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ABSTRACT

We study the statistical properties of an estimator derived by applying a gradient ascent method with
multiple initializations to a multi-modal likelihood function. We derive the population quantity that is the
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target of this estimator and study the properties of confidence intervals (Cls) constructed from asymptotic

normality and the bootstrap approach. In particular, we analyze the coverage deficiency due to finite
number of random initializations. We also investigate the Cls by inverting the likelihood ratio test, the score
test, and the Wald test, and we show that the resulting Cls may be very different. We propose a two-sample
test procedure even when the maximum likelihood estimator is intractable. In addition, we analyze the
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performance of the EM algorithm under random initializations and derive the coverage of a Cl with a finite
number of initializations. Supplementary materials for this article are available online.

1. Introduction

Many statistical analyses involve finding the maximum of an
objective function. The maximum likelihood estimator (MLE)
is the maximum of the likelihood function. In variational infer-
ence (Blei, Kucukelbir, and McAuliffe 2017), the variational esti-
mator is constructed by maximizing the evidence lower bound.
In regression analysis, we estimate the parameter by minimiz-
ing the loss function, which is equivalent to maximizing the
negative loss function. In nonparametric mode hunting (Parzen
1962; Romano 1988a,1988b), the parameter of interest is the
location of the density global mode; therefore, we are finding
the point that maximizes the density function.

Each of the above analyses works well when the objective
function is concave. However, when the objective function is
nonconcave and has many local maxima, finding the (global)
maximum can be challenging and even computationally
intractable. Moreover, because the computed estimator may not
be the actual MLE, the resulting confidence set may not have
the nominal coverage.

In this paper, we focus on the analysis of the MLE of a multi-
modal likelihood function. Our analysis can also be applied to
the examples mentioned before and other types of M-estimators
(Van der Vaart 1998). Maximizing a multi-modal likelihood
function is a common scenario encountered while we fit a
mixture model (Redner and Walker 1984; Titterington, Smith,
and Makov 1985). Figure 1 plots the log-likelihood function of
fitting a 2-Gaussian mixture model to data generated from a 3-
Gaussian mixture model, in which the orange color indicates
the regions of parameter space with high likelihood values.
There are two local maxima, denoted by the blue and green
crosses. The blue maximum is the global maximum. To find the

maximum of a multi-modal likelihood function, we often apply
a gradient ascent method such as the EM algorithm (Redner
and Walker 1984; Titterington, Smith, and Makov 1985) with
an appropriate initial guess of the MLE. The right panel of
Figure 1 shows the result of applying a gradient ascent algorithm
to a few initial points. Each black dot is an initial guess of the
MLE, and the corresponding black curve indicates the gradient
ascent path starting from this initial point to a nearby local
maximum. Although it is ensured that a gradient ascent method
does not decrease the likelihood value (when the step size is
sufficiently small), it may converge to a local maximum or a
critical point rather than the global maximum. For instance,
in the right panel of Figure 1, three initial point converges to
the green cross, which is not the global maximum. To resolve
this issue, we often randomly initialize the starting point (initial
guess) many times and then choose the convergent point with
the highest likelihood value as the final estimator (McLachlan
and Peel 2004; Jin et al. 2016). However, as we have not explored
the entire parameter space, it is hard to determine whether
the final estimator is indeed the MLE. Although the theory of
MLEs suggests that the MLE is a /n-consistent estimator of
the population maximum (population MLE) under appropriate
conditions (Titterington, Smith, and Makov 1985), our estima-
tor may not be a \/n-consistent estimator because it is generally
not the MLE.! The CI constructed from the estimator inherits
the same problem; if our estimator is not the MLE, it is unclear
what population quantity the resulting CI is covering.

The goal of this article is to analyze the statistical properties of
this estimator. Note that we do not provide a solution to resolve
the problem causing by multiple local maxima; instead, we
attempt to analyze how the local maxima affect the performance

CONTACT Yen-ChiChen @yenchic@uw.edu @ Department of Statistics, University of Washington, Seattle, WA.
@ Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.
'In fact, for a mixture model, the convergence rate could be slower than /n if the number of mixture k is not fixed; see, for example, Li and Barron (1999) and
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Figure 1. Log-likelihood function of fitting a 2-Gaussian mixture model to a data that is generated from a 3-Gaussian mixture model. The true distribution has a density
function: pg(x) = 0.5¢(x;0, 0.22) + 0.45¢ (x;0.75, 0.22) + 0.05¢ (x; 3,0.22), where d(x; M,az) is the density of a Gaussian with center u and variance 2. Wefita2-
Guassian mixture with the center of the first Gaussian being set to 0 and the variance of both Gaussians being 0.22. The parameters of interest are the center of the second

Gaussian u; and the proportion of the second Gaussian p. Namely, the log-likelihood function is L(up, p) = E(log ((1 — p)$(X;0,022) + pp(X; MZ,O.ZZ))), where

X has a pdf py. Left: contour plot of the log-likelihood function L(u, p). Regions with orange color are where the log-likelihood function has a high value. The two local
maxima are denoted by the blue and green crosses. Right: the trajectories of the gradient ascent method with multiple initial points. Each solid black dot is an initial point
and the curve attached to it indicates the trajectory of the gradient ascent method starting from that initial point.

of the estimator and the validity of a related statistical procedure.
Although this estimator is not the MLE, it is commonly used in
practice. To understand what population quantity this estimator
is estimating, we study the behavior of estimators obtained from
applying a gradient ascent algorithm to a likelihood function
that has multiple local maxima. We investigate the underlying
population quantity being estimated and analyze the properties
of resulting CIs. Specifically, our main contributions are sum-
marized as follows.
Main Contributions.

1. We derive the population quantity being estimated by the
MLE when the likelihood function has multiple local maxima
(Theorems 1 and 2).

2. We analyze the population quantity that a normal CI covers
and study its coverage (Theorem 3).

3. We discuss how to use the bootstrap method to construct a
meaningful CI and derive its coverage (Theorem 4).

4. We show that the Cls from inverting the likelihood ratio test,
score test, and Wald test can be different (Section 3.3 and
Figure 4).

5. We also discuss how to perform a two-sample test maintain-
ing Type I error when the MLE is intractable (Section 3.4).

6. We analyze the probability that the EM algorithm recovers
the actual MLE (Section 4) and study the coverage of its
normal CI (Theorem 6).

7. We apply our developed framework to investigate the old
faithful dataset (Section 5).

Related Work. The analysis of MLE under a multi-modal like-
lihood function has been analyzed for decades; see, for example,
Redner (1981), Redner and Walker (1984), Sundberg (1974),
and Titterington, Smith, and Makov (1985). In the multi-modal
case, finding the MLE is often accomplished by applying a gradi-

ent ascent method such as the EM-algorithm (Dempster, Laird,
and Rubin 1977; Wu 1983; Titterington, Smith, and Makov
1985) with random initializations. The analysis of initializations
and convergence of the gradient ascent method can be found in
Lee et al. (2016), Panageas and Piliouras (2017), Jin et al. (2016),
and Balakrishnan, Wainwright, and Yu (2017). In our analysis,
we use the Morse theory (Milnor 1963; Morse 1930; Banyaga
and Hurtubise 2013) to analyze the behavior of a gradient ascent
algorithm. The analysis using the Morse theory is related to the
work of Chazal et al. (2017), Mei, Bai, and Montanari (2018),
and Chen et al. (2017).

