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Abstract

Pair production in a constant electric field is closely analogous to bubble nucleation in a false
vacuum. The classical trajectories of the pairs are Lorentz invariant, but this invariance should
be broken by the nucleation process. Garriga et al. used a model detector, consisting of other
particles interacting with the pairs, to investigate how pair production is seen by different Lorentzian
observers. They found that particles (antiparticles) of the pair are predominantly observed moving
in the direction of (opposite to) the electric field and concluded that observers see pairs nucleating
preferentially in the detector’s rest frame. Here, we apply this approach to the case where two
detectors moving relative to one another are used to observe the particle and antiparticle of the
same pair. We find that each detector will still observe nucleation to occur in its rest frame,
regardless of the motion of the other detector. However, if the relative velocity of the two detectors
is sufficiently high, the particle and antiparticle of the pair can be observed moving towards one

another with arbitrarily large momenta, contrary to the usual expectation.



I. INTRODUCTION

False vacuum decay by bubble nucleation is a fascinating process which raises some in-
triguing conceptual problems. It was first discussed in the pioneering paper by Voloshin,
Kobzarev and Okun [1], who argued that bubbles spontaneously nucleate at rest and imme-
diately start an accelerated expansion, approaching the speed of light. On the other hand,
due to the Lorentz invariance of the false vacuum, bubbles do not have any preferred frame
in which to nucleate. The authors of [1] suggested that the nucleation rate should include an
integral over the Lorentz group, in order to account for all possible rest frames of nucleation.
This integral however is divergent and yields a meaningless infinite result for the nucleation
rate.

An elegant resolution of this paradox was provided by Coleman [2], who developed an
instanton method for calculating the bubble nucleation rate. The instanton solution in this
case is O(4) invariant, and its Lorentzian continuation, which describes time evolution of the
bubble, is invariant with respect to Lorentz boosts. From this Coleman concluded that ”an
expanding bubble looks the same to all Lorentz observers, and to integrate over the Lorentz
group is to erroneously count the same final state many times.”

This, however, still leaves us with a puzzle. The Lorentzian continuation of the instanton
describes a bubble which contracts from infinite size, bounces at a minimum radius, and
then re-expands. It appears that the contracting part of the bubble worldsheet is unphysical
and needs to be cut off. But the cutoff would then break the Lorentz symmetry and define
a preferred frame.

We can imagine an inertial observer using a set of detectors distributed in space, which
are all at rest relative to the observer and which react to the presence of the bubble wall.
The question is then: What will be the nucleation surface in spacetime where the detectors
will register the bubble to nucleate?

This issue was addressed by Garriga et al. in Refs. [3, 4] using the close analogy between
bubble nucleation and pair production in an electric field. They considered a charged scalar
field ¢ in a constant electric field £ in (1+1) dimensions. The field was assumed to be in the
in-vacuum state, in which the initial hypersurface where the electric field is turned on and
the quantum state of ¢ was prepared is removed to the infinite past, t — —oo. It was shown
in [3] that this quantum state is Lorentz invariant. Particle-antiparticle pairs of the field ¢
are produced out of the vacuum at a constant rate [5]. In the semiclassical approximation,
and with a suitable choice for the origin of time, the distance 2r between the particles of the

pair satisfies
el — F =gl (1)

where the minimum radius is rp = m/eE, m is the particle’s mass and e is its charge.
The semiclassical approximation applies if m?/eE > 1, when the nucleation rate of the
pairs (o< exp(—mm?/eE)) is small. The worldlines in Eq. (1) are Lorentz invariant, but it is
usually assumed that the pair nucleates at minimal separation at ¢ = 0, so the parts of the

worldlines where the particles move towards one another (corresponding to the contracting
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(a) (b)
FIG. 1: (a) The standard picture of pair nucleation. ¢-particles and antiparticles nucleate at rest
and are then driven apart by the electric field. The solid black lines show the partcle’s trajectories
after nucleation; the dashed lines are the parts of classical trajectories that are usually assumed to
be unphysical and are discarded. (b) The same process viewed from a different reference frame,

where the nucleation now occurs at the hypersurface t' = 0.

part of the bubble worldsheet) are cut off (see Fig. 1). For a different inertial observer, whose
time coordinate ¢’ is related to ¢ by a Lorentz transformation, the expected cutoff surface
would be at ¢’ = 0, as illustrated in the right panel of Fig. 1. From the point of view of the
first observer this would correspond to a strange situation where the antiparticle is produced
moving in the ‘wrong’ direction and the particle appears at a later time.

In addition to ¢, Ref. [3] introduced another charged field 1 and a real field x which play

the role of a detector. The interaction between the fields was chosen of the form!

