Received: 24 March 2021 Accepted: 11 January 2022

DOI: 10.1002/vzj2.20189

ORIGINAL RESEARCH ARTICLE

Examining subsurface response to an extreme precipitation event
using HYDRUS-1D
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North-central Colorado experienced an extreme precipitation event (EPE) in Septem-
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itation fell in a few days. Widespread flooding occurred above ground, but the short-
and long-term subsurface response remains unclear. The objective of the study is to
better understand the dynamic subsurface response, namely how the water table and
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L . and how the hydrologic properties of the subsurface influence the response. Better
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understanding of subsurface response to EPEs is expected to increase with the advent
of more intense and frequent EPEs in the coming decades. A one-dimensional subsur-
face flow model using HYDRUS-1D, was built to simulate and examine infiltration
of an EPE at a site in the Boulder Creek Watershed, Colorado. Model calibration
was conducted with local field data to fit site observations over a 6-yr period. A
rapid water table depth response in field observations was observed, with the mod-
eled subsurface storing water for 18 mo acting as a hydro-buffer during recovery. To
examine influence on model results, a sensitivity study of soil hydraulic parameters
was conducted. The sensitivity study found that changes in n, an empirical parame-
ter related to pore-size distribution, most significantly affects water table depth. The
implications are that one-dimensional models may provide useful estimates of water
table fluctuations and subsurface hydro-buffer capacities in response to EPEs, which

could be of use to regions preparing for EPE effect on water resources.

1 | INTRODUCTION 2003; Westra et al., 2013). An EPE occurred in September

2013 along the Colorado Front Range, United States, which

At the extremes of precipitation occurrence are the events
that result in floods or droughts, known as extreme precip-
itation events (EPEs). On the wetter side, EPEs are defined
by greater-than-average precipitation events that can span
minutes to days (Lehmann et al., 2015; Trenberth et al.,

Abbreviations: 1D, one-dimensional; BcCZO, Boulder Creek Critical
Zone Observatory; EPE, extreme precipitation event; WY, water year.

unleashed 430 mm of rain (84% of the 510 mm annual
average for the region) in a few days (Uccellini, 2014). A
100-km corridor between Fort Collins, CO, and Aurora,
CO, experienced the most intense precipitation, which led
to a disaster zone declaration by the Federal Emergency
Management Agency for a ~65,000-km? area, which is about
a quarter of the state (Uccellini, 2014). The resulting floods
ravaged foothill and valley communities, causing billions of
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dollars of property and infrastructure damage and the tragic
loss of eight lives (Coffman, 2013). The above-surface flood-
ing response to similar extreme events has been documented
and photographed in Colorado for over 125 yr (BASIN,
2005). However, the subsurface physical response to EPEs
is not as easily observed or measured in real-time, making it
one of the more poorly understood hydrogeologic topics of
the 21st century (Vereecken et al., 2015).

Subsurface response to EPEs may involve rapid fluctu-
ations of soil water storage and abrupt water table depth
changes (Freeze & Witherspoon, 1967; Jasechko & Taylor,
2015; Tashie et al., 2016). French et al. (1996) examined sub-
surface response to regular and intense precipitation at a high-
elevation study site in the southwest region of the United
States. The shallow soils at this high-elevation site extended
1 m below ground level to fractured bedrock. The hypothe-
sis stated that if infiltrating water could penetrate this 1-m
physical transition, then it could likely result in groundwater
recharge (French et al., 1996). Examination of soil water data
found that fall and winter events (October—April) more often
infiltrated below a 1-m depth. It was suggested that this was
due to (a) the longer duration of the precipitation events and
snowmelt and (b) lower evapotranspiration rates. In contrast,
summer events (May—August) were observed to be of short
duration and affected by high evapotranspiration, diminish-
ing infiltration past the 1-m depth. The study concluded that
it was unclear how soil profiles deeper than 1 m may respond
to varying precipitation events, either normal or intense, and
more research was suggested.

Ng et al. (2010) studied the effects of different climate pre-
dictions on diffuse episodic recharge for a study site in the
southern High Plains of the United States. They found that
high-rainfall periods, equivalent to EPEs, were more likely
to result in recharge during the winter months (December—
March), when evapotranspiration is lower and plant roots are
dormant. At the same time, the study acknowledged that EPEs
and interannual variability were not represented, which may
have underestimated a significant fraction of the total recharge
predicted. They called for future studies to use field measure-
ments of interannual variability, including EPEs, where pos-
sible, especially for predicting recharge in arid environments,
as is the case for the southwestern United States, the Middle
East, most of Australia, and northern African.

Shao et al. (2018) found that consecutive wet years pro-
moted groundwater recharge more significantly than years
with average precipitation. This is an important finding
because the numbers of wetter years and drier years are
expected to increase in the future, while years of average pre-
cipitation are expected to decrease (Lehmann et al., 2015;
Trenberth, 2011; Wasko et al., 2016). In particular, precipi-
tation events are expected to shorten in duration and increase
in intensity (Pendergrass & Knutti, 2018; Pfahl et al., 2017;
Prein et al., 2017). This highlights an urgent need to move

Core Ideas

» Effects of extreme precipitation events on subsur-
face processes were explored through modeling.

