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ABSTRACT

We consider the classical Minimum Crossing Number problem:
given an n-vertex graph G, compute a drawing of G in the plane,
while minimizing the number of crossings between the images
of its edges. This is a fundamental and extensively studied prob-
lem, whose approximability status is widely open. In all currently
known approximation algorithms, the approximation factor de-
pends polynomially on A — the maximum vertex degree in G.
The best current approximation algorithm achieves an O(nl/2€.
poly(A - log n))-approximation, for a small fixed constant e, while
the best negative result is APX-hardness, leaving a large gap in
our understanding of this basic problem. In this paper we design
a randomized O (20((1°g n)"/*loglog ) . poly(A)) -approximation al-
gorithm for Minimum Crossing Number. This is the first approxi-
mation algorithm for the problem that achieves a subpolynomial
in n approximation factor (albeit only in graphs whose maximum
vertex degree is subpolynomial in n).

In order to achieve this approximation factor, we design a new
algorithm for a closely related problem called Crossing Number
with Rotation System, in which, for every vertex v € V(G), the
circular ordering, in which the images of the edges incident to
v must enter the image of v in the drawing is fixed as part of
input. Combining this result with the recent reduction of [Chuzhoy,
Mahabadi, Tan "20] immediately yields the improved approximation
algorithm for Minimum Crossing Number.
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1 INTRODUCTION

We study the classical Minimum Crossing Number (MCN) problem:
given an n-vertex graph G, compute a drawing of G in the plane
while minimizing the number of its crossings. Here, a drawing ¢
of a graph G is a mapping, that maps every vertex v € V(G) to
some point ¢(v) in the plane, and every edge e = (u,v) € E(G) to a
continuous simple curve ¢(e), whose endpoints are ¢(u) and ¢(v).
For a vertex v € V(G) and an edge e € E(G), we refer to ¢(v) and
to ¢(e) as the images of v and of e, respectively. We require that, for
every vertex v and edge e, ¢p(v) € ¢(e) only if v is an endpoint of e.
We also require that, if some point p belongs to the images of three
or more edges, then it must be the image of a shared endpoint of
these edges. A crossing in a drawing ¢ of G is a point that belongs
to the images of two edges of G, and is not their common endpoint.
The crossing number of a graph G, denoted by OPT(G), is the
minimum number of crossings in any drawing of G in the plane.

The MCN problem was initially introduced by Turan [28] in
1944, and has been extensively studied since then (see, e.g., [5—
7,9, 10, 16, 17], and also [20, 21, 23, 26] for excellent surveys).
The problem is of interest to several communities, including, for
example, graph theory and algorithms, and graph drawing. As such,
much effort was invested into studying it from different angles. But
despite all this work, most aspects of the problem are still poorly
understood.

In this paper we focus on the algorithmic aspect of MCN. Since
the problem is NP-hard [13], and it remains NP-hard even in cubic
graphs [4, 14], it is natural to consider approximation algorithms for
it. Unfortunately, the approximation ratios of all currently known
algorithms depend polynomially on A, the maximum vertex de-
gree of the input graph. To the best of our knowledge, no non-
trivial approximation algorithms are known for the general setting,
where A may be arbitrarily large. One of the most famous results
in this area, the Crossing Number Inequality, by Ajtai, Chvatal,
Newborn and Szemerédi [1] and by Leighton [18], shows that, for
every graph G with |E(G)| = 4|V(G)|, the crossing number of G
is Q(|E(G)|3/|V(G)|?). Since the problem is most interesting when
the crossing number of the input graph is low, it is reasonable to
focus on low-degree graphs, where the maximum vertex degree A
is bounded by either a constant, or a slowly-growing (e.g. subpoly-
nomial) function of n. While we do not make such an assumption
explicitly, like in all previous work, the approximation factor that
we achieve also depends polynomially on A.
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Even in this setting, there is still a large gap in our understand-
ing of the problem’s approximability, and the progress in closing
this gap has been slow. On the negative side, only APX-hardness
is known [2, 4], that holds even in cubic graphs. On the positive
side, the first non-trivial approximation algorithm for MCN was
obtained by Leighton and Rao in their seminal paper [19]. Given as
input an n-vertex graph G, the algorithm computes a drawing of G
with at most O((n + OPT(G)) - AOM log4 n) crossings. This bound
was later improved to O((n + OPT¢(G)) - AOM) log3 n) by [12], and
then to O((n + OPT¢,(G)) - A9 log? n) following the improved
approximation algorithm of [3] for Sparsest Cut. Note that all these
algorithms only achieve an O(n poly(A log n)))-approximation fac-
tor. However, their performance improves significantly when the
crossing number of the input graph is large. A sequence of pa-
pers [7, 10] provided an improved O(n°-? - AO(I))-approximation
algorithm for MCN, followed by a more recent sequence of pa-
pers by Kawarabayashi and Sidiropoulos [16, 17], who obtained

an O (\/ﬁ . Ao(l))—approximation algorithm. All of the above re-

sults follow the same high-level algorithmic framework, and it was
shown by Chuzhoy, Madan and Mahabadi 8] (see [9] for an expo-
sition) that this framework is unlikely to yield a better than O(v/n)-
approximation. The most recent result, by Chuzhoy, Mahabadi and
Tan [9], obtained an O(n!/2~€ . poly(A))-approximation algorithm
for some small fixed constant € > 0. This result was achieved by
proposing a new algorithmic framework for the problem, that de-
parts from the previous approach. Specifically, [9] reduced the MCN
problem to another problem, called Minimum Crossing Number
with Rotation System (MCNwRS) that we discuss below, which ap-
pears somewhat easier than the MCN problem, and then provided
an algorithm for approximately solving the MCNwRS problem.

Our main result is a randomized O (20((ogn)’/* loglogn) . AO(1>) -

approximation algorithm for MCN. In order to achieve this result,
we design a new algorithm for the MCNwRS problem that achieves
significantly stronger guarantees than those of [9]. This algorithm,
combined with the reduction of [9], immediately implies the im-
proved approximation for the MCN problem. We also design several
new technical tools that we hope will eventually lead to further
improvements. We now turn to discuss the MCNwRS problem.

In the MCNwWRS problem, the input consists of a multigraph G,
and, for every vertex v € V(G), a circular ordering O, of the edges
that are incident to v, that we call a rotation for vertex v. The set
3 = {O0u}yev (c) of all such rotations is called a rotation system for
graph G. We say that a drawing ¢ of G obeys the rotation system X,
if, for every vertex v € V(G), the images of the edges in §G(v) enter
the image of v in the order Oy, (but the orientation of the ordering
can be either clock-wise or counter-clock-wise). In the MCNwRS
problem, given a graph G and a rotation system X for G, the goal
is to compute a drawing ¢ of G that obeys the rotation system
> and minimizes the number of edge crossings. For an instance
I = (G, X) of the MCNwWRS problem, we denote by OPTcnwrs(I) the
value of the optimal solution for I, that is, the smallest number of
crossings in any drawing of G that obeys 2. The results of [9] show
the following reduction from MCN to MCNwRS: suppose there
is an efficient (possibly randomized) algorithm for the MCNwRS
problem, that, for every instance I = (G, X), produces a solution
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whose expected cost is at most a(m) - (OPTcnwrs(I) + m), where
m = |E(G)|. Then there is a randomized O(a(n) - poly(A - log n))-
approximation algorithm for the MCN problem. Our main technical
result is a randomized algorithm, that, given an instance I = (G, X)
of MCNwRS, with high probability produces a solution to instance
I with at most 20((logm)’/* loglogm) . (OPTcnwrs(I) + m) crossings,
where m = |E(G)|. Combining this with the result of [9], we im-
mediately obtain a randomized O (ZO((IOg n)'/* loglogn) . poly(A))—
approximation algorithm for the MCN problem.

The best previous algorithm for the MCNwRS problem, due to
[9], is a randomized algorithm, that, given an instance I = (G, %) of
the problem, with high probability produces a solution with at most
0] ((OPTcnwrS(I) + m)z_e) crossings, where € = 1/20. A variant of
MCNWRS was previously studied by Pelsmajer et al. [22], where
for each vertex v of the input graph G, both the rotation O, of its
incident edges, and the orientation of this rotation (say clock-wise)
are fixed. They showed that this variant of the problem is also
NP-hard, and provided an O(n*)-approximation algorithm with
running time O(m" log m), where n = |V(G)| and m = |E(G)|. They
also obtained approximation algorithms with improved guarantees
for some special families of graphs.

We introduce a number of new technical tools, that we discuss
in more detail in Section 1.2. Some of these tools require long and
technically involved proofs. We view these tools as laying a pathway
towards obtaining better algorithms for the Minimum Crossing
Number problem, and it is our hope that these tools will eventually
be streamlined and that their proofs will be simplified, leading to
a better understanding of the problem and cleaner and simpler
algorithms. We believe that some of these tools are interesting in
their own right.

1.1 Our Results

Throughout this paper, we allow graphs to have parallel edges (but
not self-loops); graphs with no parallel edges are explicitly called
simple graphs. For convenience, we will assume that the input to
the MCN problem is a simple graph, while graphs serving as inputs
to the MCNwRS problem may have parallel edges. The latter is
necessary in order to use the reduction of [9] between the two
problems. Note that the number of edges in a graph with parallel
edges may be much higher than the number of vertices. Our main
technical contribution is an algorithm for the MCNwRS problem,
that is summarized in the following theorem.

THEOREM 1.1. There is an efficient randomized algorithm, that,
given an instance I = (G, Z) of MCNwRS with |E(G)| = m, computes
a drawing of G that obeys the rotation system X. The number of
crossings in the drawing is w.h.p. bounded by 20((108 m)/* loglogm) .
(OPTenwrs(I) + m).

We rely on the following theorem from [9] in order to obtain an
approximation algorithm for the MCN problem.

THEOREM 1.2 (THEOREM 1.3 IN [9]). There is an efficient algo-
rithm, that, given an n-vertex graph G with maximum vertex de-
gree A, computes an instance I = (G’, %) of the MCNwRS problem,
with |[E(G’)| £ O (OPT¢(G) - poly(A - log n)), and OPTcnurs(I) <
O (OPT¢(G) - poly(A - log n)). Moreover, there is an efficient algo-
rithm that, given any solution of value X to instance I of MCNwRS,
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computes a drawing of G with the number of crossings bounded by
O ((X + OPT¢(G)) - poly(A - log n)).

Combining Theorem 1.1 and Theorem 1.2, we immediately obtain
the following corollary, whose proof is deferred to the full version.

COROLLARY 1.3. There is an efficient randomized algorithm, that,
given a simple n-vertex graph G with maximum vertex degree A,
computes a drawing of G, such that, w.h.p., the number of crossings in

the drawing is at most O (20((1°g n)'/* loglog ) . poly(A) - OPTcr(G)).