Outline. We begin with providing the necessary background
in Section 2. Then, we discuss how to perform statistical infer-
ence with local optima in Section 3. We extend our analysis
to EM algorithm in Section 4. We provide data analysis in
Section 5. Finally, we discuss issues and opportunities for further
work in Section 6. In the supplementary material, we include a
simulation study to investigate the effect of initialization (Sec-
tion A) and a generalization to mode hunting problem (Section
E) and all technical assumptions and proofs (Section G).

2. Background

In the first few sections, we will focus on an estimator that
attempts to maximize the likelihood function. Let X3, ..., X, ~
Py be a random sample. For simplicity, we assume that each X; is
continuous. In parametric estimation, we impose a model on the
underlying population distribution function P(-;0). This gives
a parameterized probability density function p(-;6). The MLE
estimates the parameter using

~ ~ 1
OmLg = argmax L,(0) = argmax — Zlogp(Xz';Q),
0 o Mg



which can be viewed as an estimator of the population MLE:

OmLE = argmax L(0) = argmax E(log p(X1;0)).
% 0

When the likelihood function has multiple local modes
(maxima), the MLE does not in general have a closed form;
therefore, we need a numerical method to find it. A common
approach is to apply a gradient ascent algorithm to the
likelihood function with a randomly chosen initial point. To
simplify our analysis, we study a continuous-time gradient
ascent flow of the likelihood function (this is like conducting
a gradient ascent with an infinitely small step size). When the
likelihood function has multiple local maxima, the algorithm
may converge to a local maximum rather than to the global
maximum. As a result, we need to repeat the above procedure
several times with different initial values and choose the
convergent point with the highest likelihood value.

To study the behavior of a gradient ascent flow, we define the
following quantities. Given an initial point 87, let 31 : R — @
be a gradient flow such that

7ot (0) = 6%, P (H) = VLy(yyr (1))

Namely, the flow yp+ starts at 6% and moves according to
the gradient direction of L,. The stationary point Yt(c0) =
lim¢_, o0 Yt (¢) is the destination of the gradient flow starting
at 67, Different starting points lead to flows that may end at
different points.

Because our initial points are chosen randomly, we view
these initial points 0f,...,0] as iid draws from a distribution
m n(-) (see, e.g., McLachlan and Peel 2004, chap. 2.12.2) that
may depend on the original data Xj,...,X,. The number M
denotes the number of the initializations. Later we will assume
that I1,, converges to a fixed distribution IT when the sample size
increases to infinity. Note that different initialization methods
lead to a different distribution of I1,. As an example, in the
Gaussian mixture model, we often draw random points from the
observed data as the initial centers of each mixture component.
In this case, I1, can be viewed as the empirical distribution
function.

By applying the gradient ascent to each of the M ini-
tial parameters, we obtain a collection of stationary points
i/\g;‘ (00), ..., Yyt (00). The estimator is the one that maximizes
the likelihood function so it can be written as

o~

OnM = argmaxA +(00) {Ln (i/\@g(oo)) = 1,...,M} . (D)

In practice, we often treat @,)M as é\MLES and use it to make
inferences about the underlying population. However, unless
the likelihood function is concave, there is no guarantee that
Bn M= QMLE Thus our inferences and conclusions, which were
based on treating 9,,, M as the MLE, could be problematic.

2.1. Population-Level Analysis

Tol)etter understand the inferences we make when treating @l M
as OMLE, we start with a population level analysis over 8, 1. The
population version of the gradient flow 7+ starting at 67 is a
gradient flow yy+ (¢) such that

Yer(0) = 0%, () = VL(ypt(1)).
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Algorithm 1 Gradient ascent with random initialization

1. Choose 8T randomly from a distribution m,.
2. Starting with 67, apply a gradient ascent algorithm to L,
until it converges. Let 751 (00) be the stationary point.
3. Repeat the above two steps M times, leading to
Vor (90)s - Vg1 (00).

4. Compute the corresponding log-likelihood value of each of
them:

I, (%;(oo)) I (%;4(00)) .

5. Choose the final estimator as

QnM = argmaxy T(OO) [L <y9+(00)> = 1,...,M} .

The destination of this gradient flow, y,+(c0) = lim;—, o0 Yt (),
is one of the critical points of L(6).

For a critical point m of L, we define the basin of attraction
of m as the collection of initial points where the gradient flow
converges to m:

A(m) = {0 € O : yy(c0) = m).

Namely, A(m) is the region where the (population) gradient
ascent flow converges to critical point m.

Throughout this article, we assume that L is a Morse function
and L has a continuous second derivatives. That is, critical
points of L are nondegenerate (well-separated). By the stable
manifold theorem (e.g., Theorem 4.15 of Banyaga and Hurtubise
2013), A(m) is a k-dimensional manifold, where k is the number
of negative eigenvalues of H(m), the Hessian matrix of L(-)
evaluated at m. Thus, the Lebesgue measure of A(m) is nonzero
only when m is alocal maximum. Because of this fact, we restrict
our attention to local maxima and ignore other types of critical
points; a randomly chosen initial point has probability zero of
falling within the basin of attraction of a critical point that is not
a local maximum when ﬁn is continuous. Note that a similar
argument also appears in Lee et al. (2016) and Panageas and
Piliouras (2017). Let C be the collection of local maxima with

C = {ml,...,mK},
L(my) > L(my) > - -- L(mg),

where K is the number of local maxima. The population MLE is
my = OMLE.

Figure 2 provides an illustration of the critical points and
the basin of attraction. The left panel displays the contour plot
of a log-likelihood function. The three solid black dots are
the local maxima (m;, my, and ms3), the three crosses are the
critical points, and the empty box indicates a local minimum.
In the middle panel, we display gradient flows from some start-
ing points. The right panel shows the corresponding basins of
attraction (A(m;), A(m,), and A(m3)). Each color patch is a
basin of attraction of a local maximum.

For the £th local maximum, we define the probability

q; = T(A(my)) =/ dri(9), (2)

A(myg)
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Figure 2. An illustration of critical points and basin of attractions. Left: the colored contours show the level sets of the log-likelihood function. The three sold black dots
are the locations of local maxima (m1, m, and m3); the crosses are the locations of saddle points; and the empty box indicates the location of a local minimum. Middle:
gradient flows with different starting points. Each arrow indicates the gradient flow starting from an initial point that ends at a local maximum. Right: basins of attractions
of local maxima. Each color patch is the basin of attraction of a local maximum. Note that by the Morse theory, saddle points and local minima will be on the boundary of

basins of attraction of local maxima.

where I1 is the population version of M, (e, I, converges to
IT in the sense of assumption (A4) in the Section D.1, supple-
mentary material). g7 is the probability that the initialization
method chooses an initial point within the basin of attraction
of my. Namely, q; is the chance that the gradient ascent flow
converges to my from a random initial point. Note that we add
a superscript 77 to qj to emphasize the fact that this quantity
depends on how we choose the initialization approach. Varying
the initialization method leads to different probabilities g7 .