Hiny = Q(WTX + h.C.), (2)

where g is a coupling constant. If a t-particle is present in the initial state, it can annihilate
a ¢-antiparticle via 9@ — y. One can then study the momentum distribution of y-particles
in the final state to deduce the momentum distribution of the created pairs. The conclusion
reached in Refs. [3, 4] is that the pairs are predominantly observed to nucleate in the rest
frame of the w-particle detectors. This is consistent with the Lorentz invariance of the in-
vacuum: in the setup considered in [3, 4], the only frame that can determine the rest frame
of nucleation is that of the t-detectors. An observer comoving with the detectors will then
see the nucleation picture illustrated in the left frame of Fig. 1, while other observers will
see the distorted picture in the right frame of the figure.

It was noted in Ref. [3] that the in-vacuum state has some unphysical properties. An
electric field which is turned on at ¢ - —oo would create an infinite density of pairs. However,
if the back-reaction of the pairs on the electric field is neglected, as it was done in [3, 4], the
dynamics of each particular pair is not affected by this infinite background. One can then
hope that the analysis based on the in-vacuum would agree with a more physical approach

where the electric field is turned on for a finite time 7 in the limit when 7 gets very large.

! This model was earlier studied by Massar and Parentani [6] and by Gabriel et al. [7] to investigate the
Unruh effect for an accelerated detector.



The question we address in the present paper is what happens if two detectors moving
relative to one another are used to observe the particle and antiparticle of the same pair.
As before, we assume the field ¢ to be in the in-vacuum state. We will interpret this state
as approximating the state of ¢-particles in an electric field which is turned on for a long
but finite time, so that the density of pairs is finite. It will be convenient to use a slight
generalization of the model (2), which includes two sets of detector fields, with one set used
to detect ¢-particles and the other to detect ¢-antiparticles. Our goal will be to find out
whether or not the two detectors can observe the ”forbidden” part of history of the pair,
where ¢ and ¢ move towards one another.

The paper is organized as follows. In Section II we introduce our detector model and the
general formalism we use to calculate the distribution of y-particles in the final state. This
formalism is similar to, but somewhat different from that of Ref. [3]. In Sec. III we show how
our formalism can be used to recover the results of [3] for a single detector. The y particle
distribution for the case of two detectors is calculated in Section IV, where we show that
particles of the pair can in fact be observed moving towards one another. Our conclusions
are summarized and discussed in Section V. Some technical details of the calculation are

given in the Appendix.

II. GENERAL FORMALISM

Particle-antiparticle pairs nucleating in a constant electric field E in (1+1)D are described

by a complex field ¢(z,1),

¢ f\/_ m m b"ﬁ¢m* ikx : ¢ f\/_ a'n.k 4 + l'f!Tgbm*) —1k:r (3)

where ai* and bi" are respectively the particle and antiparticle annihilation operators in the

in-vacuum state |0, in),
ai™ |0, in) = " |0,4n) = 0. (4)

We also introduce four additional fields, +; and x;, § = 1,2, which will play the role of

detectors. ; are complex fields,
o dq dtn #']in de fmt dns iqr T fm in i me ,‘!]mt 71qm (5)
Vi= | Jam \Ga¥e T Fap¥e” ) € = \/— ¥4
and x; are real,
dp t * ina
: =f \/ﬁ (CpU)Xp + c_pmxp) eiPz (6)
We assume for simplicity that the fields ¢»; have the same mass m,, and the field x; have
mass m,. In what follows, we shall always use the notation k, ¢ and p to denote the momenta

of ¢, ¥; and x; particles, respectively.

We shall assume that the model satisfies the mass hierarchy:

my > my > m, (7)



or equivalently
A A A, (8)

where A = m2/eE for each kind of particles and the last inequality is needed for pair
nucleation rate to be exponentially suppressed, so that pairs can be described semiclassically.
The second inequality in (7) ensures that pair production of the detector i-particles can be
neglected (compared to that of ¢-particles). The first inequality in (7) can be relaxed to

my 2 My, as it was done in Ref. [4]. But assuming the strong inequality simplifies the

~

calculation and will be sufficient for our purposes here.
The in-vacuum mode functions of the field ¢ can be expressed in terms of the parabolic

cylinder functions,
in 1 (I \/_ —im /4
Pt = 2emya® " Do [’ % z}’ 9)

where

2= VeB(t+k/eE), v=-—"2%, A =—L

(10)

Here, k is the canonical momentum of ¢-particles, while the physical momentum changes

with time due to the acceleration by the electric field,
kphys = k + eEt, (11)

and opposite sign for antiparticles.
The in-vacuum mode functions ), for the fields v, are given by Eq. (9) with k replaced
by g and Ay replaced by A, = mfb/ el, and the mode functions for yx; are

Xp(t) = (2up) /26t (12)
where w, = (p? + m2)"/2. Similarly to (11), the physical momentum of 1-particles is
Gphys = q + eEt. (13)

