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Plastid Genomes of Flowering Plants: Essential Principles

Tracey A. Ruhlman and Robert K. Jansen

Abstract

The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relation-
ships among angiosperms. Through basic and applied approaches, plastid transformation technology offers
the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to
meet the needs of a burgeoning global population. The growing genomic resources available to both
phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of
plastome research to encompass new species. In this chapter, we present an overview of some of the seminal
and contemporary research that has contributed to our current understanding of plastome evolution and
attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic
engineering.
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1 Introduction

Themost notable defining feature of the plant cell is the presence of
plastids, the bioenergetic organelles responsible for photosynthesis
and myriad metabolic activities. Contemporary plastids carry the
remnant genome (plastome) of their evolutionary ancestor, a pho-
tosynthetic bacterium believed to be related to extant cyanobac-
teria. Over eons, the coding capacity of the plastome has been
greatly reduced relative to its progenitor such that a very small
fraction of the ancestral gene complement remains [1]. The major-
ity of plastid proteins are encoded in the nucleus and posttransla-
tionally imported; the expression of plastome sequences is
controlled by imported nuclear factors.

The evolutionary trajectory, from free-living organism to endo-
symbiont, to organelle, that has shaped the plastome is ongoing [2–
4]. A survey of the plastome sequences in publicly available data-
bases reveals that despite the prevalence of highly conserved
sequence and organization in the majority of flowering plants
sampled to date, a salient fraction show marked variation in their

Pal Maliga (ed.), Chloroplast Biotechnology: Methods and Protocols, Methods in Molecular Biology, vol. 2317,
https://doi.org/10.1007/978-1-0716-1472-3_1, © Springer Science+Business Media, LLC, part of Springer Nature 2021

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-1472-3_1&domain=pdf
https://doi.org/10.1007/978-1-0716-1472-3_1#DOI


rates of sequence evolution and genomic architecture [5]. Although
some examples of divergence are subtle, others are conspicuous and
lead one to wonder; by what mechanisms do these changes arise
and how are plants able to tolerate changes that appear disruptive?

In this chapter, we will outline some general features of the
typical angiosperm plastome including its structure, organization
and gene content. We will consider cases where genes otherwise
found in the plastome are disrupted or missing and how these
changes, along with genomic characters such as rearrangements,
are used not only to infer phylogenetic relationships but also to
extend our understanding of how organelle genomes change
through evolutionary time. Further, we will discuss mechanisms
that may be influencing genomic stability and consider how these
same activities are inherently involved in the introduction of exog-
enous DNA sequences via plastid transformation.

2 Characteristics of the Angiosperm Plastome

Although not representative of the predominant physical state of
plastomes, completed sequences are often illustrated schematically
as circular maps (Fig. 1). Early studies concerned with the architec-
tural features of plastomes used denaturation mapping and restric-
tion enzyme digestion of DNA molecules isolated from purified
plastids to characterize plastome size and structure. Prior to 1990
plastid DNA (ptDNA) from a diverse range of angiosperm species,
representative gymnosperms and ferns, and a number of photosyn-
thetic green algae, had already been scrutinized [6]. Among angios-
perms the findings were largely in agreement and provided the
framework for our current understanding of plastome structure.
With the development of technology facilitating the direct
sequencing of complete plastomes many of the seminal predictions
have been confirmed providing a reasonably clear picture of the
typical angiosperm plastome. The circular maps presented in the
literature represent a single monomer, however numerous studies
have identified more abundant alternative forms including conca-
temeric, linear and branched molecules (discussed below) along
with some multimeric circles. The monomer is highly gene dense
relative to nuclear or mitochondrial genomes, with 120–130 genes
packed into 120–170 kb. Nonetheless, the gene space accounts for
only ~50% of total nucleotide sequence with the remainder com-
prising introns, regulatory regions and intergenic spacers [7]. Plas-
tomes are also highly AT rich; overall GC content is typically on the
order of 30–40% and in some regions that do not encode proteins
AT content exceeds 80% [8]. The proportion of GC, which is
higher in protein coding regions, varies across plastomes by loca-
tion, codon position and by functional group. For example, genes
encoding photosynthetic functions have the highest GC content
while the NAD(P)H genes have the lowest.
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Like those of its prokaryotic predecessor, a number of plastid
genes are cotranscribed from operons-like units. Polycistronic pre-
cursors often contain transcripts encoding proteins involved in
similar functions or subunits of higher order complexes, reflecting
the need for concerted regulation of expression. Some plastid
polycistronic RNAs, however, are multifunctional such as the ubiq-
uitous ribosomal operon containing tRNA and rRNA sequences.
Others, like the rpl23 gene cluster (syn. S10 operon), encode
polypeptides belonging to different functional complexes.
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Fig. 1 Circular representation the physical map of the Nicotiana tabacum plastid genome (NC_001879). The
N. tabacum plastid genome is representative of the ancestral gene order that is seen among unrearranged
angiosperms. Genes annotated inside the circle are transcribed clockwise while those outside are transcribed
counterclockwise. Arrows indicate polycistronic transcription units. Introns are annotated as open boxes and
genes containing introns are marked with asterisks
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3 Gene Content

The gene complement of most angiosperm plastomes is highly
conserved and the arrangement of sequences collinear (Fig. 2).
Genes have been grouped into three general classes: those of the
genetic system, photosynthetic components and “others.” A com-
prehensive catalogue of the typical plastome gene content is pre-
sented by Bock [9]. Genes that do not fit well into either of the
major functional categories include clpP, accD, ccsA and cemA.
Encoding a subunit of plastid localized ATP-dependent caseinolytic
protease (Clp) is clpP. Apart from this subunit, all other polypep-
tides that assemble in the plastid Clp holoenzyme are imported
from the cytoplasm; as many as 20 plastid targeted Clp polypeptides
are predicted for Arabidopsis [10, 11]. Among the metabolic activ-
ities found in plastids is fatty acid synthesis. The accD gene encodes
the beta-carboxyl transferase subunit of acetyl-CoA carboxylase
(ACCase), which assembles with three nuclear encoded subunits
and is essential for leaf development in Nicotiana tabacum
(tobacco; [12, 13]). The functional copy of accD was predicted to
have been lost from angiosperm plastomes at least seven times ([5];
Fig. 3). More recent evaluations of accD sequences in atypical
plastomes have suggested that several of those previously assessed
as missing may in fact be divergent but functional genes. In Passi-
flora [14, 15], Geranium [16] and Medicago [17, 18] the accD
sequence is interrupted by tandem repeats, however the reading
frames are preserved and all five conserved functional motifs along
with the putative catalytic site [19] were found intact. In grasses,
the plastid encoded product has been substituted by a single sub-
unit eukaryotic ACCase [20] and a nuclear copy of the prokaryotic
accD, likely transferred from the plastid, has been identified in
transcriptomes of Trifolium [21, 22], Hypseocharis and Monsonia
[16]. Required for heme attachment to cytochrome, ccsA-encoded
Cytochrome c biogenesis protein (CcsA) associates with a number
of nuclear proteins forming the thylakoid-bound system II cyto-
chrome assembly machinery [23, 24]. Another integral membrane
protein, the product of cemA is thought to interact with heme
molecules due to homology with characterized heme attachment
domains [25, 26]. At present, no functional analyses have been
conducted in higher plants but localization studies confirm the
product of cemA as a polytopic protein of the inner envelope
membrane. Inferences have been drawn from analyses in Chlamy-
domonas where the cemA product is two times larger than its
angiosperm homolog [27]; these studies suggest a role in proton
extrusion and promotion of efficient inorganic carbon uptake into
plastids.

Plastid protein coding genes are usually named as an abbrevia-
tion of the encoded protein’s function. Predicted open reading
frames (ORF) receive the designation ycf (hypothetical chloroplast
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Fig. 2 Gene order comparison of highly conserved and rearranged plastid genomes. Whole plastid genome
sequences were downloaded from GenBank for N. tabacum (NC_001879), B. vulgaris (EF534108.1), L. sativa
(NC_007578), Brassica rapa (DQ231548.1), Glycine max (NC_007942), Solanum tuberosum (NC_008096),
O. sativa (NC_001320), P. hortorum (NC_008454), M. speciosa (NC_014582) and G. palmatum (NC_014573).
Alignments were performed in Geneious Pro [290] with the mauveAligner algorithm [291], which aligns
syntenic blocks of genes and predicts inversions relative to a reference genome. Nicotiana tabacum was set
as the reference genome in A, B and C. In D, P. hortorum was set as the reference
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Fig. 3 Angiosperm phylogeny. The large maximum likelihood phylogram was constructed from 97 taxa based
on 81 plastid gene sequences and is adapted from Jansen et al. [83]; Scale bar indicates the increment of
0.05 substitutions per site. Inset trees are cladograms, branches do not represent evolutionary distance. Gene
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references in main text) or examined by the authors. Asterisk indicates reported cases of nuclear transfer, that
is, cDNA of nuclear origin detected or fusion product imported into plastids. Note: Not all changes described in
the text are plotted on branches