* A model was built to fit field data and simulate
varying water table depth over a 6-yr period.

* The modeled subsurface stores water for 18 mo,
acting as a hydro-buffer during recovery.

* Model results are most sensitive to n, an empirical
value related to pore-size distribution.

beyond annual precipitation and use comprehensive interan-
nual variability, including EPEs, in modeling efforts to better
understand subsurface response.

A better understanding of subsurface response to EPEs
can improve future planning of groundwater resource allo-
cations (Gurdak et al., 2009; Klgve et al., 2013). Using
the HYDRUS-1D subsurface flow model with average soil
hydraulic parameters estimated by Schaap et al. (2001),
Corona et al. (2018) found that the prescribed flux (precipi-
tation) and period (30, 180, 365, and 730 d) were the most
statistically significant predictors of whether an infiltration
flux became steady or transient recharge. The study examined
the combinations of daily precipitation rates and soil types
that could lead to recharge, finding that daily precipitation of
lower intensity and finer-grained soils resulted in little to no
recharge, whereas daily precipitation of greater intensity and
coarser-grained soils, like sand, resulted in greater recharge.
A sensitivity study of parameter influence on infiltration
fluxes in the vadose zone was also conducted but did not
consider precipitation variability within a period and the sub-
sequent soil response. Where available, field observations of
water table depths and soil water content changes are a useful
guide to better understand the EPE—subsurface connection
(Jasechko & Taylor, 2015; Thomas et al., 2016). Where
data are limited, numerical models coupled with available
field data can provide some understanding of the EPE-
subsurface connection (Dadgar et al., 2020; Mo’allim et al.,
2018).

The objective of this study was to build a HYDRUS-1D
model with local field data and examine how the subsur-
face responded to the EPE that affected north-central Col-
orado in September 2013. This study addressed the following
questions: How does the water table fluctuate in response to
the EPE? What can a sensitivity study show about parameter
uncertainty? How does soil water storage respond to the EPE?

Exploring these questions can shed new light on infiltration
flux through the subsurface, dynamic changes in subsurface
water storage, and the temporal extent of subsurface system
response to EPEs.
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FIGURE 1
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(a) Map of the United States with the Boulder Creek Watershed, CO, boxed in black. (b) Topographic map with elevation of the

Boulder Creek Watershed. The Gordon Gulch drainage basin is outlined in white. (c) Topographic map of the Gordon Gulch drainage basin, which is
in the Montane zone of ~2,400-2,800 m. The blue line indicates a stream. The pink “X” marks the location of Well 1, which is a well in the upper

basin that has recorded water table depth at the since December 2011

2 | MATERIALS AND METHODS

2.1 | Study area and field data

The Gordon Gulch drainage basin is located 30 km west of
Boulder, CO (2,400-2,800 m asl) (Figure 1). The basin has
a total area of ~3.6 km?; the upper basin has an area of
~1.0 km?, and the lower basin has an area of ~2.6 km?2.
Gordon Gulch lies in a montane climate zone, with an aver-
age annual precipitation of 520 mm yr~! (BcCZO, 2020).
The basin, hereinafter “Gordon Gulch,” was chosen due to
the extensive data available. In 2011, the Boulder Creek
Critical Zone Observatory (BcCZO) installed six wells in
the upper basin of Gordon Gulch. The wells have been
monitored and maintained by the BcCZO since December
2011.

Wells 1, 2, and 6 have working pressure transducers that
record water table depth variations at 10-min intervals. Well
1 was chosen because it has the largest vadose zone extent
(~10 m) of the three wells measuring water table depth, mak-
ing it the ideal candidate for examining pressure head and soil
moisture response to EPEs above the water table. Well 1 is at
a horizontal distance of 150 m away from the small ephemeral
stream and 12 m higher in elevation above the streambed.

The flow record of the nearest stream gauge has not shown
evidence of stream influence on Well 1 (Anderson & Ragar,
2021a; Henning, 2016; Salberg, 2021). In contrast to Well 1,
Well 2 is influenced by nearby streamflow, whereas Well 6 is
affected by lateral flow and upslope infiltration (Anderson &
Ragar, 2021b; Henning, 2016; Salberg, 2021). Wells 2 and 6
are henceforth omitted. Well 1 is screened from a depth of
9.4 m to the bottom of the well at 18.55 m, with an aver-
age water table depth of ~9.6 m. The soil lithology of Well
1 is considered representative of the subsurface of the study
site based on the geophysical surveys conducted by Befus
et al. (2011). For this study, the depth of the well penetrating
10 m of the unsaturated zone and 10 m of saturated zone
makes it a good candidate for studying the dynamics of water
table fluctuation.