The fields ¢ and 1 can also be expanded in the basis of out-vacuum mode functions, e.g.,

dk out jou ou otk ika dk out jou ol oul* —ikx
¢:/_27F (apeta + bt ) e, ¢f = -— (o + apigges) e e, (1)

where the out-vacuum annihilation operators satisfy
a0, out) = b3 |0, out) = 0 (15)
and the mode functions are given by
(0 = Gagye D VR = 6 (). (16)

The in and out mode functions are related by the Bogoliubov transformation

}ch — ﬂ'¢,¢’zm 4 ’8¢¢’zutt? (17)



where

=L = LT 18
Qg F(*l‘/*) ’ .3¢ € ( )
These transformation coefficients satisfy
2 —TAg ﬂ-mi 19
Bol? = e = axp (22, (19)
lagl® = 1+ |8l (20)

The quantity |,B¢|2 <« 1 is proportional to the ¢-pair creation rate.

The in-vacuum can also be expressed in terms of the out-vacuum as (see, e.g., [7])

* 1 * n n
0,in), = Zy exp [i—: / dkak"“”b‘ff} lout, 0),, = Z¢Z; (%) ( / dka;””bﬂ_“”) |0, out) ,
(21)

Here,
Z¢ = ¢ (U, cmt|0,zn)¢ (22)

is the amplitude of producing no ¢-pairs and the n-th term in the Taylor expansion corre-
sponds to a state with n pairs at late times. Similar relations can be written for the 1) field.

The in-vacuum of all fields is just the tensor product

|0,in) = |0, in)¢ 0, i’”)w(n |0:m>¢(2) |0>x(1) |O)x(2) (23)

and similarly for out-vacuum. Since there is no pair production of y particles, the in- and
out-vacua for the y fields are the same.

The amplitude Z, for producing no ¢-pairs vanishes in an infinite spacetime volume. We
shall therefore assume implicitly that the electric field is turned on for a finite time 7", with
the limits 7" — oo and E — ( taken at the end of the calculation. The limits are assumed to
be taken in such a way that the probability of producing a pair per unit length (~ |8;|*T)
remains finite. As we already mentioned, due to the mass hierarchy (7) the rate of creation
of 1/-pairs is negligible compared to that of ¢-pairs. Hence we will set Z,, = 1.

The interaction Hamiltonian density for our model is

His = 910"1x1 + 920" 0aX2 + hec. (24)

We are interested in the process where 11 and 1), particles in the initial state collide respec-
tively with ¢-antiparticle and particle of the same pair, producing x; and X, particles in the

final state, as illustrated in Fig. 2. Hence we choose the initial state as
[§) = dly £z 10, im) = ), (25)

where the bar over ¢’ indicates that this is the momentum of an antiparticle, and to streamline
the notation in the last step we suppressed the indices (1) and (2) specifying the type of
1h-particles.



FIG. 2: 4, and 9y detectors collide respectively with ¢ and ¢ particles of a ¢¢ pair, producing x;

and x2 particles in the final state.
The state (25) evolves into

1Fy=5S1i), (26)
at t — oo, where
S=1-14 f: dtH,(t) — %f: dt [: AT{Hps() Hine ()} + ... =1+ SV + 5D 4+
(27)
is the S-matrix. The y;-particle distribution in the final state is given by

dNX . (f‘ CL(l)cp(l) ‘f)
b =

For the process 1,90, — X1X2 that we are interested in, the lowest order in g; contribution

to (28) comes from the second order term in (27),

(flchen 1f) = fdmfdpi/dmfdp'z (47| S5 |p1p}) (1P| chp p2ph) (p2ph] S2lad) . (29)

where we have inserted two sets of intermediate states defined in the out-vacuum,

lpp) = C;(l)c;,(z) |0, out) . (30)
Now, using the relation
(PPl by Car) [P2Ph) = 8(p1 — P)3(p — p2)8(p; — P)) (31)
we find
el 1) = [ a0 1M.Fla, DI, (32)
where
M= [ at [ at (| T i)} o) (33)

has the meaning of the scattering amplitude for the process |gq’) — |pp').
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III. SINGLE DETECTOR
A. Constant coupling

We shall first show how the results of Ref. [3] can be reproduced in our formalism in the

case of a single v particle detector. In this case the initial state is
|Z) = d} ‘03 in’) = |Q) s (34)
q

the scattering process is ¢» — x¢, and the lowest order in g contribution to (28) comes from

the first order term in (27):

<m&ma]mfm]mfmmﬂmm&m@m&wmmm,mm

where we have inserted two sets of intermediate states
Ipk) = cjag |0, out). (36)

In this section we do not distinguish between the two kinds of 1) and x particles. Using that

