
1.  Introduction
Non-Gaussian distribution functions are commonly observed in space plasma systems, in which the extremely 
low frequency of particle collisions allows velocity distributions quite different from the equilibrium solutions 
(Maxwellians or isotropic Gaussians) of the Boltzmann equation (Sinitsyn et al., 2011). Except for planetary and 
solar atmospheres, the entire heliosphere, a region filled with plasma of solar origin, can usually be considered 
as a weakly collisional medium where charged particle velocity distributions may significantly deviate from the 
Gaussian distribution. Such velocity distributions include multicomponent distributions consisting of localized 
peaks in 6D phase space of velocities and coordinates, power-law distributions in which particles have a signif-
icant probability of achieving a velocity very different from the mean velocity, and distributions resulting from 
collisionless relaxation of plasma instabilities. Sampling from these non-Gaussian distributions in either config-
uration or velocity space is often used to load particles in kinetic simulations for further investigation of their 
driven and undriven dynamics. This problem in space plasmas calls for a flexible, fast sampling algorithm that 
can handle any non-Gaussian distributions.

More broadly, generating pseudo-random samples from a prescribed distribution is a procedure important to 
computational plasma physics as well as other branches of computational physics. Particle-in-cell simulations, 
Monte Carlo simulations, molecular dynamics simulations, and gravitational simulations, for example, all use 
certain sampling algorithms to initialize various distribution functions. One of these algorithms, inverse trans-
form sampling, is a simple method of generating samples X from any probability distribution function (PDF) by 
inverting its cumulative distribution function (CDF) as 𝐴𝐴 𝐴𝐴

−1

𝑋𝑋
(𝑈𝑈 ) , where U is uniformly distributed on [0, 1] and 

FX denotes the CDF. The application of inverse transform sampling is limited in practice, however, because it 
requires either a closed form of 𝐴𝐴 𝐴𝐴

−1

𝑋𝑋
 or a complete approximation to FX regardless of the desired sample size, it 

does not generalize to multiple dimensions, and it is less efficient than other approaches (Gentle, 2003; Givens 
& Hoeting, 2012; Wilks, 2011). Instead, rejection sampling (e.g., Gentle, 2003) is usually used for low-dimen-
sional distributions, and the Metropolis-Hastings algorithm (Metropolis et al., 1953) is used for high-dimensional 
distributions.

The development of Chebyshev technology (e.g., Driscoll et al., 2014; Trefethen, 2019; see chebfun.org) has 
enabled a complete approximation to a smooth function using Chebyshev polynomials. Furthermore, approx-
imation by Chebyshev polynomials to an analytic function converges geometrically fast (see Chapter 8 in 
Trefethen, 2019). For this reason, in inverse transform sampling the CDF can be well approximated to a high 
precision by the Chebyshev projection and can be evaluated efficiently. The use of Chebyshev projection in 
sampling has been only recently explored by Olver and Townsend (Olver & Townsend, 2013), who showed that 
inverse transform sampling with Chebyshev polynomial approximation is computationally efficient and robust in 
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one dimension. They extended the approach to two dimensions but required that the CDF be well approximated 
by a low-rank function.

Here we report a numerical tool to apply inverse transform sampling with Chebyshev polynomial approximation 
to distribution functions in one and two dimensions. In Section 2, we describe the algorithm and the implemen-
tation of our numerical tool Chebsampling. In Section 3, we demonstrate the accuracy and efficiency of our 
algorithm by sampling representative distribution functions (in either the configuration space or in the velocity 
space) in space plasmas. In Section 4, we summarize the results and discuss the pros and cons of our method.

2.  Methodology
2.1.  Inverse Transform Sampling

We briefly recap the inverse transform sampling method with one and two variables. In one dimension (1D), let 
f(x) be a PDF defined on the interval [a, b]. Its CDF FX(x) is a strictly increasing function. To generate N samples 
x1, x2, ⋯ , xN that are distributed according to f(x), we invert the corresponding CDF, that is,

𝑥𝑥𝑗𝑗 = 𝐹𝐹
−1

𝑋𝑋
(𝑢𝑢𝑗𝑗) (𝑗𝑗 = 1, 2,⋯ , 𝑁𝑁),� (1)

where uj is uniform on [0, 1]. This is inverse transform sampling. In practice, we find xj by finding the root 
of FX(xj) = uj, because the inverse transform 𝐴𝐴 𝐴𝐴

−1

𝑋𝑋
 often cannot be easily obtained. Thus, generating N samples 

requires solving N root-finding problems.