The daily precipitation data are derived from a meteorolog-
ical station ~3 km south of the well site, at the Sugarloaf Sta-
tion CO94, managed by the National Atmospheric Deposition
Program (NADP, 2020). Although not co-located, the station
experienced the same amount of precipitation as the well site
(Uccellini, 2014). It has a record of daily precipitation from
1986 to 2017 (NADP, 2020). To align with the available daily
precipitation record, only December 2011-December 2017
water table depth data are used in this study.
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Unsaturated flow in the vadose zone

Subsurface processes are difficult to observe and quantify
in real-time. Numerical models, such as the public domain
HYDRUS source code (gimﬁnek etal., 2008), solve Richards’
equation to examine one-dimensional (1D) water flow in
an unsaturated-saturated porous medium and calculate the
overall water mass balance. Ignoring the air-phase flow and
thermal effects, Richards’ equation has the following form
(Richards, 1931):

0_9 = i [K <0_\|! + 1>

ot 0z 0z
where 0 is the water content, ¢ is time (T), y is the pres-
sure head (L), K = K(y) is the unsaturated hydraulic con-
ductivity dependent on the pressure head (LT~"), and z is the
downward distance from the ground surface (L). HYDRUS-
1D implements the van Genuchten (1980) equations that
use Mualem’s (1976) pore-size distribution model. The van
Genuchten (1980) equations are a set of closed-form analyt-
ical expressions that provide continuous functional relation-
ships for the soil water retention, 0(y), and the unsaturated
hydraulic conductivity, K(y), of a soil:
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where S, is the effective saturation:
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where 6, and 6, denote the residual and saturated water con-
tent, respectively; K is the saturated hydraulic conductivity;
o is a parameter inversely related to the air-entry pressure; n is
the pore-size distribution; and / is a pore-connectivity param-
eter (van Genuchten, 1980; Mualem, 1976).

Initially, HYDRUS-1D solves equation | for w(z). The
unsaturated hydraulic conductivity as a function of pressure
head, K(y) in Equation 1, is obtained from Equations 2-5.
During each time step, K(y) and O(y) values are obtained
iteratively, where y(z) values from the prior time step and
specified soil parameters (K, 0,, O, «, n, m, [) in Equations
2-5 are used to compute K(y) at every depth and then used

to solve Equation 1 for y(z). Once the y(z) values between
iterations converge, HYDRUS-1D proceeds to the next time
step.

2.3 | Model setup

The HYDRUS-1D model can be used to analyze water move-
ment in partially saturated and fully saturated porous media
(§imf1nek etal., 2013). The model domain is a 1D vertical col-
umn extending downward from the land surface to a depth of
50 m. In the model domain, the pressure heads change from
negative in the unsaturated zone to positive in the saturated
zone. The water table position is found where the pressure
head is zero. To reflect the depth of the average water table at
the site (Salberg, 2021), the modeled water table was initial-
ized at a 10-m depth.

An initial sensitivity study (not shown) was conducted to
identify whether a varying soil column length (z = 20, 50, or
100 m) affected water table fluctuations. Model runs showed
that the water table fluctuations (where y = 0 at z = 10 m)
were very similar when comparing the 50- and 100-m lengths;
as a result, a 50-m length was chosen. The soil column is dis-
cretized into 241 nodes. A sensitivity study of refining soil
profile discretization (101, 201, 241, 301, and 501 nodes)
found no significant differences in model results with profile
discretization of finer than 241 nodes. The area of interest in
this study is the unsaturated zone (z = 0—10 m), with denser
node spacing in the first 10 m of the profile (z = 0-10 m),
with a spacing of 0.072 m between nodes. From z = 10 to
50 m, node spacing is less dense and increases linearly from
0.072 to 0.72 m.

A prescribed flux is applied as the top boundary condi-
tion (Figure 2). A deep drainage flux is applied at the bot-
tom of the soil column. The drainage flux out of the column,
q(y), is approximated by the following expression (Hopmans
& Stricker, 1989):

q(y) = —AeB!Wrorom=GWLD ©

The variable g(y) (LT~') is the flux across the bottom
boundary, and A (LT~!) and B (L~') are adjustable empir-
ical parameters. The yy,om (L) is the pressure head at the
bottom boundary, and GWL (L) is a long-term equilibrium
water table position relative to the bottom boundary, where
GWL = 50 m for this study. We calibrated the A and B param-
eters iteratively to fit the available water table data following
the methodology of Neto et al. (2016). In this study, the unit
of length (L) is meters (m), and the unit of time (7) is days
(d). Model setup allows for a conceptualization of the system
such that model results can explain the field observations.

The lithology is characterized by four soil types: soil, sapro-
lite, weathered bedrock, and unweathered bedrock (Figure 2).
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FIGURE 2 One-dimensional model setup. The top boundary is

defined by a prescribed flux condition. The bottom boundary is defined
by a deep drainage condition. The soil lithology is characterized by the
following thickness: 1 m soil, 13 m saprolite, 3 m weathered bedrock,
and 33 m unweathered bedrock

This composition has been identified by geophysical sur-
veys, soil pit hand-dug records, and well lithology records
(Anderson et al., 2013; Befus et al., 2011; Shea, 2013). The
initial parameters, K, 0,, 6;, a, n, (Table 1), are obtained
from a previous calibrated model and field study of the
upper Gordon Gulch drainage basin (Henning, 2016). Figure 2
shows the soil stratigraphy of the well, where a portion of
the saprolite layer (10-14 m), the entire weathered bedrock
layer (14— 7 m), and the entire unweathered bedrock layer
(17-50 m) are below the 10-m water table and consid-
ered fully saturated. Because there is no pore space for air
to enter in the saturated zone, changes to the o value for
the unweathered and weathered bedrock layers have little
influence on model results. Similarly, adjusting the »n value
for the fully saturated layers would not influence model
results.