We define a “cumulative” probability of the top N local max-
ima as QY = 22121 q; » where g7 is defined in Equation (2).
The quantity Qf; plays a key role in our analysis because it is
the probability of seeing one of the top N local maxima after
applying the gradient ascent method with a single initialization.
Note that g7 = QF is the probability of selecting an initial
parameter value within the basin of attraction of the MLE,
which is also the probability of obtaining the MLE with only
one initialization. Later we will give a bound on the number of
initializations we need in order to obtain the MLE with a high
probability (Proposition 1).

Because the estimator @,,M is constructed by M initializa-
tions, we introduce a population version of it. Let 91T e 9;(/[ ~
IT be the initial points and let Yoi (oo),...,y%(oo) be the
corresponding destinations. The quantity

Q_M = argmaxyﬁg(oo) {L (ygz(oo)> A=1,... ,M} .

is the population analog of O

Due to the fact that 6) is constructed by M initializations,
it may not be the population MLE Oyg. However, it is still the
best among all these M candidates so it should be one of the
top local maxima in terms of the likelihood value. Let Cy =
{my,...,myn} be the top N local maxima, where N < K and
L(my) > --- > L(mg). By simple algebra, we have

P@yv €Cn) =1—P@ly ¢Cyn)=1—(1— QM.

Given any fixed number N, such a probability converges to 1
as M — oo when II covers the basin of attraction of every
local maximum. Therefore, we can pick N = 1 and choose
M sufficiently large to ensure that we obtain the MLE with

an overwhelming probability. However, when M is finite, the
chance of obtaining the population MLE could be slim.

To acknowledge the effect from the initializing M times, we
introduce a new quantity called the precision level, denoted as
8 > 0. Given a precision level §, we define an integer

N} s = min{N : (1 — Q)M < 4}

that can be interpreted as: with a probability of at least 1 — &, O
is among the top Ny, ; local maxima. We further define

]7\2)8 = CNIT\Z/I,B’ (3)
which satisfies
POy € Cipy) > 1—6.

Namely, with a probability of at least 1 — 8, G recovers one
element of Cyj; 5. We often want § to be small because later we will
show that common CIs have an asymptotic coverage 1 — o — §
containing an element of C}\T/L s (Section 3.1). If we want to control
the Type I error to be, say 5%, we may want to choose @ = 2.5%
and § = 2.5%.

Example 1 (Modal regression). To illustrate the idea, consider
a regression problem where we observe (X1, Y1),..., Xy, Yn)
and the goal is to fit a linear model of the conditional mode of
Y given X. This problem is called linear modal regression (Yao
and Li 2014; Chen 2018; Feng et al. 2020). Suppose that our data
is generated by the following mixture model (intercept is 0):

Y=60X+e¢, X~ Uni0,1], €~ N(0,0.05%).

However, 0 is also random such that P(6 = 0) = 0.6,P(0 =
1) = 02,P@ = 2) = P(® = 3) = 0.1. Namely, it is
a mixture of four component regression problem and the left
panel of Figure 3 shows a scatterplot of the data. It is known that
(Chen 2018) if we are looking for the conditional (global) mode
of Y given X, we can maximize the following objective function:

1 & Y; — 0X;
= — K|{————).
£n(9) nh; ( p )
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Figure 3. A modal regression method to the mixture regression problem. Left: we display a data generated by a 4-mixture regression model. Right: the objective function
of the linear modal regression as a function of the parameter 6. The three red vertical lines display the boundary of basins of attraction of the four local modes.

The right panel plots €,(9) when we choose h = 0.1 and K
to be the Gaussian kernel. The four local modes correspond
to the four mixture components. The global mode is Oy =
m; = 0, which corresponds to the component with the highest
proportion. There are three other local modes m; = 1,m3 =
2,m4 = 3. The three vertical lines in the right panel indicate
the boundaries of basins of attraction of different modes; they
correspond to 6 = 0.62,1.62,2.55. So the basin corresponding
to the global mode is A(m;) = (—00,0.62).

Suppose that we randomly initialize the starting point within
[—1,4] (ie, IT ~ Uni[—1,4]), then g = I1((—00,0.62)) =
162 x 0.2 = 0.324 and q¥ = 0.2,q7 = 0.186,q7 = 0.29.
Therefore, we only have around 32% chance of getting the actual
maximizer if we only initialize it once. Suppose that § = 1%
and we randomly initialize the program four times, we obtain
Nioor = 3s0Ciyo = {mi,mz, ms}. To ensure CII\ZI,O.OI =
{m1}, we need at least M = 12 random initializations (this
corresponds to (1 — 0.324)!2 ~ 0.0091 < § = 0.01).

The above example is a particularly simple case (one-
dimensional so we can clearly see the landscape of the objective
function), so we can work out the minimal number M to
guarantee a probability of at least 1 —46 of finding the global mode
(i.e., CI’\Z’(S = {OmLE}). In Section 3.5, we propose a practical rule
of choosing M based on our judgment of the problem. In what
follows, we provide a theoretical upper bound of the minimal
number using the curvature around the global mode. Let V,
denotes the directional derivative with respect to v € Sy, where
Sq = {v e R%: |lv|| = 1} is the collection of all unit vectors
in d dimensions. When either M or § increase, the set Cj s
may shrink. Under smoothness conditions of L, a sufficiently
large M ensures 617\31,5 = {OmrEe} as described in the following
proposition.

Proposition 1. Assume that © is a compact parameter space.
Assume all eigenvalues of H(Omrg) = VVL(OMLE) are less than
—Xo for some positive constant Xy and

sup  sup |V,,1 Vo, VUSL(9)| < c3.
He® vl,vz,vgeSd

Moreover, assume that Oyg is unique within ®. Then for
every § > 0, P(CM(;—{QMLE}) > 1 — 8 when M >

log$
,where B(@,7r) = {x € ® : ||x — 0] < 1}
10g(1 H(B(@MLE 0))) I I2

is the ball centered at 0 with a radius r.

Proposition 1 describes a desirable scenario: when M is
sufficiently large, with a probability of at least 1 — & the set Cjj 5
contains only the MLE.

If the uniqueness assumption is violated, that is, there are
multiple parameters attaining the maximum value of the like-
lihood function, then the set Cy; 5 converges to the collection of
all these maxima in probability when M — 0. One common
scenario in which we encounter this situation is in mixture mod-
els where permuting some parameters results in the same model
(this is known as the label switching problem in Titterington,
Smith, and Makov 1985).

2.2. Sample-Level Analysis

In this section, we show that é\n,M converges to an element
of Cy 5 with a probability at least 1 — 5. We first introduce
some generic assumptions. We define the projection distance
d(x,A) = infyea [lx — y|l for any point x and any set A. For
aset A and ascalarr,define A ®r = {x: d(x,A) <r}.