1.2 Our Techniques

In this subsection we provide an overview of the techniques used in
the proof of our main technical result, Theorem 1.1. For the sake of
clarity of exposition, some of the discussion here is somewhat im-
precise. Our algorithm relies on the divide-and-conquer technique.
Given an instance I = (G, %) of the MCNwRS problem, we compute
a collection 7 of new instances, whose corresponding graphs are
significantly smaller than G, and then solve each of the resulting
new instances separately. Collection I of instances is called a de-
composition of I. We require that the decomposition has several
useful properties that will allow us to use it in order to obtain the
guarantees from Theorem 1.1, by solving the instances in I recur-
sively. Before we define the notion of decomposition of an instance,
we need the notion of a contracted graph, that we use throughout
the paper. Suppose G is a graph, and let R = {Rl, e ,Rq} be a col-
lection of disjoint subsets of vertices of G. The contracted graph of G
with respect to R, that we denote by G|g, is a graph that is obtained
from G, by contracting, for all 1 < i < g, the vertices of R; into a
supernode u;. Note that every edge of the resulting graph G|g corre-
sponds to some edge of G, and we do not distinguish between them.
The vertices in set V(G|g) \ {ul, A uq} are called regular vertices.
Each such vertex v also lies in G, and moreover, 5G|7< (v) = 6g(v).
Abusing the notation, given a collection C = {Cy,...,C,} of dis-
joint subgraphs of G, we denote by G| the contracted graph of
G with respect to the collection {V(Cy),...,V(Cr)} of subsets of
vertices of G. Given a graph G and its drawing ¢, we denote by
cr(¢) the number of crossings in ¢.
Decomposition of an Instance. Given an instance I = (G, X) of
the MCNwRS problem, we will informally refer to |E(G)| as the
size of the instance. Assume that we are given an instance I = (G, X)
of MCNwRS with |E(G)| = m, and some parameter n (we will
generally use 5y = 20((log m)*/* log log m) ). Assume further that we are
given another collection 7 of instances of MCNwRS. We say that I
is an n-decomposition of I, if ¥ p—(c s1yes |E(G’)| < mpolylogm,
and ¥ pe 7 OPTenwrs(I') < (OPTenwis(D) + [E(G)|) - . Additionally,
we require that there is an efficient algorithm Alg(I), that, given a
feasible solution ¢(I”) to every instance I’ € I, computes a feasible
solution ¢ for instance I, with at most O (X ;7 7 cr(¢(I’))) crossings.
At a high level, our algorithm starts with the input instance
I' = (G*,=%) of the MCNwRS problem. Throughout the algo-
rithm, we denote m* = |E(G¥)|, and we use a parameter y
20((logm")"/* loglogm") _Qyer the course of the algorithm, we con-
sider various other instances I of MCNwRS, but parameters m*
and p remain unchanged, and they are defined with respect to
the original input instance I*. The main subroutine of the algo-
rithm, that we call AlgDecompose, receives as input an instance
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I = (G,X) of MCNWRS, and computes an n-decomposition I
of I, forn = 20((log m)*/* loglog ™) where m = |E(G)|. The sub-
routine additionally ensures that every instance in the decom-
position is sufficiently small compared to I, that is, for each in-
stance I’ = (G',%’) € I, |[E(G")| < |E(G)|/u. We note that this
subroutine is in fact randomized, and, instead of ensuring that
Yrer OPTenwrs(’) < (OPTenwrs(I) + [E(G)]) - 1, it only ensures
this in expectation. We will ignore this minor technicality in this
high-level exposition.

It is now easy to complete the proof of Theorem 1.1 using Algo-
rithm AlgDecompose: we simply apply Algorithm AlgDecompose
to the input instance I*, obtaining a collection I of new instances.
We recursively solve each instance in 7, and then combine the
resulting solutions using Algorithm Alg(I*), in order to obtain the
final solution to instance I'*. Since the sizes of the instances decrease
by the factor of at least u with each application of the algorithm,

the depth of the recursion is bounded by O ((Iog m*)l/g). At each

recursive level, the sum of the optimal solution costs and of the
number of edges in all instances at that recursive level increases by

at most factor 20(logm")*/* loglogm") leading to the final bound of

20((logm*)"/* loglog m®) . (OPTcnwrs(I*) + m*) on the solution cost.

From now on we focus on the description of AlgDecompose. We
start by describing several technical tools that this algorithm builds
on. Throughout, given a graph G, we refer to connected vertex-
induced subgraphs of G as clusters. Given a collection C of disjoint
clusters of G, we denote by EOGUt(C) the set of all edges e € E(G),
such that the endpoints of e do not lie in the same cluster. We will
also use the notion of subinstances that we define next.

Subinstances. Suppose we are given two instances I = (G, %)
and I’ = (G’,3’) of MCNWRS. We say that I’ is a subinstance of
instance I, if the following hold. First, graph G’ must be a graph
that is obtained from a subgraph of G by contracting some subsets
of its vertices into supernodes. Formally', there must be a graph
G” C G, and a collection R = {Rl, .. ,Rq} of disjoint subsets
of vertices of G”, such that G’ = G" - For every regular vertex v
of G/, the rotation O, € %’ must be consistent with the rotation
Oy € 3 (recall that 6/ (v) € dg(v)). For every supernode u; of G/,
its rotation Oy, € 3’ can be chosen arbitrarily. Note that the notion
of subinstances is transitive: if I’ is a subinstance of I and I"” is a
subinstance of I’, then I”” is a subinstance of I.

The main tool that we use is disengagement of clusters. Intuitively,
given an instance I = (G, X) of MCNWRS, and a collection C of
disjoint clusters of G, the goal is to compute an -decomposition
T of I, such that every instance I’ = (G’,X’) € I is a subinstance
of I, and moreover, there is at most one cluster C € C that is con-
tained in G’, and all edges of G’ that do not lie in C must belong to
E%“t(C ). Assume for now that we can design an efficient algorithm
for computing such a decomposition. In this case, the high-level
plan for implementing Algorithm AlgDecompose would be as fol-
lows. First, we compute a collection C of disjoint clusters of graph
G, such that, for each cluster C € C, |E(C)| < |E(G)|/(2y), and

!We note that this definition closely resembles the notion of graph minors, but, in
contrast to the definition of minors, we do not require that the induced subgraphs
{G[Ri]}lsisq are connected.
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|E‘C’;“t(C)| < |E(G)|/(2p). Then we perform disengagement of clus-
ters in C, obtaining an n-decomposition of the input instance I. We
are then guaranteed that each resulting instance in 7 is sufficiently
small. We note that it is not immediately clear how to compute the
desired collection C of disjoint clusters of G; we discuss this later.
For now we focus on algorithms for computing disengagement of
clusters. We do not currently have an algorithm to compute the
disengagement of clusters in the most general setting described
above. In this paper, we design a number of algorithms for com-
puting disengagement of clusters, under some conditions. We start
with the simplest algorithm that only works in some restricted
settings, and then generalize it to more advanced algorithms that
work in more and more general settings. In order to describe the
disengagement algorithm for the most basic setting, we need the
notion of congestion, and of internal and external routers, that we
use throughout the paper, and describe next.
Congestion, Internal Routers, and External Routers. Given a
graph G and a set P of paths in G, the congestion that the set  of
paths causes on an edge e € E(G), that we denote by cong(P, e), is
the number of paths in # containing e. The total congestion caused
by the set  of paths in G is cong () = maxeeg(G) {congc (P, e)}.
Consider now a graph G and a cluster C € G. We denote by 55(C)
the set of all edges e € E(G), such that exactly one endpoint of e lies
in C. An internal C-router is a collection Q(C) = {Q(e) | e € (C)}
of paths, such that, for each edge e € 5G(C), path Q(e) has e as its
first edge, and all its inner vertices lie in C. We additionally require
that all paths in Q(C) terminate at a single vertex of C, that we call
the center vertex of the router. Similarly, an external C-router is a
collection Q’(C) = {Q’(e) | e € 6G(C)} of paths, such that, for each
edge e € 5G(C), path Q’(e) has e as its first edge, and all its inner
vertices lie in V(G) \ V(C). We additionally require that all paths in
Q’(C) terminate at a single vertex of V(G) \ V(C), called the center
vertex of the router. For a cluster C C G, we denote by Ag(C) and
Ag(C) the sets of internal and external C-routers, respectively.
Basic Cluster Disengagement. In the most basic setting for clus-
ter disengagement, we are given an instance I = (G, ) of the
MCNWRS problem, and a collection C of disjoint clusters of G. Ad-
ditionally, for each cluster C € C, we are given an internal C-router
Q(C), whose center vertex we denote by u(C), and an external C-
router Q’(C), whose center vertex we denote by u’(C). The output
of the disengagement procedure is a collection 7 of subinstances
of I, that consists of a single global instance i= (G, 2), and, for
every cluster C € C, an instance Ic = (G¢, Z¢) associated with
it. Graph G is the contracted graph of G with respect to C; that
is, it is obtained from G by contracting every cluster C € C into a
supernode vc. For each cluster C € C, graph G is obtained from
G by contracting the vertices of V(G) \ V(C) into a supernode v(..
For every cluster C € C, the rotation Oy, € 3 of the supernode vc
in instance [ and the rotation O+ € 3¢ of the supernode vg in
instance I¢ need to be defined carefully, in order to ensure that the
sum of the optimal solution costs of all resulting instances is low,
and that we can combine the solutions to these instances to obtain
a solution to I. Observe that the set of edges incident to vertex ve

in G and the set of edges incident to vertex v, in Gc are both equal

to 8g(C). We define a single ordering OF of the edge set 6g(C),
that will serve both as the rotation Oy, € 3., and as the rotation
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OUZ € Yc. The ordering O is defined via the internal C-router
Q(C), as the order in which the images of the paths of Q(C) enter
the image of vertex u(C). On the one hand, letting O, = ng for
every cluster C € C allows us to easily combine solutions ¢(I’) to
instances I’ € 7, in order to obtain a solution to instance I, whose
cost is at most O (X7 cr(p(I’))). On the other hand, defining
OF€ via the set Q(C) of paths, for each cluster C € C, allows us to
bound ZI’EI OPTcnwrS(I/)-

We now briefly describe how this latter bound is established,
since it will motivate the remainder of the algorithm and clarify the
bottlenecks of this approach. We consider an optimal solution ¢*
to instance I, and we use it in order to construct, for each instance
I’ € T, asolution /(I'), such that ), < 7 cr(y(I’)) is relatively small
compared to cr(¢*) + |[E(G)|. In order to construct a solution /(1)
to the global instance [, we start with solution ¢* to instance I. We
erase from this solution all edges and vertices that lie in the clusters
of C. For each cluster C € C, we let the image of the supernode
vc coincide with the original image of the vertex u(C) - the center
of the internal C-router Q(C). In order to draw the edges that are
incident to the supernode v¢ in G (that is, the edges of §G(C)), we
utilize the images of the paths of the internal C-router Q(C) in ¢*,
that connect, for each edge e € §G(C), the original image of edge e
to the original image of vertex u(C).