reading frames) until some function can be ascribed to their prod-
uct. Like those described above, most ycfs have been renamed as
their role in plastid function has been elucidated. The genes for the
conserved Photosystem I assembly proteins ycf3 and ycf4, are yet to
be renamed, and ycf15 is no longer considered to be a protein
coding gene [28–30]. Short, nonconserved ORFs are observed in
all plastomes but are presumed to be nonfunctional due to the lack
of conservation across closely related species and biochemical evi-
dence for their expression [9, 29, 31]. Although many ycfs have
been characterized and renamed, as yet no definitive function has
been attributed to the two largest ORFs present in plastomes, ycf1
and ycf2. Both ycf1 and ycf2 have been designated as essential genes
because their targeted disruption results in unstable mutant phe-
notypes [32]. However, ycf1 is highly divergent and may be lost in
several lineages. In Passiflora [5, 15] and Trifolium [33] the ycf1
gene appears to be pseudogenized and in all Geraniaceae genera
except Hypseocharis [34–36] both ycf1 and ycf2 are lost as in Poa-
ceae plastomes [37–39]. Other lineages that harbor highly diver-
gent, degraded and pseudogenized copies of ycf1 and/or ycf2
include Campanulaceae [40, 41], Ericaceae [42, 43], Silene [44]
and the saguaro cactus Carnegiea gigantea [45]. One suggestion
for the product of ycf1 was a role in plastid protein import as a Tic
subunit [46] while others have speculated that its tendency to be
lost or highly divergent concurrently with the plastid accD gene, as
in grasses, Geraniaceae and Passiflora, could suggest a role in
ACCase holoenzyme assembly [47]. However, the products of
these two genes are not known to have any interaction.

Greater than one third of the typical plastome comprises pro-
tein coding genes involved in photosynthesis and related reactions.
Apart from ndhB all of these sequences are contained within the
single copy regions; an additional ten single-copy genes encode
subunits of the plastid NAD(P)H dehydrogenase (NDH). In sev-
eral lineages including saguaro cactus [45], Alismatales [48, 49],
Orchidaceae [50–53] and Erodium [53, 54] the plastid NDH
genes are degraded as to be nearly undetectable. Attempts to locate
the missing plastome NDH sequences in the nuclear genomes have
failed to uncover a functional transfer event. More than 30 nuclear
genes encode subunit polypeptides or accessory proteins of the
plastid NDH complex, which are translated in the cytoplasm and
transported across the plastid membranes where they assemble with
locally encoded constituents (see [53], Additional file 1; [55]). In all
cases examined, including investigations in gymnosperm lineages
missing the plastid NDH genes [53, 56, 57], transcriptome [53]
and nuclear genome (Halophila ovalis, Hydrocharitaceae, Alisma-
tales; [58]) studies revealed the concomitant loss of the nuclear
complement suggesting that under favorable conditions NDH
function may be dispensable.
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There are 22 genes for subunits of photosystems I and II (psa
and psb), six genes each encode subunits of the cytochrome b6f
complex (pet) and the F0F1 ATP synthase (atp). With the exception
of the RuBisCo large subunit (rbcL) all of the genes in this class
encode subunits of membrane complexes that are assembled
together with nuclear-encoded proteins. The gene for the small
subunit of RuBisCo (rbcS) is likewise found in the nuclear genome
but the holoenzyme assembles in the plastid stroma and does not
associate with membranes [59].

The genetic system genes are the largest functional class includ-
ing 30 tRNAs, four rRNAs, 21 proteins that associate with the large
or small ribosomal subunits, four subuints of the plastid encoded
RNA polymerase (PEP), intron-encoded maturase K (matK; group
II intron splicing factor), and translation initiation factor 1 (infA).

4 The Large Inverted Repeat

4.1 Genes Are
Duplicated
in the Inverted Repeat

Most angiosperm plastomes retain a large (~25 kb) inverted repeat
(IR); the two copies designated IRA and IRB. Genes contained
within the IR are duplicated as IRA and IRB are thought to be
perfectly identical in nucleotide sequence. Usually the genes of the
plastid ribosomal operon (rrn16, rrn23, rrn4.5 and rrn5) and seven
tRNA genes are duplicated in the IR. In addition to three complete
sequences for ribosomal proteins, the IR also contains ycf2 and
exons two and three of the trans-spliced rps12 gene. The two IR
copies are separated by unequally sized single copy domains,
referred to as the large (~80 kb) and small (~20 kb) single copy
regions, LSC and SSC, respectively. This arrangement is seen in
N. tabacum (Fig. 1) and is thought to be the ancestral form for
angiosperms [28]. The widespread occurrence of the IR across not
only land plants but also in chlorophyte lineages suggests this is an
ancient feature. The publication of the Amborella plastome [29]
has confirmed the IR’s presence in the most basal angiosperm.
Speculation as to the origin of the IR, and its possible role in
plastome stability has fostered decades of research and hypotheses.
Kolodner and Tewari [60] detected the presence of the large palin-
dromic sequences in Lactuca sativa (lettuce), Spinacia oleracea
(spinach) and Zea mays (corn) using intramolecular homoduplex
formation visualized by electron microscopy and reported the
absence of this feature in Pisum sativum (pea). Subsequent analyses
including complete plastome sequences have confirmed the loss of
one IR copy in a lineage of papilionoid legumes [22, 61, 62].

4.2 The IR
and Recombination

Long before sequencing of complete plastomes became routine,
restriction endonuclease mapping was widely used to characterize
and compare the structure of angiosperm plastomes [6]. Intramo-
lecular recombination between the IR copies was suggested as a
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mechanism to prevent the divergence of the two copies from each
other and has the potential to reverse the polarity of the segments
between the two copies (i.e., the phenomenon later described by
Stein et al. as flip-flop recombination; [63]). The observed differ-
ence in conformation of circular dimers (head to tail in pea, head to
head 70–80% in L. sativa and S. oleracea) led to the suggestion that
the inverted sequences were also involved intermolecular recombi-
nation among the many DNA copies present in plastids.

4.3 Speculation
Regarding the Origin
of the IR

Based on restriction mapping in Nicotiana species, a dimeric circle
comprising two complete plastome copies, joined together in a
head-to-head (and tail-to-tail) fashion, was proposed by Tassopolo
and Kung [64] as a possible origin of the IR. Repeated deletions in
an identified “hot spot” mapped to a region down stream of JLA

(junction of LSC and IRA) extending some distance into the LSC
region eventually yielded the IR currently observed. More likely the
widely observed variation at IR-single copy junctions results from
both expansion and contraction of the repeats [65]. In the case of
N. acuminata, the abundant plastome sequences now available
suggest that a large insertion, not a deletion, in the “hot spot”
region caused plastome expansion in this lineage.

In 2010 [66] phylogenetic analyses of the cyanobacterial ances-
tor of plastids suggested that the order Chroococcales includes the
closest extant relative. This placement was refuted in a more recent
analysis [67], which suggested a more ancient cyanobacterial origin
of plastids. Cyanobacteria, including some of the previously sug-
gested close relatives, have genomes that contain at least duplicated
copies of a ribosomal operon (dispersed and/or in reverse orienta-
tion). As the rRNAs are the most commonly observed IR genes in
plant plastids, a possible origin of the plant IR may lie in a very
distant ancestor.

Whatever its origin, the presence of the IR is deemed ancient,
and certainly predates the branch eventually leading to angios-
perms. Across most angiosperms gene content and position of the
IR are highly conserved. Usually around 25 kb, variation in the size
of the IR, which can range from a little as 7 and up to ~88 kb, often
accounts for plastome size variation overall [34]. The most dramat-
ically wide variation is seen in a small but fascinating minority whose
study may yield insights into the mechanisms involved in expansion
and contraction of the repeats.

4.4 IR Persistence
and Loss

Despite its persistence in the vast majority of angiosperm plas-
tomes, the IR does not appear to be essential as one copy has
been lost several times in eudicots. Within Fabaceae, this molecular
synapomorphy defines the Inverted Repeat-lacking clade (IRLC;
[68]) that includes Trifolium, Pisum, Cicer and Medicago, a desig-
nation that is strongly supported by independent phylogenetic
analyses of molecular data. Furthermore IR loss within this clade
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is unambiguously confirmed by assembled and annotated complete
plastome sequences [21, 22, 33, 69]. Although not essential, IR
loss may have had an impact on plastome evolution in the IRLC.
Acceleration in the rate of synonymous nucleotide substitution in
formerly IR genes and changes in gene order are observed in
legume plastomes where the IR is lost [70–73].

At least three independent losses are reported within the Ger-
aniaceae where the ancestral plastome was inferred to contain an IR
[36]. Although no supporting data were available at the time,
Palmer and Downie [74] inferred IR loss in Monsonia (formerly
Sarcocaulon) and Erodium based on hybridization of small probes
with sequences surrounding IR-single copy junctions. More recent
publications based on complete plastome sequences have revealed
several losses across three genera, Erodium, Geranium and Monso-
nia [34, 36, 75–77]. Plastome sequences have been generated for
M. vanderietieae, the species reported earlier as lacking the IR [74]
but as yet the plastome is not completed. A number of clades within
Geraniaceae exhibit unprecedented reorganization of plastome
sequences making assembly of finished genomes a challenging
endeavor. Also reconfigurations in gene order can obscure data
interpretation when hybridization approaches are employed for
IR detection. Among the data from the M. vanderietieae draft
plastid genome, two large repeats of at least 3 kb were detected
[78] suggesting that the IR may not be completely lost, rather just
hiding. Monsonia speciosa retains a modest IR ([34]; 7313 bp),
encoding four protein genes and the ribosomal operon, but exclud-
ing rrn16, and two additional species, M. emarginata and
M. marlothii lack the IR entirely [76, 77].