(prky| chep Ipaka) = 6(p1 — D)3 (p — p2)6(ky — k2) (37)
we obtain
(fljenl) = [ dbMO, KD, (38)
where
Mip,kia) = [ di (ok| Hiu(8) o). (39

To calculate the amplitude M, we shall use the representation (21) for the in-vacuum in
the initial state (34). Only the n = 1 term gives a nonzero contribution. It corresponds to
the process where 9 scatters on the ¢ antiparticle of a pair, while the ¢ particle propagates

to the final state:

M= gzg,f7 f dzx f dt f dk’ 0, out| coar{'x} (z, t)dbap 674 |0, out) . (40)
A straightforward calculation gives

M= gZ,if,'6 dp+k—q)A, (41)
%

where

[mﬁmmmxm (42)

Here we have used an expansion of the field operators ¢ and ¥ in out-vacuum modes.
To make a connection with the calculations in Ref. [3], it will be useful to express the
amplitude A in terms of in-vacuum mode functions. To this end, we use Eq. (16) and change

the integration variable ¢ in (42) to —¢. This gives

A= [ a0, (43



where we have used that x* ,(—t) = x_,(t).
The integral in Eq. (43) was calculated in Ref. [3], where it was denoted A, (—q, —p).
With account taken of the mass hierarchy (7), it can be simplified to (see Appendix A)

1 T
Al —, [ —. 44
A~ o (44)

Substituting this in Eq. (41) for M and then in Eq. (38), we find

Bs

Oy

2
ﬂ'gz

e, 4
2eEm2w, )

(flclep|f) = 6(0)|Z4*

The infinite factor §(0) appears in the above equation because we used plane wave states

normalized to a §-function,

(qlg') = d(g —¢'). (46)

Then the denominator of Eq. (28) is {g|q) = 4(0) and the momentum distribution of x-

particles becomes

By * g dp

Qg

&2

2
dNy 292‘Z¢‘ a,

|AlPdp = | Z4[?

(47)

2 o
2eEm?2 w,

Apart from the factor | Z4|?, this is in agreement with the result of [3].

B. Time-dependent coupling

The y-particle distribution in Eq. (47) is Lorentz invariant, so it cannot be used to
determine the rest frame of pair nucleation. To address this problem, Ref. [3] introduced a
variable coupling, such that the detector is turned on only for a finite period of time At ~ T'
around ¢ = 0 in the rest frame of the detector. This was implemented by replacing the

coupling constant g with a variable coupling g(t) = gf(t), where

F(t) = exp(~£2/T?). (48)

The canonical momentum of ¢ was chosen as ¢ = 0, so that the physical momentum at ¢ = 0

i8 @pays(0) = 0. Furthermore, it was assumed that
my, > eET > my, (49)

The first inequality in (49) ensures that v detectors are not significantly accelerated by the
electric field during the time T when the detector is on. We note that it follows from Eq. (49)
that

eET2>>m—§’—/\ >1 (50)
eE 7? '

For any physical momentum gpnys of the ¢ detector, the classical kinematics of the scat-
tering process 1)¢ — x allows only two values for the momentum k. of ¢: one where ¢

hits ¢ from the left and the other where it hits from the right [3]:

2m3 yngs = MGy & /gy + M3 /M4 — 4m3m3, (51)



where M? = m2 — mZ, — m2. The upper and lower signs in Eq. (51) correspond to ¢ hitting

from the left and from the right, respectively.? With the electric field directed to the right
(E > 0), it was shown in Ref. [3, 4] that @-particles hit predominantly from the right, that
is with kppys < 0. Collisions with k,p,s > 0 are exponentially suppressed.

Since our goal is to study two detectors moving relative to one another, we will need to deal
with a more general situation, when the momentum of the detector particle is g # 0. It will
be sufficient for our purposes, and will also simplify the analysis, to consider ultrarelativistic
detectors with |g| 3> m,. The classical equation (51) holds only approximately, but it proved
to be fairly accurate in Refs. [3, 4], so we will use it as a guide for what one can expect in a
quantum scattering process. Expanding Eq. (51) in small parameters my /|| and mgm., /M2,

we obtain

2
2 a2 my 2m¢mw
2mykpnys = M™ |q — |g| — ol T lal| - (52)

Here we used the lower sign in (51), anticipating that ¢ particles will hit predominantly from

the right. With a further assumption that
lql > M*/m, (53)

we can neglect the third term in square brackets of Eq. (52). Then we find

M2
kphys = p =~ (m—w) q for ¢q<0 (54)
and
m 2
Kings = (ﬁ) g, prq for ¢>0, (55)

where p = gynys + Fpiys 18 the momentum of the x-particle. This suggests that for sufficiently
large positive g the ¢ particle can be detected moving with a large momentum in the ”wrong”
direction (that is, to the right).