Consider now some cluster C € C. In order to construct a so-
lution ¥(I¢) to instance I, we start again with the solution ¢* to
instance I. We erase from it all edges and vertices except for those
lying in C. We let the image of the supernode v, be the original
image of vertex u’(C) - the center of the external C-router Q’(C).
In order to draw the edges that are incident to the supernode v,
in Gc (that is, the edges of 5G(C)), we utilize the images of the
paths of the external C-router Q’(C), that connect, for each edge
e € 0g(C), the original image of edge e to the original image of
vertex u’(C).

Observe that the only increase in ¢ 7 cr(/(I’)), relatively to
cr(¢®), is due to the crossings incurred by drawing the edges in-
cident to the supernodes in {vc}cee in instance I, and for each
subinstance Ic, drawing the edges incident to supernode v/.. All
such edges are drawn along the images of the paths in | Jc¢c(Q(C)U
Q’(C)) in ¢*. However, an edge may belong to a number of such
paths. With careful accounting we can bound this number of new
crossings as follows. Assume that, for every C € C, cong5(Q’(C)) <
B. Assume further that, for each C € C, and for each edge e € E(C),
cong;(Q(C), e)? < B. Then ¥ pre 7 cr(¥(I')) < O(B?(OPTenwrs(I) +
|E(G)|)). Therefore, in order to ensure that the collection Z of subin-
stances of I that we have obtained via the cluster disengagement
procedure is an n-decomposition of I, we need to ensure that, for ev-
ery cluster C € C, cong,(Q’(C)) < p, and, for every edge e € E(C),
(cong5(Q(C),e))? < B, for p = O(5/?). This requirement seems
impossible to achieve. For example, if maximum vertex degree in
graph G is small (say a constant), then some edges incident to
the center vertices {u(C), u’(C)} cec must incur very high conges-
tion. In order to overcome this obstacle, we slightly weaken our
requirements. Instead of providing, for every cluster C € C, a single
internal C-router Q(C), and a single external C-router Q’(C), it is
sufficient for us to obtain, for each cluster C € C, a distribution
D(C) over the collection Ag(C) of internal C-routers, such that, for
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every edge e € E(C), EQ(c)~n(c) [(congs(Q(C), e))?| < B, and a
distribution D’(C) over the collection A(;(C) of external C-routers,
such that for every edge e, Eq/(c)~ p'(C) [congs(Q'(C), e)] < B.

To recap, in order to use Basic Cluster Disengagement proce-
dure described above to compute an -decomposition of the input
instance I of MCNwRS into sufficiently small instances, it is now
enough to design a procedure that, given an instance I = (G, ¥) of
MCNWRS, computes a collection C of disjoint clusters of G, and,
for every cluster C € C, a distribution D(C) over the collection
Ag(C) of internal C-routers, such that, for every edge e € E(C),
Eqc)~D(C) [(congG(Q(C), e))z] < B, together with a distribution
D’(C) over the collection A’G(C ) of external C-routers, such that, for
every edge e, Eq/(c)~p/(c) [cong(Q'(C), e)] < B, for B = O(\7).
Additionally, we need to ensure that, for every cluster C € C,
|E(C)| < |E(G)|/(2p), and that |E°GUt(C)| < |E(G)|/(2). While com-
puting a collection C of clusters with the latter two properties
seems possible (at least when the maximum vertex degree in G is
small), computing the distributions over the internal and the exter-
nal routers for each cluster C with the required properties seems
quite challenging. As a first step towards this goal, we employ the
standard notions of well-linkedness and bandwidth property of
clusters as a proxy to constructing internal C-routers with the re-
quired properties. Before we turn to discuss these notions, we note
that the Basic Cluster Disengagement procedure that we have just
described can be easily generalized to the more general setting,
where the set C of clusters is laminar (instead of only containing
disjoint clusters). This generalization will be useful for us later.

Assume that we are given a laminar family C of clusters (that
is, for every pair C,C’ € C of clusters, either C C C’, or C’ C C, or
CNC’ =0 holds), with G € C. Assume further that we are given,
for each cluster C € C, a distribution D(C) over the collection
Ag(C) of internal C-routers, in which, for every edge e € E(C),
Eqc)~D(0) [(congG(Q(C), e))z] < B, together with a distribution
D’(C) over the collection Af;(C) of external C-routers, where for
every edge e, Eq/(c)~p/(0) [cong(Q'(C),e)| < B, for some pa-
rameter f. The Basic Cluster Disengagement procedure, when
applied to C, produces a collection 7 = {Ic = (G¢,2¢) | C € C}
of instances. For every cluster C € C, graph G¢ associated with
instance I¢ is obtained from graph G, by first contracting all ver-
tices of V(G) \ V(C) into a supernode v, and then contracting,
for each child-cluster C’ € C of C, the vertices of V(C’) into
a supernode vcr. We define, for every cluster C, an ordering of
the set 6G(C) of edges via an internal C-router that is selected
from the distribution D(C), and we let the rotation OU*C in the
rotation system X¢, and the rotation Oy, in the rotation system
3¢, where C’ is the parent-cluster of C, to be identical to this
ordering. Using the same reasoning as in the case where C is a
set of disjoint clusters, we show that E [ZI’GI OPTan,S(I’)] <
o (/32 - dep(C) - (OPTcnwis(I) + |E(G)|)), where dep(C) is the depth
of the laminar family C of clusters. We then show that 7 is an ’-
decomposition of instance I, where 1’ = O(? - dep(C)).

As noted already, one of the difficulties in exploiting the Ba-
sic Cluster Disengagement procedure in order to compute an 7-
decomposition of the input instance I is the need to compute
distributions over the sets of internal and the external C-routers
for every cluster C € C, with the required properties. We turn
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instead to the notions of well-linkedness and bandwidth properties
of clusters. These notions are extensively studied, and there are
many known algorithms for computing a collection C of clusters
that have bandwidth property in a graph. We will use this property
as a proxy, that will eventually allow us to construct a distribution
over the sets of internal C-routers for each cluster C € C, with the
required properties.

Well-Linkedness, Bandwidth Property, and Cluster Classifi-
cation. We use the standard notion of well-linkedness. Let G be
a graph, let T be a subset of the vertices of G, andlet 0 < a < 1
be a parameter. We say that the set T of vertices is a-well-linked
in G if for every partition (A, B) of vertices of G into two subsets,
|EG(A,B)| > « - min {|ANT|,|BNT|}.

We also use a closely related notion of bandwidth property of
clusters. Suppose we are given a graph G and a cluster C C G.
Intuitively, cluster C has the a-bandwidth property (for a parameter
0 < a < 1), if the edges of §G(C) are a-well-linked in C. More
formally, we consider the augmentation C* of cluster C, that is
defined as follows. We start with the graph G, and subdivide every
edge e € 3g(C) with a vertex t,, denoting T = {t. | e € 5G(O)}.
The augmentation C* of C is the subgraph of the resulting graph
induced by V(C) U T. We say that cluster C has the a-bandwidth
property if set T of vertices is a-well-linked in C*.

We note that, if a cluster C has the a-bandwidth property, then,
using known techniques, we can efficiently construct a distribution
D over the set Ag(C) of internal C-routers, such that, for every
edge e € E(C), Eq(c)~p(c) [cong(Q(C), e)] < O(1/a). However, in
order to use the Basic Cluster Disengagement procedure, we need
a stronger property: namely, for every edge e € E(C), we require
that Eg(c)~n(c) [(cong(Q(C), e))z] < B, for some parameter f. If
we are given a distribution D(C) over the set Ag(C) of internal
C-routers with this latter property, then we say that cluster C is
n-light with respect to D(C). Computing a distribution D(C) for
which cluster C is -light is a much more challenging task. We come
close to achieving it in our Cluster Classification Theorem. Before
we describe the theorem, we need one more definition. Let C be a
cluster of a graph G, and let n” be some parameter. Assume that we
are given some rotation system 3 for graph G, and let € be the
rotation system for cluster C that is induced by 3. Let I€ = (C, £€)
be the resulting instance of MCNwRS. We say that cluster C is
n’-bad if OPTcnwrs(Ic) > 66O /1.

In the Cluster Classification Theorem, we provide an efficient
algorithm, that, given an instance I = (G, X) of MCNwRS with
|E(G)| = m, and a cluster C C G that has the a-bandwidth prop-
erty (where a = Q(1/poly log m)), either correctly establishes that
cluster C is n’-bad, for 5’ = 20(log m)*/*loglogm) o produces a dis-
tribution D(C) over the set AG(C) of internal C-routers, such that
cluster Cis f-light with respect to D(C), for = 20(Vlogm-loglogm)
In fact, the algorithm is randomized, and, with a small probabil-
ity, it may erroneously classify cluster C as being n’-bad, when
this is not the case. This small technicality is immaterial to this
high-level exposition, and we will ignore it here. The proof of the
Cluster Classification Theorem is long and technically involved,
and is partially responsible for the high approximation factor that
we eventually obtain. It is our hope that a simpler and a cleaner
proof of the theorem with better parameters will be discovered in
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the future. We believe that the theorem is a graph-theoretic result
that is interesting in its own right. We now provide a high-level
summary of the main challenges in its proof.

At the heart of the proof is an algorithm called AlgFindGuiding.
Suppose we are given an instance I = (H, X) of MCNwRS, and a
set T of k vertices of H called terminals, that are a-well-linked in H,
for some parameter 0 < @ < 1. Denote C = H\ T and |V(H)| = n.
The goal of the algorithm is to either establish that OPTcnwrs(H) +
|E(H)| = k? poly(e/log n); or to compute a distribution D(C) over
internal C-routers, such that cluster C is n’ = poly(log n/a)-light
with respect to D(C).

Consider first a much simpler setting, where H is a grid graph,
and T is the set of vertices on the first row of the grid. For this
special case, the algorithm of [27] (see also Lemma D.10 in the full
version of [7]) provides the construction of a distribution D(C)
over internal C-routers with the required properties. This result
can be easily generalized to the case where H is a bounded-degree
planar graph, since such a graph must contain a large grid minor.
If H is a planar graph, but its maximum vertex degree is no longer
bounded, we can still compute a grid-like structure in it, and apply
the same arguments as in [27] in order to compute the desired
distribution D(C). The difficulty in our case is that the graph H
may be far from being planar, and, even though, from the Excluded
Grid theorem of Robertson and Seymour [24, 25], it must contain a
large grid-like structure, without having a drawing of H in the plane
with a small number of crossings, we do not know how to compute
such a structure?. We provide an algorithm that either establishes
that OPTcnwrs(H) is large compared to k2, or computes a grid-like
structure in graph H, even if it is not a planar graph. Unfortunately,
this algorithm only works in the setting where |E(H)| is not too
large comparable to k. Specifically, if we ensure that |E(H)| <
k - i for some parameter 7, then the algorithm either computes
a distribution D(C) over internal C-routers that is n’-light (with
n’ = poly(log n/a) as before), or it establishes that OPTcnwrs(H) +
|E(H)| > k2 poly(a/( log n)).