While most Erodium species sequenced thus far show loss of
the IR, species of the long branch clade (LBC) appear to have
developed novel IRs that include the ribosomal operon and other
typical IR genes [75]. Whether there were two independent losses
or a single loss and regrowth of the IR in LBC taxa remains
unresolved for Erodium. Another instance of IR regrowth was
detected in the IRLC where there is less ambiguity as to gain or
loss. A novel IR was uncovered in Medicago minima, which is
placed well within the IRLC, a monophyletic group defined by
the single shared loss of the IR. Among the 19 Medicago species
completed, just one contained a novel IR of >9 kb [18].

Two additional reports describe IR losses, one in the saguaro
cactus (Carnegiea gigantea; [45]) and the other in Tahina spect-
abilis [79]. The loss in saguaro resulted in the smallest plastome
among photosynthetic angiosperms detected to date (~113 kb;
[45]). The loss in Tahina, however, remains ambiguous as technical
rigor regarding identification and confirmation of the loss were
lacking [79].

Although the synonymous substitution rate was accelerated in
IRLC taxa for formerly IR genes, the situation was more complex
in Pelargonium. While all sequenced Pelargonium contain an IR,
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the boundaries vary greatly between clades within the genus
(IR size range ~36–88 kb; [35]). An examination of evolutionary
rates in 22 species where typical IR genes were excluded or typical
single copy genes included in the IR suggested that rate heteroge-
neity in Pelargonium plastomes was a mixture of locus-specific,
lineage-specific and IR-dependent effects [35].

Among the asterid nonphotosynthetic parasites there are two
reported cases of IR loss. The Orobanchaceae holoparasite Con-
opholis americana was predicted by one group to contain [80], and
by another to have lost the IR [74]. Recently assembled plastome
sequences confirm the C. americana loss; however, a definitive loss
cannot as yet be confirmed for Striga asiatica, also in the Oroban-
chaceae. Again assembling complete sequences for species that
contain highly reorganized plastomes make assignment of particu-
lar characters challenging. As yet the loss in S. asiatica has not been
confirmed however three other species of Striga were shown to all
contain expanded IRs over 60 kb [81]. In addition toC. americana,
IR loss has been confirmed for Phelipanche ramosa (>62 kb). The
nearest relative examined in this study, P. purpurea, was found to
have a small IR, perhaps accounting for the 1182 bp difference in
plastome size between the congeners [82]. These findings suggest
at least two independent losses within the Orobanchaceae. If data
analysis ultimately yields resolution in favor of IR loss in Striga, this
will represent a third, independent loss within the family.

IR loss is far from a universal feature among the parasites.
Epifagus virginiana, which has the second smallest sequenced
angiosperm plastome at ~70 kb, has experienced extreme reduction
in the single copy regions due to the loss of the photosynthetic
genes while retaining an IR of ~25 kb [83]. The reduced IR
(9767 bp) found in the subterranean orchidRhizanthella gardneri,
plastome (~60 kb) uniquely lacks the rRNA genes and is the pri-
mary reason for the size difference between the two smallest angio-
sperm plastomes characterized to date [84]. Within the same
family, in the Neottia nidus-avis plastome, the IR is thought to
have undergone expansion relative to other heterotrophic orchids
contributing to its larger plastome of ~92 kb [85].

4.5 The IR
and Plastome Stability

The presence of the IR may play a role in structural stability of the
plastome and is involved in maintaining the homogeneity of the
sequences encoded in each copy. Differential rates of nucleotide
substitution between genes of the single copy regions and those of
the IR [38, 39, 73, 86, 87], along with the thinking that both
copies display identical sequence, suggest an efficient gene conver-
sion mechanism is at work. Such a mechanism has been invoked to
explain copy correction in plastid transformants when point muta-
tions or foreign sequence are introduced into the IR [88–90].

Following a mutation or transgenic integration event, although
replication and partitioning may contribute, homoplasmy is likely
to be driven predominantly by recombination processes. As
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illustrated by Khakhlova and Bock [91], gene conversion proceeds
very rapidly and early in regenerating callus and shoots under
selection. While biased gene conversion may favor wild-type alleles
where mutations are neutral [87], deleterious mutations may be
removed or resistance alleles (i.e., transgenic resistance alleles) fixed
under selective conditions yielding homoplasmy [91, 92].

For some groups differential rate of nucleotide substitution
between the single copy regions and IR is well established
[39, 73, 86, 87, 93]. In these studies, IR genes experienced signifi-
cantly lower rates of substitution with some variability depending
on the species and genes examined. Comparison of synonymous
substitution rates (ds) of six formerly IR-located genes in IRLC
plastomes with those in IR-containing relatives revealed that ds was
higher in the IRLC genes. In the IR-containing plastomes single
copy regions genes displayed ds that is 2.3-fold higher than IR
genes while in the IRLC, ds was uniform across the entire plastome
[73]. Although dS was consistently higher across the plastome in
IR-containing papilionoid taxa compared with IRLC and nonpapi-
lionoids, the IRLC had the highest dS across genes that were
formerly in the IR. However, in agreement with Perry and Wolfe
[73] the rate of formerly IR genes was not significantly different
than other genes in IRLC taxa [93].

The homogenizing effect of gene conversion in the IR is
demonstrated both theoretically and experimentally. It remains
unknown if there is a significant difference in the frequency of IR
recombination within or between plastome molecules, nor is there
much information about intra- or intermolecular recombination
between single copy regions. It has been long acknowledged that
single copy inversion isomers, the products of the so-called flip-flop
recombination [63], are present at roughly equimolar proportions
[60, 62, 94–97]. Given that these isomers are not produced from
replication initiated by IR recombination within a single plastome
unit suggests a mechanism that requires the interaction of different
copies of the unit genome. Small inversions mediated by intramo-
lecular recombination events have played a major role in the evolu-
tion of pseudogene diversity and can be useful for increasing
phylogenetic resolution at the species level [98–101]. One could
speculate that simple proximity facilitates more rapid and frequent
recombination between IR copies in the same molecule but given
the various hypotheses regarding the physical form of ptDNA
previous notions of what constitutes intra- versus intermolecular
may have to be reconsidered.

We know that transplastomic plants have been generated by
targeting insertion to the LSC, and that these lines reach homo-
plasmy [90]. The very few reports that describe gene conversion
with regard to single copy genes in wild-type plants are based on
examination of sequence data alone. Maintenance of an rpl23 pseu-
dogene situated in the LSC by gene conversion with the functional
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allele present in the IR has been suggested for representatives of the
grass family [102]. In this study, limited nonparallel sampling for
the functional copies and pseudogenes makes the proposal of main-
tenance for this pseudogene, by any mechanism, highly speculative.
The polyploid state of the plastome would provide ample template
for intermolecular gene conversion to restore the wild-type
sequence following a mutation and may be one of the ways plas-
tomes have escaped Muller’s ratchet [103]. In any case we can be
certain that intermolecular recombination occurs in plastids as
evidenced by the transplastomic plants that arise through site-
specific integration of foreign sequences by homologous recombi-
nation with the flanking sequence on the transformation vector.

Presence of an IR does not ensure genome stability. The IR,
while nearly omnipresent, undergoes seemingly constant expansion
and contraction through evolutionary time [65]. This can be
observed not only in numerous examinations of the junction sites
[39, 85, 104–107] but also in the plastomes where the IR is
massively expanded or drastically reduced [15, 34, 35, 84, 108–
111]. Within the family Oleaceae in the Jasmineae tribe IR length is
somewhat expanded relative to most angiosperms (29 kb), and
moderate rearrangement is seen. Arrays of repeats, duplicated
sequences inserted into coding and noncoding regions, and gene
and intron loss are reported [112]. Two overlapping inversions
resulted in the relocation of the ycf4–psaI region in Jasmineae
plastomes while this feature and other peculiarities are not seen in
the tribe that includes cultivated olives (Oleaceae; [113]). The ycf4-
psaI region was recently described as hypermutable among IRLC
members [21, 22]. An extreme locus-specific elevation in nucleo-
tide substitution coupled with length mutations in the same region
led the authors to speculate that repeated DNA breakage and,
presumably error prone, repair was involved.

Within or between monomers, recombination plays an integral
and ongoing role in plastome maintenance, with regard to both
structural and sequence variation. The recombination-dependent
replication (RDR) DNA repair pathway could account for inver-
sions and drive repeat accumulation in plastomes with large non-IR
repeats [95, 114].Monsonia emarginata contains a number of large
repeats, in fact ~22% of its plastome sequence comprises repeats
ranging from ~1 to >3 kb making it a candidate in which to detect
alternative plastome arrangements derived from RDR. PacBio
SMRT long read sequencing identified alternative plastome
arrangements in M. emarginata that appeared to be mediated by
recombination between long repeats. PacBio reads that included
one copy of a large repeat and adjacent sequences revealed variation
of adjacencies indicative of alternative sequence arrangement
around the repeats [76]. Examination of the novel IR in Medicago
minima suggested a role for RDR in generation of the duplicated,
inverted sequence identified there [18]. A shift in the thinking
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about the physical from of plastome molecules away from mono-
meric circles to a collection of large and dynamic molecules con-
taining several to many copies of the unit genome should foster
realistic hypotheses about mechanisms shaping plastome structural
evolution.