During initial calibration, the tortuosity parameter [ was
calibrated in conjunction with the other parameters. A litera-
ture review found that a tortuosity value of / = 0.5 led to poor
predictions of unsaturated hydraulic conductivity in 235 soil
samples of varying textures (Schaap & Leij, 2000). Schaap
and Leij (2000) suggested that the tortuosity be optimized
at values of —1 or lower. Yates et al. (1992) suggested that
optimal values for / can range from —3 to >100. Thus,
simulations were run with the initial value of 0.5 and in
increments/decrements of 0.5 from —10 to 10. A tortuosity of
| = -2 was determined to be the optimal value for this study.

The model is initialized with a prescribed pressure head
distribution that linearly decreases from y = —10 m at the
surface (z = 0 m) to y = 40 m at the bottom of column
(z = 50 m). For model spin-up we use the daily average pre-
cipitation minus evapotranspiration as the recharge boundary
condition on the model top. To account for evapotranspiration,
we examined previous studies that estimated potential evapo-
transpiration for the Gordon Gulch basin and found that poten-
tial evapotranspiration values may range from 31 to >100% of
the annual average precipitation (Hale, 2022; Langston et al.,
2015; Salberg, 2021). Most recently, Salberg (2021) calcu-
lated monthly total evapotranspiration loss for a catchment-
scale water budget of Gordon Gulch. They suggested that
~435 mm of the average 580 mm annual precipitation of the
Gordon Gulch drainage basin was lost to evapotranspiration,
a ~75% average. Thus, an evapotranspiration rate of 75% is
used, which is also backed by regional climate model esti-
mates of evapotranspiration (55-85%) (Sanford & Selnick,
2013; Reitz et al., 2017). Given the 75% loss to evapotranspi-
ration, the model recharge is 25% of the precipitation amount.

The model was spun-up for 400 d to allow the model to
equilibrate to a steady state, considering the initial condition.
The initial condition is the state from which the model’s tran-
sient simulations can initiate. For the transient simulations, we
apply the 2011-2017 precipitation record minus evapotran-
spiration. The transient model is run and calibrated by itera-
tively adjusting the soil hydraulic parameters K, 0, 6, o, and
n. Calibration results in a parameter scenario that allows the
modeled water table to best match the field observations. We
note that though these parameters may not be the only ground
truth parameter scenario in the field, they represent the best

TABLE 1 van Genuchten parameters used to define the four soil layers for the base case
Parameter inversely Saturated
Residual Saturated water related to air-entry Pore-size hydraulic

Soil layer water content  content pressure distribution conductivity Tortuosity
m™! md!

Soil 0.10 0.28 0.18 1.50 3.0 -2

Saprolite 0.10 0.20 2.0

Weathered bedrock 0.05 0.15 1.5

Unweathered bedrock 0.05 0.10 1.0
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scenario based on available data and provide model output
that can most closely match the field observations.

2.4 | Statistical indicators

The R? and the RMSE are used in this study to provide a first-
order assessment comparing the modeled and observed water
table fluctuations. The R? describes the proportion of the vari-
ance of the field observation data that can be explained by the
model. The R? can range from O to 1, with higher values indi-
cating less probability of error variance; R> values >.50 are
acceptable (Moriasi et al., 2007).

The RMSE index quantifies the error of a model in predict-
ing observations by measuring the residual spread from the
observations. In Equation 7, P; denotes the model predicted
values, and O, denotes the field observations for a sample n.

RMSE = )

The RMSE is the square root of the average of the squared
errors. Thus, a lower RMSE typically suggests a lower chance
of error, with an RMSE of zero suggesting a perfect fit
between the predicted and observed. The RMSE is com-
monly used because it calculates the error of a comparison
in the units of the constituent of interest (Moriasi et al., 2007;
Reusser et al., 2009). It has been proposed that RMSE values
less than half of the standard deviation of the observations
may indicate a low probability of error (Moriasi et al., 2007;
Singh et al., 2005).

2.5 | Sensitivity analysis

Once the base case is constructed, we conduct (a) a sensi-
tivity study of parameters to understand parameter influence
on results and (b) post-processing analysis of simulated soil
water storage. The sensitivity study focuses on the local unsat-
urated zone, where we consider only the soil (0—1 m) and the
saprolite (1-14 m) layers. Six sensitivity simulations are con-
ducted for three parameters (two per parameter): the residual
water content (0,), the empirical parameter inversely related
to the air-entry pressure (a), and the pore-size distribution
(n). For each sensitivity simulation, the respective parameter
is increased or decreased for the soil and saprolite layers of the
base case model (Table 2). The chosen range of values reflects
low and high averages across the 12 soil textural classes pre-
dicted by the ROSETTA Soil Catalog (Schaap et al., 2001).
For 0,, a decrease from the base case (6, = 0.01) suggests less
water remaining in a soil pore at high tension. An increase
(6, = 0.15) suggests more water remaining in a soil pore at
high tension, which may be indicative of a clay-rich soil (van

TABLE 2  Sensitivity analysis changes to van Genuchten
parameters
Parameter
Residual inversely related
water to the air-entry  Pore-size
Soil layer content pressure distribution
m-!
Base case 0.10 0.18 1.50
Increase from the base case
Saprolite 0.15 2.00 5.50
0.15 2.00 5.50
Decrease from the base case
Saprolite 0.01 0.10 1.25
0.01 0.10 1.25

Genuchten, 1980). For a, a decrease (a0 = 0.10) suggests a
higher minimum matric suction required for air to enter pore
spaces, whereas an increase (o = 2.00) suggests a lower min-
imum matric suction required. For n, a decrease (n = 1.25)
represents a wider pore-size distribution (larger variation in
pore sizes in the soil), whereas an increase (n = 5.50) repre-
sents a narrower pore-size distribution.