We start with a useful lemma which states that with a
high probability (a probability tending to 1 as the sample size
increases), the local maxima of L and the local maxima of L
have a one-to-one correspondence. Denote the collection of
local maxima ofL as C = {my,.. .,mg} such that T, (ml) >

- > 1 n(Mz), where K is the number of local maxima of L
Note that by definition, m; = GMLE Let

€1, = Sup H Vi (6) — VL(G)H :
96@ max

€rn = _ VVL(O)Hma ,
X

0e®

be the bounds on gradient and Hessian.
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Lemma 1. Assume (Al) and (A3) in Section D.1, supplemen-
tary material. Then there exists a constant Cyp such that when
€1,m €20 < Co, K = K and for every{ =1,...,K,

Mg — my| < min {min ¢ — mj|, min ||m; — mell} -
j#t j#t

This result appears in many places in the literature so we will
omit the proof in this exposition. Interested readers are encour-
age to consult Chazal et al. (2017), Mei, Bai, and Montanari
(2018), and Chen et al. (2017). Note that in most cases, we in fact
have a stronger result than what Lemma 1 suggests—not only is
there a one-to-one correspondence between a pair of estimated
and population local maxima, but also between pairs of other
types of critical points.

The following theorem provides a bound on the distance
from @)M to CZ7\T/I, 5

Theorem 1. Assume (Al-A4) in Section D.1, supplementary
material and let €3 ,,, €4, be the two bounds in Assumption (A4)
in Section D.1, supplementary material. Let Cy be the constant
in Lemma 1 and
&n = P(e1,n = Coor €2, > Cp).

When €y, .. ., €4, are nonrandom, with a probability of at least
1-6—-&,+ O(e1,n + €34 + 54,71),

d (en,M :Ci’m) =
Moreover, when €} 4, . . .
such that

(0] (61),1) .
» €4,n are random and there exists 1, j(t)

P(€jn > t) < mpj(t) forj=1,...,4,

then for any sequence ¢, — 0, with a probability of at least 1 —
8 —&,+ O(ty) — Zj=1,3,4 nn,j(tn)>

d (Bn1,C1,5) = Op (€1n)

In the first claim (€1, .. ., €4, are nonrandom), the prob-
ability comes from the randomness of initializations. In the
second claim (€1, .. ., €4, are random), the probability state-
ment accounts for both the randomness of initializations and
€ln>--->€4n-

In many applications, the probability &, is very small because
that statement is true when both €; ,, €, , are less than a fixed
threshold (see Lemma 16 of Chazal et al. 2017). Further, the
chance that these two quantities are less than a fixed number
has a probability of 1 — e~C% for some a,, — 00 as n — o0
and C > 0 so often &, can be ignored.

When we made further assumptions of the likelihood func-
tion to obtain a /n rate (assumptions (A3L) and (A4L) in
Section D.1, supplementary material), we have the following
result on a concrete rate.

Theorem 2. Assume (A1), (A2) (A3L), and (A4L) in Section D.1,
supplementary material. Then when n — oo, with a probability

ofatleast1 — 8 — O <,/ loin),

~ 1
d B Cly) = Op (ﬁ) .

Theorem 2 bounds the distance from the estimator to an
element of Cy; ; when M initializations are used. Note that if M
is suﬂiciently large (so Proposition 1 holds), then we can claim

that ||9,, M —OmLell = Op ( f) with a probability around 1 —

3. Statistical Inference

In this section we study the procedure of making inferences
when the likelihood function has multiple maxima.

To simplify the problem of constructing Cls, we focus on
constructing CIs of tmrg = T(6MmLg), where 7 @ © - R is
a known function. We estimate ty g using Tyig = t(@n M)
Recall that Cj ; from Equation (3) is the top local modes that
we can discover with a precision level 1 —§ and M initializations
and TI1 initialization method. Moreover, we define

T (Cps) = (2 (0) : 0 € CF5).

The set t (C17\T/1 5) will be the population quantity that the CIs are
covering.

3.1. Normal Confidence Interval

A naive apRroach to constructing a CI is to estimate the vari-
ance of 7(0,,) and invert it into a CL. Such CIs are in one-
dimensional space and are based on the asymptotic normality
of the MLE (Redner and Walker 1984):

~ D
V1 (Omie — Omie) = N(O, o?),

for some 0° > 0. In practice, we only have access to B>
not GMLE, so we replace QMLE by 9,1 M and construct a CI using
the normality. This is perhaps the most common approach to
the construction of a CI and the representation of the error of
estimation (see, McLachlan and Peel 2004, chap. 2.15 and 2.16
for examples of mixture models). However, we will show that
when the likelihood function has multiple local maxima, this CI
undercovers for Ty and has 1 — o — § coverage for an element
in 7 (Cyys)-

To fully describe the construction of this normal CI, we begin
with an analysis of the asymptotic covariance of the MLE. Let
S(@) = VL(#) be the score function and H(#) = VS(0) be
the Hessian matrix of the log-likelihood function. Moreover, let
SO1X;) = Vlogp(X;;6) and H(O|X;) = VS(0|X;). The MLE
@\MLE has an asymptotic covariance matrix

= H(Omie) "E(SOMmLEIX1)SOmieI X))
H(Owie) ' + o(1).
Note that under regularity conditions,
H(Owmie) = —E(SOmLelX1)SOMLeIXDT) = —I(0MmLE)

is the Fisher’s information matrix, which further implies
cov(GMLE) = I Y(Ouig). However, when the model is mis-
specified, H(Omre) # 1(OmLE) = E(SOMLEIX1)SOMLEIX1)T),
and in this case, we cannot use the information matrix to
construct a normal CI.

Using the delta method (Van der Vaart 1998; Wasserman
2006), the variance of t(@MLE) is

2

cov(BumLE)

var (T(GMLE)) = g7 (OmLe) oV (OmLE)gr (OLE),

where g: (0) = Vt(0).



Thus, given an estimator 6, )s, we can estimate the covariance
matrix using

~ A oA 11 - 5 A T\ 7y (h -1
Cov(lnm) = Hn@ppn) ™" | = D2 8Gnm X0 SOn X" ) Hn@np) ™",

i=1

N 1<
Hn(0) = — ;mmxo.
)
And the Cl is
t— T@n M) '
C o = {t . \/— Z1—a/2 (>
e 8T Brs) oV Oran)ge Guan) | =~ 7

(5)
where z, is the o quantile of a standard normal distribution.
Note that under suitable assumptions, one can also use Fisher’s
information_matrix or the empirical information matrix to
replace cov(9,1 M).

However, because 6,y is never guaranteed to be the MLE,
Cn may not contain the population MLE with the right cov-
erage. In what follows, we show that C,, has an asymptotic
1 — o — 8§ coverage of covering an element of 7 (C;\T/I,s) and
1 —a — (1 — g")M coverage for covering the MLE, where
q7 = I (A(6mrE)) is defined in Equation (2).

Theorem 3. Assume (A1), (A2), (A3L), (A4L), (A5), and (T) in
Sections D.1 and D.2, supplementary material. Then P(C, 4 N

T (C]]\Z[,S) AW >1—a—656— O( 10%) . Thus, by choosing

§ = (1 — g7 )M, we have
logn
—

The population quantity covered by the normal CI is given
by the fact that C,, has an asymptotic 1 — o — & coverage
for an element of © (CIJ\T,I 5)- The quantities o and § play similar
roles in terms of coverage but they have different meanings. The
quantity « is the conventional confidence level, which aims to
control the fluctuation of the estimator. On the other hand, § is
the precision level that corrects for the multiple local optima.