5 Synteny Across Plastomes

Plastid genes tend to be collinear across a broad range of angios-
perms, and simple, phylogenetically informative inversions can be
useful for the resolution of relationships, especially at deep nodes in
the tree of life [115–117]. There are, however, several cases where
numerous overlapping inversions, insertions and deletions (indels),
and expansions and contractions of the IR result in such reconfigu-
ration of gene order as to confound prediction of evolutionary
relationships.

5.1 Genomic
Rearrangements

In the Campanulaceae, Cosner et al. [118] used restriction site/
gene mapping to evaluate the distribution of gene order changes
among 18 members of this family relative to N. tabacum. Across
the 18 taxa, so many gene order changes were observed that
inference of the individual events within the family was highly
problematic. However, despite this complexity, the resulting gene
order phylogenies exhibited low levels of homoplasy and were
congruent with independent trees generated from DNA sequences
for the same taxa.

Nowhere among photosynthetic angiosperm plastomes are
genomic rearrangement and substitution rate acceleration more
dramatically illustrated than in the family Geraniaceae [36]. As
mentioned, genera within the Geraniaceae contain both the largest
(Pelargonium) and smallest (Monsonia) IRs of any reported to date
as well as IR-lacking lineages (Erodium, Geranium, Monsonia).
Massive accumulation of dispersed repeats, often associated with
changes in gene order, is observed in across the family excluding the
monotypic genus California. Also highly unusual is the disruption
of two conserved transcription units within the family and the
presence of rRNA genes outside the IR in Monsonia. The presence
of large repeats (>100 bp) in Pelargonium, Erodium, Geranium
andMonsonia is unprecedented. Sequence homology indicates that
some of the large repeats have arisen from full or partial duplication
of genes. Many of the duplicated sequences, along with sequences
of protein and tRNA genes commonly present in plastomes, are
predicted to be pseudogenes [34]. Members of the long branch
clade (LBC) of Erodium, unlike sister species E. texanum, are
further lacking functional genes encoding all subunits of NAD
(P)H [119].
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Estimating the minimum number of events required to arrive at
the observed configuration, Chumley and colleagues [110] pro-
posed eight IR boundary changes, 12 inversions and several inser-
tions of duplicated sequence for the Pelargonium ! hortorum
plastome. Indels can arise readily in the face of IR expansion and
contraction. As a change occurs at an IR boundary, that change will
be reflected as an indel in the other IR copy through copy correc-
tion by gene conversion. However attractive it may be to attempt,
reconstructing evolutionary history based on the number of rear-
rangement events required to convert one genome to another
would be risky when considering plastomes like those in the Ger-
aniaceae. In this case it may be impossible to accurately estimate the
number of genomic changes or the order in which they occurred.
Perhaps a more reliable approach to reconstructing the evolution-
ary history of genomic changes would be to compare genomes of
very closely related species (i.e., [35, 120]) or even different popu-
lations of the same species in the lineages that exhibit such a high
degree of rearrangement.

As it turns out when species that are thought to be closely
related display substitution rate acceleration and structural changes
in plastomes accurate phylogenetic tree topologies remain obscure
and may suggest that such lineages have undergone recent and
rapid divergence. Although not as extreme as seen in Geraniaceae,
genomic rearrangement and elevated nonsynonymous substitution
rates have been documented in Silene plastomes [107]. Four spe-
cies were recently examined and while two, S. latifolia and
S. vulgaris, appeared to retain ancestral plastome characteristics,
two others, S. noctiflora and S. conica, were estimated to have
experienced four and one repeat-mediated inversions, respectively.
In all four species infA and rpl23 are pseudogenized and in
S. noctiflora and S. conica matK, rpoA and accD have diverged
and may also represent pseudogenes. These two species have lost
the introns in rpoC1 and both of the clpP introns while S. noctiflora
has lost the rpl16 intron, S. conica has lost the intron of atpF. All of
the intron losses noted in Silene plastomes have been documented
in other angiosperm lineages as well (Fig. 3).

A positive correlation has been noted between nucleotide sub-
stitutions and genomic rearrangements ([5, 34, 93, 107]; Fig. 3).
At first glance this seems fairly intuitive. For example in plastomes
such as those described, a fully or partially duplicated gene
sequence is inserted at some alternate locus (a genomic rearrange-
ment). It may be separated physically from the sequences that
regulate its expression, it may be truncated; for whatever reason it
is nonfunctional. While the functional copy is maintained, over
time the duplicated sequence experiences an accelerated rate of
nucleotide substitution because there is reduced selective constraint
on its divergence. This source of substitution rate acceleration is
not usually examined, however. Comparisons are made based on
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intact genes and duplicated sequences are not included in such
analyses suggesting other explanations for the observed correla-
tion. Aberrant DNA repair pathways, such as those involved in
double strand break repair, and RDR are implicated in genomic
rearrangement and could further contribute to divergence in nucle-
otide sequences, particularly in repeat rich plastomes (i.e.,
M. emarginata; [76]).

6 Plastome Gene Loss

6.1 Defining Gene
Losses

The functional loss of plastome encoded sequences occurs by vari-
ous means. Authors have often described this situation with little
regard to the mechanics that yield a loss of function. There are
numerous examples where plastome gene losses are reported in
angiosperms, and in only a few cases, functional replacement by
nuclear homolog is suggested or demonstrated (Fig. 3) [16, 21, 22,
121–125]. Gene loss may include pseudogenization due to non-
synonymous substitution resulting in amino acid changes that
impair the functional capacity of a protein, introduction of stop
codon or elimination of start or stop codons. Descriptions of gene
loss based on substitution by sequence analysis typically do not
consider changes in regulatory regions such as promoters and 50

or 30 untranslated regions (UTRs), or intron sequences, that could
potentially disrupt expression of the gene product yielding a func-
tional loss. Apart from pseudogenization of coding regions by
nucleotide substitution there is gene loss due to indels. Insertions
into coding and regulatory regions or deletions that compromise
regulatory function, introduce frameshift mutations or, in the case
of deletions, remove entire coding regions constitute another class
of gene loss. Among the Campanulaceae, the Geraniaceae and in
Trifolium, genome rearrangements have resulted in disruption of
transcription units that are highly conserved in other angiosperms
[33, 34, 40, 75, 76, 112]. By their definition the genes of a
transcription unit are cotranscribed from a promoter situated
upstream of the most distal gene at the 50 end. While the coding
regions of the “stranded” genes appear to be functional by
sequence inspection, whether and how these genes are transcribed
and regulated remains a mystery. Interestingly, a recent analysis of
transcriptional start sites using differential RNA sequencing has
identified numerous examples where plastid genes exhibited inde-
pendence from their canonical operon promoters [126]. In any
case, assignment of functional status to plastid encoded, or plastid
targeted, genes must be made with a caveat; conclusions reached
through sequence inspection should be supported by biochemical
evidence.
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6.2 Old and New
Gene Loss

Notwithstanding the preceding discussion, recent gene losses rein-
force the notion that the plastome is dynamic, still following its
evolutionary trajectory while adhering to the constraints of its
environment. Recent events include the loss of ndh genes in Ero-
dium, more than a dozen independent ribosomal protein gene
losses and, in one clade of the parasitic genus Cuscuta, the loss of
psaI, matK and the entire gene suite for subunits of the plastid
encoded RNA polymerase. In addition to protein coding genes,
recent losses are also reported for tRNA genes. The loss of the ndh
genes in Orchidaceae [52, 53, 127]; accD, ycf1 and ycf2 in Poaceae,
and infA in all but one rosid represent older events, but still
occurred long after the origin of angiosperms (Fig. 3). The early
and rapid transfer of genes to the nucleus following endosymbiosis
[1] reduced the coding capacity of the plastome to less than 5% of
the ancestral genome by the time the angiosperm lineage origi-
nated. The analysis of nuclear genomes from evolutionarily distant
Arabidopsis and Oryza reveals that large tracts of ptDNA have been
integrated into these genomes. One insert in Oryza sativa (rice)
represents a nearly complete copy of the plastome possessing very
high identity (>99%) to the sequences of the plastid genome [128–
130]. With the raw material present in the nucleus, is it possible for
any transferred gene sequence to eventually gain the appropriate
features and functionally to replace its plastid counterpart? Lloyd
and Timmis [131] have recently observed three distinct mechan-
isms by which a gene of plastid origin may become activated as a
nuclear integrant and suggest that such phenomena are more com-
mon than previously thought. Nonetheless, the early processes
involved in acquisition of sequence elements conferring transcrip-
tional activity and plastid localization are likely to be stochastic and
therefore rare events.