A preliminary sensitivity analysis of changes in the satu-
rated water content (6,) showed similar trends in water table
fluctuations to changes in residual water content (6,). The
residual water content is often overlooked and difficult to
assess, in contrast to 6, which is often easier to character-
ize (van Genuchten, 1980; Vanapalli et al., 1998). In a land-
mark paper, van Genuchten (1980) suggested that the poor
matching between the predictive soil water retention curve
and the observed curve could be attributed to the 0, value,
which was estimated to be zero. van Genuchten (1980) sug-
gested that future studies consider the importance of having
an independent procedure for estimating 6,. Despite decades
of progress, correctly assessing the 6, for a soil remains a
challenge (Nimmo, 2006; Vanapalli et al., 1998; Vogel et al.,
2001). Including it in the sensitivity analysis as in the present
study could help us better understand the consequences of
changing the residual water content in subsurface flow model-
ing. Changes to the saturated hydraulic conductivity, K, and
tortuosity, /, had little effect on model results and are hence-
forth omitted.

3 | RESULTS

3.1 | Base case

Water table depths of the field observations and the base
case model are compared in Figure 3a. Actual model recharge
(m d-! ), described as 25% of the actual precipitation record, is
plotted on the second y-axis. Throughout the 6-yr period, field
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(a) Time series of field observations and base case model predicted water table depths (m). (b) Linear regression of the model

predictions versus the field observations. The R? value is a statistical measure of how close the data plotted are to the fitted regression line (light

blue). The RMSE evaluates how well the model fits the field observations

observations of water table depth range from ~8.0 to ~9.7 m.
Similarly, base case water table depths range from ~7.6 to
~9.8 m. Visually, the base case matches the field observations
well.

The September 2013 EPE (Figure 3a, red arrow) is an
exception, where the base case model predicts a shallower
water table depth than the field observations. A linear regres-
sion between the model predictions and the field observations
suggest that the model predicts shallower water table depths
relative to the field observations (Figure 3b). For example,
during the EPE, an ~8.1-m field measurement was predicted
to be ~7.6 m by the base case. Although the model overesti-
mates water table depths at certain times during the EPE, the
changes remain within ~6% of the field observations, suggest-
ing an overall good fit.

The green squares indicate a rainy May in 2015, and the
base case model predicts deeper water table depths compared
with the field observations. Around May 2015 (Figure 3a), the
base case predicts a water table depth of ~8.3 m, compared
with the shallower depth of ~8.0 m of the field observations.

This underestimation is within 4% of the field observation.
The linear regression gives a R” value of .56 for the 6-yr time
series.

Singh et al. (2005) published guidelines stating that RMSE
values less than half the standard deviation of the field obser-
vation data could be interpreted as indicating a good fit of
the model to the field observations. The standard deviation
of the field observations for the 6-yr period is 0.40 m. Fol-
lowing the guidelines of Singh et al. (2005), an RMSE value
<0.20 m is considered a good model fit. For this study, RMSE
values between 0.20 and 0.30 m indicate an acceptable model
fit. Models with an RMSE >0.30 m indicate a poor fit. The
base case RMSE (0.23 m) indicates an acceptable model fit.

3.2 | Sensitivity analysis of hydraulic
parameters

With the base case established, we examine parameter uncer-
tainty in model results by conducting a sensitivity analysis of
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FIGURE 4 (a) Time series of field observations and model predictions of water table depths for varying residual water content, 6,. The

“decrease in 0,” represents a 0.09 decrease from the base case to 0.01 for both Layers 1 and 2. The “increase in 0,” represents a 0.05 increase to 0.15

for both Layers 1 and 2. (b—d) Linear regression of the model predictions versus the field observations for the decrease (b) and increase (d) in 6,

three van Genuchten parameters: 6,, o, and » for the soil layer
and saprolite layer, respectively. For each model run, one of
the three parameters is increased or decreased (Table 2).

Figure 4a shows model sensitivity to changes in residual
water content, 6,. When 6, is decreased for both Layers 1
and 2, the modeled water table depth consistently predicts
decreases in water table depths (overestimates). The decrease
in O, negatively affects the correlation between the field
observed and base case, lowering the R? to .45. The respective
RMSE (0.24 m) indicates an acceptable model fit. Increasing
0, results in a dampened response where water table fluctu-
ations are slightly subdued (Figure 4a,d). An increase in 6,
results in a slightly exaggerated water table response. The R?
remains at .56, and the RMSE (0.30 m) indicates an accept-
able model fit at the cusp of being a poor model fit.