When M is sufficiently large (greater than the bound given in
Proposition 1), Proposition 1 guarantees that we asymptotically
have at least 1 — o — & coverage of the population MLE.
Equivalently, when § is sufficiently small (§ < (1 — ¢g))M =
C17\14, s = {OMLE}), the first assertion implies the second assertion:
T

P(tmig € Che) =1 —a — (1 —qu)M—O<

Cye hasa coverageof l —a — (1 — g of containing TmiE.

3.2. Bootstrap

The bootstrap method (Efron 1982, 1979) is a common
approach for constructing a CI. While there are many variants
of bootstrap, we focus on the empirical bootstrap with the
percentile approach.

When applying a bootstrap approach to an estimator that
requires multiple initializations (such as our estimator or the
estimator from an EM-algorithm), there is always a question:
How should we choose the initial point for each bootstrap sample?
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Should we rerun the initialization several times to pick the highest
value for each bootstrap sample?

Based on the following arguments, we recommend using the
estimator of the original sample, Bn» as the initial point for
every bootstrap sample. The purpose of using the bootstrap is
to approximate the distribution of the estimator G- In the
M-estimator theory (Van der Vaart 1998), we know that the
variation of Qy, M is caused by the randomness of the function
L,(6) around Gn M. Thus, to make sure the bootstrap approxi-
mates such randomness, we need to ensure that the bootstrap
estimator 0* v is around 9 M so the distribution of 9 — 9,1 M
approximates the distribution of Qn M — 07 for some 6” €
C. By Lemma 1, we know that there is a local maximum 6*
of the bootstrap log-likelihood function that is close to 9n M.
Therefore, we need that the initial point to which we apply
the gradient ascent method in the bootstrap sample is within
the basin of attraction of §* asymptotically (with a probability
tending to 1 when the sample size n — 00). Because 9,, M is
close to 9 9 M will be w1th1n the basin of attraction of §*
asymptotlcally, as a result, Oy, is a good initial point for the
bootstrap sample.

Moreover, using the same initial point in every bootstrap
sample avoids the problem of label switching (Redner and
Walker 1984). Label switching occurs when the distribution
function is the same after permuting some parameters. For
instance, in a Gaussian mixture model with equal variance
and proportion, permuting the location parameters leads to
the same model. When we use the same initial point in every
bootstrap sample, we alleviate this problem.

Now we describe the formal bootstrap procedure. Let
Xi,..., X, be a bootstrap sample. We first calculate the
bootstrap log likelihood function | L* Next, we start a gradient
ascent flow from the initial point 0,, M. The gradient ascent flow
leads to a new local maximum, denoted as 9: - BY evaluating
the function 7(-) at this new local maximum, we obtain a
bootstrap estimate of the parameter of interest, ‘((é\* ). We
repeat the above procedure many times and construct a CI using
the upper and lower /2 quantile of the distribution of t(@* -
Namely, let

B1—a =G (1 —a), Guls) =P@ ) <slXi...,Xn.
The CI is /C\za = [aa/z,al_a/z]. Algorithm 2 outlines the
procedure of this bootstrap approach.

A benefit of this Cl is that C; , does not require any knowl-
edge about the variance of Ono. When the variance is compli-
cated or does not have a closed form, being able to construct
a CI without knowledge of the variance makes this approach
particularly appealing.

Theorem 4. Assume (Al), (A2), (A3L), (A4L), (A5), e}{ld (T)
in Sections D.1 and D.2, supplementary material. Let C;; , be
defined as the above. Then
logn
—

P(Ci, NT(CYs) #9) = 1—a—3—o<
, where g7 is defined in

Therefore, by choosing § = (1 — ¢g7)M

Theorem 3, we conclude that

- logn
P(TMLEGC:,O[)E1—a—(1—qu)M—O<‘/ 5 )
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OvLE

(a) Likelihood ratio test.

(b) Score test,

(c) Wald test.

Figure 4. lllustration of Cls from inverting a test. The black dots are local maxima of the estimated likelihood function. The black crosses are saddle points. The empty box
is a local minimum. Assume that the estimator we compute, 6, y, is the local maximum in the top-right corner and the actual MLE is the local maximum at the bottom.
Left: the ClI (green areas) from the likelihood ratio test. This Cl contains not only the regions around our estimator but also regions around the actual MLE. Middle: the Cl
(purple areas) from the score test. This Cl contains regions around each critical point because the gradient around every critical pointis close to 0. Right: The Cl (yellow area)
from the Wald test. This Cl will be an ellipsoid around the estimator 6, y. Note that this figure is only for the purpose of illustration; it was not created from a real dataset.

Algorithm 2 Percentile bootstrap method

1. Let 9,, M be the output from Algorlthm 1.

2. Generate a bootstrap sample and let L* denote the boot-
strap log-likelihood function.

3. Use 6y, as the initial point, apply the gradient ascent
algorithm to L* until it converges. Let 9* be the convergent.

4. Repeat Step 2 and 3 B times, leading to 9: 5\1/[), e 5:5\?.

Let 7(0, (1)) .10, (B)) be the corresponding value of the
parameter of interest.
5. Compute the quantile

D1a=G,'(1—a), Guls) = — ZI(( o) < 9.

6. Form the CI as EZQ = [@a/z, 61_a/2] .

The conclusions of Theorem 4 are similar to those of Theo-
rem 3: under appropriate conditions, with a (asymptotic) cover-
age 1 — a — §, the CI covers an element of I(C}\TM), and with a
coverage 1 —a — (1 — g7 ™YM the CI covers TymiE.

Remark 1. There are many other variants of bootstrap
approaches and Algorithm 2 describes only a simple one. A
common alternative to the method so far presented is bootstrap-
ping the pivotal quantity (also known as the studentized pivotal
approach in Wasserman 2006 and the percentile-¢ approach
in Hall 2013). In certain scenarios, bootstrapping a pivotal
quantity leads to a CI with a higher order accuracy (namely.,
the coverage will be 1 — o — O (+)). However, we may not
have such a property because the bottleneck of the coverage

105") comes from the uncertainty of the basins of

error O (

attraction. Such uncertainty may not be reduced when using the
pivotal approach.

3.3. Confidence Intervals by Inverting a Test

In this section, we introduce three Cls of Tyig created by
inverting hypothesis tests. We consider three famous tests: the
likelihood ratio test, the score test, and the Wald test. Although
the three tests are asymptotically equivalent in a regular setting
(when the likelihood function is concave and smooth), they lead
to very different CIs when the likelihood function has multiple
local maxima. Figure 4 provides an example illustrating these
three CIs of a multi-modal likelihood function.

Because it is easier to invert a test for a CI of Oy g, we focus
on describing the procedure of constructing a CI of Oy is this
section. With a 1 — o CI of O g, say @n,a, one can easily invert
itintoal — o CI of oypprg by

T = {70):0 € Oy ). (6)

3.3.1. Likelihood Ratio Test
One classical approach to inverting a test to a CI is to use the
likelihood ratio test (Owen 1990). Such a CI is also called a
likelihood region in Kim and Lindsay (2011).