6.3 Gene Retention The persistence of organellar genomes has inspired a number of
theoretical hypotheses (reviewed in [132–134]). Recent and/or
repeated functional transfer events, that is replacement of a plas-
tome encoded gene product with an imported, nuclear encoded
gene product, seem to favor ribosomal proteins or proteins whose
activity is not intimately linked to photosynthesis. According to the
CORR (co-location for redox regulation) hypothesis proposed by
Allen [135] the nonrandom sample of genes that are ubiquitously
retained in photosynthetic plastomes link supply and demand at the
level of regulation of gene expression within plastids. More pre-
cisely, this core set of genes provides plastids with a mechanism to
respond rapidly and directly to the local redox environment. The
CORR hypothesis does not address the need for import of many
more nuclear encoded gene products to execute transcription,
translation, photosynthesis, and related reactions. The absence of
rpoA from the moss plastomes where the α-subunit of PEP is
imported from the cytoplasm [136] weakens the so-called
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autonomy of plastids in terms of gene expression, a central feature
of the CORR theory. More recently Wright et al. [137] have
proposed that organellar genomes could themselves serve as long
term redox damage sensors by providing a tonic, or constitutive,
retrograde signal. Sensing oxidative damage to ptDNA molecules
as a means to activate control mechanisms could, theoretically, be
perpetuated through any subset of genes as damage and repair
pathways should not preferentially favor the specific subset retained
in contemporary plastomes. Retention of the rbcL gene in plastids
defies at least one assumption of hydrophobicity hypotheses; it is
not a membrane protein with hydrophobic domains. Transgenic
experiments have shown the large subunit can be imported by
plastids from the cytoplasm following nuclear expression
[138]. The concept of ordered assembly, outlined by Daley and
Whelan [134], offers another plausible motivation for retention of
photosynthetic genes in plastomes. The study of multisubunit pro-
tein complexes, such as photosystem II, has shown that assembly
proceeds in an ordered manner, with the sequential addition of
specific scaffolding and functional subunits [139]. Again the prob-
lem that arises is that plastomes do not encode the entire comple-
ment of genes required for photosystem assembly [140]. In this
case perhaps retention of at least some of the subunit genes in the
plastome assures plastid localized assembly.

It is quite possible that there are a variety of reasons, several of
which have been proposed, why some genes as opposed to others
presently remain plastid encoded. The reasons may be different for
different genes or subsets of genes and the underlying mechanisms
combinatorial. Given the small window we have opened into the
evolution of plastomes it is likely that we have but scratched the
surface and continued study will reveal further intricacies governing
the subcellular localization of genes. With the availability of com-
plete nuclear genome sequences come new opportunities to
employ bioinformatic approaches to study the fate of plastid
genes in the nucleus.

7 Plastid Genes in the Nucleus and Other Promiscuous Sequences

7.1 Transcriptional
Activation
in the Nucleus

Using data from the most current annotation of the 12 O. sativa
chromosomes and the TIGR Database of Rice Transcript Assem-
blies, Akbarova et al. [141] identified cDNAs of nuclear origin that
include the complete sequences of five plastid genes: atpI, psbJ,
psbL, rpl14 and rps7. This finding may be indicative of an interme-
diate stage in the evolution of the O. sativa plastome, which cur-
rently contains apparently transcriptionally active copies of these
five genes. Both prokaryotic and the single subunit eukaryotic
ACCase may be functioning in Monsonia. The accD gene appears
to have been functionally transferred to the nucleus where it has
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acquired the sequences for expression and plastid targeting. A
duplication of the gene encoding the eukaryotic enzyme was
detected in all examined Geraniaceae except Hypseocharis, and one
copy is predicted to contain plastid targeting peptide [16]. This
situation fits perfectly with the paradigm for plastid genes function-
ally transferred to the nucleus, as suggested by Timmis et al.
[2]. Theory predicts that there would be a period during which
both the nuclear and plastid encoded products were active in plas-
tids, a period of functional redundancy. During this time selection
would act to favor one copy over the other; perhaps one copy
would be lost or potentially undergo mutation and adopt another
functional role in the cell. If the plastid copy were lost this would
constitute a functional nuclear transfer event. Such an intermediate
state of functional redundancy is supported by the finding that
while plastid encoded rps16 continues to be transcribed and spliced
in species representing at least four genera, a mitochondrially
derived rps16 gene now located in the nucleus possesses a dual
targeting sequence capable of delivering its product into
plastids [142].

Far outside of plants, in the photosynthetic protist Paulinella,
examination of 3000 expressed sequence tags revealed that the psaI
gene has been relocated to the nucleus in a recent transfer event.
Here the chromatophore (analogous to the much older plastid)
copy of psaI is easily detectable but has been interrupted by two
stop codons within the former coding region [143], while ten other
genes for photosystem I (PSI) subunits are encoded in the Pauli-
nella plastome. Although unable to locate the nuclear copies,
Magee et al. [21] report the loss of the PSI genes ycf4 and psaI
from Pisum and Lathyrus, respectively. Until now the only reported
loss of photosynthesis related genes among angiosperms had been
in members of the nonphotosynthetic heterotrophs of Orchidaceae
and Cuscuta and E. virginiana.

7.2 Promiscuous
ptDNA
and Experimental
Artifacts

From inspection of the available angiosperm nuclear genomes it is
now clear that both short and long tracts of nuclear ptDNA, or
NUPTs, are present and retain high identity to plastome sequences
[2, 129]. One investigation revealed that intact open reading
frames of plastid origin could be maintained in the nucleus within
NUPTs for several million years [144].

In addition ptDNA insertions are found abundantly in mito-
chondrial DNA (mtDNA) [145–149]. These transferred sequences
present a problem that must be recognized and managed when
analyzing amplified ptDNA for phylogenetic reconstructions.
Duplications such as those uncovered in O. sativa, where 53 plastid
genes were present in multiple copies throughout the 12 chromo-
somes [141], could result in PCR amplification of nontarget
sequences. This phenomenon has been evaluated with regard to
spurious amplification of mtDNA from nuclear inserts (NUMTs)
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and a recent comment by Arthofer et al. [130] offers suggestions
about how artifactual phylogenetic inferences may be avoided when
ptDNA sequences are considered. Careful consideration of the
potential to amplify spurious sequences should inform primer
design and novel approaches, such as the application of methylation
sensitive PCR to distinguish nuclear sequences from organelle as
described by Kumar and Bendich [150], may alleviate some of these
issues.

The so-called promiscuous DNAs can confound molecular
analysis in transplastomic experiments as well. The plastome,
which persists in all plastid differentiation types, may be present in
up to 100 identical copies per plastid in leaf cells [151]. Mesophyll
cells of a mature leaf may carry up to 100 chloroplasts with the
result that the plastome can comprise a significant portion (up to
~20%; [152, 153]) of cellular DNA content. For the establishment
of stable transplastomic lines homoplasmy, the iteration of the
transgene throughout all of the copies comprising the plastome,
must be achieved. In the case of deletion studies, it is desirable to
demonstrate homoplasmy of the transplastome as evidence that the
mutation involved a nonessential gene [12, 32, 154, 155]. The
mixed genotype is unstable and this condition, known as hetero-
plasmy, does not persist in the absence of selection, resolving into
one state (wild type) or the other (transformed) over time
[156]. Culturing on nonlethal selective media can facilitate the
transformation of all copies. Plastids carrying a resistance marker,
and in turn the cells that harbor these plastids, are preferentially
maintained as plastome molecules are divided up between daughter
plastids and subsequently as plastids are partitioned between
daughter cells at mitosis [157, 158]. The same applies to the
maintenance of a wild-type allele when the experimental design
includes disruption of an essential gene.

The homoplasmic state of putative transformants is typically
evaluated by Southern analysis of restriction fragments that differ
between the wild type and transplastome, PCR amplification across
the insertion/deletion site or by germination of seed from self-
fertilized transplastomic plants. Given the high identity and length
of NUPTs, hybridization experiments, and PCR in particular due
to its sensitivity, could lead to the an incorrect assignment of
heteroplasmy as the NUPTs will more likely produce a result
corresponding to the wild-type plastome [159, 160]. Analysis of
transplastomic N. tabacum carrying a mutation in the psbZ gene
found persistent heteroplasmy even when cultured in sucrose
media, thereby alleviating the demand for photoautotrophy. This
led investigators to propose an essential, nonphotosynthetic func-
tion [161, 162]. By analyzing ptDNA purified by pulsed-field gel
electrophoresis, Swiatek and coworkers [163] subsequently
demonstrated homoplasmy of the transplastome for mutant line
for psbZ and cemA, but not the essential ycf1 mutant. In this study
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total genomic samples and ptDNA prepared by gradient centrifu-
gation were shown to contain promiscuous ptDNA sufficient to
produce misleading PCR results. Furthermore, quantitative evalu-
ation of template abundance responsible for promiscuous cemA
signals suggest multiple copies may be present in the nucleus
and/or mitochondria [163].