Figure 5a shows model sensitivity to changes in o (m™),
an empirical parameter that is inversely related to the air-
entry pressure value. The o value chosen for the base case
is a = 0.18 (m~!). For the sensitivity study, « is initially

decreased for the soil and saprolite layers (Layers 1 and 2)
to 0.10 (m~!). A decrease in a allows the model to conform
to field observations but consistently predicts slightly deeper
water table depths (Figure 5a). Figure 5b shows that a decrease
in « slightly improves the R> (.57). The respective RMSE
(0.28 m) indicates an acceptable model fit. When o values
for are increased to 2.0, water table fluctuations are subdued
(Figure 5a). The R? value decreases (.21 m) with an increase
in a, suggesting a poor correlation (Figure 5d) between the
model results and field observations. The respective RMSE
(0.28 m) indicates an acceptable model fit.

Figure 6a shows the model sensitivity to changes in n (1),
an empirical parameter that characterizes pore-size distribu-
tion. In HYDRUS-1D, n must be >1 (Equation 4). The default
values for n are set by HYDRUS-1D and vary by soil type.
For the base case, n = 1.50. For the sensitivity study, n is
decreased to 1.25. A decrease in n allows the model to better
conform to field observations but also consistently predicts
slightly deeper water table depths (Figure 6a). The decrease
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2.00. (b—d) Linear regression of the model predictions versus the field observations for the decrease (b) and increase (d) in o

in n marginally improves (Figure 6b) the R” (.58), and the
RMSE (0.28 m) indicates an acceptable model fit. In con-
trast, an increase in n to 5.50 causes a dampened response, and
water table fluctuations are subdued. An increase in n lowers
R? to .38 (Figure 6d), highlighting a poor correlation between
field observations and model results. The respective RMSE
(0.25 m) indicates an acceptable model fit.

3.3 | Soil water storage of the base case

In HYDRUS-1D, the soil water storage, V (m), is defined as
the volume of water per unit area at a point in time. The V' is
calculated as:

0; + 0,
V= N i+1 3
26‘, z——— @®)
where 0; and 0, ; are water contents evaluated at elements i
and i + 1, and Az, is the size of the element (Simunek et al.,
2008, 2013). The summation in Equation 8 is taken over the

241 elements in the flow domain. Figure 7 shows the base case
variability in soil water storage, V, from December 2011 to
December 2017 by water year (WY). For example, WY2013
denotes the water year from 1 Oct. 2012 to 30 Sept. 2013.
The dashed lines represent the average soil water storage for
the respective water year.

The soil water storage, V, for the profile ranges from
6.50 to 6.62 m (Figure 7). The V values (e.g., 6.50 m) are
the product of the average water content across the entire
domain (e.g., 0.13) and the total column length (50 m;
0.13 X 50 m = 6.50 m). As such, a higher V suggests that
a greater portion of the available pore space is saturated, indi-
cating that the subsurface is wetter than average (Figure 7). A
lower V suggests that less of the available pore space is sat-
urated, indicating that the subsurface is of average wet con-
ditions or drier. A wetter subsurface may result in recharge,
whereas a drier subsurface may result in little or no recharge.
For example, V values from January 2013 and March 2013
show lower soil water storage, indicating little or no recharge.
In contrast, after the September 2013 EPE, at the end of
WY2013, the soil water storage is at its highest point in the
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6-yr record. The following WY2014 and WY2015 (dotted
lines) exhibit the highest average V per water year, indicating
that the EPE influenced subsurface processes for two water
years after its occurrence.

4 | DISCUSSION
4.1 | How does the subsurface respond to the
2013 EPE in terms of water table fluctuations?

The September 2013 EPE had a long-term consequence in the
subsurface, as shown by the Gordon Gulch field observations
of water table fluctuations. The 1D, four-layered, homoge-
neous base case model represented the best scenario based
on available data and provided model output that could most
closely match the field observations. Visually, a comparison
of the field observations and base case model showed good
compatibility.

Figure 3a shows a consistent downward trend in the water
table depth that reaches its deepest point (~9.6 m) every
March of every year except 2014. In March 2014 (after the
EPE), the deepest point is ~9.25 m, a shallower depth than
every other year. It is not until March 2015 that the water
table deepens to ~9.6 m again. We speculate that the contrast
between the consistent water table depths of ~9.6 m and the
shallower water table depth of March 2014 (~9.2 m) provide
evidence that the water table remained shallower in large part
due to the EPE footprint, which remained until at least March
2015. The field observations and model results agree that the
subsurface continued to respond to the EPE infiltration flux
for at least 18 mo after the event, which is longer than previ-
ously suggested (Henning, 2016).