Under appropriate conditions, the likelihood ratio test
implies

~ -~ d
2n(Ly(Ome) — Ln(OMLE)) — X5

where x{ is a x? distribution with k degrees of freedom and d
is the dimension of the parameter. This motivates a 1 — o CI of
O of the form

@80 = {0 : 20LuOrire) — La(0) < La1-a},

where £41_q is the 1 — a quantile of x?2 I

In practice, we do not know the actual MLE OMLE and have
only the estimator 9,, M- Therefore, we replace GMLE by Gn Mo
leading to a CI

Ong = {0 : 20LnBupr) — Ln(®) < Can—o).  (7)



The CI @n » has asymptotic 1 —o converage for OMLE, regard-
less of whether or not 0 M equals to GMLE because L (On M) <
L (QMLE) implies ®na D @ . Because the set ®2a is a CI
with asymptotic 1 — « coverage of OMLE, @n,a also enjoys this
property. Thus, even when we only have a small number of
initializations, the CI in Equation (7) has the asymptotic (in
terms of sample size) coverage.

The CI ©,4 can be used to carry out a hypothesis test.
Consider testing the null hypothesis

Hy : ovie = 10 C R. (8)

We can simply check if the set r(@)n,a) and 7y intersects or not
to decide if we can reject the null hypothesis. This controls the
Type I error asymptoucally

Although Oy is valid regardless of the number M, it is often
very conservative and computationally intractable. When Onrt
is not GMLE, the set Ona is often nonconcave and composed
of many disjoint regions, each of which corresponds to a local
mode of L, with a likelihood value greater than B 1. See the left
panel of Figure 4 for an illustration. Moreover, we do not know
the exact locations of other regions because they correspond to
the local modes whose basins of attraction contain no initial
points when we apply the gradient ascent method.

Remark 2. Although the number M does not affect the coverage
of ©,,4, it does affect the size of € Ona- The higher log-likelihood
value of the estimator Gn M, the smaller @n «- This is because the
CI includes all parameters whose likelihood values are greater
than or equal to L (9,, M) — 5, Ed,l—a Thus, increasing M does
improve the CI, but not in the sense of coverage. This is a distinct
feature compared to the bootstrap or normal CIs.

3.3.2. Score Test

In addition to the likelihood ratio test, one may invert the score
test (Rao 1948) to obtain a CI. The score test is based on the
following observation: when & = 6Oy and the likelihood
function is smooth,

1 VIy(0)T,0) ' VI (6) > x3 9)

whereT(Q) = % Yo S(01X)S(O|X;)T is the observed Fisher’s
information matrix. Thus, we can construct a CI of Oy g via

{01 VLO) T(0) ' VL,(0) < La1-)

and then use it to construct a CI of Ty g as Equation (6).

Although this Cl is an asymptotically valid 1 —« CI, it tends to
be very large because Oy g is not the only case in which Equation
(9) holds—all critical points, including local minima and saddle
points, of L(-) satisty this equation. Thus, this CI is the collection
of regions around critical points, and as such it tends to be a
complicated set of large total size. The middle panel of Figure 4
illustrates a CI from the score test. In terms of testing Equation
(8), we can use this CI or use the score test because the CI has
the right coverage asymptotically.

3.3.3. Wald Test
Another common approach to finding ClIs is inverting the Wald
test (Wald 1943). It relies on the following fact:

~ e~ i~ d
n - (Omie — Omie) ' Cov(Omie) " Omie — OmiE) — X2-
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By the above property, a CI of OuiE is
{6:n- Guiie — 0)Téov(Bumre) ' Orir — 6) < dl-a}>

where cov is defined in Equation (4).
Because we do not have GMLE but only Qn M, We use

{9 n- (Gn,M —0) 6&1”(9”,1\4)_ (Gn,M —-0) < ;d,l—a}

as the CI. By construction, this CI is an ellipsoid; see the right
panel of Figure 4 for an illustration.

The CI that results from this inversion will be asymptotically
the same as the normal CI so it has the same coverage property.
Namely, the CI has asymptotic 1 — o — § coverage for covering
one element of C};; and 1 — a — (1 — g7)M coverage for
containing OmiE.

Note that unlike the two previous Cls constructed from
inverting tests that can be applied to testing the null hypothesis
in Equation (8), this CI may not control Type I error because
it does not have the asymptotic coverage of covering fyrg. The
same issue also occurs in the normal CI C,, and the bootstrap
CIG;,

Compared to the other two tests, the Wald test leads to a CI
that can be represented easily—it is an ellipsoid around Ot I
we make further use of Equation (6) to construct a Cl of TMLE,
the result is an interval centered at the estimator 7 (6,,)) so the
CI can be succinctly expressed as the estimator plus and minus
the standard error.

3.4. Two-Sample Test

We now explain how to do a two-sample test using a multi-
modal likelihood function. In a two-sample test, we observe
two sets of data X;,...,X,, ~ Pxand Y;,...,Y,, ~ Py and
we would like to test if the two datasets are from the same
distribution. That is, the null hypothesis being tested is

Hy : Px = Py. (10)

A common way of testing (10) is to fit a parametric model
P(:;0) to both samples and then compare the fitted parameters.
An advantage of this approach is that we can interpret the results
based on the likelihood model. When rejecting Hp, we not only
know that Hj is not feasible, but also are able to describe the
degree of difference between the two datasets by comparing
their corresponding parameters.

Let Lx(#) = Elogp(Xy;6) and Ly(0) = Elogp(Y1;0) be
the likelihood functions from the two populations. The null
hypothesis in Equation (10) implies

Hy:Lx =Ly. (11)

Because this equality is derived from Equation (10), rejecting the
null hypothesis in Equation (11) implies that the null hypothesis
in Equation (10) should be also rejected.

A naive idea of how to test Equation (11) is to compute the
MLEs in both samples and then compare the MLEs to determine
the significance. This method implicitly assumes that we can
compute the actual MLEs. Indeed, the Hy in Equation (11)
implies that the two MLEs should be the same so we can directly
test the locations of MLEs. However, when Ly or Ly is multi-
modal, our estimators could be local maxima rather than the



10 Y-C.CHEN

Algorithm 3 Two-sample test without the MLE

1. Pool both samples together, to form a joint sample
(X1, X Yoo, Yoo

2. Fit the log-likelihood model to this joint sample and apply
the gradient ascent algorithm with a random initialization to
find a local maximum.

3. Iterate the above procedure M times and then select from
among the local maxima that has the highest log-likelihood
value. Denoted this local maximum by /Q\OPt.

4. Now for each of the two samples, fit the likelihood function
and apply the gradient ascent algorithm with initial point
being Oopt. Let Ox and Oy denote the destination of each of
the two samples, respectively.

5. Compare Ox and Oy using conventional two-sample test
techniques.

MLEs. Thus, the two estimators may be very different even if
Hy (in Equation (11)) is true because the estimators happen to
be different local maxima.

To ensure that the two estimators converge to the same des-
tination when the null hypothesis Hy is true, the two estimators
must be estimating the same local maximum. A simple way is
to choose the same initial point in both samples. We therefore,
recommend the procedure in Algorithm 3.