Typically, this algorithm would be used in the following setting:
we are given a cluster C of a graph G, that has the a-bandwidth
property. We then let H = C* be the augmentation of C, and we let
T be the set of vertices of C* corresponding to the edges of 85 (C).
In order for this result to be meaningful, we need to ensure that
|E(C)| is not too large compared to |65 (C)|. Unfortunately, we may
need to apply the classification theorem to clusters C for which
|[E(C)| > |8(C)| holds. In order to overcome this difficulty, given
such a cluster C, we construct a recursive decomposition of C into
smaller and smaller clusters. Let £ denote the resulting family of
clusters, which is a laminar family of subgraphs of C. We ensure
that every cluster C’ € £ has « = Q(1/poly log m)-bandwidth
property, and, additionally, if we let C’ be the graph obtained from
C’ by contracting every child-cluster of C’ into a supernode, then

the number of edges in ¢ s comparable to |55 (C”)|. We consider
the clusters of £ from smallest to largest. For each such cluster C’,
we carefully apply Algorithm AlgFindGuiding to the corresponding

2We note that we need the grid-like structure to have dimensions (k’ X k), where k’
is almost linear in k. Therefore, we cannot use the known bounds for the Excluded
Minor Theorem (e.g. from [11]) for general graphs, and instead we need to use an
analogue of the stronger version of the theorem for planar graphs.
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contracted graph C”, in order to either classify cluster ¢’ as n(C’)-
bad, or to compute a distribution D(C’) over internal C’-routers,
such that C’ is f(C’)-light with respect to D(C’). Parameters n(C”)
and B(C’) depend on the height of the cluster C’ in the decomposi-
tion tree that is associated with the laminar family £ of clusters.
This recursive algorithm is eventually used to either establish that
cluster C is n(C)-bad, or to compute a distribution D(C) over the
set Ag(C) of internal C-routers, such that cluster C is f(C)-light
with respect to D(C). The final parameters n(C) and §(C) depend
exponentially on the height of the decomposition tree associated
with L. This strong dependence on dep(L) is one of the reasons
for the high approximation factor that our algorithm achieves.
Obstacles to Using Basic Cluster Disengagement. Let us now
revisit the Basic Cluster Disengagement routine. We start with an
instance I = (G, 2) of MCNwRS, and denote |E(G)| = m. Through-
out, we use a parameter 5 = 20((l°g m)*loglogm) anq B = n'/8.
Recall that the input to the procedure is a collection C of disjoint
clusters of G. For every cluster C € C, we are also given a dis-
tribution 9D’(C) over the set of external C-routers, such that, for
every edge e, Eq ()~ p/(c) [cong(Q'(C),e)| < B, and a distri-
bution D(C) over the set of internal C-routers, such that cluster
C is p-light with respect to D(C). We are then guaranteed that
the collection 7 of subinstances of I that is constructed via Basic
Cluster Disengagement is an n-decomposition of I. We can slightly
generalize this procedure to handle bad clusters as well. Specifically,
suppose we are given a partition (C8M, cb2d) of the clusters in
C, and, for each cluster C € Clight 4 distribution D(C) over inter-
nal C-routers, such that cluster C is f-light with respect to D(C).
Assume further that each cluster C € CP2 is f-bad. Additionally,
assume that we are given, for every cluster C € C, a distribu-
tion D’(C) over external C-routers, such that, for every edge e,
Eq o)~ (0) [congG(Q'(C), e)] < B, and that every cluster C € C
has the a-bandwidth property, for some a = Q(1/poly log m). We
can then generalize the Basic Cluster Disengagement procedure to
provide the same guarantees as before in this setting, to obtain an
n-decomposition of instance I.

Assume now that we are given an instance I = (G, %) of MCNwRS,
with |E(G)| = m. For simplicity, assume for now that the maximum
vertex degree in G is quite small (it is sufficient, for example, that it is
significantly smaller than m.) Using known techniques, we can com-
pute a collection C of disjoint clusters of G, such that, for every clus-
ter C € C, |E(C)| < m/(2u); |E?;“t(C)| < m/(2p); and every cluster
C € C has a-bandwidth property. If we could, additionally, compute,
for each cluster C € C, a distribution D’(C) over external C-routers,
such that, for every edge e, Eq/(c)~p/(c) [congG(Q’(C), e)] < B,
then we could use the Cluster Classification Theorem to partition
the set C of clusters into subsets Clight and Cbad, and to compute,
for every cluster C € clight 4 distribution D(C) over the set of
its internal routers, such that every cluster in C bad jg n’-bad, and
every cluster C € Clight js p’-light with respect to D(C), for some
parameter n’. We could then apply the Basic Cluster Disengage-
ment procedure in order to compute the desired n-decomposition
of the input instance I. Unfortunately, we currently do not have
an algorithm that computes both the collection C of clusters of G
with the above properties, and the required distributions over the
external C-routers for each such cluster C. In order to overcome
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this difficulty, we design Advanced Cluster Disengagement proce-
dure, that generalizes Basic Cluster Disengagement, and no longer
requires the distribution over external C-routers for each C € C.
Advanced Cluster Disengagement. The input to the Advanced
Cluster Disengagement procedure is an instance I = (G, ) of
MCNWRS, and a set C of disjoint clusters of G, that we refer to as
basic clusters, each of which has a-bandwidth property. Let m =
|E(G)|, and p = 20((og m)*/*loglogm) 55 hefore. The output is an 5-
decomposition I of I, such that every instance I’ = (G’,%") € I is
a subinstance of I, and moreover, there is at most one basic cluster
C € C with E(C) € E(G’), with all other edges of G’ lying in
EDGUt(C). The algorithm for the Advanced Cluster Disengagement
and its analysis are significantly more involved than Basic Cluster
Disengagement. We start with some intuition.

Consider the contracted graph H = G|¢, and its Gomory-Hu
tree T. This tree naturally defines a laminar family £ of clusters
of H: for every vertex v € V(H), we add to £ the cluster U,, that
is the subgraph of H induced by vertex set V(T ), where Ty, is
the subtree of T rooted at v. From the properties of Gomory-Hu
trees, if v’ is the parent-vertex of vertex v in T, there is an external
Uyp-router Q' (Uy) in graph H with congy(Q’(Uy)) = 1. Laminar
family £ of clusters of H naturally defines a laminar family £’ of
clusters of the original graph G, where for each cluster U, € L,
set L’ contains a corresponding cluster U, that is obtained from
Uy, by un-contracting all supernodes that correspond to clusters
of C. For each such cluster U/, € L’, we can use the external
Uyp-router Q’(Uy) in graph H in order to construct a distribution
D’ (U}) over external U, -routers in graph G, where for every edge e,
Equ:)~0/(U2) [congG(Q/(Uz’)), e)] < O(1/a). We can then apply
the Basic Cluster Disengagement procedure to the laminar family
L’ and the distributions {D’ (U{,)}U;j ey in order to compute an

n*-decomposition 7 of instance I, where every instance in I is a
subinstance of I. Recall that the parameter n* depends on the depth
of the laminar family £’, which is equal to the depth of the laminar
family L. Therefore, if dep(L) is not too large (for example, it is

at most 20((logm)*/* loglog ™)), then we will obtain the desired 7-
decomposition of I. But unfortunately we have no control over the
depth of the laminar family £, and in particular the tools described
so far do not work when the Gomory-Hu tree T is a path.
Roughly speaking, we would like to design a different disen-
gagement procedure for the case where the tree T is a path, and
then reduce the general problem (by exploiting Basic Cluster Dis-
engagement) to this special case. In fact we follow a similar plan.
We define a special type of instances (that we call nice instances),
that resemble the case where the Gomory-Hu tree of the contracted
graph H = G| is a path. While the motivation behind the defini-
tion of nice instances is indeed this special case, the specifics of the
definition are somewhat different, in that it is more general in some
of its aspects, and more restrictive and well-structured in others. We
provide an algorithm for Cluster Disengagment of nice instances,
that ensures that, for each resulting subinstance I’ = (G, ), there
is at most one cluster C € C with C € G’, and all other edges of G’
lie in E%“t(C). We also provide another algorithm, that, given an
instance I = (G, X) of MCNwRS and a collection C of disjoint basic
clusters of graph G, computes a decomposition 7’ of instance I,
such that each resulting instance I’ € 7’ is a subinstance of I and a
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nice instance, with respect to the subset C(I") C C of clusters, that
contains every cluster C € C with C € G’. Combining these two
algorithms allows us to compute Advanced Cluster Disengagement.
Algorithm AlgDecompose. Recall that Algorithm AlgDecompose,
given an instance I = (G,%) of MCNwRS, needs to compute an
n-decomposition 7 of I, where p = 20(log m)*/*loglogm) and m =
|E(G)|, such that, for each instance I’ = (G',3’) € I, |E(G’)| <
|E(G)|/u (here, y = 20(Uog m*)"/* loglog ™) and m* is the number
of edges in the original input instance I* of MCNwRS). We say that
a vertex v of G is a high-degree vertex if |5g(v)| = m/poly(p).

Consider first the special case where no vertex of G is a high-
degree vertex. For this case, it is not hard to generalize known
well-linked decomposition techniques to obtain a collection C of
disjoint clusters of G, such that each C € C has a = (1/poly log m)-
bandwidth property, with |E(C)| < O(m/p),and |E2;“t(C)| < O(m/p).
We can now apply the Advanced Cluster Disengagement proce-
dure to the set C of clusters, in order to obtain the desired 7-
decomposition of I. Recall that we are guaranteed that each re-
sulting instance I’ = (G’, ") € I is a subinstance of I, and there is
at most one cluster C € C with C € G’, with all other edges of G’
lying in E%”t(C). This ensures that |E(G”)| < m/p, as required.

In general, however, it is possible that the input instance I =
(G, X) contains high-degree vertices. We then consider two cases.
We say that instance I is wide if there is a vertex v € V(G), a
partition (Ej, E2) of the edges of 5G(v), such that the edges of E;
appear consecutively in the rotation O, € X, and a collection P
of at least m/poly(u) simple edge-disjoint cycles in G, such that
every cycle P € P contains one edge of E; and one edge of E.
An instance that is not wide is called narrow. We provide separate
algorithms for dealing with narrow and wide instances.

