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Black holes and up-tunneling suppress Boltzmann brains
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Abstract

Eternally inflating universes lead to an infinite number of Boltzmann brains but also an infinite
number of ordinary observers. If we use the scale factor measure to regularize these infinities, the
ordinary observers dominate the Boltzmann brains if the vacuum decay rate of each vacuum is
larger than its Boltzmann brain nucleation rate. Here we point out that nucleation of small black
holes should be counted in the vacuum decay rate, and this rate is always larger than the Boltzmann
brain rate, if the minimum Boltzmann brain mass is more than the Planck mass. We also discuss
nucleation of small, rapidly inflating regions, which may also have a higher rate than Boltzmann
brains. This process also affects the distribution of the different vacua in eternal inflation.
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I. INTRODUCTION

If the observed dark energy is in fact a cosmological constant, our universe will expand
forever and will soon approach de Sitter space. There will be an infinite volume in which
many types of objects may nucleate. In particular there will be an infinite number of
Boltzmann brains [1], human brains (or perhaps computers that simulate brains) complete
with our exact memories and thoughts, that appear randomly as quantum fluctuations.
Human beings (and their artifacts) can arise in the ordinary way for only a certain period of
time after the Big Bang, when there are still stars and other necessities of life, but Boltzmann
brains can arise at any time in the future. So one might conclude that the Boltzmann
brains infinitely outnumber ordinary humans, and thus that we are Boltzmann brains, a
nonsensical conclusion [2] because our observations on which we base this conclusion would
have no connection to the actual universe in which we live.

However, in any scenario such as the above, it is also possible for new inflating regions
to nucleate, leading to eternal inflation. In that case there will be an infinite number of
ordinary observers in addition to the infinite number of Boltzmann brains. In order to know
what to expect in such situations we need a measure: a procedure to regulate the infinities
and produce a sensible probability distribution. Any measure faces a number of difficulties
[3 5] and we do not have any principle to tell us which measure is correct. An obvious
selection criterion is that the measure should not make predictions that are in conflict
with observation. This removes most of the measures that have been suggested so far.
The proper time measure suffers from the ”youngness paradox”, predicting that the CMB
temperature should be much higher than observed [6]; the causal patch measure predicts
that the cosmological constant should be negative with an overwhelming probability [7]; the
pocket based measure suffers from a “@Q)-catastrophe”, predicting either extremely small or
large values of the density fluctuation amplitude @ [8, 9]. A measure that fares reasonably
well is the scale factor cutoff measure [10-12]. Other measures that have not been ruled out
by observations (such as the lightcone time cutoff, apparent horizon cutoff and 4-volume
cutoff measures) make predictions very similar to the scale factor cutoff. (For more details
and references see, e.g., Ref. [13].)

In the present paper we shall adopt the scale factor cutoff measure, which we will discuss
in more detail below. In this measure, the ratio of Boltzmann brains to ordinary observers
in a given vacuum is roughly given by the ratio of the Boltzmann brain nucleation rate I'®B
to the total decay rate of that vacuum I';. Here F?B is the rate at which Boltzmann brains
form per unit (physical) volume of vacuum i, and I'; is proportional to the total rate at
which volume flows out of vacuum i (a precise definition of I'; will be given below).

We point out here that there are two processes that are not always considered that
influence the vacuum decay rate. The first is the nucleation of small black holes. This
process removes volume from the vacuum, and so contributes to I';. The rate is largest for
the smallest black holes. As we will discuss below, it is always larger than the Boltzmann
brain nucleation rate, if the minimum Boltzmann brain mass is larger than the Planck mass,’
so the Boltzmann brain problem is solved in that case.

The other process is the nucleation of small regions of higher-energy inflating false vac-
uum. In the usual Lee-Weinberg [15] process, a region larger than the Hubble distance in the

1 A similar argument was made in Ref. [14] in the context of the ”watcher measure”. This measure makes
the assumption that the big crunch singularities in AdS bubbles lead to bounces, where contraction is
followed by expansion, so that geodesics can be continued through the crunch regions. We do not adopt
this assumption in the present paper.



old vacuum tunnels to the new vacuum. But here we are considering a localized fluctuation
that yields a region of the new vacuum large enough to inflate but much smaller than the old
Hubble distance [16, 17]. The higher the energy of the new vacuum, the smaller the region
of it that is necessary for inflation. Thus this process (unlike Lee-Weinberg tunneling) is
least suppressed when the daughter vacuum energy is the highest. The most likely process
is to produce the highest energy inflating vacuum. If this is at the Planck scale, suppression
is similar to that of Planck-scale black hole production. Otherwise it is more suppressed
than that.