Let us now turn to a quantum description of the scattering. For a time-dependent coupling

Eq. (43) is replaced by

A=I®WW$WESMLN) (56)

Note that since f(—t) = f(¢), we could still use the change of integration variable ¢ — —¢ to
transform from out- to in-modes, as we did in Egs. (42),(43). The ¢ mode function appearing
in Eq. (56) is given by
ink o 1 ki im /4
¥ (0 = Gegye e V2], (&)
where z = VeE(t — q/eF). With f(t) from Eq. (48), we shall assume that

lg| > eET, (58)

2 Note that our notation differs from that in [3], where they denote the momentum of ¢ by —k.
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so the physical momentum gy, does not change significantly during the time when the

detector is on. Imposing a further constraint on g,
"

\/‘eE’

we can use the asymptotic form of the parabolic cylinder function in (57) with |z| > |1y

For g > 0 and [t| £ T we have 2z < 0 and [§]

lg| > (59)

; ) 2
D, [—\/ﬁe”‘”z} ~ 2“"”26?'7(”““/4(—2)”“"8717 (60)

The factor (—z)"* can be represented as

—L(14irg) . 1/2 =
e (,/QE) e n(1-5) » ( v E'E) e T (61)
2 q

where in the last step we have expanded the logarithm in Taylor series, keeping only the

first term. This term can be large for some parameter values, while it can be verified that
the next term is < 1. We have also dropped an irrelevant overall phase factor. (We will
continue dropping such factors in what follows.)

Combining Egs. (57), (60) and (61), we can write

| i ;
etqtel(fnw'i/zq)£87§Cbt ~ eth.'.

Ver V2%

o (1™

Similarly, for ¢ < 0, z > 0 we obtain

Y ) ~ e 37 (g>0) (62)

where

1
—2

iegl

exP  (g<0) (64)

e

ACKS

=]

We will now impose additional restrictions on ¢ which will allow us to use the approximate
forms (62) and (64) for the ¢ mode function in Eq. (56). For g > 0 we expect the amplitude
to be peaked at

k:pﬂm(%fq- (65)

The conditions analogous to Eqgs. (58), (59) are |k| 3> eET and zy = (p — q)/VeE > |vy| =
mi /2eE. They imply the following restrictions on g:

2

m
lal > —eET, (66)
)
M? m2
>~ == (67)

veE N VeE'
Note that with the conditions (66), (67) the constraints (58) and (59) are also satisfied.
Now, if g obeys the conditions (66), (67), we can estimate the amplitude (56) using the

asymptotic forms of the mode functions #*, and @),

1

2
Ammfdtexp [_E—FE(EQ—’_E}'*(I_MP)t
—q)wp

(68)
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T Vi
e VEE [7I(eq+§p_q_wp)2 , (69)

V8a(p — q)wp
where & = ,/k2? + mi and we have again dropped an overall phase factor. Note that the
factors exp (:I:é—eEﬁ) cancelled out in the integrand, because we used the asymptotic form
of ¢*  for —g < 0 and that of ¢,_, for p —q > 0.
The exponential factor in Eq. (69) can be interpreted as expressing energy conservation
in the collision with an accuracy ~ 2/T. As expected, the amplitude (69) has a peak at the
values (55), where it can be approximately expressed as

82 2\ 2
T m, T B mxT o mg
A~ \/; B g P [ T6migt (p ¢——5a) |- (70)

X
m, 2
The top of the peakisat k=p— g = (m—‘:) q and its width is

ok q
k miT'

(71)

We assumed that g satisfies the conditions (66), (67), which imply respectively that dk/k >
eE/m} and 0k/k > 1/VeET. In both cases the right-hand side is < 1, so we can choose
the parameters so that dk/k < 1 and the momentum of ¢ can be measured with a good
accuracy.

For ¢ large and negative we have —g > 0 and p—¢ < 0, so again the factors exp (+ieFt?)
cancel out in the time integral and the amplitude is still given by Eq. (70). In this case the
peak is located at the values (54) and

82 g N2
rg T T gl (o e
A\ 16mig" (p m?) | e

The conditions on ¢ in this case are less restrictive.

We have thus found that a v detector moving with a large positive momentum can detect
a ¢ particle moving to the right, in agreement with classical expectations. Note that this
is not in contradiction with the results of Ref. [3]: the @ particle is moving to the left in
the rest frame of the detector. Eqs. (54), (55) can of course be obtained using a Lorentz
transformation from the frame where ¢ = 0. An interesting situation arises when we have
two detectors moving towards one another with large Lorentz factors. This will be discussed

in the next Section.