For further comparison between the field observations and
model results, we calculated the R? to measure the goodness
of fit between the field observations and base case model.
In addition, the RMSE was used to calculate the square root
of the variance of the residuals to indicate how close the
observed data are to the model results. The base case model
is considered an acceptable model fit, as indicated by the R?
(.56) coefficient and the RMSE (0.23 m) value (Table 3).
The results present opportunities for improvements while
highlighting the limitations of the 1D modeling approach.
For example, the 1D modeling approach does not simulate
lateral flow process at the hillslope scale or regional scale,
which could affect the goodness of fit. The greatest deviation
in correlation occurred during the EPE, where the base
case predicted a higher water table (~7.5 m) than the field
observations (~8.2 m), though this value was still within a
10% margin of the field data. Although out of the scope of
this study, a two-dimensional or three-dimensional model
accounting for lateral flow may improve the goodness of fit
between the field observations and modeled results.
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4.2 | Sensitivity analysis of hydraulic
parameters

A sensitivity analysis examined how model response may be
affected by parameter change. The R? value calculated for
each sensitivity analysis ranged from .21 (poor correlation) to
.58 (acceptable correlation). The RMSE value calculated for
each sensitivity analysis ranged from 0.24 to 0.30 m (Table 3).
All RMSE values were indicative of acceptable model fit, with
one model (increase in 0,) at the cusp between acceptable and
poor, despite an acceptable R” value. The lack of RMSE val-
ues indicating a good fit model could be attributable to the
high sensitivity that the RMSE has to outliers (i.e., the largest
differences between field observations and model results).
Two EPEs of different temporal extents—the September 2013
EPE and the May 2015 month-long rain event—resulted in
large differences between the field observations of water table
depths and the model results. These EPE-derived outliers
skewed the RMSE away from indicating a good model fit.
Future studies examining EPEs may benefit from statistical
methods that are not strongly biased toward outliers.

The visual outcome of the sensitivity runs can be described
by two general responses: dampened or exaggerated (Table 3).
An exaggerated response indicates shallower and deeper
water table depths relative to the base case. A dampened
response would indicate the opposite of exaggeration (i.e.,
more smoothed, tempered variation).

4.2.1 | Residual water content

From the sensitivity analysis, decreasing the residual water
content, 0, (Figure 4d), yields a dampened water table
response. Increasing the 0, (Figure 4b) yields an exaggerated
water table response. These responses are likely due to the
local effective porosity of the material (Horton et al., 1988).
The effective porosity, also thought of as the “drainable poros-
ity,” is defined as the percentage of interconnected void space
with respect to the bulk volume (Brooks & Corey, 1964).

£

b=1

®

where @ is the effective porosity (1), V,, is the total volume
of interconnected voids (m?), and V;, is the bulk volume (m?).
A soil with a higher ¢ has a larger total volume of V;, rel-
ative to V. Decreasing 0, (with 6, held constant) increases
the total volume of V/, relative to V;,, indicating a higher ¢.
Decreasing 6, can result in water being more readily held in
pore spaces (higher @), slowing the rate of flow. Water held
in pore spaces may result in a slower drainage out of the pore
spaces, which can dampen fluctuations of the water table. In
contrast, increasing 0, (with 6, held constant) decreases the
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TABLE 3 Model response to increases and decreases of the van Genuchten parameters
Residual water Parameter inversely related to the  Pore-size
Parameters content air-entry pressure distribution Base case
m-!
Parameter change Increase Increase Increase R? = .56,
Water table response Exaggerated Dampened Dampened RMSE = 0.23
R? value .56 21 38
RMSE 0.30 0.28 0.25
Parameter change Decrease Decrease Decrease
Water table response Dampened Exaggerated Exaggerated
R? value 45 57 .58
RMSE 0.24 0.28 0.28

total volume of V;, relative to V;, indicating a lower @. A lower
¢ can be indicative of a faster draining soil with minimal avail-
able pore space for water to fill. A low ¢ may allow faster flow
through the subsurface, thus resulting in more rapid water
table response (Figure 4b).

4.2.2 | Air-entry pressure

The alpha parameter, o (m~!), is inversely related to the
air-entry pressure, the matric suction value required to fill
(empty) pore spaces (Nimmo, 2004). Its purpose is to serve
as an approximation of the steepest section of the soil water
retention curve (van Genuchten, 1980). Where the soil water
retention curve is steepest, the water content (typically plotted
on the y-axis) is most sensitive to changes in the pressure head
(typically plotted on the x-axis). This is also mathematically
evident in the van Genuchten equations (Equation 2), where a
as part of the denominator influences the fraction from which
the quotient determines water content as a function of pres-
sure head, O(y) given y < 0 (Brooks & Corey, 1964; Mualem,
1976; van Genuchten, 1980). The base case a = 0.18 m™! is
considered the best fit for the field data.

Results from the sensitivity study show that decreasing o
(relative to the base case) causes the water table to fluctu-
ate more rapidly (Figure 5a). Conceptually, a decrease in o
translates to an increase (due to the inverse relation) in the
minimum matric suction value that air must attain to enter a
pore space. While pressure builds so that air can attain the
higher matric suction to enter a pore space, water can enter
(drain from) these same pores with greater ease. The ease at
which water can fill (drain) pores in the unsaturated zone is
known as the unsaturated hydraulic conductivity, K (m d~).
A decrease in a can allow water to fill (empty) pores with
greater ease, resulting in a larger K value, which consequently
results in more rapid downward flow, and thus more dramatic
water table fluctuations, as seen in Figure 5a.