In the first step, we combine the data from the two samples
because under Hy, combining them gives us the largest sample
from the population. The second and the third steps are the
same as the algorithm described in Algorithm 1 to the pooled
sample. The resulting estimator should be an estimator with a
high likelihood value by Theorem 2. Under Hy, this estimator
should also have a high value in terms of Lx and Ly. Moreover,
because Gopt is a local maximum of the pooled likelihood func-
tion and Hy 1mphes that Ly, Ly, and pooled likelihood function
are all the same, 90pt should be close to both the local maximum
of Ly and the local maximum of Ly that correspond to the
same local maximum of the underlying population likelihood
function. Thus, both QX and 9y are close to the same local
maximum of the underlying population likelihood function, so
a comparison between them would control the Type I error
(asymptotically).

We do not specify how to compare Ox and By because there
are many ways to perform this comparison. For instance, we
can compare them by constructing their Cls and determining
if the two ClIs intersect. Or we can do a permutation test where
the test statistics are some particular distance between them, for
example, T, = ||0X — 9y||

3.5. APractical Procedure of Choosing M

Asis shown in the above analysis, the choice of M plays a key role
in the coverage of a confidence set. Here we propose a practical
procedure to choose M based on the analyst’s judgment about
qr-

We first pick a the precision level §. A simple rule is to choose
8 = 1% when the significance level « = 5% or 10%. Then we
hypothesize a threshold g* such that we believe that g7 > g*.

Namely, we assume that the chance of initializing in the MLEs
basin of attraction is no smaller than g*.

Under this threshold, to ensure the coverage deficiency is less
than 8, we need

log

M —_—
A=) =8=M = log(l—q")

= M*(8,9").
When § and g* are given, the number of initializations needed
is M = M*(8,q").
Under § =
M*(0.01,4%) ~ m
(i.e., the chance of obtaining the actual MLE is very small), we
further have |log(1—¢*)| &~ g*, so the above threshold becomes

0.01(1%), the above threshold becomes
In the extreme case where ¢* ~ 0

M*(0.01,q4") ~ 4.6/q". (12)

The above threshold provides an easy-to-use reference rule of
choosing M. For instance, suppose we believe that the chance of
getting the MLE is no smaller than 0.1%(1073), then we need
at least M > 4.6 x 10> = 4600 initializations to ensure the
coverage deficiency is less than 1%. The choice of g* should be
determined by the analyst’s judgment about the problem.

In practice, when the dimension is large, ¢* is often small
(see Section A and Table 1 in supplementary material), so we
need a large number of initializations to control this uncertainty.
However, the threshold in Equation (12) is independent of the
dimension as long as g* is fixed. This implies that if we can
design a method (such as using a strongly convex penalty) such
that ¢* = g} — q; when d — 00 and qj is not a tiny number,
the bound M*(8, q*) can be small. For instance, if g = 0.1
and § = 0.01, we only need about 46 initializations even if the
dimension d is large.

While the above analysis assumes g* to be fixed and nonran-
dom, this analysis can be applied to the case where g* = g}, is
random and its distribution depends on # as well. As long as we
have a concentration bound such that P(g;, > qi;) > 1 —3/2
for some fixed quantity g} 5, we can plug g} ; into (12) and
use the revised bound M*(8/2, q; 5) as the minimal number of
initializations needed (we use §/2 to account for the randomness
of q;,).

4. EM-Algorithm

In this section, we use the above framework to analyze
estimators obtained from the EM-algorithm (Dempster, Laird,
and Rubin 1977; McLachlan and Peel 2004; McLachlan and
Krishnan 2007). For simplicity, we consider a latent variable
model, assuming that our observations are iid random variables
Xi,..., X, from some unknown distribution and each individ-
ual has a latent variable Z. Namely, our dataset consists of pairs
X1, 21), ..., (X, Zy,) that are iid from an unknown distribution
function Py but the Z1, . . ., Z, are unobserved.

With the latent variable, we assume that the density of (X, Z)
forms a parametric model py (X, Z), where 6 € © is the under-
lying parameter. We define

L(O|X,Z) = logpy (X, 2),
LX) = E(L(P|X, 2)|X),
L(O) = E(L(O|X)) = E(L@|X, Z)).



The function L() is the population log-likelihood function and
its sample estimator is L,(0) = 1 Zl 1 L(61X;). Under this
model, the population MLE and sample MLE are

OMLE = argmax,.q L(0), é\MLE = argmaxg g Zn(e).

To describe the EM-algorithm, we follow the notations of

Balakrishnan, Walnwrlght and Yu (2017) and define Q(916’) =
E(Q(616’,X)) and Qn(0|9 y=1 Zl 1 Q(016',X;), where

QOB19',X) = f por (z|X)L(O|X, z)dz.

Given an initial parameter 6(?), the population EM-algorithm
updates it by

0D = argmax, o QO16)

for t = 0,1,2,3,.... When applied to data, the sample EM-
algorithm uses the following update

Ut — argmax, q an(0|9(t)).

It is known that under smoothness conditions and good initial-
izations (Titterington, Smith, and Makov 1985; McLachlan and
Peel 2004; McLachlan and Krishnan 2007), the stationary point
(also called the destination) satisfying the following conditions:

9 = lim §® = é\MLE-

t—00

6 = lim 6® = OMLE>
t—00

Namely, the EM algorithm leads to the actual MLE.

If the initial point 6® is not well-chosen, the EM-algorithm
can converge to a local maximum or a saddle point instead
of the MLE (Wu 1983). Therefore, the EM-algorithm is often
applied to multiple initial points and the stationary point with
the highest likelihood value is used as the final estimator. In
this case, the estimator can be viewed as the one generated by
the method described in Algorithm 1 with the gradlent ascent
method being replaced by the EM-algorithm. Let 6, M be the
stationary point with the highest likelihood value after M initial-
izations from I1,,. Note that we ignore the algorithmic error by
assuming that for each initial point, we run the EM-algorithm
until it converges (the algorithmic error of EM-algorithm has
been studied in Balakrishnan, Wainwright, and Yu 2017). By
viewing the initialization procedure as choosing the starting
points from a distribution IT,,, we fall into the same framework
as described in Section 2. As a result, the set of top local modes
with 1 — § precision level and M initializations, Cy 5, is well-
defined.

Although we can attest that Cj; 5 is well-defined, it is unclear
how to analyze the stability of the basin of attraction of the
EM-algorithm, so we cannot develop a theoretical guarantee
for inferring Cj; 5 as we had in Theorem 2. However, we are
at least able to determine that a ball centered at Oy g with a
sufficiently small radius will be within the basin of attraction
of the MLE when the function Q(#16’) is sufficiently smooth
(Balakrishnan, Walnwrlght and Yu 2017). We use this fact to
bound the estimator 0 » and the population MLE k.
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Theorem 5. Assume (A3L) and (EM1-4) in Sections D.1 and
D.3, supplementary material. Define

=1 (5 (s ).

Then when n — 00, there exist positive numbers ¢; and ¢, such
that

P (05N = e € A™(Ouip))

M —
1= (1 - qEM) — nu(gem) — c1e” ",
where 1,/(t) is a concentration bound in (EM4) that is often in

the form of n,,(t) = Ale_Az"t2 for some fixed constant A;, A, >
0.

