which verifies the convergence
of our algorithm. Furthermore, Table 3 also shows the computational time of the algorithm to
verify the linear scaling of SellnvHIF. Finally, the scaling results of the SellnvHIF algorithm are

Potential

05! — N =256 | 7 | | —N=26 |
N = 5122 0.025 t N = 5122
—N =1024%|| © 1 |—N =10242
0.4 S 002} N |
L 1
I — 1
0.3 §0.015 :‘
5 ]
0.2} £ 001 e
2 1inh
0.1 0.005 / \
A\
0 10 20 30 0 10 20 30
XT xXr

Figure 3: Numerical results about the continuous charge density. Left: potential
distributions with different matrix size; Right: the absolute error between the
numerical results and the reference solution with N = 20482.

shown in Figure [Gl

Potential

— N — 256 0.14 " — N —256° |
N = 5122 0.12 | N =5122 ||
151 —N=10242] 5 PN = 10242
= 01 i
| 0
= 0.08
1r .S 1)
$0.06 P
€004/ [
0.5 =z i \
0.02¢ )A \
\
‘ ‘ — o —i
0 10 20 30 0 10 20 30
X X

Figure 4: Numerical results about the charge density with a delta function.
Left: potential distributions with different matrix size. Right: the absolute
error between the numerical results and the reference solution with N = 20482.
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Matrix size VN Total time SellnvHIF time Absolute error Relative error

256 3.51E +1 3.34F + 1 3.08E — 2 6.20F — 2
512 1.49F + 2 141FE + 2 1.13E -2 2.30F — 2
1024 6.23E + 2 5.93E + 2 4.54F — 3 9.22F — 3
2048 2.53E +3 242E + 3 - -

Table 3: The CPU time, accuracy, and matrix size. The total time and the
SellnvHIF time mean the execution time spent for one step iteration in the
whole program and the time for one step SellnvHIF, respectively.

4.4 Example 4: The Charge Density is a Combined Delta Function

In the last example, we have two charged lines dividing a plane into three parts. The computa-
tional interval is [0, L] with L = 32, where the region of [0.4L,0.6L] is inaccessible to ions. The
fixed charge density is

pr(xz) =6(x —04L) — 6(x — 0.6L).

We solve the MPB equations using SellnvHIF. The left panel of Figure[5 visualizes the distribu-
tion of the convergent potential in this system with different matrix sizes N = 2562, 5122, and
10242. The right panel of Figure [l displays the absolute L? error between the numerical results
and the reference solution obtained with a sufficiently large grid size N = 20482. The relative
L? errors maintain approximate accuracy of first-order in Table { due to the discontinuous of
the derivative of the potential at x = 0.4L and = = 0.6L. Table[4 also shows the accuracy of the
whole algorithm to compute the potential ® compared to a reference potential, which verifies
the convergence of our algorithm. Furthermore, Table 4 also shows the computational time of
the algorithm verify the linear scaling of SellnvHIF. Finally, the scaling results of the SellnvHIF
algorithm are shown in Figure [6.

— N = 2562 0ol = N =256 |
2} 2 || : \ 2
N =512 1) ! N =512
—N=1024*| & 1 \ —N = 10242
s I_,__,015 ,: x :
8 8 .4 SR
S g I \
a £ [ \
2 !
Z0.05¢ \
/ \
/ ~ -
0 10 20 30 0 10 20 30
X xr

Figure 5: Numerical results about the charge density with a combined delta
function. Left: potential distributions with different matrix size; Right: the
absolute error between the numerical results and the reference solution with
N = 20482 .
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5

A fast algorithm, SellnvHIF, is proposed to solve the MPB equations by combining the hierarchi-
cal interpolative factorization and the original selected inverse method. An O(N) computational
complexity in terms of the number of operations and memory is achieved to obtain the diagonal
of the inverse of a sparse matrix discretized from an elliptic differential operator. We applied
this algorithm to the two-dimensional MPB problems and attractive performance is obtained in
terms of both accuracy and efficiency in solving the MPB equations. In the future, we will try
to develop another fast algorithm with O(NN) complexity for three-dimensional problems based

Matrix size vN Total time

SellnvHIF time

Absolute error

Relative error

256 299F +1
512 147E + 2
1024 6.06F + 2
2048 2.54F +3

290F +1
1.42F + 2
5.86E + 2
245F + 3

1.08E -1
4.75FE — 1
1.59EF — 2

1.22F -1
5.34F — 2
1.79E — 2

Table 4: The CPU time, accuracy, and matrix size. The total time and the
SellnvHIF time mean the execution time spent for one step iteration in the

whole program and the time for one step SellnvHIF, respectively.

1055‘

—h
o
~

- -O(N)
- -O(N*?)

: ;Exami)le 2
- \~—-Example 3
Example 4

Sellnv Time(s)

10°
Matrix Size N

107

Figure 6: Scaling results for SellnvHIF time in solving MPB equations. The
solid lines represent the computational time for one step SellnvHIF under the
different charge distribution. The reference scalings (black dashed lines) of

O(N) and O(N3/2).

Conclusions
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on a similar construction.
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