An increase in o translates to a decrease (due to the inverse
relation) in the minimum matric suction value that air must
attain to enter a pore space. A lower minimum matric suc-
tion value means that air can more easily enter (exit) pores.
Water has difficulty entering pore spaces now relative to air,
and as a result the unsaturated hydraulic conductivity, K of the
soil decreases. A smaller K value implies slower and delayed
downward flow to the water table. The downward flow is
dampened with time as it slowly moves downward, resulting
in smoother water table fluctuations (Figure 5a).

4.2.3 | Pore-size distribution

Changes to the pore-size distribution parameter, 7, result in
higher correlation between the field observations and model
results. In the van Genuchten soil hydraulic functions used to
determine 6 (Equation 2), both a and y are raised to the power
of n. The n parameter is further used to determine the empir-
ical parameter, m (1) (Equation 4), where m is an exponent
used to solve for the unsaturated hydraulic conductivity and
the soil water retention (Equations 2 and 3). Figure 6 shows
that a decrease in n causes an exaggerated response, whereas
an increase in n causes a dampened response. Physically, n
represents the allowed abundance of varying pore sizes in a
volume of soil (Nimmo, 2004). When water infiltrates a soil
with a narrow and uniform distribution of pore sizes, the water
flux can more easily fill (or empty) pores at the same matric
suction. In the subsurface, matric suction is defined as the dif-
ference between pore air pressure and pore water pressure.
Conventionally, pore air pressure is equal to atmospheric pres-
sure and is ignored (Chiorean, 2017).

Expanding the allowed distribution of pore sizes (higher n)
increases the possible variation of pore sizes. A soil with more
highly varying pore sizes requires highly varying matric suc-
tion for water to fill (empty) the varying size pores, generally
retarding downward flow (Nimmo, 2004; Zhang et al., 2019).
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In response, the water flux becomes dampened in the subsur-
face, visually translating to a smoother water table response
(Figure 6). In contrast, narrowing the allowed distribution of
pore sizes (smaller n) reduces the possible variation of pore
sizes. Reducing the possible variations in pore sizes allows
water to fill (empty) pores more easily with the same matric
suction. Such ease allows water to flow downward at a faster
rate, resulting in a more exaggerated water table response
(Figure 6a).

4.3 | How does soil water storage respond to
the EPE?

The modeled changes in soil water storage suggest new devel-
opments that affect our understanding of how the subsur-
face responded to the 2013 EPE. First, there was a rapid
increase in soil water storage in late WY2013. After the EPE,
soil water storage remained elevated through WY2014 and
into WY2015. The early part of WY2014 had comparatively
higher soil water storage during the winter months (Decem-
ber 2013-March 2014) relative to all other water years for
the same time frame. The heightened soil water storage dur-
ing this time frame may be a strong indicator that recharge
occurred for several months after the EPE, especially because
minimal evapotranspiration occurs in the area during the win-
ter season.

The increase in V (Figure 7, dotted lines) post-EPE is sus-
tained through WY2015. During WY2016 (February 2016),
the soil water storage once again reaches a winter low as
seen during WY2012 (February 2012) and WY2013 (Febru-
ary 2013), pre-EPE. The modeled changes in soil water stor-
age suggest that a 2-yr recovery occurred in response to the
EPE-induced infiltration flux.

S | CONCLUSIONS

The 2013 Colorado EPE not only flooded the surface and
rivers downstream but resulted in rapid infiltration and height-
ened water table response. Here are the conclusions we draw
from this study:

1. Both the field observations and model results showed a
water table rise after the EPE, which persisted for ~18 mo
before the water table recovered to pre-EPE levels.

2. Average annual soil water storage post-EPE for WY2014
and WY2015 was higher than all other water years in the
record, indicating a wetter subsurface post-EPE.

3. The post-EPE could serve as a hydrologic buffer that stores
a portion of extreme precipitation for various seasons.

4. A sensitivity study of model parameters showed that the
modeled water table was most sensitive to changes in the

empirical parameter that represents the pore size distribu-
tion value, n. Pore-size distribution cannot be measured in
the field, it is essential to scrutinize the values to which
empirical parameters are set in simulations.

Given the characteristics in geology, hydrology, and geo-
graphic considered herein, the model setup and results could
be applicable to regions of similar characteristics. By assess-
ing the potential for unsaturated zone profiles to serve as natu-
ral storage space for EPE-induced infiltration, this study could
provide a scientific basis for water managers to timely use
the stored water that may be released to streams over time.
More research regarding local subsurface response to EPEs
is needed because EPEs are predicted to occur more fre-
quently worldwide (Lehmann et al., 2015; Trenberth, 2011;
Wasko et al., 2016). Understanding the effects of individ-
ual EPEs on the subsurface could also provide the basis for
predicting aggregated effects over longer time scales. From
another viewpoint, in headwater regions, snowmelt is the pri-
mary source of groundwater recharge. Although the rate of
snowmelt is typically not as dramatic as EPEs, snow could
occur at an accelerated rate under warming (Pepin et al.,
2015). This study could be informative for projecting the
potential hydrologic consequences of accelerated snowmelt.
More broadly, the results of this study contribute to a better
understanding of how the subsurface can act as a long-term
hydrologic buffer for infiltration from an EPE before recharge
occurs.
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