7.3 “Foreign” DNA
in Wild-Type
Plastomes

The transfer of DNA among the genome bearing compartments of
individual cells has shaped the evolution of plastomes. Plastomes
were thought to be recalcitrant to the incorporation of foreign
DNA, either by horizontal or intracellular transfer. As more plas-
tome sequences are obtained bona fide cases of foreign DNA in
plastomes have been uncovered. The first, from Goremykin et al.
[147], was uncovered during the sequencing of the Vitis vinifera
(grape) mitogenome. Approximately 1.5 kb of nonplastid sequence
was identified in an intergenic region of the Daucus carota IR
(Apiaceae, carrot; [164]) that contained two regions showing
high similarity to grape and other published mitogenomes. The
integration of carrot mtDNA in the plastome was confirmed and
the insert was identified across the Daucinae clade and in Caucalis
platycarpos (Torilidinae; [165, 166]). Also in Apiaceae, the plas-
tomes of Petroselinum and Crithmum contain DNA sequence with
no identity to angiosperm plastome sequences situated between the
boundary of IRA and the 30 end of trnH-GUG [167]. The sugges-
tion that insertions of mtDNA into the plastome could involve the
IR was reinforced by the detection of an insertion (2.7 kb) in the
trnI-CAU-trnL-CAA spacer in the herbaceous bamboo genus
Pariana (Poaceae, Olyreae). This insertion returned hits with
high similarity to angiosperm mitochondrial sequences in blastn
searches. The best scoring hit was to the mitogenome of another
bamboo, Ferrocalamus rimosivaginus (Arundinarieae), and covered
97% of the insertion sequence [168]. The trnI-CAU-trnL-CAA
spacer may be a hot spot for these insertions in Poaceae as mito-
chondrial inserts 976–11,393 bp were reported for the same region
in the Paspalum lineage [169]. Although an insert in the Para-
neurachne trnI-CAU-trnL-CAA spacer bore no similarity to the
Paspalum insert, the 2808 bp sequence shared 92% identity to the
Sorghum bicolor mitochondrial genome [169]. A large mtDNA
insertion (6767 bp) in the completed plastome of Anacardium
occidentale (cashew) was also identified in the IR. Primers designed
to amplify the inserted DNA in other Anacardium species revealed
that the insert is present in four taxa that occur in a strongly
supported clade, suggesting a single shared insertion event [170].

Thus far a single instance of mtDNA insertion has been
reported for the plastome single copy regions in a location well
removed from the IR and its boundaries. A large insertion was
identified in the rps2-ycf4-psaI 2-rpoC2 IGS of Asclepias syriaca
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that produced best blast hits to a region of the Nicotiana tabacum
mitogenome [171]. Later the same year, Straub et al. [172] con-
firmed the plastome insertion of a 2.4 kb segment of the Asclepias
mitogenome. Using complete plastome sequences and a PCR
based survey, inserts ranging in size from ~2.4 to ~4.7 kb were
identified across the tribe Asclepiadeae but not in other
Apocynaceae.

8 Recombination and the Plastome

The generation of novel plastome genotypes by transformation
initially relies on integration of foreign sequence by intermolecular
homologous recombination (HR; [89, 173]). Mechanistically
related to gene conversion, HR and repair pathways participate in
the subsequent events that yield homoplasmic transplastomic cells
and eventually stable transplastomic plants. Intra- or intermolecular
recombination between repeated sequences, both in wild-type plas-
tomes [12, 34, 40, 100, 174, 175] and as a result of transplastomic
experiments [154, 176, 177] can generate inversions when repeats
are palindromic, or deletions when direct depending on the loci and
mechanisms involved. Furthermore the role of HR proteins in
damage repair may be compromised when foreign DNA is intro-
duced, and through associated tissue culture and selective pressure,
as these manipulations can place additional stress on recombination
machinery leading to unintended events [95, 178]. Numerous
recombination products have been observed during the develop-
ment of transplastomic lines [177, 179] and likely vastly more
remain either unexplored or unreported as such recombination
products are undesirable to biotechnologists.

8.1 DNA Replication,
Repair,
and Recombination

Among the DNA repair and recombination genes identified in the
nuclear genomes of Oryza and Arabidopsis TargetP [180] predic-
tion suggests 19% and 17%, respectively, are targeted to plastids
[181]. As yet only a small number of such activities have been
explored.

8.1.1 RecA Protein Early work in Pisum sativum demonstrated DNA strand transfer
activity for plastid localized RecA [182, 183]. Further study impli-
cated RecA in recombination mediated repair of damaged ptDNA
[184]. Using Arabidopsis mutant lines generated by T-DNA inser-
tion Rowen et al. [185] showed that reduced RecA1 (AT1G79050)
activity leads to a destabilization and reduction in ptDNA. The
reduction in plastome copy number in mutant lines relative to
wild type suggests that RecA1 participates in recombination-
mediated replication.
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8.2 DNA Replication,
Physical Form
and Copy Number

It is likely that ptDNA replicates by a number of mechanisms acting
concomitantly and/or sequentially along a developmental contin-
uum. Proposed models include displacement-loop and rolling cir-
cle (θ and σ; [186]) replication of circular templates, and
recombination dependent mechanisms acting on circular or linear
templates [94, 187, 188]. There is strong experimental evidence
for multiple replication origins mapping to both the IR and single
copy regions [189–196]. Several different groups using distinct
approaches have demonstrated that ptDNA is present in vivo in
many forms. These include monomeric and multimeric circles,
linear molecules that can be highly branched forms and condensed,
high molecular weight DNA complexes [94, 186, 197–
200]. Given the range of potential templates available to the repli-
cation machinery it is plausible that different mechanisms predom-
inate in replication of each of the different forms of ptDNA and at
different developmental stages.

Replication is thought to be most active in plastids of meriste-
matic tissues and leaf primordia, when cells and their organelles are
growing and dividing most rapidly. At these early developmental
stages, branched linear molecules were reported to comprise the
most abundant topological form of ptDNA in some species, with
reducing complexity as leaves develop [138, 150]. Plastome copy
number reaches a maximum in young leaves, and appears to be
reduced approximately three fold in terms of genomes per plastid in
mature leaves well before senescence [94, 200, 201]. Given the
abundance of plastids in the cells of mature leaves, this still consti-
tutes a considerable amount of DNA on a per cell basis. Estimation
of ptDNA copy number in plastids of maturing leaves of Medicago,
Pisum, Zea and Arabidopsis [200, 202–204] suggested that a large
proportion of mature leaf plastids were completely devoid of
ptDNA, having lost earlier populations through degradation. In
their examination of isolated plastids of three maize cultivars,
Zheng et al. [204] report that during greening of dark grown
seedlings, 6 h of exposure to light induced ptDNA instability
resulting in the loss of half of the ptDNA that was present before
transfer to the light. By 24 h of light exposure ptDNA abundance
was equal to that of the mature plastids of light grown plants, which
were found to contain tenfold fewer plastome copies than etio-
plasts. The authors propose that the high plastome copy numbers
seen prior to the initiation of photosynthesis are needed to facilitate
accumulation of plastid encoded proteins. Once photosynthesis is
initiated, this demand is ablated and copy number declines. While
this group observed disagreement in copy number estimates
between DAPI staining and quantitative PCR, they suggest that
the detection of NUPTs, both in PCR-based and hybridization
approaches artificially inflates plastome copy number estimates.
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At least three studies challenge the notion that plastome abun-
dance declines as cells mature in Arabidopsis and report an absence
of significant variation in plastome abundance during development
[205–207]. Further analysis in Beta vulgaris (beet) supports the
majority of Arabidopsis findings and demonstrates the constancy of
plastome copy number as leaves mature [153]. Methodological
differences may indeed be responsible for the inconsistencies;
regardless, three independent labs using different methods report
agreement of their results for Arabidopsis.

8.3 Maintaining
Plastome Integrity

Recombination dependent replication is likely to play an integral
role in the maintenance of plastome integrity. In the potentially
genotoxic environment of the plastid, ptDNA damage is bound to
arise. Collapsed replication forks, DNA lesions, double strand
breaks (DSB), and slipped strand mispairing are among the phe-
nomena that threaten plastome stability and may set up scenarios
under which error prone DNA repair can occur. Aberrant replica-
tion and repair mechanisms can ultimately lead to reconfiguration
of plastomes. Very little is known about the nuclear encoded pro-
teins that function in plastids to ameliorate these phenomena, but
recent studies are shedding some light on mechanisms involved in
securing ptDNA.

8.3.1 Plastid Targeted

Whirlies

Like RecA1, the plastid targeted Whirly proteins are characterized
as single stranded DNA binding proteins and are proposed to
contribute to plastome stability by prohibiting illegitimate recom-
bination events [208]. Arabidopsis plants in which one or both
known plastid targeted Whirlies are knocked out have been used
to investigate the role and mechanism of these proteins in plastome
maintenance. Outward and inward facing PCR amplification and
sequencing identified 40 reorganized ptDNA loci in the double
knock out lines including deletions and circularized and/or head to
tail concatemers delimited by direct repeats of 10–18 bp. In the
lines where only one of the two Whirlies was disrupted rearrange-
ments were less frequent. Surprisingly, even analysis of wild-type
plants revealed two rearrangement events. Extension of this
approach to maize Whirly mutants confirmed that these proteins
are similarly involved in plastome maintenance in this system. Anal-
ysis of the short direct repeats associated with illegitimate recombi-
nation events in Arabidopsis mutants identified an
overrepresentation of A/T homopolymeric regions, known to
cause slipped-strand mediated replication stalling and DSB
[209]. In some lines repeats bordering the rearranged regions
contained some mismatches suggesting that recombination events
did not require perfect homology [208]. Continued study of
Whirlies has revealed that a specific motif conserved across this
protein family is integral to the assembly of higher order homo-
meric structures [210]. While previous experiments had
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demonstrated that the phenotype of the Arabidopsis why1 why3
mutant lines could be complemented by transformation with the
wild-type WHY1, transformation with a why1 construct carrying
the mutation for a specific lysine residue shown to abolish higher
order assembly in why2 lines failed to recover Whirly-1
activity [210].