In two dimensions (2D), let f(x, y) be a joint PDF defined on the rectangular domain [a, b] × [c, d]. This joint 
distribution may be written as

𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥) = 𝑓𝑓𝑌𝑌 (𝑦𝑦) ⋅ 𝑓𝑓𝑋𝑋|𝑌𝑌 (𝑥𝑥|𝑦𝑦),� (2)

where fY is the marginal distribution in the y direction, and fX|Y is the conditional distribution in the x direction 
for a given value of y. We do not require that f(x, y) be approximated by a low-rank function as in Ref. Olver & 
Townsend, 2013, because this approximation is not always valid in our applications. Let FY and FX|Y be the CDFs 
of fY and fX|Y, respectively. First, Ny samples 𝐴𝐴 𝐴𝐴1, 𝑦𝑦2,⋯ , 𝑦𝑦𝑁𝑁𝑦𝑦

 are generated by solving the root-finding problem

𝐹𝐹𝑌𝑌 (𝑦𝑦𝑘𝑘) = 𝑢𝑢𝑘𝑘, (𝑘𝑘 = 1, 2,⋯ , 𝑁𝑁𝑦𝑦) ,� (3)

where uk is uniform on [0, 1]. Second, for each yk in Equation 3, Nx samples 𝐴𝐴 𝐴𝐴1𝑘𝑘, 𝑥𝑥2𝑘𝑘,⋯ , 𝑥𝑥𝑁𝑁𝑥𝑥𝑘𝑘
 are generated by 

finding the root for

𝐹𝐹𝑋𝑋|𝑌𝑌 (𝑥𝑥𝑗𝑗𝑗𝑗|𝑦𝑦𝑘𝑘) = 𝑢𝑢𝑗𝑗 , (𝑗𝑗 = 1, 2,⋯ , 𝑁𝑁𝑥𝑥) ,� (4)

where uk is uniform on [0, 1]. Thus, sampling of a joint 2D PDF is reduced to sampling of two 1D PDFs. As indi-
cated by Equations (3) and (4), generation of Nx ⋅ Ny samples requires solving (Nx + 1) ⋅ Ny root-finding problems. 
In the special case of the separable distribution function (i.e., f(x, y) = fY(y) ⋅ fX(x)), only Nx + Ny root-finding 
problems need to be solved to generate Nx ⋅ Ny samples.

2.2.  Chebyshev Polynomial Approximation

The efficiency of inverse transform sampling depends on the computational cost of root finding, so we adopt 
the bisection method for root finding. Because the CDFs increase monotonically, this method is guaranteed to 
converge to a high precision (Burden et al., 2015). We should note that it is possible to speed up the root finding 
further by using a hybrid bisection combined with a Newton method (since calculating derivatives with Cheby-
shev polynomials is fast), but it is not necessary to do so in our application, and the performance of the bisection 
method is acceptable. Most of the computing time in root finding is spent on evaluation of the functions (i.e., 
CDFs). Fortunately, most of these functions can be accurately approximated by Chebyshev polynomials, and 
there are well-developed fast algorithms to evaluate them. Below we describe representation of a function by 
Chebyshev polynomials and rapid evaluation of this function at an arbitrary point in the domain.