Nucleation of small high-energy regions is not discussed in most treatments of the multi-
verse physics. We shall comment on the reason for that below and explain why we believe
it should be included. This process upends the conventional wisdom that low-energy vacua
are most likely to tunnel to other low-energy vacua. Up-tunneling is still suppressed when
the parent vacuum energy is small, but now the most likely daughters are the ones with the
highest energy. To compute the probabilities in the scale factor measure, we construct a
transition matrix between vacua and find its eigenvector whose eigenvalue is least negative.
This is usually made up almost entirely by a single “dominant vacuum” [18, 19] whose total
decay rate is the least. The measures of other vacua depend on tunneling processes lead-
ing to them from the dominant vacuum. When we take into account production of small
high-energy inflating regions, we can still find the dominant vacuum, but the details do not
matter. The likeliest transition out of the dominant vacuum is to jump directly to the high-
est energy possible. At very high energies, transitions are little suppressed, so all vacua are
quickly populated. The chance of any specific low-energy (and in particular anthropically
allowed) vacuum depends now on how it may be reached by a sequence of transitions from
high energies, with little effect from the details of the dominant vacuum.

The rest of this paper is organized as follows. In the next section we review the scale
factor measure and the resulting distribution of the different vacua, and discuss the effects of
nucleating black holes and small high-energy regions. In Sec. III we discuss the nucleation
rates of black holes, Boltzmann brains, and regions of different vacuum. We discuss the
effects of these processes on the Boltzmann brain problem in Sec. IV and on the distribution
of the different vacua in Sec. V. We conclude in Sec. VL.

II. THE SCALE FACTOR CUTOFF

The scale factor measure was introduced by Linde and collaborators (e.g., [10]) and was
worked out in detail in Refs. [11, 12, 20]. It is based on constructing a scale factor time
that represents (the logarithm of) the total expansion that each point in spacetime has
experienced. To make it well defined, we must start with some initial spacelike hypersurface
3 and follow a congruence of geodesics orthogonal to ¥. The scale factor time is then given

by
t
o
n—/o S (1)

where ¢ is proper time, and the expansion § = u*,,, with u* = dz*/dt the tangent vector to
the geodesics. In a homogeneous region of the universe, the scale factor a is just exp 7.

To use this as a measure, we consider all events that take place before some cutoff time
7e. There are a finite number of these, so assigning probabilities is straightforward. Then
we take the limit of the probabilities as 7. grows without bound.
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Unfortunately, when structures form, the local universe contracts instead of expanding,
so 7 is not monotonic; we must make some provision for this case [12]. One plan would be
to use a modified scale factor time 7, where 7j(z) is given by maximizing 1 over all points
in the causal past of z. Thus 7] cannot decrease, and we avoid the possibility that an event
allowed by the cutoff is in the future of a point excluded by the cutoff.?2 A number of other
possibilities have been suggested [12, 20].

It will not be important to our analysis here exactly how this issue is resolved, but for
definiteness we will use the above “maximum 7” prescription. At any given scale factor,
almost all the volume is in regions that are expanding. In such a region, the distance
between two geodesics of the congruence is just their distance on the initial surface times
the expansion of the scale factor. If we select an evenly spaced, very large but finite set of
representative geodesics on initial surface, all of these geodesics will represent equal volumes
on the cutoff surface. Thus the fraction of volume in each type of region is just the fraction
of the initial geodesics that are there.

We will be interested in the number of Boltzmann brains and ordinary observers that
appear in different vacua. Let us start by defining f;(n) to be the fraction of comoving volume
in vacuum ¢ at time 7. In expanding regions, the expansion factor a is the same everywhere
on the constant-n surface, so f; gives the fraction of physical volume. In contracting regions,
we must make some adjustment, as described above. But such regions will not matter, as
we discuss later.