Theorem 5 shows that the EM-algorithm recovers the MLE
with a probability of at least 1 — (1 - qEM)M —nn(qem) —cre” 2",
Note that both 7,(qem) and c;e~ %" converge to 0 when n —
00. Thus, we have a bound on the number of initializations M
needed to ensure that we have a good chance of obtaining the
MLE 9MLE

In addition, Theorem 5 allows us to bound the coverage of a
normal CI (Section 3. 1) with the estimator computed from the
EM algorithm. Let CEM be the normal CI by replacing O by

in Equation (5). Namely,

@EM
CEM { z1 a/z}

where g;(0) = Vt(0) and cov(9) is the estimated covariance
matrix from Equation (4) (see Section 3.1 for more details).

t— @)
| T v g O |

Theorem 6. Assume (EM1-5), (A3,5), and (T) in Sections D.1,
D.2 and D.3, supplementary material. Let ggm be the quantity
defined in Theorem 5. Then when n — o0,

1—a—(1-qem)"

I
— Nu(gen) — O (,/ Og”) .
n

Theorem 6 can be proved using Theorems 3 and 5, so we omit
the proof in this presentation.

Theorem 6 shows that while we can use the asymptotic nor-
mality to construct a CI, we may not have the nominal coverage.
If one wants an asymptotic 1 —a CI, we can use CEM , withM >

no/
_log(a/2) log(@/2)
log(l_qEM) log(l—qEM) S Ol/2
logn
" .

The CI from the bootstrap approach also works and the

P (tmie € CEIZ,/I) >

because M > implies (1 - qEM)M

so the coverage of CEM/2 isatleast 1 —a/2—a/2—0

coverage is similar—the coverage is decreased by (1 — qEM)M
One can also invert a testing procedure to a CI as described in
Section 3.3; the behaviors of the three Cls are similar to the
ones in Section 3.3—the likelihood ratio test gives a CI that
is asymptotically valid regardless of M; the score test gives an
asymptotically valid CI but tends to be very large; and the Wald

test gives a CI whose asymptotic coverageis 1 —o — (1 - qEM)M
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Remark 3. The probability bound in Theorem 5 is a conserva-
tive lower bound because the basin of attraction APM(Oyip)
can be much larger than the ball B(6miE,70/3). To improve
the bound on the coverage, we need to know the stability of
this basin because the basin of attraction of the sample MLE,
M(GMLE) = {A(O) ) — GMLE} can be different from
AEM (GMLE) and the probability that the EM-algorithm recovers
QMLE is H(A M(QMLE)) not IT(AEM (QMLE)) Therefore, we need
to know the asymptotic behavior of H(A M(GMLE)) to improve
the results in Theorem 5. Intuitively, we expect that the set
AEM(GMLE) converges to .AEM(GMLE) under some set metrics.
However, to our knowledge, such convergence has not yet been
established, so we cannot improve the bound in Theorem 5.

5. Real Data: Old Faithful Data

To illustrate the prevalence of the local modes in mixture mod-
els, we consider old faithful data that can be obtained by the
object faithful in R. It is a dataset consisting of n = 272
observations of the eruption and waiting time of Old Faithful
geyser in Yellowstone National Park. Here we consider two
variables: the current waiting time and the next waiting time.

Left panel of Figure 5 shows the scatterplot of the data. We
see that clearly there are three major bumps in the data. Thus,
we fit a 3-Gaussian mixture model with the packagemixtools
and use the default method for initialization and draw M =
1000 initializations. While it seems that the 3-Gaussian mixture
should be clear, it turns out that we have more than 20 local
modes! This is caused by the outliers in the bottom-right corner
of the left panel so the covariance matrices have multiple local
modes. The right panel of Figure 5 shows the chance of obtain-
ing one of the 8 local modes corresponding to the top likelihood
values.

In this case, the chance of obtaining the MLE is 21%. Suppose
we want to reach the precision level § = 1%, the number of
initialization M has to satisfy (1—0.21)™ < 0.01 = M > 19.53.
Thus, we need at least M = 20 initializations to achieve such
precision. Note that the approximation method in Equation (12)
leads to M*(0.01,0.21) ~ 4.6/0.21 = 21.9, which suggests that
we need at least M = 22 initializations to control the precision
level to be 1%.

Old Faithful

Next waiting time
o

50 &0 70 w0

Current waiting tlme

From the analysis of Section 3.5, the number of initialization

: * ®Y log §
needed is M*(§,q%) = Tog—7)’
precision level §. Thus, we can improve the precision without
drastically increasing M as long as g* is not small. To see this, in

the old faithful data, if we want to improve precision level from

8 = 1% tod = 0.1%, we only need M > llgg(ng(;l) = 29.3, so

we only need M = 30 initializations. There is no much cost to
improve the prevision level in this case.

which is logarithmic in the

6. Discussion

In this article, we analyzed the performance of an estimator
derived from applying a gradient ascent method with multiple
initializations. We study the asymptotic theory of such estimator
and investigate the properties of the corresponding CIs. In what
follows, we discuss possible extensions and future directions.

6.1. Applications and Extensions

6.1.1. Reproducibility

Because the initializations are random, it is nontrivial to “repro-
duce” the result. Even we use the same dataset and the same
estimating procedure, we may not obtain the same estimator.
Both the number of initializations M and the initialization
method I, affect the realization of the estimator. We should
provide details on how we initialized the starting points and
how many times the initialization was applied to fully describe
how we obtained our results. Unlike a conventional statistical
analysis, the statistical model and data alone are not enough for
reproducing the results.

Even when all the information above is provided, we still
may not obtain an estimator with the same numerical value
because of random initializations. A remedy is to report the
distribution of the log-likelihood values corresponding to the
local maxima discovered from every initialization. If the result
is reproducible, other research teams would be able to recover a
similar distribution when rerunning the same program. In this
case, checking the reproducibility becomes a two-sample test
problem as follows. Suppose that another research team obtains
N log-likelihood values. If the result is reproducible, then the

Likelihood Proportion

-2038.44 12.5%
-2036.92 14.4%
-2036.72 6.2%
-2035.79 0.7%
-2035.65 2%
-2033.35 7.6%
203323 1.6%

-2029.62 (MLE) 21%

Figure 5. The old faithful data. Left: the scatterplot of the current waiting time versus the next waiting time. Right: the result of applying EM algorithm to the old faithful
data. There are more than 20 local modes and here we only display the results of eight local modes corresponding to the top likelihood values. The proportion indicates
the chance of obtaining that local mode from a random initialization (default method in mixtools).



new N values and the original M values reported in the literature
should be from the same distribution. Thus,

Hj : The result is reproducible <

Hp : The two samples are from the same distribution.

We can then apply a two-sample test to see if the result is indeed
reproducible.

6.1.2. Comparing Initialization Approaches

Our analysis provides two new ways of comparing different ini-
tialization approaches. As discussed in Section F, supplementary
material, when M is fixed, the only way to reduce the size of
Cirs or the coverage loss, (1 — g7 M, is to choose a better

initialization method (ﬁn and IT). Ideally, we would like to put
as much probability mass in the basin of attraction of the actual
MLE as possible so that we have a high chance of finding MLE
with a small number of M. When M and § are both fixed, a
better initialization approach would have either a smaller set
Cirs or a higher value of g7 = I1(A(@mLe)). The simulation
study in Section A.1 is based on this idea in comparing three
initialization methods.

Supplementary Materials

The online supplementary material contains additional simulations, tech-
nical assumptions, proofs of the theorems, and analysis on related topics.
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