Chebyshev polynomials are defined on the interval [−1, 1] to which other interval [a, b] can be scaled. We 
consider the Chebyshev points
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𝑥𝑥𝑘𝑘 = cos

(
𝑘𝑘𝑘𝑘

𝑛𝑛

)

(𝑘𝑘 = 0, 1,⋯ , 𝑛𝑛),� (5)

which are extrema of the nth Chebyshev polynomial 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑥𝑥) = cos (𝑛𝑛 ⋅ arccos 𝑥𝑥) . The Chebyshev points are clus-
tered near the two ends of the interval, −1 and 1. Unlike polynomial interpolation at equispaced points (see 
chapter 13 in Refs. Platte et al., 2011; Trefethen, 2019), which is associated with a well-known numerical insta-
bility (the Runge phenomenon), polynomial interpolation at the Chebyshev points is numerically stable. The 
Chebyshev polynomials T0(x), T1(x), ⋯ , Tn(x) on these points are orthogonal to each other (see Section 4.6.1 in 
Ref. Mason & Handscomb, 2002), that is,

𝑛𝑛
∑′′

𝑘𝑘=0

𝑇𝑇𝑖𝑖 (𝑥𝑥𝑘𝑘) 𝑇𝑇𝑗𝑗 (𝑥𝑥𝑘𝑘) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, (0 ⩽ 𝑖𝑖𝑖𝑖𝑖  ⩽ 𝑛𝑛; 𝑖𝑖 ≠ 𝑗𝑗),

𝑛𝑛

2
, (0 < 𝑖𝑖 = 𝑗𝑗 𝑗𝑗𝑗 ),

𝑛𝑛𝑛 (𝑖𝑖 = 𝑗𝑗 = 0 or 𝑛𝑛),

� (6)

where the double dash in ∑" denotes the first and last terms in the sum are to be halved. This discrete orthogonal-
ity property leads us to a very efficient interpolation formula.

We approximate f by the nth degree polynomial

𝑝𝑝𝑛𝑛(𝑥𝑥) =

𝑛𝑛
∑′′

𝑘𝑘=0

𝑐𝑐𝑘𝑘𝑇𝑇𝑘𝑘(𝑥𝑥),� (7)

which interpolates f at the Chebyshev points, that is, pn(xj) = f(xj) with xj = cos(jπ/n). The interpolation coeffi-
cients ck are given by

�� =
2
�

�
∑′′

�=0

�(��) ��(��) (� = 0, 1,⋯ , �).� (8)

The evaluation of ck can be done in 𝐴𝐴  (𝑛𝑛 log 𝑛𝑛) operations by using the Fast Fourier Transform (FFT), which is 
detailed in Appendix A.

To determine the degree n of the polynomial that is sufficient to approximate f, we adopt an adaptive procedure 
introduced in the Chebfun software system (Driscoll et al., 2014). In this procedure, we progressively select n to 
be 2 4 = 16, 2 5 = 32, 2 6 = 64 and so on. For a given n, the f data at the n + 1 Chebyshev points is converted to n + 1 
Chebyshev coefficients. If the tail of these coefficients falls below a relative level of prescribed precision, then the 
Chebyshev points are judged to be fine enough. We truncate the tail and keep only the non-negligible terms. The 
complex engineering details of truncating a Chebyshev series are given by Aurentz and Trefethen (2017) (see the 
function “standardChop” in Chebfun).

Once the Chebyshev coefficients ck have been obtained, the original data f can be discarded. These Chebyshev 
coefficients are then repetitively used to efficiently evaluate f (also ∫ f dx and df/dx) for arbitrary points in the 
domain. One way of achieving this is to use the Clenshaw algorithm (Clenshaw, 1955; details of this algorithm 
are described in Appendix B). To better visualize our approach described by Equations 1–8, we sketch the main 
idea of the fast inverse transform sampling with function approximation by Chebyshev polynomials in Figure 1.

2.3.  Implementation

With the above considerations, we implemented Chebsampling in Fortran 90 with parallelization using MPI. 
The logical flows of 1D and 2D inverse transform sampling programs are summarized in Algorithms 1 and 2, 
respectively. Notably, our input PDF data are defined on grid, which is more flexible when an analytical expres-
sion of the input PDF is not available. For the 2D joint PDF, we apply the 1D sampling algorithm repetitively 
to generate samples from marginal and conditional distribution functions. As demonstrated in Section 3, inverse 
transform sampling using the Chebyshev polynomial approximation is very efficient.
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To generate a large number of samples, we parallelize the 2D inverse transform sampling algorithm. First, Npy 
samples of y are drawn from the marginal distribution function fY(y), which is executed on all processors. Second, 
the tasks of sampling the conditional distribution function fX|Y(x|y) are evenly divided among processors based 
on the y samples, such that the load is balanced on each processor. The x samples drawn from the conditional 
distribution function are stored in local memory. This parallelization scheme yields nearly ideal scaling of the 
computational cost against the number of processors (see performance tests in Section 3).