The f; obey the rate equation [18],

df:
Efé‘ = Z (—rijfi + Kjifi) 5 (2)
()
where k;; is the fraction of volume currently in vacuum j that transitions into vacuum i per
unit scale factor time, or equivalently the chance per unit scale factor time for an observer
in vacuum j to transition to vacuum 4.
We can express k;; in terms of [';;, the rate of tunneling events that produce vacuum i

per unit physical spacetime volume of vacuum j. In general,

Vis
J

where Vj; is the volume of space at a given time where a given tunneling event would lead
to a given observer transitioning to the new vacuum. The expansion rate H; of vacuum j
in the denominator is the conversion between scale factor time and physical time.

In the Coleman-De Luccia process, a small region of lower-energy vacuum appears by
tunneling and then expands to the horizon size. In the Lee-Weinberg process, a super-horizon
region of a higher-energy vacuum appears by tunneling and then contracts in comoving size
so the final comoving volume is just the comoving horizon at the time of nucleation. In
either case, V; = (4n/3)H;°.

Here we will discuss two more processes. The first is the nucleation of black holes. A
certain set of geodesics will fall into the black hole, hit the singularity, and be removed from
the congruence. They will reach a maximum 7 before they start to converge near the black
hole; for larger n they will not be counted in the scale factor measure. They thus represent

2 Such a situation would lead to an inverse Guth-Vanchurin [4] paradox where an observer may wake up
without ever having gone to sleep.



a flow of volume fraction out of the vacuum in which the black holes nucleate. In that sense
the process is similar to the creation of anti-de Sitter vacua that then collapse. We will
describe black hole nucleation by a transition rate kg, for each vacuum j, and include it in
Eq. (2) by including ¢ = 0 in the sum.

If a black hole of mass M lives for a time long compared to the Hubble time, it will
capture all geodesics within radius [14]

GM 1/3
e (SH) (@

which is the radius at which the attraction of the black hole gravity is balanced by the
repulsive force due to the cosmological constant. The volume of geodesics absorbed is thus

GM

Vo S 9

If the black hole is short-lived compared to the Hubble time, we can neglect the cosmo-
logical constant. A particle starting from rest at radius r will fall into the black hole on a
time scale

t ~r2(GM)Y2, (6)

We want t < t., where the evaporation time is® ¢, ~ G?M?®. From this we find that the
capture radius and volume are

M\
ro ~ GBM™3 ~ GM (M_m) (7)
4
Vo ~G°M" ~ (GM)? (Mﬂm) - (8)

We will also consider the formation of regions of higher cosmological constant A; that are
smaller than the horizon of the parent vacuum j, but larger than their own horizon. Such a
region will inflate inside, but the outside will collapse into a black hole. As we mentioned in
the Introduction, this nucleation process is often omitted in studies of multiverse dynamics.
The main reason is that it does not fit into the standard Coleman-De Luccia formalism,
where tunneling transitions are described by instantons. There are no known instantons
corresponding to nucleation of small high-energy inflating regions. However, quantum tran-
sitions allowed by the conservation laws should occur with some nonzero probability. The
state of a quantum field in de Sitter space is similar to a thermal state, and one expects that
fluctuations of the scalar field ¢ and/or its velocity ¢ will occur in localized regions of space.
If the fluctuation is large enough, the field may acquire enough energy to fly over a poten-
tial barrier into a high-energy vacuum. And if the fluctuation extends over a super-horizon
region in the new vacuum, it will produce an inflating baby universe [16, 17].

Geometrically it is clear that a rapidly inflating daughter region will be connected by a
wormhole to the slowly inflating parent universe. The wormhole will close up in about one

3 We note that magnetically charged black holes may be much more stable. They can lose their magnetic
charge only by emission of magnetic monopoles, which typically have large masses, so their emission
may be strongly suppressed. The black hole may even be absolutely stable if monopole solutions of
corresponding magnetic charge do not exist.



light crossing time and both of its mouths will be seen as black holes.?. After the black
hole evaporates, the new inflating region is disconnected from the original universe, but
there is no problem in applying the scale factor measure to the resulting set of disconnected
universes.

If we could ignore gravitational effects, it would be easy to compute the energy necessary
to create such a region. Let U; be the energy density of the daughter vacuum. The expansion
rate is thus H; ~ +/GU; = \/U;/Mp,. The minimal volume to inflate would be a sphere of

radius H; ', which thus contains volume
Ve~ M /U (9)

and mass

M ~ MU (10)
This is modified by gravitation, but we will assume here that the effect is only to change the
numerical factors that we did not compute and so Egs. (9) and (10) give the correct order
of magnitude.