Narrow Instances. The algorithm for decomposing narrow in-
stances relies on and generalizes the algorithm for the special
case where G has no high-degree vertices. As a first step, we
compute a collection C of disjoint clusters of G, such that each
cluster C € C has a = Q(1/poly log m)-bandwidth property, and
|E‘();“t(C)| < O(E(G)/p). The set C of clusters is partitioned into two

subsets: set C® of small clusters, and set cf of flower clusters. For
each cluster C € C%, |E(C)| < O(|E(G)|/) holds. If C is a cluster
of ¢, then we no longer guarantee that |E(C)| is small. Instead,
we guarantee that cluster C has a special structure. Specifically,
C must contain a single high-degree vertex u(C), that we call the
flower center, and all other vertices of C must be low-degree ver-
tices. Additionally, there must be a set X(C) = {Xi,...,Xg} of
subgraphs of C, that we call petals, such that, forall 1 <i < j <k,
V(Xi) N V(Xj) = {u(C)}. We also require that, forall 1 < i < k,
there is a set E; of ®(m/poly(u)) edges of dG(u(C)) that are con-
tiguous in the rotation O,(¢) € 2, and lie in X;. Lastly, we require
that, for all 1 < i < k, there is a set Q; of edge-disjoint paths,
connecting every edge of g(X;) \ dg(u(C)) to vertex u(C), with all
inner vertices on the paths lying in X;.

We apply Advanced Cluster Disengagement to the set C of
clusters, in order to compute an initial decomposition 7; of the
input instance I, such that every instance in 77 is a subinstance of I.
Unfortunately, it is possible that, for some instances I’ = (G’,3’) €
11, |E(G")| > m/p. For each such instance I, there must be some
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flower cluster C € Cf that is contained in G’ , and all other edges
of G’ must lie in EOGUt(C).

We now consider each instance I’ = (G, X’) € I; with |E(G’)| >
m/u one by one. Assume that C € ¢/ is the flower cluster that is
contained in G’, and X(C) = {Xj, ..., Xy } is the set of its petals. We
further decompose instance I” into a collection Z (C) of subinstances,
that consists of a single global instance I(C), and k additional in-
stances I1(C), . . ., I (C). We ensure that the graph G(C) associated
with the global instance I(C) only contains edges of EOGUt(C), so
|E(G(C))| < m/p holds. Forall 1 < j < k, graph G;(C) associated
with instance I;(C) € I(C) contains the petal Xj, and all other
edges of G;(C) lie in EOGUt(C ). We note that unfortunately it is still
possible that, for some 1 < j < k, graph G;(C) contains too many
edges (this can only happen if |[E(X;)]| is large). However, our con-
struction ensures that, for each such instance I;(C), no high-degree
vertices lie in graph G;(C). We can then further decompose instance
I;(C) into subinstances using the algorithm that we designed for
the case where no vertex of the input graph is a high-degree vertex.
After this final decomposition, we are guaranteed that each of the
resulting subinstances of instance I that we obtain contains fewer
than m/p edges, as required.

Wide Instances. Suppose we are given a wide instance I = (G, X)
of MCNwRS. In this case, we compute an y-decomposition J of
instance I, such that, for each resulting instance I’ = (G’,3’) €
T, either |[E(G’)| < m/p (in which case we say that I’ is a small
instance), or I’ is a narrow instance. We will then further decompose
each resulting narrow instance using the algorithm described above.

In order to obtain the decomposition I of I, we start with 7 = {I}.
As long as set I contains at least one wide instance I’ = (G/,%)
with |[E(G")| > m/p, we perform a procedure that “splits” instance
I’ into two smaller subinstances. We now turn to describe this
procedure at a high level.

Let I’ = (G’,%’) € I be a wide instance with |E(G’)| = m/p.
Recall that from the definition of a wide instance, there is a vertex
v € V(G’), a partition (Ej, E2) of the edges of 85/ (v), such that
the edges of E; appear consecutively in the rotation O,, € 3/, and
a collection P of at least m/poly(y) simple edge-disjoint cycles
in G’, such that every cycle in # contains one edge of E; and
one edge of Ez. Consider the experiment, in which we choose a
cycle W € P uniformly at random. Since |P| is very large, with
reasonably high probability, the edges of the cycle W participate
in relatively few crossings in the optimal solution to instance I’
of MCNwRS. We show that with high enough probability, there
is a near-optimal solution to I’, in which cycle W is drawn in the
natural way. We use the cycle W in order to partition instance I’ into
two subinstances Iy, I; (intuitively, one subinstance corresponds
to edges and vertices of G’ that are drawn “inside” the cycle W in
the near-optimal solution to I’, and the other subinstance contains
all edges and vertices that are drawn “outside” W). Each of the
resulting two instances contains the cycle W, and, in order to be
able to combine the solutions to the two subinstances to obtain
a solution to I’, we contract all vertices and edges of W, in each
of the two instances, into a supernode. Let I/, IZ' denote these two
resulting instances. The main difficulty in the analysis is to show
that there is a solution to each resulting instance of MCNwRS, such
that the sum of the costs of two solutions is close to OPT¢nwrs(I”).
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The difficulty arises from the fact that we do not know what the
optimal solution to instance I” looks like, and so our partition of G’
into two subgraphs that are drawn on different sides of the cycle
W in that solution may be imprecise. Instead, we need to “fix” the
solutions to instances I, Iz (that are induced by the optimal solution
to I’) in order to move all edges and vertices of each subinstance
to lie on one side of the cycle W. In fact we are unable to do so
directly. Instead, we show that we can compute a relatively small
collection E’ of edges, such that, if we remove the edges of E’
from the graphs corresponding to instances Iy, I, then each of the
resulting subinstances has the desired structure: namely, it can
be drawn completely inside or completely outside the cycle W
with relatively few crossings compared to OPTcnwrs(I”). After we
solve the two resulting subinstances recursively, we combine the
resulting solutions, and add the images of the edges of E’ back, in
order to obtain a solution to instance I’.

2 PRELIMINARIES

By default, all logarithms in this paper are to the base of 2. All
graphs are undirected and finite. Graphs may contain parallel edges
but they may not contain self loops. Graphs without parallel edges
are explicitly referred to as simple graphs.

2.1 Curves in General Position, Graph
Drawings, Faces, and Crossings

Let y be an open curve in the plane, and let P be a set of points in the
plane. We say that y is internally disjoint from P if no inner point of
y lies in P. In other words, P Ny may only contain the endpoints of
y. Given a set T of open curves in the plane, we say that the curves
in T are internally disjoint if, for every pair y,y’ € T of distinct
curves, every point p € y Ny’ is an endpoint of both curves. We
use the following definition of curves in general position.

Definition 2.1 (Curves in general position). Let I be a finite set of
open curves in the plane. We say that the curves of T are in general
position, if the following conditions hold:

e for every pair y,y’ € I of distinct curves, there is a finite
number of points p withp € y N y’;

e for every pair y,y’ € T of distinct curves, an endpoint of y
may not serve as an inner point of y” or of y; and

e for every triple y,y’,y”" € T of distinct curves, if some point
p lies on all three curves, then it must be an endpoint of each
of these three curves.

Let T be a set of curves in general position, and let y,y’ € T be
a pair of curves. Let p be any point that lies on both y and y’, but
is not an endpoint of either curve. We then say that point p is a
crossing between y and y’, or that curves y and y’ cross at point p.
We are now ready to formally define graph drawings.

Definition 2.2 (Graph Drawings). A drawing ¢ of a graph G in the
plane is a map ¢, that maps every vertex v of G to a point ¢(v) in
the plane (called the image of v), and every edge e = (u,v) of G to a
simple curve ¢(e) in the plane whose endpoints are ¢(u) and ¢(v)
(called the image of e), such that all points in set {¢p(v) | v € V(G)}
are distinct, and the set {¢(e) | e € E(G)} of curves is in general
position. Additionally, for every vertex v € V(G) and edge e € E(G),
¢(v) € ¢(e) only if v is an endpoint of e.
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Assume now that we are given some drawing ¢ of graph G in
the plane, and assume that for some pair e, e’ of edges, their images
@(e), p(e’) cross at point p. Then we say that (e, e’), is a crossing
in the drawing ¢ (we may sometimes omit the subscript p if the
images of the two edges only cross at one point). We also say that
p is a crossing point of drawing ¢. We denote by cr(¢) the total
number of crossings in the drawing ¢.

Planar Graphs and Planar Drawings. A graph G is planar if there
is a drawing of G in the plane with no crossings. A drawing ¢ of a
graph G in the plane with cr(¢) = 0 is called a planar drawing of G.
We use the following result by Hopcroft and Tarjan.

THEOREM 2.3 ([15]). There is an algorithm, that, given a graph G,
correctly establishes whether G is planar, and if so, computes a planar
drawing of G. The running time of the algorithm in O(|V(G)|).

2.2 Circular Orderings, Orientations, and
Rotation Systems

Suppose we are given a collection U = {uy,...,u,} of elements.
Let D be any disc in the plane. Assume further that we are given,
for every element u; € U, a point p; on the boundary of D, so
that all resulting points in {p1, . .., p, } are distinct. As we traverse
the boundary of the disc D in the clock-wise direction, the order
in which we encounter the points p1, .. ., p, defines a circular or-
dering O of the elements of U. If we traverse the boundary of the
disc D in the counter-clock-wise direction, we obtain a circular
ordering O’ of the elements of U, which is the mirror image of the
ordering O. We say that the orderings O and O’ are identical but
their orientations are different, or opposite: O has a negative and
O’ has a positive orientation. Whenever we refer to an ordering O
of elements, we view it as unoriented (that is, the orientation can be
chosen arbitrarily). When the orientation of the ordering is fixed,
we call it an oriented ordering, and denote it by (O, b), where O is the
associated (unoriented) ordering of elements of U, and b € {-1,1}
is the orientation, with b = —1 indicating a negative (that is, clock-
wise), orientation. Given a graph G and a vertex v € V(G), a circular
ordering O, of the edges of dg(v) is called a rotation. A collection
of circular orderings O, for all vertices v € V(G) is called a rotation
system for graph G.

2.3 Tiny v-Discs and Drawings that Obey
Rotations

Given a graph G, its drawing ¢, and a vertex v € V(G), we will
sometimes utilize the notion of a tiny v-disc, that we define next.