3.  Numerical Examples
Below we illustrate the performance and accuracy of our algorithm by applying it to representative distribution 
functions in space plasmas.

3.1.  2D Maxwellian Current Sheets

We first consider the density distribution relevant to a very important plasma equilibrium, the 2D current sheet, 
which is believed to be formed in the solar corona and has been commonly observed in planetary magnetospheres. 

Figure 1.  Conceptual sketch for the fast inverse transform sampling with function approximation by Chebyshev polynomials. Panels on the left of the arrows represent 
the inversion problem FX(x) = u, where u is uniformly distributed in the interval [0, 1] and Fx is the cumulative distribution function (CDF). Panels on the right of the 
arrows represent the Chebyshev polynomials, which are used as the basis functions to interpolate and evaluate the CDF.

Algorithm 1.  1D Inverse Transform Sampling Using the Chebyshev Polynomial Approximation

I�nput: PDF data f(xj) defined on a 1D uniform grid (j = 1, 2, ⋯, Ng) and the  
desired number of samples Nsamples.

O�utput: �Samples xm (m = 1, 2, ⋯, Nsamples) distributed according to f(x).
Calculate the cumulative sum of f(xj) using the recursive relation  

𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑗𝑗) = 𝐹𝐹 (𝑥𝑥𝑗𝑗−1) + (𝑓𝑓 (𝑥𝑥𝑗𝑗−1) + 𝑓𝑓 (𝑥𝑥𝑗𝑗)) ∕2 where F(x1) = 0 and j = 2, 3, ⋯, Ng;
    •� Normalize the cumulative sum as 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑗𝑗) = 𝐹𝐹 (𝑥𝑥𝑗𝑗) ∕𝐹𝐹

(
𝑥𝑥𝑁𝑁𝑔𝑔

)
;

    •� �Progressively select n = 16, 32, 64, ⋯ as in a loop, compute the Chebyshev coefficients cl (l = 0, 1, ⋯, n)  
using Equation 8, and exit the loop if the tail of these coefficients falls below a relative level of prescribed 
precision;

    •� �Generate samples xm by solving the root-finding problem F(xm) = um with the bisection method, where 
𝐴𝐴 𝐴𝐴 (𝑥𝑥) =

∑𝑁𝑁cutoff

𝑙𝑙=0
𝑐𝑐𝑙𝑙𝑇𝑇𝑙𝑙(𝑥𝑥) , um = (m − 0.5)/Nsamples, and m = 1, 2, ⋯, Nsamples.
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In their seminal paper, Lembege and Pellat (Lembege & Pellat, 1982) constructed a two-dimensional current 
sheet at equilibrium that resembles the planetary magnetotail configuration. In this model, the magnetic field 
lines in the x-z plane are described by the vector potential Ay(ɛx, z)ey, where |ɛ| ≪ 1 indicates weak dependence 
of Ay on x. The vector potential is determined by Ampere's law

𝜕𝜕
2

𝜕𝜕𝜕𝜕2
𝐴𝐴𝑦𝑦 = −4𝜋𝜋

∑

𝛼𝛼

𝑞𝑞𝛼𝛼𝑛𝑛0
𝑣𝑣𝐷𝐷𝐷𝐷

𝑐𝑐
exp

(

−
𝑞𝑞𝛼𝛼𝜑𝜑

𝑇𝑇𝛼𝛼0

+
𝑣𝑣𝐷𝐷𝐷𝐷𝑞𝑞𝛼𝛼𝐴𝐴𝑦𝑦

𝑐𝑐𝑐𝑐𝛼𝛼0

)