The new inflating volume must be surrounded by a bubble wall that interpolates between
the two vacua. This is same wall as in Lee-Weinberg and the inside-out version of the
Coleman-De Luccia bubble wall. Suppose it is possible, as one normally expects, for a small
bubble of vacuum j to form inside a Hubble volume of vacuum i. That means that the
energy of this wall around a sphere of radius smaller than 1/H; is less than the energy of the
displaced volume of vacuum 7. In the present case, we have a larger sphere, of radius 1/H;,
which increases the ratio of volume to surface energy. So the wall energy will be much less
than M which is the energy of the sphere of vacuum i of radius 1/H;, and there is no
important correction to M€, from the wall.

Upon nucleation we expect that the geodesics inside volume V;""¢ will travel into the new
inflating region.® Shortly after that, the nucleated region will collapse into a black hole, and
more geodesics will later fall into the black hole and end at the singularity, according to
Eq. (7). So this process gives

nuc

I‘Eij ~ #Fij ~ Fin;lHi_g (11)
3

and in addition contributes
~ Ty Hy 'M3 H; (12)
to Ko;.

Calculation of the relative abundance of Boltzmann brains and ordinary observers involves
comparisons of extremely small numbers, like tunneling transition rates x;; and Boltzmann
brain nucleation rates. The tunneling actions are typically large, so these rates are double ex-
ponentially suppressed. The pre-exponential factors have therefore little effect, even though
they can be very small or large. For this reason the factors multiplying I';; in Egs. (3), (11)
and (12) can be ignored, and we will omit them from now on.

4 This process is similar to that described in Ref. [21]. It is also related to the process of Ref. [22], but
in that paper the authors propose deliberately constructing a region of high-energy vacuum that is not
large enough to inflate and hoping that it tunnels to the inflating state, while here we propose creating

the region as a fluctuation in de Sitter space.
5 A geodesic congruence is not well defined when the spacetime undergoes a discontinuous change, as in

quantum tunneling. But it should be possible to estimate, by order of magnitude, what fraction of the
initial comoving volume goes into each vacuum. This is typically all one needs in any anthropic analysis.



ITI. NUCLEATION RATES

In this section, we review the usual nucleation rates for the Coleman-De Luccia and Lee-
Weinberg cases and discuss nucleation of black holes, small inflating regions, and Boltzmann
brains.

A. Coleman-De Luccia and Lee-Weinberg nucleation

A metastable vacuum j may decay to a lower energy vacuum i through bubble nucleation.
If we ignore the effects of gravitation, we have the situation discussed by Coleman [23]. It
proceeds by forming a bubble whose total energy is zero because the decreased energy of
the vacuum inside compensates for the energy in the bubble wall. Including gravitation [24]
leads to corrections, but these are small if the bubble size is small compared to the Hubble
distance in both parent and daughter vacua. After formation, the bubble will expand rapidly
because the force on the wall due to the difference in vacuum energies is larger than the
effect of surface tension. Disregarding the pre-exponential factor, the bubble nucleation rate
is given by
Dgprae ™5, (13)

where I < 0 is the instanton action and S; = 7/ Hf is the Gibbons-Hawking entropy of the
parent vacuum j.

Lee and Weinberg [15] have argued that the same instanton should describe the inverse
transition from ¢ to j, where the daughter vacuum has a higher energy than the parent
vacuum. The corresponding transition rate is

Tji~ e ™%, (14)
It follows that the upward and downward transition rates are related by
Fji/rij ~ ESJ'—S" - (15)

If the two vacuum energies are significantly different, the upward transition rate is very
strongly suppressed. Eq. (15) can be interpreted as an expression of detailed balance between
vacuum transitions in the multiverse. It fits well with the widely accepted picture of quantum
de Sitter space as a thermal state [25].

Analytic continuation of the instanton to the Lorentzian regime indicates that in the case
of upward tunneling the initial size of the bubble is larger than the parent vacuum horizon
H;'. The high-energy bubble is pushed inward because the vacuum energy density outside
is smaller than the density inside, and thus the inside pressure is more negative. But since
the bubble is outside the Hubble distance it is carried outward by the Hubble expansion,
even though locally it accelerates inward.