IV. TWO DETECTORS

Let us now go back to the scattering amplitude (33) for two detectors. Once again we
use the representation (21) for the in-vacuum in the initial state (25). Onlyn =0and n =1

terms give nonzero contributions,
M= MO 4 MO, (73)

MW corresponds to the process we are interested in (illustrated in Fig. 2), where 1, and

1, scatter on the ¢ particle and antiparticle of the same pair, while M@ corresponds to a

12
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FIG. 3: Feynman diagram for the direct scattering 119, — ¥1x2. The dotted line shows the virtual

pair of ¢ particle and antiparticle.

direct scattering 92 — x1x2 by exchange of a virtual ¢ particle. The Feynman diagram
for the latter process is shown in Fig. 3. The two processes can be easily distinguished
observationally (in the case of a time-dependent coupling). For a direct scattering, the total
energy of the y particles in the final state is approximately equal to that of the initial
particles. (This is because the energy is approximately conserved during the collision.) On
the other hand, for the process shown in Fig. 2 the final energy can be significantly larger,
due to the contribution of the ¢@ pair. We will focus on the calculation of M® in what
follows.
We have
B

.
e

*
Qg

f dedtg () [ da'dt'go (1) [ dk (0, out] cocy {811 xs bae{dBdxa Y] [ a2 6741 (0, out)

(74)

MO =z,

where we allowed for the time dependence of the couplings g;, ¢ and used curly brackets to

group the fields depending on x,t and on z/,t'. A straightforward calculation gives
'6* o L * L] O] *
MO = 2, 2850+ 5 — g~ d) [t 6 0870X ,0) [ dnEOBsOsg (OX p0),
&
(75)

where we have used an expansion of the field operators ¥ and ¢ in out-vacuum modes.

A. Constant couplings

We first consider the case of constant couplings, ¢; = const. Then in the center of mass
frame of the two detector particles, g + ¢’ = 0, the two integrals in Eq. (75) are equal to one

another (apart from the constant factors g;) and we obtain

Byr
M = 91022 _28(p +p) A%, (76)
¢
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where A is the same as in Eq. (42) for single detector and is approximately given by (44).

Hence we obtain

M =4 N7 1Bs|  mg192 . 7
lMcml (P+P)| ¢||a¢|2€Emiwp ( )
and
2 2.2 2
i _ 2|Bs|" 79105
{flepnyeam 1) = 6(0)| Zy| og| eEyomicE (78)

As before, the infinite factor §(0) appears in the above equation because we used plane
wave states normalized to a é-function. Finitely normalized states could be obtained if in-
stead we used periodic boundary conditions with a large periodicity scale L. The momentum

spectrum would then be discrete and the states would be normalized as

{qlg') = bqq (L/2m), (79)
where d, , is the Kroneker delta. Then the §(0) gets replaced by L/2w and the denominator
of Eq. (28) is replaced by

(0.9'la.) = (L/2m)*. (80)

Hence the momentum distribution of x;-particles becomes

dN. 8
d—x =122
P Qg

‘ mglgy 1

2 12,4 2"
2e EmXpr

(81)

It is clear from the symmetry that the distribution of y2 particles in the center of mass frame
is the same.

It is interesting to compare this distribution with that for a single detector particle,
Eq. (47). The dimensionless scattering amplitudes ¢f/eEm? and g3 /eEm?2 in Eq. (81) indi-
cate that scatterings with both detector 1)-particles are involved. The factor |8,|* accounts
for the probability of Schwinger pair creation. Note that there is only one factor of |[3¢.|2
in (81), indicating that both detector particles scatter on ¢-particles of the same pair. The
factor | Zy|* is the probability that no other pairs are produced. The factor L in the denom-
inator can be understood as follows. Our initial state of plane waves for the two detector
particles corresponds to uniform fluxes of 1 and v particles. If 9 hits a ¢-antiparticle, then
in order for 7 to hit the particle of the same pair, its impact parameter has to be appropri-
ately fine-tuned within a finite length Az. Then dN, /dp should be proportional to Az/L.
(Eq. (81) suggests that the impact parameter should be localized within Az ~ w;'.) In
other words, the factor 1/L can be interpreted as the density n of detectors, and the number

of x-particles in the final state should be proportional to this density.

B. Time dependent couplings

We now consider time dependent couplings, g;(t) = g;f(t — ;) with f(¢) from Eq. (48),
so each detector is turned on only for a finite period of time ~ T around ¢t = ; (i = 1,2).

Then we can rewrite Eq. (75) as

B; P
MW = ngZZqSCTLfJ(PJFP, —q—q)ALA,, (82)
4
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where

A= [ dese - m)ug O Ox ) (s3)
dy = [ dtfe—rpu 83 0 ). (84)

Now, it follows from the expression for the mode functions (16) that ¢g“(t) = ¢34, 5, (t —7)
and ¢"(t) = Yot%p,(t — 7). Substituting this in Eq. (83) and changing the integration

variable t — ¢ + 7, and then ¢ — —#, we obtain

s = [ g gt ox 0 = [ dfOR 06 000, 6)

where ¢1 = g + eET1 = gphys(T1) and we have used the symmetry f(—t) = f(¢) and dropped

a constant phase factor in the second step. Similarly, we find

= f dtf (V5" (065" (D)X (2), (86)

where ¢, = ¢ — ebTy = q;hys('rg). ¢y is the physical momentum of the t-detector and g is
the physical momentum of the ¢ detector at the times of their respective collisions.