Definition 2.4 (Tiny v-Disc). Let G be a graph and let ¢ be a
drawing of G on the sphere or in the plane. For each vertex v € V(G),
we denote by Dy(v) a very small disc containing the image of v in
its interior, and we refer to Dy (v) as tiny v-disc. Disc Dy (v) must
be small enough to ensure that, for every edge e € §g(v), the image
¢(e) of e intersects the boundary of Dy(v) at a single point, and
@(e) N Dy(v) is a contiguous curve. Additionally, we require that
for every vertex u € V(G) \ {v}, ¢(u) ¢ Dy(v); for every edge
e’ € E(G)\ 8G(v), p(e") N Dy(v) = 0; and that no crossing point of
drawing ¢ is contained in Dy (v). Lastly, we require that all discs in
{D(p(v) |ve V(G)} are mutually disjoint.
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Consider now a graph G, a vertex v € V(G), and a drawing ¢ of G.
Consider the tiny v-disc D = D, (v). For every edge e € 5(v), let
pe be the (unique) intersection point of the image ¢(e) of e and the
boundary of the disc D. Let O be the (unoriented) circular ordering
in which the points of {pe},es, () appear on the boundary of
D. Then O naturally defines a circular ordering O}, of the edges
of §G(v): ordering Oj, is obtained from O by replacing, for each
edge e € dg(v), point p, with the edge e. We say that the images
of the edges of 5(v) enter the image of v in the order O}, in the
drawing ¢. For brevity, we may sometimes say that the edges of
dg(v) enter v in the order O}, in ¢. While we view the ordering
O;, as unoriented, drawing ¢ also defines an orientation for this
ordering. If the points in set {p. | e € §g(v)} are encountered in
the order Oj, when traversing the boundary of D in the counter-
clock-wise direction, then the orientation is 1; otherwise it is —1.

Assume now that we are given a graph G and a rotation system
3 for G. Let ¢ be a drawing of G. Consider any vertex v € V(G), and
its rotation O,, € 2. We say that the drawing ¢ obeys the rotation
O, € 3, if the order in which the edges of 5G(v) enter v in ¢ is
precisely O, (note that both orderings are unoriented). We say
that the orientation of v is —1, or negative, in the drawing ¢ if the
orientation of the ordering O, of the edges of §(v) as they enter
v is —1, and otherwise, the orientation of v in ¢ is 1, or positive. We
say that drawing ¢ of G obeys the rotation system 3, if it obeys the
rotation O, € X for every vertex v € V(G).

Assume now that we are given a set I' of curves in general
position, where each curve y € T' is an open curve. Let p be any
point that serves as an endpoint of at least one curve in I, and let
I C T be the set of curves for which p serves as an endpoint. We
then define a tiny p-disc D(p) to be a small disc that contains the
point p in its interior; does not contain any other point that serves
as an endpoint of a curve in I'; and does not contain any crossing
point of curves in I'. Additionally, we ensure that, for every curve
y € I,if y € I, then y N D(p) is a simple curve, and otherwise
y N D(p) = 0. For every curve y € I, let g(y) be the unique point
of y lying on the boundary of the disc D(p). Note that all points
in {q(y) | y € T’} are distinct. Let O be the circular order in which
these points are encountered when we traverse the boundary of
D(p). As before, this ordering naturally defines a circular ordering
O’ of the curves in I''. We then say that the curves of T’ enter the
point p in the order O’.

2.4 Problem Definitions and Trivial Algorithms

In the Minimum Crossing Number problem, the input is an n-vertex
graph G, and the goal is to compute a drawing of G in the plane with
minimum number of crossings. The value of the optimal solution,
also called the crossing number of G, is denoted by OPT((G).

We also consider a closely related problem called Minimum
Crossing Number with Rotation System (MCNwRS). In this prob-
lem, the input is a graph G, and a rotation system X for G. Given an
instance I = (G, X) of the MCNWRS problem, we say that a drawing
¢ of G is a feasible solution for I if ¢ obeys the rotation system X.
The cost of the solution is the number of crossings in ¢. The goal
in the MCNwRS problem is to compute a feasible solution to the
given input instance I of smallest possible cost. We denote the cost
of the optimal solution of the MCNwRS instance I by OPTcnwrs(I).
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We use the following two simple theorems about the MCNwRS
problem, whose proofs are deferred to the full version.

THEOREM 2.5. There is an efficient algorithm, that, given an in-
stance I = (G, 2) of MCNWRS, correctly determines whether or not
OPTcnwrs(I) = 0, and, if so, computes a feasible solution to instance I
of cost 0.

THEOREM 2.6. There is an efficient algorithm, that given an in-
stance I = (G, 2) of MCNWRS, computes a feasible solution to I, of
cost at most |E(G)|?.

We refer to the solution computed by the algorithm from Theo-
rem 2.6 as a trivial solution.

2.5 A v-Decomposition of an Instance

A central tool that we use in our divide-and-conquer algorithm is a
v-decomposition of instances.

Definition 2.7 (v-Decomposition of Instances). Let I = (G, X) be
an instance of MCNwRS with |E(G)| m, and let v > 1 be a
parameter. We say that a collection J of instances of MCNwRS is
a v-decomposition of I, if the following hold:

(D1) Lp—(e,z)er [E(G)] < m - (logm)©W);

(D2) Yper OPTenwrs(I’) < (OPTenwrs(I) +m) - v; and

(D3) there is an efficient algorithm Alg(Z), that, given, a feasible
solution ¢(I’) to every instance I’ € I, computes a feasible
solution ¢ to instance I, of cost cr(p) < O (Xper cr(p(I’))).

We say that a randomized algorithm Alg is a v-decomposition
algorithm for a family IT* of instances of MCNwRS if Alg is an effi-
cient algorithm, that, given an instance I = (G, ) € I'*, produces a
collection I of instances that has properties D1 and D3, and ensures
the following additional property (that replaces Property D2):

(D’2) E [Zl'e] OPTcnwrs(I,)] < (OPTenwrs(D) + |E(G)]) - v.

2.6 Subinstances

We use the following definition of subinstances.

Definition 2.8 (Subinstances). Let I = (G,3) and I’ = (G’,3’)
be two instances of MCNwRS. We say that instance I’ is a subin-
stance of instance I, if there is a subgraph G C G, and a collection
S1, ..., Sy of mutually disjoint subsets of vertices of é, such that
graph G’ can be obtained from G by contracting, forall 1 < i <r,
every vertex set S; into a supernode u;; we keep parallel edges
but remove self-loops®. We do not distinguish between the edges
incident to the supernodes in graph G’ and their counterparts in
graph G. For every vertex v € V(G’) N V(G), its rotation O}, in
>’ must be consistent with the rotation O, € X, while for every
supernode u;, its rotation Oy, in %’ can be defined arbitrarily.

Observe that, if instance I’ = (G’,%’) is a subinstance of I =
(G,3), then |E(G”)| < |E(G)|. Also notice that the subinstance rela-
tion is transitive: if instance I; is a subinstance of instance I, and
instance I, is a subinstance of I, then I, is a subinstance of I.

3Note that this definition is similar to the definition of a minor, except that we do not
require that the induced subgraphs G[S;] of G are connected.
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3 AN ALGORITHM FOR MCNwRS

In this section we provide the proof of Theorem 1.1, with most of
the details deferred to the full version. Throughout the paper, we
denote by I* = (G*, =*) the input instance of the MCNwRS problem,
and we denote m* = |E(G*)|. We also use the following parameter

= 9¢*(log m*)"/8 loglog m* , where

that is central to our algorithm: y
c¢* is a large enough constant.

As mentioned already, our algorithm for solving the MCNwRS
problem is recursive, and, over the course of the recursion, we will
consider various other instances I of MCNwRS. Throughout the
algorithm, parameters m* and y remain unchanged, and are defined
with respect to the original input instance I*. The main technical

ingredient of the proof is the following theorem.

THEOREM 3.1. There is a constant ¢’’, and an efficient randomized
algorithm, that, given an instance I = (G,X) of MCNwRS with
|E(G)| = m, such that,uc” < m < m*, either returns FAIL, or computes
a collection I of instances of MCNwRS with the following properties:

e for every instance I’ = (G’,%") € I,|E(G’)| < m/y;

o Sr=c s)er EG)| < m- (logm)©W);

o there is an efficient algorithm called AlgCombineDrawings,
that, given a solution ¢(I') to every instance I’ € I, computes
a solution ¢ to instance I; and

o if OPTcnwrs(I) < |E(G)|2/uC”, then with probability at least
15/16, all of the following hold: (i) the algorithm does not return
FAIL; (i) I # 0; (iii) Xpe 7 OPTenwrs(I') < (OPTenwrs(D) +
m) - 20(log m)*/*loglogm). 4ng (iv) if AlgCombineDrawings
is given as input a solution ¢(I’) to every instancel’ € I, then
the resulting solution ¢ to instance I that it computes has cost
at most: O( Xrer Cr(¢(1,))) + (OPTcnwrs(I) +m) - 'uO(l).

In the next subsection, we prove Theorem 1.1 using Theorem 3.1.

3.1 Proof of Theorem 1.1

Throughout the proof, we assume that m* is larger than a suf-
ficiently large constant, since otherwise we can return a trivial
solution to instance I*, from Theorem 2.6.

We let ¢; > 100 be a large enough constant, so that, for ex-
ample, when the algorithm from Theorem 3.1 is applied to an
instance I (G,2) with m |E(G)|, such that yc// < m <
m* holds, it is guaranteed to return a family 7 of instances of
MCNWRS, with ¥ p—(g sy 1 [E(G")| < m - (logm)°9. We say that
the algorithm from Theorem 3.1 is successful if all of the following
hold: (i) the algorithm does not return FAIL; (ii) if 7 is the col-
lection of instances returned by the algorithm, then 7 # 0; (iii)
Yrer OPTenwrs(’) < (OPTenwrs() + m) - 2¢q((log m)*/* loglog m);
and (iv) if algorithm AlgCombineDrawings is given a solution ¢(I’)
to every instance I’ € 7, then it computes a solution ¢ to instance
I, of cost at most cg S rercr(e) + (OPTenwrs(I) + m) - 9.

By letting c4 be a large enough constant, Theorem 3.1 guarantees
that, if OPTcrwrs(I) < |E(G)|2//,tcl/, then with probability at least
15/16 the algorithm is successful. We assume that the parameter c*
in the definition of 4 is sufficiently large, so that, e.g., ¢* > 2¢.

We use a simple recursive algorithm called AlgRecursiveCNwRS,
that appears in Figure 1.
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AlgRecursiveCNwRS
Input: an instance I = (G, 2) of MCNwRS with [E(G)| < m™.
Output: a feasible solution to instance I.

(1) Use the algorithm from Theorem 2.5 to determine whether
OPTcnwrs(I) = 0. If so, use the algorithm from Theorem 2.5
to compute a solution to I of cost 0. Return this solution,
and terminate the algorithm.

(2) Use the algorithm from Theorem 2.6 to compute a trivial
solution ¢’ to instance I.

(3) If |E(G)| < ,u“ll, return the trivial solution ¢ and terminate.