8.3.2 Double Strand

Break Repair in Plastids

The frequency and resolution of DSBs in plastomes is likely influ-
enced by several protein factors including RecA, Whirlies, DNA
polymerase Ib [211] and single strand binding proteins such as the
homolog of bacterial MutS, MSH1 [212]. To explore how plastids
of wild-type Arabidopsis cope with a DSB scenario, Kwon et al.
[213] created an inducible system in which the I-CreII endonucle-
ase of Chlamydomonas reinhardtii is targeted to plastid where it
cleaves the endogenous psbA gene. Amplicon sequencing of nested
PCR products from across the I-CreII cleavage site showed dele-
tions mapping to either side of the cleavage site. Evaluation of the
junction sequences indicated that DSBs had occurred and were
predominantly repaired by microhomology mediated end joining
(MMEJ), but in a few cases data was suggestive of nonhomologous
end joining (NHEJ). Perfectly homologous repeats of 6–12 bp, or
imperfect 10–16 bp repeats, were sufficient to direct DSB repair by
MMEJ. No rearrangements were detected in this study, likely due
to the presence of factors (i.e., Whirlies) that minimize activation of
a microhomology mediated break induced replication (MMBIR)
repair pathway. Wild-type Arabidopsis plants were resistant to
ptDNA rearrangements compared to the Whirly double knock
out plants, which accrue a heterogeneous pool of ptDNA mole-
cules when treated with DNA damaging agents. Because MMEJ
can only account for deletions following a repair event [214] the
investigators proposed that an MMBIR response yielded the varied
and complex ptDNA molecules observed [208, 215]. This
response, which relies on template switching after replication fork
collapse, could utilize microhomologous regions within the same
molecule or on two different molecules producing the diversity of
rearranged products observed in these studies [216].

Double strand breaks repaired by pathways that utilize micro-
homologies were detected even in wild-typeArabidopsis plastomes,
which have a low incidence of large repeats [95] and inverted
microhomologies at stalled replication forks led to reinitiation on
the wrong strand forming short range inversions [217]. Longer
homeologous or nonhomologous sequences have been identified
in plastomes, particularly those containing abundant repeats, and,
along with microhomologies, can participate in DSB repair via
RDR pathways. The series of large repeats in theMonsonia emargi-
nata plastome likely facilitated replicative repair leading to the
accumulation of alternate arrangements of the plastome monomer
[76]. Although unexplored in Erodium, the return of the IR in

Plastid Genomes of Flowering Plants: Essential Principles 27



Medicago minima can be explained by DSB repair via synthesis
dependent strand annealing or Holiday junction formation/reso-
lution [18]. The resulting arrangement of syntenic blocks of
sequence represents a significant structural change, however
mechanisms that utilize homologies to template replicative repair
are active in plastomes and typically considered conservative resolu-
tions to DSB [95].

Repair pathways mediated by microhomologous regions in the
plastome represent an error prone mechanism to overcome severe
DNA damage. Nonhomologous end joining (NHEJ) can resolve a
DSB with high fidelity or alter DNA, with the result being tightly
linked to the nature of the break and the activity of attendant
protein factors [218, 219]. A major DNA repair pathway in the
eukaryotic nucleus and also active in bacteria and plant mitochon-
dria, NHEJ was not thought to occur in angiosperm plastids and
was suggested to exclude promiscuous DNA from plastome inte-
gration. Whether or not NHEJ is involved is uncertain, however
plastomes in several lineages have been identified to contain inser-
tions of mitochondrial DNA [165–171]. While it is possible that
inefficient integration mechanisms could be limiting foreign DNA
insertions in plastomes, more likely the lack of an active DNA
uptake system [220] and the plastid double membrane have pre-
cluded widespread transfer of extraplastidal DNA.

Investigating transposition of the IS 150 element in transplas-
tomic N. tabacum, Kohl and Bock [221] were unable to detect
religated, IS 150 lacking plastomes, again suggesting the absence of
NHEJ in plastids. Observing DSBs at high frequency at both ends
of IS element, these authors proposed two possible pathways to
explain the lack of detection of religated molecules: the damaged
plastomes were degraded or repaired via homologous recombina-
tion with IS 150-containing plastomes. More recently two inde-
pendent investigations have reported NHEJ products in
Arabidopsis. In one case repair of DSBs by NHEJ following I
CreII activity was detected at low frequency [213], in another
NHEJ repair events represented 17% of the rearranged products
in Whirly knock out lines [215]. The finding that NHEJ, although
likely a quantitatively minor pathway, can occur in plastids makes
elucidating the nature of linear ptDNA ends all the more
compelling.

9 Plastome Evolution: Phylogenetic and Biotechnological Considerations

The processes of DNA replication, recombination and repair in
plastids [95, 222] have shaped the evolution of a conservative
genome in most angiosperms. Given the highly orchestrated nature
of these activities, perturbances to one aspect of the system can be
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ramified in unpredictable ways. Large and small scale rearrange-
ments, indels and pseudogenization have diversified plastomes and
consideration of such diversity is imperative to experimental design
for phylogenetic reconstruction as well as for biotechnological
applications. Although gene order and protein coding sequences
are well conserved across most angiosperms, pertinent differences
are observed across families and genera. More subtle differences can
be detected at and below the species level facilitating resolution
over short evolutionary time scales [101, 223].

9.1 Targeting
Plastome Insertion

To achieve efficient foreign sequence integration by homologous
recombination transplastomic approaches have used endogenous
plastome sequences to target insertions. Studies demonstrate a
positive correlation between the rate of recombination and both
the length and degree of sequence homology in prokaryotes
[224, 225]. Decreasing identity between transformation vectors
and target plastome regions, that is, using N. tabacum flanking
sequences to transform different species, yields much lower trans-
formation efficiencies [226–230]. Both intra- and interfamilial var-
iation in target sequences negatively impacted homologous
recombination events and concomitantly transformation efficiency.

Between L. sativa and N. tabacum in which the ribosomal
operon region has been targeted for transgene integration, gene
order is conserved but large and small deletions within the introns
of trnI and trnA unique toNicotiana, restricts the length of nearly
identical sequence to less than 600 bp across the integration site.
Although the minimum flanking sequence length has not been
defined empirically, as little as a 400 bp on either side of the
expression cassette appears to be sufficient to obtain transformation
at a reasonable frequency [231]. Targeting sequences generally
extend from 1–1.5 kb on either side of the expression cassette
[232, 233].

9.2 Phylogenetic
Utility of “Noncoding”
Sequences

The level of conservation observed for plastome protein coding
sequences is so great as to limit their phylogenetic utility when
sampling few genes or taxa, especially at lower taxonomic levels.
Alternatively, concatenated sequences for all protein coding regions
plus the four ribosomal RNAs have been employed to gain resolu-
tion among early diverging lineages and several major angiosperm
clades ([5] and references therein; [234–236]). For evaluating
recent divergence such as interspecific hybridization or cultivars/
haplotypes within species, amplified noncoding sequences have
been used. Introns and intergenic regions, including spacers and
regulatory sequences, yield some phylogenetically informative sites,
but also demonstrate the need to recognize the functional nature of
regulatory elements when analyzing DNA sequence [98–101, 237,
238]. More recently investigators have explored the use of whole
plastome sequences to evaluate relationships at and below the

Plastid Genomes of Flowering Plants: Essential Principles 29



species level. Studies such as those of wild Oryza species [239] and
individuals of Jacobaea vulgaris [240] have found that most phylo-
genetically informative sites occurred in intergenic regions.

9.2.1 Small Inversions

in Regulatory Elements

Indeed the intergenic regions used for phylogenetic studies include
various elements associated with transcription and translation of
plastid genes. The observation of small inversions predicted to arise
from recombination between palindromes in both 50 and 30 UTR
sequences is not surprising. The mRNA binding proteins involved
in both activation and degradation of plastid transcripts are likely
highly sensitive to cognate structures. The orientation of the loop
sequence may be free from directional selection, and thus have no
evolutionary significance (feature would be freely variable within
groups), as long as the overall structure is preserved. Like the IR
mediated interconversion of single copy regions shown by Palmer
to exist in equimolar proportions within an individual [62], such
small inversions could be present as a mixed population of isomers.
A mutation that alters the thermodynamic stability of the structure
such that one orientation was favored over another could lead to
the fixation of that allele over time.

Oppositely, the very same kinds of nucleic acid-protein inter-
actions should deter mutations that disrupt conserved stem and
loop structures in UTRs, ribosome binding sites, conserved
nucleotides involved in intron structure and processing or pro-
moter elements. While the plastid gene expression system appears
to be quite robust in its ability to utilize heterologous regulatory
elements [90, 230, 241], specific stem and loop interactions are
observed [242–246] and predicted structures for some 50 regions,
such as the psbA 50 UTR, are distinct between angiosperm families
[230]. Similar structures localized in the 30 UTRs of plastid tran-
scripts, unlike those of Eubacteria, do not act as terminators of
transcription but rather participate in polycistron processing 30 end
maturation and transcript stability [244, 246–248]. The structural
and functional constraints placed on sequence evolution in non-
coding regions should be widely recognized and incorporated into
phylogenetic approaches [98, 249].