The integral in the last step of Eq. (85) is the same as in Eq. (56) for a single 9 detector
with ¢ replaced by ;. In fact the two integrals are identical, since Eq. (56) was derived for
71 = 0, in which case 1 = ¢. Similarly, it is easily verified that Eq. (86) is the same as we
would get for a single i detector. Eq. (82) tells us that apart from the overall momentum
conservation the measurements of the two detectors are independent from one another. In
particular, it follows from the results of Refs. [3, 4] that the v detector will find ¢ particles
moving mostly to the left and the ¢ detector will find ¢ particles moving mostly to the
right (in the respective rest framers of the detectors). This is perhaps not surprising, since
semiclassically the two collision events are spacelike separated.

To simplify further discussion, we shall assume that the detector particles have equal and
opposite momenta, g+¢' = 0, and that the detectors are turned on at the same time, 7 = 7.
Then we have p' = —p, §, = —§i, and A, = A; = .A. The physical momenta of the detected
¢ and ¢ particles are respectively kphys = P — Gphys and & ppys = p' — @ phys = —Fphys-

An interesting situation arises when the physical momentum of the i detector is large
and positive and the physical momentum of the 1 detector is large and negative, so that
kphys > 0 and k. < 0. We shall further assume that the magnitudes of both physical
momenta satisfy the conditions (66), (67). Then the amplitude A is well approximated by
Eq. (69):

2

Ami

N exp [—I(fq‘l— +&p— Np)z] ) (87)

As we discussed in Sec. II1.B, this amplitude as functions of p has a peak at some value p,,

which depends on §. If p is not far from p,, we can use the approximate form (70) for A:

82 2 2
T m,T mxT _ My
P ——x_(p—g-——24) |. 88
A 2 2m /2 exp{ 16 ”;64 P—q iq (88)

15



The total transition amplitude is then

B wgrgam2T? miT? m2 \’
MO ~ 7,705 A2 2= ey | [ el ) | - 89
cm ‘.‘ba:; (P +p ) Smiqg xp Sm‘éq«i Py miq ( )
and the distribution of y; particles is given by
«|2. 3 2 2 Aqd 82 2 N2
dNy  \g, 55| moigm T | meT (p i %5) . (90)
dp ay 32m‘;§5L 4m;15§4 m2

Egs. (89) and (90) indicate that for sufficiently large gpn,. the particles of the pair can be

observed moving towards one another with arbitrarily large momenta k,;,, = —k > 0.

phys
The corresponding amplitude is not exponentially suppressed. This conclusion could be
anticipated: it follows from our results for a single detector in Sec. III.B and from the fact
that measurements of the two detectors are independent.

In a more general case, when the conditions (66), (67) are not satisfied, we note that to
the extent that energy is conserved during the collision, we can use the classical Eq. (51) to

find a general condition for the particles of the pair to move towards one another. This will

happen when ky,,, > 0 for both signs in Eq. (51), that is, when

2,2
P Aphys > - 4m¢mw

/ Mt
qghys W mwz,b

The quantity v is the velocity of the 1 detector; the corresponding condition for the Lorentz

(91)

factor, v = (1 — v?) /2, is

M?
2mgmy

(92)

We finally comment on what happens if ¥ and ¢ detectors are turned on at different

times, 71 # 75. In this case the amplitude M) is proportional to

mET? m2 2 mET? m2 2
X ~ ¢ ~ X ~ b ~
—— X p-h -4 ) |ew |- (p-6- &) [ (98
16m$qi‘ ( : m2 1) lﬁmiq;l ( G m2 2) (93)

where §; = g+ eET;. If 74 is significantly different from 7, the two peaks do not overlap and

exp

the amplitude is exponentially suppressed (compared to that for 7, = 71). The reason for
this is that for a given value of p’ = —p, the classical kinematics allows only a single value

of § = —¢q, which corresponds to the two scatterings occurring at the same time.