(4) For1 < j < [logm™]:

(a) Apply the algorithm from Theorem 3.1 to instance I.
(b) If the algorithm returns FAIL, let ¢; = ¢’ be the trivial
solution to instance I, and set Z;(I) = 0.
(c) Otherwise:
(i) Let Z;(I) be the instances computed by the algorithm.
(ii) For every I’ € I;(I), apply AlgRecursiveCNwRS to in-
stance I’, to obtain a solution ¢(I’) to this instance.
(iii) Apply AlgCombineDrawings from Theorem 3.1 to
{q)(l’)}pel—j(n, to obtain a solution ¢; to instance I.

Return the solution from {(p’, @155 Pllog m*]} that has

fewest crossings.

Figure 1: AlgRecursiveCNwRS

In order to analyze the algorithm, it is convenient to associate
a partitioning tree T with it, whose vertices correspond to all in-
stances of MCNwRS considered over the course of the algorithm.
Let L = [log m*]. We start with the tree T containing a single root
vertex v(I*), representing the input instance I*. Consider now some
vertex v(I) of the tree, representing some instance I = (G, X). When
Algorithm AlgRecursiveCNwRS was applied to instance I, if it did
not terminate after the first three steps, it constructed L collections
Ii(I),. .., IL(I) of instances (some of which may be empty, in case
the algorithm from Theorem 3.1 returned FAIL in the corresponding
iteration). For each such instance I’ € U}:l I;(I), we add a vertex
u(I’) representing instance I’ to T, that becomes a child vertex of
o(I). This concludes the description of the partitioning tree T.

We denote by 7* = {I | v(I) € V(T)} the set of all instances of
MCNWRS, whose corresponding vertex appears in the tree T. For
each such instance I € ¥, its recursive level is the distance from
vertex v(I) to the root vertex v(I*) in the tree T (so the recursive
level of v(I*) is 0). For j > 0, we denote by j] C I* the set of all
instances I € I*, whose recursive level is j. Lastly, the depth of
the tree T, denoted by dep(T), is the largest recursive level of any
instance in 7 *. In order to analyze the algorithm, we start with the
following two simple observations, whose proofs are deferred to
the full version.

OBSERVATION 3.1. dep(T) < %‘

OBSERVATION 3.2. Y1, 5)er+ |E(G)| < m* - o(log m*)!/8

We use the following immediate corollary of Observation 3.2.

COROLLARY 3.2. The number of instances I = (G,3) € I* with
|E(G)| = ,uc" is at most m*.
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We say that an instance I € I* is a leaf instance, if vertex v(I) is a
leaf vertex of the tree T, and we say that it is a non-leaf instance oth-
erwise. Consider now a non-leaf instance I = (G, ) € 7*. We say
that a bad event E(I) happens, if 0 < OPTcnwrs(I) < |E(G)|2/ycﬂ,
and, for all 1 < j < L, the jth application of the algorithm from The-
orem 3.1 to instance I was unsuccessful. Clearly, from Theorem 3.1,
Pr[E(D)] < (1/16)F < 1/(m*)*. Let & be the bad event that event
&(I) happened for any instance I € 7 *. From the Union Bound and
Corollary 3.2, we get that Pr [E] < 1/(m*)?. We use the following
immediate observation.

OBSERVATION 3.3. If Event & does not happen, then for every leaf
vertexv(I) of T withI = (G, %), either |[E(G)| < /Jc’l;orOPTcnwrs(I) =
0; or OPTenwrs(I) > [E(G)[* /.

We use the next lemma to complete the proof of Theorem 1.1.

LEmMMA 3.3. IfEvent& does not happen, then AlgRecursiveCNwRS
computes a solution for instance I = (G*,X*) of cost at most

20(ogm) " 1oglogm) . (OPTcpyrs(I) + [E(G")]):

Proor. Consider anon-leafinstance I = (G, X),and let I1(I),. ..,
J7 (I) be families of instances of MCNwRS that AlgRecursiveCNwRS
computed, when applied to instance I. Recall that, for each 1 <
j < L with Z;(I) # 0, the algorithm computes a solution ¢; to
instance I, by first solving each of the instances in Zj(I) recur-
sively, and then combining the resulting solutions using Algorithm
AlgCombineDrawings. Eventually, the algorithm returns the best
solution of {¢’, ¢1, ..., ¢}, where ¢’ is the trivial solution, whose
cost is at most |E(G)|%. We fix an arbitrary index 1 < j < L, such
that the jth application of the algorithm from Theorem 3.1 to in-
stance I was successful. Note that the cost of the solution to instance
I that the algorithm returns is at most cr(¢;). We then mark the
vertices of {v(I’) | I’ € Ij(I)} and the root in the tree T. Let T* be
the subgraph of T induced by all marked vertices. It is easy to verify
that T* is a tree, and moreover, if Event & did not happen, every
leaf vertex of T* is also a leaf vertex of T. For a vertex v(I) € V(T*),
we denote by h(I) the length of the longest path in tree T*, con-
necting vertex v(I) to any of its descendants in the tree. We use the
following claim, whose proof is deferred to the full version.

Cramm 3.1. Assume that Event & did not happen. Then there is
a fixed constant ¢ > max {c”,cg,c*}, such that, for every vertex
o(I) € V(T*), whose corresponding instance is denoted by I = (G, %),
the cost of the solution that the algorithm computes for I is at most:

oeh((logm)/*loglogm” | c"cq . opT (1)

+ (log m*) oD 2 ¢ B(G).

We are now ready to complete the proof of Lemma 3.3. Recall
. “\1/8
that h(I*) = dep(T*) < dep(T) < -1&m)

c* loglog m*
Therefore, from Claim 3.1, the cost of the solution that the algorithm

from Observation 3.1.
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computes for instance I* is bounded by:
9O(dep(T))-(log m*)*/* log log m* | you) - OPTemurs(I)

+ (log m*)O(dep(T)) . IJO(I) ot

< 20((10g m* )% Ho(l) - OPTenwrs(I™)

+ (log m*)O(llog m*)'/8 [loglog m*) | pOM

< 200e ) IOEIE ™) (OPTepyrs () + |E(GMI) -
m]

In order to complete the proof of Theorem 1.1, it is now enough
to prove Theorem 3.1, which we do in the next subsection.

3.2 Proof of Theorem 3.1 — Main Definitions
and Theorems

We classify instances of MCNwRS into wide and narrow. Wide
instances are, in turn, classified into well-connected and not well-
connected instances. We then provide different algorithms for de-
composing instances of each of the resulting three kinds. We use
the following notion of a high-degree vertex.

Definition 3.4 (High-degree vertex). Let G be any graph. A vertex
v € V(G) is a high-degree vertex, if deg;(v) > |E(G)|/u*.

We are now ready to define wide and narrow instances.

Definition 3.5 (Wide and Narrow Instances). Let I = (G, %) be
an instance of MCNwRS with |E(G)| = m. We say that I is a wide
instance, if there is a high-degree vertex v € V(G), a partition
(Eq1, E2) of the edges of dg(v), such that the edges of E; appear
consecutively in the rotation O, € %, and so do the edges of Es,
and there is a collection # of at least | m/p*° | simple edge-disjoint
cycles in G, such that every cycle P € # contains one edge of E;
and one edge of E5. An instance that is not wide is called narrow.

Note that there is an efficient algorithm to check whether a given
instance I of MCNWRS is wide, and, if so, to compute the corre-
sponding set P of cycles, via standard algorithms for maximum
flow. (For every vertex v € V(G), we try all possible partitions
(E1, Ez) of 8g(v) with the required properties, as the number of
such partitions is bounded by |55 (v)|2.) We will use the following
simple observation regarding narrow instances, whose proof is
deferred to the full version.

OBSERVATION 3.4. Ifan instancel = (G, %) of MCNWRS is narrow,
then for every pairu, v of distinct high-degree vertices of G, and any set
P of edge-disjoint paths connectingu tov in G, |P| < 2 {|E(G)|/,u50-|
must hold.

Next, we define well-connected wide instances.

Definition 3.6 (Well-Connected Wide Instances). Let I = (G, %) be
a wide instance of MCNwRS with |E(G)| = m. We say that it is a
well-connected instance iff for every pair u, v of distinct vertices of
G with deg;(v), deg; (1) > m/p°, there is a collection of at least
8m/u>® edge-disjoint paths connecting u to v in G.

The proof of Theorem 3.1 relies on the following three theorems,
whose proofs are deferred to the full version. The first theorem
deals with wide instances that are not necessarily well-connected.
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THEOREM 3.7. There is an efficient randomized algorithm, whose
input is a wide instance I = (G,X) of MCNwRS, with m = |E(G)|,
such that ”20 < m < m*. The algorithm computes a v-decomposition
T of I, for v = 20(og m)**loglogm) " 1y pere every instance I’ =
(G’,%’) € I is a subinstance of 1, such that either |E(G")| < m/y; or
I’ is a narrow instance; or I’ is a wide and well-connected instance.

The second theorem deals with wide well-connected instances.

THEOREM 3.8. There is an efficient randomized algorithm, whose
input is a wide and well-connected instance I = (G, %) of MCNwRS,
with m = |E(G)|, such that yc/ < m < m" holds, for some large
enough constant ¢’. The algorithm either returns FAIL, or computes
a non-empty collection I of instances of MCNWRS, such that the
following hold:

o Yr=c.wer [E(G)] < 2|E(G);

e for every instance I’ = (G’,3’) € I, either |[E(G')| < m/p, or
instance I’ narrow;

e there is an efficient algorithm called AlgCombineDrawings’,
that, given a solution ¢(I') to every instance I’ € I, computes
a solution ¢ to instance I; and

e if OPTcnwrs(l) < mz/,ucl then, with probability at least 1 —
1/p2, all of the following hold: (i) the algorithm does not return
FAIL; (ii) Sy 7 OPTenwrs(I’) < OPTenwrs(I) - (log m)PW);
and (iii) if algorithm AlgCombineDrawings’ is given as input
a solution ¢(I’) to every instance I’ € I, then the resulting
solution ¢ to instance I that it computes has cost at most:

cr(p) < Yper cr(o(’)) + OPTenwrs(I) - /—’O(l)~
The third theorem deals with narrow instances.

THEOREM 3.9. There is an efficient randomized algorithm, whose
input is a narrow instance I = (G,X) of MCNwRS, with m = |E(G)],
such that i°° < |E(G)| < 2m*. The algorithm either returns FAIL,
or computes a v-decomposition I of I, for v = 20((log m)*/*loglog m)
such that, for every instance I’ = (G',%") € I, |E(G")| < m/(2p).
Moreover, if OPTcnwrs(I) < mz/,uZI, then the probability that the
algorithm returns FAIL is at most O(1/p?).

We now complete the proof of Theorem 3.1 using Theorems
3.7, 3.8, and 3.9. Recall that we are given an instance I = (G, )
of MCNwRS, with ,uCN < |E(G)| £ m", for some large enough
constant ¢’”/. We assume that ¢’/ > 100c¢’, where ¢’ is the constant
in Theorem 3.8. We use another large constant c;, and we assume
that ¢* > c; > ¢’/, where ¢* is the constant in the definition of the
parameter p. Throughout, we denote m = |E(G)|. We compute the
desired collection 7* of instances in three steps.