B. Black hole nucleation

In general we expect an arbitrary object of mass M that is much smaller than the Hubble
distance to appear in de Sitter space at a rate proportional to

exp(—2nM/H) = exp(—M/T) . (16)
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The latter expression gives the likelihood of finding such an object in a thermal bath in
the Gibbons-Hawking temperature 7' = H/(2m).% The former expression has been found by
instanton calculations, for example see Ref. [26] for the nucleation of monopoles and Ref. [27]
for the nucleation of black holes. The calculation of black hole nucleation rate in Ref. [27] is
somewhat controversial, since it is based on an instanton with a conical singularity. Exclusion
of such instantons leads to the conclusion that only maximal black holes of horizon radius
equal to the cosmological horizon can nucleate in de Sitter space [28]. However, regular
instantons do exist for nucleation of electrically or magnetically charged black holes of sub-
maximal mass [29]. In the limit of small mass the corresponding nucleation rate is given by
Eq. (16). We note also that Eq. (16) would give the rate to nucleate a distribution of dust
that would collapse into a black hole.

C. Small inflating regions

As discussed above, it is possible to nucleate a much smaller bubble of higher energy
vacuum ¢. As seen from the outside, the force on the bubble wall will cause it to shrink,
leading the bubble to collapse into a black hole. However, if the bubble volume is larger
than V,""¢| it will inflate on the inside, leading to a new inflating region of vacuum i.

What is the rate at which such regions are produced? The simple conjecture is that it is
proportional to

e MIIT o, =ME/(AVT) o, o= ME,/(Hily) (17)
as we would expect for any object of mass M™°. However, there are some caveats. New
small inflating regions cannot be produced by any classical process, because their production
violates the null energy condition [30]. Thus a classical thermal state would not produce
regions such as these, perhaps casting some doubt on the use of a thermal expression above.
This is a fundamentally quantum process, so perhaps it can be described by an instanton,
but such an instanton is not known. A similar situation was discussed by Farhi, Guth, and
Guven [22], who considered tunneling from a small initial false vacuum seed in asymptotically
flat space to an inflating baby universe inside of a black hole. They constructed an instanton
for this process, but found that its metric is degenerate. The instanton action could still
be calculated, but it is not clear that such pathological instantons are legitimate. Fischler,
Morgan, and Polchinski [31] considered the same problem using the Hamiltonian formalism
and found no inconsistencies. The nucleation rate they found agrees with the result of
Ref. [22] based on the degenerate instanton. But this issue remains controversial.

Nucleation of high-energy inflating regions can also be pictured as a two-step process.
First a bubble of high-energy vacuum 4 having radius R < H;, ' spontaneously nucleates in
the parent vacuum j, and then this bubble tunnels to an inflating baby universe contained
inside of a black hole by the process discussed in Refs. [22, 31]. One expects that the
rate for the first step is I' ~ exp(—2wM/H;), where M is the mass of the bubble, and
the tunneling action is estimated as [22, 31] S ~ (Mpi/H;)?. Farhi et al. [22] find that
the minimal bubble mass required for the tunneling is Mg /2H;; then the nucleation rate is
I' ~ exp(—mM$,/H;H;). For H; > H; this is the dominant factor determining the nucleation
rate of baby universes. This is in agreement with the estimate in Eq. (17).

6 More precisely, the nucleation rate is proportional to exp(—F/T) = exp(—M /T + S), where F is the free
energy and S is the entropy of the nucleating object. This takes account of the possibility of nucleating
the object in various microstates. The correction, however, is small in cases of interest to us here.



Another possible objection to nucleation of inflating baby universes is that it is in conflict
with the detailed balance condition (15). This condition however does not follow from any
fundamental principle. It is violated in particular by transitions between de Sitter and
anti-de Sitter vacua, which are necessarily present in any multiverse theory.

As we argued above, inflating baby universes should nucleate at some nonzero rate, even
in the absence of instantons, because this process is allowed by all conservation laws. A
calculation of their nucleation rate was attempted in Refs. [16, 17]. This calculation appears
to be reliable when the energies of the two vacua and the height of the barrier separating
them are all sub-Planckian and are comparable to one another. But in the opposite limit,
when H; > Hj, the initial fluctuation is strongly influenced by gravitational effects and
calculation of its probability requires a quantum theory of gravity. Here we shall assume
that the nucleation rate in this case is given by Eq. (17), which seems to be a plausible
guess.