9.2.2 Nucleotide

Substitution in Noncoding

Regions

In addition to rearrangements, the diversity of angiosperm plas-
tomes is reflected in nucleotide substitution rates [39, 127, 250–
252]. Rate comparisons may consider synonymous or nonsynon-
ymous substitutions, or a ratio of the two, for protein coding genes.
In regions that do not code for amino acid sequences, base sub-
stitutions have, at least for phylogenetic purposes, often been
deemed neutral and compared to synonymous coding substitu-
tions. An evaluation of 34 single copy introns and intergenic
regions across a small but taxonomically disparate set of angios-
perms found that nucleotide substitutions accounted for approxi-
mately 72% of the phylogenetically informative characters identified

30 Tracey A. Ruhlman and Robert K. Jansen



[253]. However, where functional sequences are concerned base
substitutions may not be neutral. On closer inspection regions of
extreme sequence variability tend to localize in areas with the least
structural and functional constraint [254, 255], an observation
consistent with directional selection on regulatory sequences. Anal-
ysis of nucleotide substitution rates for protein coding genes allows
for unambiguous assignment in terms of conservative and noncon-
servative change; nonetheless, this approach typically does not
consider protein domain functions, such as participation in higher
order intramolecular structure, interaction with other polypeptide
subunits and enzymatic capacity. Thus some residues or groups of
residues may be under localized selection pressures, a point that
could be overlooked when evaluating rate variation at the genomic
scale, across genes or taxa.

10 Plastome Inheritance

A cursory review of available plastome sequences could miss the
diversity that becomes apparent with critical examination. Against
the background of apparently restrictive conservation, the unusual,
the unexplained, beg investigation. Plastids and their genomes are
inherited from the seed parent in approximately 80% of angios-
perms [256–259]. It is intriguing that a number of the most bizarre
plastomes exhibit biparental inheritance (Fig. 3; see [36]).

10.1 Biparental
Inheritance

Given the highly active recombination system functioning in plas-
tids could there be a relationship between the presence of two
plastome genotypes and genomic instability? Extensive recombina-
tion demonstrated in somatic hybrids and male sterile lines of
Nicotiana [260–262] and through the incorporation of foreign
sequences using plastid transformation strategies leaves little
room for the notion that different plastome genotypes cannot
recombine. Further evidence for ptDNA recombination has been
documented in interspecific somatic hybrids of Solanum [263] and
Brassica [264], and in wild populations of lodgepole pine
[265]. Likely the greatest impediment to recombination is a physi-
cal one, the presence of the plastid envelopes presents a formidable
barrier. The mechanical forces applied during plastid transforma-
tion overcome this barrier, but in the absence of such interventions
how would different genotypes achieve the necessary proximity?
Plastid fusion has been reported inHostamutants [266] suggesting
the possibility for the exchange of genetic material. Also, the pres-
ence of stroma filled tubules, or stromules, connecting two or more
plastids constitute a possible pathway for exchange [267–
270]. Recent work is now uncovering the interconnectedness of
plant cell organelles and suggests that membrane contact sites
(MCS) establish foci for the transfer of molecules between cellular
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compartments and even between compartments in adjacent cells via
plasmodesmata [271]. Observed stress-inducible MCS include
direct interaction between plastids and peroxisomes, the nucleus
and mitochondria via stromules, peroxules, and mitochondrial pro-
trusions, and direct mitochondrial-plastid MCS (reviewed in
[272]).

Biparental inheritance is thought to be a derived trait in angios-
perms and has arisen independently in several lineages [256, 259,
273, 274]. An intriguing hypothesis that addresses the possible
correlation between plastome instability and the emergence of
biparental inheritance of ptDNA has been proposed. Zhang and
Sodmergen [274] suggest that, rather than contributing to disrup-
tive change, the presence of paternal plastids and their plastomes
provides resolution to plastid-genome incompatibility (PGI) result-
ing from deleterious mutations in the maternal plastids. The poten-
tial for biparental inheritance (PBPI) is identified using cytological
evidence; the detection of plastid DNA signals in male gametic cells
[256, 258]. While species known to exhibit biparental inheritance
are always positive for PBPI, genetic inheritance is rarely demon-
strated in the majority of PBPI species. This suggests that although
the potential exists for paternal plastids and their DNA to be
transmitted the occurrence is low relative to maternal transmission
and would be easy to miss were there no defect to favor retention of
the male parent plastid and its haplotype. The “paternal rescue”
hypothesis suggests that PBPI can overcome defects that may
render maternal plastids incompatible with the nuclear genome
through stable transmission of paternal plastids to progeny but
does not address a mechanism. Are maternal, defective plastids
excluded in toto, or can we imagine a scenario where two plastid
haplotypes, maternal and paternal, recombine (i.e., undergo gene
conversion) to restore a wild-type phenotype?

10.2 Coevolved
Complexes and
Plastome–Genome
Incompatibility

The plant genome comprises a coevolving, integrated genetic sys-
tem housed in three subcellular compartments. This integration
and coevolution is an effective postzygotic reproductive barrier and
as such plays a role in speciation processes [275–278]. There is a
strong correlation between biparental inheritance and higher rates
of nucleotide substitutions, genomic rearrangements and plastid
genome incompatibility (PGI), and this correlation has been used
to suggest that biparental inheritance of organelles may rescue
incompatibilities [76, 279–281]. Self-fertilized or outcrossed indi-
viduals within the same population carry very few plastome poly-
morphisms between them and those used to differentiate parental
types in screens of progeny are usually synonymous changes with no
adaptive effect. Transmission of two plastome types, maternal and
paternal, to progeny (heteroplasmy) will typically resolve into
homoplasmy over time in the absence of selection and may be
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completely random [156, 282, 283]. However, if parental plastome
differences impair interactions between coevolved polypeptides
encoded in the plastid and nucleus PGI can result.

Previous studies of coevolution between nuclear and plastid
genomes have primarily focused on examining subunits of genes
that are encoded in the nucleus and the plastid that form multi-
subunit complexes in plastids [77, 284, 285]. In the case of PGI
several plastid genes or regions have been implicated (clpP, ycf1, ycf2
in Campanulastrum [280]; accD in Pisum, [286]; rpo genes in
Geraniaceae, [284]; intergenic promoter region between clpP and
psbB in Oenothera, [287]). Greiner and Bock [276] indicated that
PGI could also be caused by disruption of regulatory pathways,
making nuclear genes involved in plastid transcription, translation
and mRNA maturation prime candidates.

Two studies utilized the Geraniaceae model system to evaluate
correlation between rates of nucleotide substitutions (dN, dS) and
dN/dS. Examining cytonuclear interactions in the PEP holoen-
zyme identified six major clades of nuclear encoded sigma factors
across the Geraniales that correspond to the six sigma factors
(sig1–6) present in Arabidopsis [284, 288]. Correlated rates were
detected between interacting plastid (PEP) and nuclear (sigma
factor) sequences across the Geraniales were likely caused by
plastid-nuclear genome coevolution and could cause PGI in Ger-
aniaceae hybrids. Involving a greater number of both plastid and
nuclear constituents, examination of the protein subunits of the
plastid ribosome relative to control sequences revealed strong sig-
nals of cytonuclear coevolution between plastid and nuclear
encoded subunits, including nonsynonymous substitutions in plas-
tid encoded and nuclear encoded plastid targeted subunits occur-
ring along the same branches in the Geraniaceae phylogeny
[285]. Increased dN/dS in plastid encoded ribosomal proteins
was mainly due to intensified positive selection whereas increased
dN/dS in nuclear encoded plastid targeted genes was facilitated by
relaxed purifying selection.

Employing model systems like Geraniaceae or Silene (Caryo-
phylaceae; [289]) is illuminating the evolutionary forces acting on
plastomes and the influence of plastome–nuclear genome interac-
tions is certainly a factor. The plastomes of these atypical lineages
are useful for the diversity of changes they have experienced
through evolutionary time. Applying the tools of plastome trans-
formation provides the opportunity to precisely introduce specific
nonsynonymous base changes in plastid genes that interact with
nuclear counterparts and observe resulting phenotypes.
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11 Conclusion

Like any endeavor involving empirical investigation, studies of
plastome evolution, however enlightening, leave unresolved ques-
tions and newly envisioned directions for research. The dizzying
advance of DNA sequencing technology promises databases replete
with information. Integrating bioinformatic, genomic, and bio-
chemical data will be paramount in the design and execution of
experiments aimed at elucidating the role of nuclear encoded pro-
teins in plastome maintenance. Of particular interest will be pro-
jects that target DNA replication, recombination and repair
pathways in those families where plastome stability is, or once
was, destabilized. Plastid biotechnology, aided by available genomic
resources, should be extended to include important agronomic and
model species. Plastome modification as a tool to address basic
research questions has yielded previously elusive insights and we
enthusiastically encourage novel applications of this technology to
progress our understanding of plastome evolution in form and
function.
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