,� (9)

where φ(x, z) is the electrostatic potential, n0 is the reference density, vDα is the drift velocity, Tα0 is the tempera-
ture of current sheet particles, qα is the charge, and c is the speed of light. The subscript α = e, i represents elec-
trons and ions, respectively. Note that ∂ 2Ay/∂x 2 is omitted in Equation 9, and thus the equation is precise to order 
ɛ. The current density in Equation 9 is derived by integrating the Boltzmann-type distribution in velocity space. 
The electrostatic potential φ is determined by the quasi-neutrality condition

∑

𝛼𝛼

𝑞𝑞𝛼𝛼𝑛𝑛0 exp

(

−
𝑞𝑞𝛼𝛼𝜑𝜑

𝑇𝑇𝛼𝛼0

+
𝑣𝑣𝐷𝐷𝐷𝐷𝑞𝑞𝛼𝛼𝐴𝐴𝑦𝑦

𝑐𝑐𝑐𝑐𝛼𝛼0

)

+ 𝑞𝑞𝛼𝛼𝑛𝑛𝑏𝑏 exp

(

−
𝑞𝑞𝛼𝛼𝜑𝜑

𝑇𝑇𝛼𝛼𝛼𝛼

)

= 0.� (10)

Here two populations, the current sheet population (i.e., the current-carrying one) and the background population 
(i.e., the non-current-carrying one), are represented by the first and the second terms, respectively. In this exam-
ple, we solve Equations 9 and 10 in the rectangular domain [−Lz/2 ⩽ z ⩽ Lz/2] × [−Lx ⩽ x ⩽ 0] with the boundary 
condition 𝐴𝐴 𝐴𝐴𝑦𝑦 | 𝑧𝑧=0 = 𝜀𝜀𝜀𝜀0𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑦𝑦∕𝜕𝜕𝜕𝜕 |

𝑧𝑧=0 = 0 . Here B0 refers to the asymptotic magnetic field at z → ±∞, and ɛB0 
gives the z component of the magnetic field at z = 0. An analytical solution of Ay and φ is not available except 
for the particular choice of parameters, that is, vDi/Ti0 = −vDe/Te0. To handle more general scenarios, we solve 
Equations 9 and 10 numerically and obtain Ay and φ on grid.

Table 1 shows the two sets of parameters that are used as examples below. 
The first set of parameters satisfies vDi/Ti0  =  −vDe/Te0 so the electrostatic 
potential is zero everywhere in the domain (a nonpolarized current sheet). 
The second set of parameters has the relation |vDi/Ti0| <  |vDe/Te0|, and thus 
gives a nonzero electric field (a polarized current sheet). This plasma equi-
librium is used as an initial condition for numerical simulations helpful in 
solving many problems related to plasma stability and dynamics in planetary 
magnetotails. Therefore, a critical task is to generate a 2D spatial distribution 
of plasma particles for a given numerical solution of scalar and vector poten-
tials. For purposes of demonstration, we apply our method to sample the 
density distribution of the current sheet population,

𝑛𝑛𝛼𝛼0 = 𝑛𝑛0 exp

(

−
𝑞𝑞𝛼𝛼𝜑𝜑

𝑇𝑇𝛼𝛼0

+
𝑣𝑣𝐷𝐷𝐷𝐷𝑞𝑞𝛼𝛼𝐴𝐴𝑦𝑦

𝑐𝑐𝑐𝑐𝛼𝛼0

)

.� (11)

Algorithm 2.  2D Inverse Transform Sampling Using the Chebyshev Polynomial Approximation

I�nput: PDF data f(xj, yk) defined on a 2D uniform grid (j = 1, 2, ⋯, Ngx;  
k = 1, 2, ⋯, Ngy); the desired number of samples in x direction Npx;  
the desired number of samples in y direction Npy.

O�utput: Samples (xmn, yn) (m = 1, 2, ⋯, Npx; n = 1, 2, ⋯, Npy) distributed  
according to f(x, y).