D. Boltzmann brains

Finally, we expect Boltzmann brains to appear at the rate given by Eq. (16) with brain
mass Mpp. This process is dominated by the lightest brains that need to be considered for
anthropic reasoning. These may not actually be brains, per se, but tiny computers that
stimulate human thought sufficiently well to be considered in anthropics.” We will assume
here that Mgg > Mp; ~ 2 x 10~° g. This is correct for a human brain and for any computer
that we have built so far. It is not correct if the only limit is the number of bits that the
computer can store [20], i.e., if we are not concerned with what this computer might be
made of and how it can operate. The minimum mass of a working computer is uncertain.
See Ref. [20] for further discussion.

IV. THE BOLTZMANN BRAIN PROBLEM

To avoid domination by Boltzmann brains requires that the rate of Boltzmann brain
production I'PB is less than the vacuum decay rate I'; = 5 ;Lij in every vacuum ¢ [12, 20].
Let us review the basic argument. Consider some vacuum ¢ in which there are ordinary
observers. First we rewrite Eq. (2),

Af:

d_{; = M f;, (18)
where M;; = Kij — d;jki. In the limit where the cutoff grows without bound, this situation
can be analyzed by finding the least negative eigenvalue —¢q of the matrix M and the cor-
responding eigenvector s so that ) ; KijSj — KiSi = —gSi. The fraction of volume near the
cutoff surface in each vacuum i is then given by s;. The number of Boltzmann brains in
that vacuum is proportional to s;,['*B, because most of the volume is near the cutoff sur-
face. Meanwhile, the number of ordinary observers is proportional to the rate at which new
vacuum of type i is created, which is ) ; KijSj = (k; — q)s;. Ordinary observers are gener-
ally found in collapsed regions, which require some adjustment to the scale factor measure.

" See Ref. [32] for some discussion of the difficulty in determining what systems should be included in
anthropic reasoning,.



However this adjustment is insignificant compared to the double-exponential nature of I';
and I'PB, so it will not be important here.

Now g is generally smaller than the total decay rate of the dominant vacuum, which is
less than that of vacuum 7. (Since there’s only one dominant vacuum, it’s very unlikely that
it is able to support Boltzmann brains. If it is, Boltzmann brains would certainly dominate
[12, 20].) Both «; and ¢ are tiny numbers, and generally they are quite far apart. So ¢ can
be ignored and we find k;;s; ~ k;s;, i.e., the rate of creation and the rate of decay are nearly
equal. We are not concerned with differences in prefactors, so k; and I'; are interchangeable,
and the condition to avoid Boltzmann brain domination in vacuum i is that I'*® < T;.
Refs. [12, 20] show that the condition to avoid Boltzmann brain domination overall is that
BB < T in every vacuum.

Included in k; is kg;, the rate of formation of black holes. The rate for black holes of mass
M is proportional to exp(—M/T), so it is dominated by the smallest black hole possible.
Let us say this has mass MB! which is around the Planck mass. Thus &; is at least of order
exp(—Mp)/T). Meanwhile, I'*B is of order exp(—Mgpg/T), where Mpg is the minimum
Boltzmann brain mass. With our assumption that Mgg > Mp, it follows that I'?® <« T,

and there is no problem with Boltzmann brains.

The question of Boltzmann brain dominance involves comparing the number of Boltz-
mann brains and ordinary observers before the cutoff, so it may be counterintuitive that it
is affected by the production of black holes, which are neither of these. Here is a way to
understand how this happens. Consider a multiverse up until a scale factor cutoff. Most of
the volume is near the cutoff, so we only need to look there. Most ordinary observers are
in regions that were created not long before the cutoff and thus still have conditions where
observers can live. But Boltzmann brains are in regions that were formed long ago, so we
need to know how much volume these regions have.

Let us put a large but finite number of evenly spaced fiducial particles on the initial
surface, traveling along the geodesics that we used to define the scale factor measure. In
expanding regions, equal scale factor time means an equal amount of expansion, so each
particle represents the same amount of spatial volume. Then the ratio of different volumes
is just the relative number of particles that they contain.