Step 1. Assume first that the input instance I is a wide instance.
We apply the algorithm from Theorem 3.7 to I. Let 7 be the re-
sulting collection of instances. We partition the set 7 of instances
into three subsets. The first set, denoted by fsma”, contains all in-
stances I’ = (G',3') € I with |E(G)| < m/u. The second set,

denoted by im , contains all narrow instances in 1 \ I;ma“. The
large
third set, denoted by 4;26, contains all remaining instances of

7. From Theorem 3.7, every instance in f]f;r;)e is wide and well-

connected. Since every instance I’ = (G, %’) € 1 is a subinstance of
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I, |[E(G’)| < |E(G)| £ m* must hold. Recall that, from Theorem 3.7,
Tisa vy-decomposition for I, for v; = 20((log m)*/* loglog m) , SO

2

r=(G,3)el

|E(G")| < m - (log m)cg, 1)

and E [ ¢ ; OPTemurs(I)| < (OPTemurs(D) +m) - 1.
Bad Event &1. We say the bad event &; happens, iff

Z OPTenwrs(I”) > 100(OPTenwrs () + mvy.

ref
From the Markov Bound, Pr [£1] < 1/100. Note that, if event &;
did not happen, then for each instance I’ € 7, OPTcnwrs(I’) <
100(OPTcnwrs(I) + m)vy. We need the following simple observation,
whose proof is deferred to the full version.

OBSERVATION 3.5. Assume that OPTcpwrs(I) < mz/ycﬁ, and that
Event &1 did not happen. Then for every instance I’ = (G’,3’) €

L Ui OPTemuis(I') < E(GN /e,

Assume now that instance I is a narrow instance. Then we simply
set I = fl;':g)e = {I} and fsma” U

| = (. This completes the
arge
description of the first step.

Step 2. In the second step, we apply the algorithm from Theorem 3.8
€1 7w If the algorithm returns FAIL, then

lar
we terminate our algorlthn%eand return FAIL as well. Assume now
that the algorithm from Theorem 3.8, when applied to instance I,
did not return FAIL. We let T (I’) be the collection of instances that
the algorithm computes. Recall that we are guaranteed that, for
each instance I = (G,3) € I (I"), either I is a narrow instance, or
|E(G)| < ‘E(G )| < ZI (we have used the fact that |E(G”)| < m, since

=(G",%’ ) is a subinstance of I). Additionally, we are guaranteed
that:

to every instance I’

> IEG) < 2EG). @
I=(G,%)el ()
In particular, for every instance I = (G,3) € I(I), |E@G)| <
2|E(G")| < 2m < 2m™.
We say that the application of the algorithm from Theorem 3.8
to an instance I’ = (G’,3’) € jlg‘r;)e is successful, if (i) the algorithm
does not return FAIL; (ii) Zfef(l’) OPTenwrs(D) < OPTenwrs(I’) -

(log m)c’g; and (iii) there is an efficient algorithm, that we call
AlgCombineDrawings’, that, given a solution ¢(I) to every instance
I € I(I’), computes a solution ¢(I’) to instance I’ with cr(p(I’)) <

Ziej([’) cr((p(f)) + OPTcnwrs(I/) . ,uclg.

Bad Event &;. Foraninstance I’ = (G',X’) € jli‘r;)e we say that a

bad event E2(I”) happens if the algorithm from Theorem 3.8, when
applied to instance I’, was not successful. From Theorem 3.8 and Ob-
servation 3.5, if OPT¢cnwrs(I) < mz/ycﬁ, then Pr [Ex(I') | =&1] <
1/42 (since we can assume that ¢/, is a large enough constant). We
let &, be the bad event that at least one of the events in

[eay 17 e 15

large

} happened. Recall that, from the definition
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of the set Ilz(a:;)e of instances, for every instance I’ = (G’,3’) €
II(W) |E(G’)| = 2 holds. On the other hand, from Equation 1,
arge’ 7
’ R ’
ZI/:(G/’Z/)Ele:EL |E(G )| < ZI'=(G’,2’)€I |E(G )| <

Therefore, we get that |I[§r”gl| < p-(log m)c’g. From the Union Bound,

m - (log m)c; .

if OPTcnwrs(I) < mZ/‘uc"’
Let 1 = UI
get that:

(1 Z
then Pr [E; | =&1] < % < ﬁ'

e FOV) 7 (I"). Note that, from Inequalities 1 and 2, we
large

2

=(G.5)erl

|EG)| < 2m - (log m)°s. 3)
We partition the instances in set T into two subsets: set jsma”,
containing all instances I = (G, %) in 7 with |E(G)| < m/p, and set
7

large’ containing all remaining instances. From Theorem 3.8, every
instance I € flg:ée is narrow. This completes the description of the

second step.

Step 3. We focus on four sets of instances that we have constructed
i smal]’ I ) .Recall that, ifinstance I’ = (G’,X’)

Iarge
belongs to set Isma” U Isma”, then |E(G’)| < m/p. If instance
= (G’,3’) belongs to setI< ) UI(") ,thenm/u < |E(G’)| < 2m,

large’
and instance I’ is narrow. We use the following simple observation,
whose proof is deferred to the full version.

so far: Isma[h

OBSERVATION 3.6. If OPTcnwrs(I) < mz/,ucﬂ, and neither of the
events &1, &, happened, then for every instance I’ = (G',3’) €

L U OPTemuns(I') < |E(G) /.
Next, we process every instance I’ € flg:) Ik(irg)e one by one.

Notice that for each such instance I’ = (G, %), |[E(G’)| = m/u >
10 must hold, since m > ue Additionally, as observed already,
|E(G’)| < 2m < 2m*. When instance I’ = (G’,Y’) is processed, we
apply the algorithm from Theorem 3.9 to it. If the algorithm returns
FAIL, then we terminate the algorithm and return FAIL as well.
Otherwise, we obtain a collection 7 (I’) of instances of MCNwRS.
From Theorem 3.9, for every instance I’ = (G”,%”) € I(I'),
|[E(G")| < #f)l < % Moreover, from the definition of a v-

decomposition of an instance, and from the fact that |E(G”)| < 2m,

> IEG)| < |EG)] - (log m)©s. (4)

1"=(G",3") 67(1’)

Bad Events Es and E. For an instance I’ = (G',3’) € fk(::g)e U

jle(l':;e, we say that the event E3(I”) happens if the algorithm from
Theorem 3.9, when applied to instance I’, returns FAIL. From Theo-
rem 3.9, if OPTenurs(I’) < |E(G”)|?/p?1, then the algorithm returns
FAIL with probability O(1/4?). Therefore, from Observation 3.6, if
OPTenwrs(I) < m?/puc”, then Pr [E5(I') | ~E1 A ~E2] < O(1/p?).
We let E; to be the bad event that E3(I”) happened for any in-

stance I’ € 7™ U 7™  Recall that, for every instance I’ =

large large”
(G,2) € II(") u 7w |E(G”")| = . On the other hand, from
arge large’ o

Inequality 1, Y, ., o 2m |E(G")] < m- (lo m)°, and from
ity 1, 3, e o B < m - Gogm)
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Inequality 3, ZI_(G, 51y F™ |E(G")| < 2m - (log m)°. Therefore,
B i large

|f(n) ui® | <3pu-(log m)c-;. From the Union Bound, assuming

large large
that the constant ¢* in the definition of the parameter p is large
enough, if OPTcpwrs(I) < mz/,ucﬂ, then Pr [E3 | =&E1 A =&E2] <
(1 g
o(L (oizm) ) <

< ﬁA Lastly, we define bad event & to be the
event that at least one of the events &1, 82, E3 happened. Note that
Pr[E] < Pr[&1] + Pr[8Ey | =E1] + Pr [E3 | =E1 A =E2]. There-
fore, altogether, if OPTcnwrs(I) < mz/pcﬂ, then Pr [E] < 1%0 < 3—10.
Note that, if bad event & does not happen, then the algorithm does
not return FAIL.

If the third step of the algorithm did not terminate with a FAIL,

we let Tsma” = UI’ef“’) G 7(1'). By combining Inequalities 1,
large

large
3 and 4, we get that:

2

"=(G",5")€ L sl

|E(G”)| < 3m - (log m)*%9 . (5)

The output of the algorithm is the collection 7* = Asma” U fsma” U
fsma” of instances of MCNwRS. From the above discussion, for
every instance I’ = (G”,X"") € I'*, |[E(G”)| < m/p. As discussed
already, if bad event & does not happen, then the algorithm does
not return FAIL.

From now on we assume that the algorithm did not return
FAIL. From Inequalities 1, 3 and 5, Y. »—(g» s7ye 1+ |[E(G")| < 6m -
(log m)*.

Next, we provide Algorithm AlgCombineDrawings in the fol-
lowing claim, whose proof is conceptually straightforward but
somewhat technical, and is deferred to the full version.

Craim 3.2. There is an efficient algorithm AlgCombineDrawings,
that, given a solution ¢(I'’) to every instance I’ € I*, computes
a solution ¢(I) to instance I. Moreover, if OPTcnwrs(I) < mz/,ucﬂ,
and event & did not happen, then cr(p(I)) < O v e 1+ cr(p’))) +
(OPTcnwrs(I) + m) - ﬂo(1)~

The following observation, whose proof is deferred to the full
version, will complete the proof of Theorem 3.1.

OBSERVATION 3.7. IfOPTcnwrs(I) < |E(G)|2/u¢" and bad event &
did not happen, then for some constant c, with probability at least 0.99:

ZI”EI* OPTcnwrs(IN) < (OPTcnwrs(I) + m) : ZC(IOg my*/t loglogm_

We define &’ to be the bad event that ;v ¢ 7+ OPTenwrs(I”) >
(OPTenwrs(I) + m) - 2¢togm)**loglogm Clearly if OPTers(I) <
m?/u¢”, then the probability that either of the events & or & hap-
pens is at most Pr [E] + Pr [E’ | =&] < 1/16. Therefore, we con-
clude that, if OPTcnwrs(I) < m?/ ,uCN, then with probability at least
15/16, all of the following hold: (i) the algorithm does not return
FAIL; (ii) Z7* # 0; (iii) X7 7+ OPTenwrs(I”") < (OPTcnwrs(I) + m) -
20((log m)*/*loglog m). 514 (iv) if algorithm AlgCombineDrawings is
given as input a solution ¢(I’’) to every instance I’’ € I*, then the
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resulting solution ¢ to instance I that it computes has cost at
most: O( X e - cr(@(I”))) + (OPTenwrs(I) + m) - @0, This con-
cludes the proof of Theorem 3.1 from Theorems 3.7, 3.8, and 3.9.
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