    •� Calculate the marginal distribution function �� (��) =
∑′′���

�=1 � (��, ��);
    •� Draw samples yn (n = 1, 2, ⋯, Npy) from the marginal distribution fY(y) by performing 1D inverse transform 

sampling using the Chebyshev polynomial approximation;
    •� For each sample yn (n = 1, 2, ⋯, Npy):
      –� �Construct the conditional distribution function fX|Y(xj|yn) by interpolating  

f(xj, yk) (j = 1, 2, ⋯, Ngx; k = 1, 2, ⋯, Ngy) into sampled locations yn;
      –� �Draw samples xmn (m = 1, 2, ⋯, Npx) from the conditional distribution  

fX|Y(x|y) by performing 1D inverse transform sampling with the Chebyshev  
polynomial approximation.

𝐴𝐴
𝑣𝑣𝐷𝐷𝐷𝐷

𝑣𝑣A

 𝐴𝐴
𝑣𝑣𝐷𝐷𝐷𝐷

𝑣𝑣A

 𝐴𝐴
𝑇𝑇𝑖𝑖0

𝑚𝑚𝑖𝑖𝑣𝑣
2
A

 𝐴𝐴
𝑇𝑇𝑒𝑒0

𝑚𝑚𝑖𝑖𝑣𝑣
2
A

 𝐴𝐴
𝑇𝑇𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑣𝑣
2
A

 𝐴𝐴
𝑇𝑇𝑒𝑒𝑒𝑒

𝑚𝑚𝑖𝑖𝑣𝑣
2
A

 𝐴𝐴
𝑛𝑛𝑏𝑏

𝑛𝑛0

 𝐴𝐴
𝐿𝐿𝑥𝑥

𝑑𝑑𝑖𝑖

 𝐴𝐴 𝐿𝐿𝑧𝑧

𝑑𝑑𝑖𝑖

 

Nonpolarized𝐴𝐴
5

12
  −1

12
 𝐴𝐴

5

12
 𝐴𝐴

1

12
 𝐴𝐴

5

12
 𝐴𝐴

1

12
  0.2 32 16

Polarized 𝐴𝐴
1

3
  −4

3
 𝐴𝐴

5

12
 𝐴𝐴

1

12
 𝐴𝐴

5

12
 𝐴𝐴

1

12
  0.2 32 16

Note. The velocities are normalized to the Alfvén velocity 𝐴𝐴 𝐴𝐴A = 𝐵𝐵0∕
√
4𝜋𝜋𝜋𝜋0𝑚𝑚𝑖𝑖 , 

the temperatures are normalized to 𝐴𝐴 𝐴𝐴𝑖𝑖𝑣𝑣
2
A
 , the densities are normalized to n0, 

and the length is normalized to the ion inertial length di.

Table 1 
Two Sets of Parameters for Nonpolarized and Polarized Lembege-Pellat 
Current Sheets
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For the first set of parameters, the density distribution of the ion current sheet is identical to that of the electron 
current sheet. To sample this density distribution, we use Npx = 20,000 particles in the x direction and Npz = 10,000 
particles in the z direction, which gives a total of Npx ⋅ Npz = 2 × 10 8 particles. Figures 2a through 2c show the 
excellent agreement between the ground truth density and the sampled density. The errors [≲1%; Figure 2c] come 
from the low-density region and are negligible for our application (particle-in-cell simulations). This sampling 
takes about 628 s on a single processor. Using the parallelization scheme outlined in Section 2, we observe that 
the sampling takes about 1 s on 512 processors. As shown in Figure 3, the wall-clock time used in sampling scales 
ideally against the number of processors.

Similarly, we generate 2 × 10 8 samples for the polarized current sheet. The results are shown in Figures 2d 
through 2i. In this case, the electron current sheet [Figure 2g] is embedded in the ion current sheet [Figure 2d]. 
Sampling the electron current sheet is challenging because of the steep gradient at its edge. The Chebyshev 

projection, which is able to capture the main characteristics of the electron 
current sheet, gives an accurate sampled distribution [Figures 2h and 2i].