The effect of the black holes is to swallow up some of these particles so that they do
not reach the cutoff surface. The result is that the volume of a given vacuum on the cutoff
surface is smaller than it would be without black hole formation. Thus s;, the fraction
of the cutoff surface in volume ¢, is inversely proportional to the decay rate I';. Black hole
nucleation increases I'; and so decreases s;. The number of Boltzmann brains in this vacuum
is then proportional to I'®8/T;. This leads to the criterion used above.

The process of removing particles by black hole formation is extremely slow. A Planck-
scale black hole removes only a fraction of order H?/Mg, of the Hubble volume where it
forms. More importantly, such a black hole only occurs once in every exp(ME! /T) Hubble

min
volumes. Thus we must wait time of order exp(ME! /T') Hubble times before this effect is
important. During this time the universe expands by a factor exp(exp(MEL/T)). In our

present universe, this is about exp(exp(10°°)), a remarkably large number. Nevertheless, the
scale factor measure instructs us to consider the limit where the scale factor goes to infinity,
so the required scale factor to reach a steady-state situation does not matter.
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V. VACUUM DYNAMICS

The possibility of less-suppressed tunneling to higher energy vacua changes the distribu-
tion of different possible states and thus the results to be expected under anthropic reasoning.
The fraction of the volume in some vacuum ¢ according to the scale factor measure depends
on the tunneling rates to get from the dominant vacuum to vacuum i [18|. To reach any an-
thropically allowed vacuum from the dominant vacuum we generally need an upward jump,
or many such jumps, followed by many downward jumps.® Which vacua are easily reached
depends on which process we consider.

If we consider only the Lee-Weinberg process, there is a large suppression factor given by
Eq. (15). This suppression is less important when the two vacua are close in energy. Thus the
favored vacua are those which can be reached from the dominant vacuum by small upward
jumps followed by downward jumps. Depending on the structure of the landscape, these
vacua may be sparse enough that the anthropic explanation of the cosmological constant
does not work [18, 19].

However, when we consider the formation of small regions of high-energy vacuum j, the
mass of the region is M ~ Mg,/H; and the suppression goes as exp(—Mg,/(H;H;)). Thus
the least suppressed transitions are those to the largest H;. Furthermore, there is little
dependence on which is the dominant vacuum, because wherever one starts, the same high-
energy vacua are preferred. From those vacua, one must then drop, generally in a number
of steps, to the anthropic region. This pattern of transitions generally leads to a much
smoother distribution of probabilities for the different vacua [34].

VI. CONCLUSION

In an eternally inflating universe, there is the possibility of Boltzmann brain domination,
meaning that anthropic reasoning would lead to the nonsensical conclusion that we are
Boltzmann brains. In the scale factor measure, this disaster is avoided when the rate of
Boltzmann brain nucleation is smaller than the vacuum decay rate in each vacuum (and
the dominant vacuum does not support Boltzmann brains). If one considers decay only
by the Coleman-De Luccia and Lee-Weinberg processes, this may not be the case (but see
Ref. [35] for a claim that string theory vacuum decay rates in string theory are always larger
than I'BB.). However we showed above that black hole nucleation should be included in
the vacuum decay rate, and this process is much less suppressed than Boltzmann brain
production, under a rather mild assumption that the mass of a Boltzmann brain should be
greater than the Planck mass. Thus we should not expect to be Boltzmann brains.

We also discussed the nucleation of small regions of inflating high-energy vacuum. If
vacua of high enough energies exist, this process also would prevent Boltzmann brain domi-
nation. In any case it modifies the probability distribution of the various vacua, likely giving
a more uniform distribution for different anthropic possibilities and guaranteeing that an-
thropic explanations of the smallness of the cosmological constant are not affected by highly
nonuniform probability distributions across anthropic vacua.

We finally mention the swampland conjectures which have been intensively discussed in
recent years (see Ref. [36] for an up-to-date review and references). According to these

8 The dominant vacuum is likely to have a very low supersymmetry breaking scale n.. Its energy density
U. < n? is then likely to be extremely small. It is also reasonable to expect that this nearly supersymmetric
vacuum can support neither ordinary observers nor Boltzmann brains. For a discussion of the expected
properties of the dominant vacuum in string the(irf see Ref. [33] and references therein.



conjectures metastable de Sitter vacua do not exist and many models of eternal inflation are
also ruled out. However, it was shown in Ref. [37] that eternal inflation driven by inflating
domain walls may still be possible. It would be interesting to apply the considerations of
the present paper to this kind of multiverse models.
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