V. CONCLUSIONS

We applied the detector model similar to that used in Refs. [3, 4] to study pair production
of charged particles in a constant electric field in (1 + 1) dimensions. We considered the
situation where two different detectors moving relative to one another are used to observe
the particle and antiparticle of the same pair. Our conclusion is that each detector observes
nucleation to occur in its rest frame, regardless of the motion of the other detector. But if
the relative velocity of the two detectors is sufficiently high, the particle and antiparticle can

be observed moving towards one another. This is a surprising result.
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In our model the ¢ and ¢ particles are destroyed at the moment of detection. But
in the semiclassical regime it may be possible to construct detectors capable of observing
the particles with relatively small interference, so that they are not destroyed and their
momentum is not significantly changed during their interaction with the detector. Then,
once a particle is detected, we would be able to use successive measurements to observe
the rest of particle’s trajectory, as we would in a bubble chamber. An observer watching
both particles may then first see them moving towards one another, stop momentarily at
separation 2r, and then move apart. This goes against the conventional wisdom, since it is
usually assumed that in any reference frame the part of the history of the pair where the
particle and antiparticle move towards one another is unobservable.

One might expect similar conclusions to apply to the case of bubble nucleation in (3 + 1)
dimensions. If different parts of a bubble are observed by differently moving observers,
each observer would then see the bubble wall approaching from the direction of the bubble
center. However, when measurements made by different observers are combined, the resulting
nucleation hypersurface would generally be rather irregular. If the relative velocities of the
observers are sufficiently high, the bubble worldsheet above this hypersurface may include a
large contracting region, which is usually discarded.

The appearance of contracting pairs (that is, pairs in which ¢ and ¢ move towards one
another) raises some interesting questions.” We found that such pairs can be observed with
the aid of two detectors approaching one another with a large Lorentz factor. The question
is: are such pairs still there when nobody is looking? The answer to this is "No”, if "being
there” is understood in the (semi)classical sense. The semiclassical trajectory of a charged
particle generically has two encounters with an inertial observer, one before and one after
the turning point. Before the turning point, the particle would move to the right relative to
the observer, while after the turning point it would move to the left. However we find that
our ¢ particles move predominantly to the left at the moment of detection, regardless of the
state of motion of the detector. This suggests that the semiclassical trajectory was not there
before detection.

Once ¢ is detected, it may closely follow its classical trajectory (assuming a non-invasive
detector that we alluded to above.) After that, other detectors may see it moving to the
left as well as to the right, depending on the state of detector motion. However, in the
first detection ¢ is (almost) always observed moving to the left — which corresponds to the
expanding part of ¢ trajectory in the frame of the detector.

A related question is: could it be that the creation of a contracting pair is somehow
triggered by the rapidly moving detectors? Once again, the answer is "No”. We used the
representation of the in-vacuum in terms of out-states, and the only term that contributed
to the detection amplitude is the one proportional to Z,f3,, that is, to the amplitude of
spontaneous creation of a pair. We thus see no indication of a stimulated pair production.

Given the unexpected nature of our results, one should keep in mind possible caveats. A

potential problem with our approach is that, as noted in Ref. [3], the in-vacuum state that

3 We are grateful to Jaume Garriga for an illuminating discussion of these questions.

17



we assumed here has some unphysical properties. The singularity structure of the two-point
function in this state does not have the Hadamard form, and as a result the expectation
values of physical observables cannot be regulated in a Lorentz invariant way. An important
special case is that of the electric current. One expects that the created pairs moving in the
electric field will develop a nonzero current, which will break the Lorentz invariance. And
indeed one can show that all physical (Hadamard) states of charged particles in a constant
electric field are not Lorentz invariant.

Physically, this issue is related to the fact that a metastable vacuum could not have
existed for an infinite time. In a more physical approach the electric field would have to
be time dependent with E(t — —oo) — 0, so the initial state of the ¢ could be chosen
as the standard vacuum state. The two-point function is then Hadamard at ¢ -+ —oo and
is guaranteed to remain Hadamard at later times. It would be interesting to repeat our
analysis (and that of Refs. [3, 4]) in this setting. The time dependence of the electric field
introduces a preferred frame and explicitly breaks the Lorentz invariance. The question is
to what extent this Lorentz violation influences the results. We leave this as a problem for

future research.
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Appendix A

To show the result in (44), we follow the calculation in Appendix B of [4]. The 4-point
amplitude in [4] is defined as

Asla, ki) = [ dea 00 O O30 (A1)
This amplitude can be reduced to the amplitude A that we adopt here by dropping the

factor g and setting x3;(t) — 1. To achieve that, w; is set to be zero in the exponential

2

) (A2)

and 7 is replaced by p in (B.1) in [4]. Meanwhile, the amplitude is also multiplied by an
Tre—%)«d,e—rr)\.‘p

additional ,/2w;. Hence, we obtain
4 M2
Wf-,,- : L X
2eEmZuy, 1= (E 2eE)

where W_;,, s, is the Whittaker function and o4 = (Ay£A,)/4. Due to the mass hierarchy,

—To—

AP =

an asymptotic representation can be applied: W) ,(2) ~ e*/22*, when |2|* > [u? — \?|. Thus,
we have

A2 = (A3)

—_— 72 .
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