In Table 2, we compare the performance of inverse transform sampling with 
rejection sampling for the distributions shown in Figure 2. For relatively fat 
distribution functions as in Figures 2a and 2d, rejection sampling is more 
efficient than inverse transform sampling. For highly peaked distribution 
functions as in Figure 2g, however, inverse transform sampling outperforms 
rejection sampling. To represent such a distribution function, inverse trans-
form sampling must only add more Chebyshev coefficients that do not add 
much computational cost, whereas rejection sampling rejects a significant 
fraction of samples that does add much computational cost (because the ratio 
of the area under the distribution function to that under the rectangular hat 
function is small). Therefore, inverse transform sampling avoids the practical 
limit in rejection sampling and gives a more consistent performance across 
distribution functions with vastly different shapes.

Figure 2.  Inverse transform sampling of the Lembege-Pellat current sheet. (a–c) The nonpolarized Lembege-Pellat current sheet set up using the first set of parameters 
in Table 1. (d–i) The ion component (d, e, f) and the electron component (g, h, i) of the polarized Lembege-Pellat current sheet. This current sheet is obtained using the 
second set of parameters in Table 1. The displayed distributions are for the current sheet population only, as shown in Equation 11. The three rows from top to bottom 
show the ground-truth density distributions, the sampled density distributions, and the difference between the sampled and ground-truth distributions, respectively.

Figure 3.  Strong scaling of Chebsampling for sampling the nonpolarized 
Lembege-Pellat current sheet. The x and y axes represent the number of 
processors and the elapsed wall-clock time, respectively. The dashed line 
represents the ideal scaling.
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3.2.  Non-Maxwellian Velocity Distributions

Furthermore, we consider three non-Maxwellian velocity distributions in the 
solar wind and the terrestrial magnetosphere:

�1.	� Halo electrons in the solar wind (Štverák et al., 2009):

𝑓𝑓 (𝑣𝑣⟂, 𝑣𝑣‖) =

{

1 −

[

1 +

(

1

2𝛿𝛿

(
𝑣𝑣
2
⟂

𝑣𝑣
2
𝑐𝑐⟂

+
𝑣𝑣
2

‖

𝑣𝑣
2

𝑐𝑐‖

))𝑝𝑝]−𝑞𝑞}

×

[

1 +
1

2𝜅𝜅ℎ − 3

(
𝑣𝑣
2
⟂

𝑣𝑣
2

ℎ⟂

+
𝑣𝑣
2

‖

𝑣𝑣
2

ℎ‖

)]−𝜅𝜅ℎ−1� (12)

�with κh = 3, vh∥ = vT = 1, 𝐴𝐴 𝐴𝐴ℎ⟂ = 1∕
√
2 , vc∥ = 0.3, vc⊥ = 0.3, δ = 0.9, p = 10 

and q = 1;
�2.	� Electrons in the force-free current sheet (Harrison & Neukirch, 2009):

� (��, ��, ��) = exp
(

−�
�2� + �2� + �2�

2

)

×
[

exp (��� (�� + ��)) + �cos (��� (�� + ��)) + �
]

� (13)

�with 𝐴𝐴 𝐴𝐴 = 𝑣𝑣
−2

𝑇𝑇
= 1 , 𝐴𝐴 𝐴𝐴𝑥𝑥 = 𝑢𝑢𝑦𝑦 =

√
2 , Ax = Ay = 0, a = 1 and b = 2;

�3.	� Electrons in the injection regions in the Earth's magnetotail (Artemyev et al., 2020; Damiano et al., 2015; 
Vasko et al., 2017):

𝑓𝑓 (𝑣𝑣⟂, 𝑣𝑣‖) =

[

1 +
1

𝜅𝜅

(
𝑣𝑣
2
⟂

𝑣𝑣
2
𝑐𝑐⟂

+
𝑣𝑣
2

‖

𝑣𝑣
2

𝑐𝑐‖

)]−𝜅𝜅−1

exp

(

−
𝑣𝑣
2
⟂

2𝑣𝑣2
ℎ⟂

−
𝑣𝑣
2

‖

2𝑣𝑣2
ℎ‖

)

� (14)

�with κ = 0.2, vh∥ = vT = 1, 𝐴𝐴 𝐴𝐴ℎ⟂ =
√
2 , 𝐴𝐴 𝐴𝐴𝑐𝑐⟂ =

√
3∕800𝑣𝑣ℎ⟂ and 𝐴𝐴 𝐴𝐴𝑐𝑐‖ =

√
2𝑣𝑣𝑐𝑐⟂ .

The velocity distributions in Equations 12 and 14 are uniform in gyrophase, and the velocity distribution in Equa-
tion 13 obeys a Maxwellian in the z direction that is separable from the x and y directions. Thus, these sampling 
problems are essentially two dimensional. Figure 4 shows the results of generating 2 × 10 8 samples for each of 
the three velocity distributions. The sampling times for these three cases are about 7–9 s on 64 processors. The 
sampled distributions capture the main trends of the original distributions. The errors are located at the high-en-
ergy tails, where the number of particles is limited. For our application in particle-in-cell simulations, such errors 
will not cause any problem, because the fraction of high-energy particles is very small, and thus their contribu-
tion to the charge and current deposition is small compared to the bulk of the distribution. It is noteworthy that 
the Chebyshev projection can fit the flat-top part of the halo electron distribution [i.e., the truncated core of the 
distribution with almost no electrons; see Figures 4a and 4b]. Because such flat-top distributions have also been 
found in the magnetic reconnection region (Asano et al., 2008) and the shock region (Wilson III et al., 2019), 
sampling them could be useful for other studies.

We list the computational details in sampling the six representative distribution functions in Table 3. From each 
distribution, 2 × 10 8 samples are generated on 64 processors. For all cases, the time it takes to compute the 
Chebyshev coefficients (tcheb) is about 1,000 times shorter than that of the bisection root finding (tbisc). For distri-
butions that have steep gradients such as in the polarized current sheet, the number of Chebyshev coefficients can 
be large and thus it takes longer to compute those coefficients.

4.  Summary and Discussion
We developed a novel tool, Chebsampling, for accurate, efficient sampling of distribution functions in one 
and two dimensions. It features the use of function approximation by Chebyshev polynomials, which accelerates 
root finding in the inverse transform sampling. Chebsampling is implemented on massively parallel comput-

ITS [seconds] RS [seconds]

Nonpolarized current sheet 3.2 0.75

Polarized ion current sheet 3.6 0.6

Polarized electron current sheet 9.7 30.6

Note. In this comparison, 2  ×  10 6 samples are generated using a single 
processor for each case. The current sheet distributions in the three rows 
correspond to Figures 2a, 2d, and 2g, respectively.

Table 2 
Performance Comparison of Inverse Transform Sampling (ITS) With 
Rejection Sampling (RS)
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ers and has the potential to be used for fully three-dimensional sampling in physical systems. The practical use of 
this tool is illustrated through typical examples in space plasmas.

Inverse transform sampling is efficient for any distribution functions that can be numerically approximated 
and evaluated with low cost. The distribution function can be well approximated in one dimension by Cheby-
shev polynomials, and the inverse sampling method is practical. The sample size in two or three dimensions is 

Figure 4.  Inverse transform sampling of velocity distributions in space plasmas. (a–c) Halo electrons in the solar wind. (d–f) The electron distribution in the force-
free current sheet. (g–i) The electron distribution in the injection regions in Earth's magnetotail. The three rows from top to bottom show the ground-truth velocity 
distributions, the sampled velocity distributions, and the difference between the sampled and ground-truth distributions, respectively. The sampling errors appearing as 
lines instead of random dots are caused by setting nonrandom, evenly distributed uk = (k − 0.5)/Ny (where k = 1, 2, ⋯ , Ny) in Equation 3 [similarly for uj in Equation 4] 
instead of random samples uniformly distributed in the interval [0, 1], which corresponds to the “quiet start” (Birdsall & Langdon, 2018).

ϵcheb Ncutoff tcheb [ms] ϵbisc Nbisc tbisc [s]

Nonpolarized current sheet 10 –8 7–38 8.2 10 –14 46–48 11.3

Polarized ion current sheet 10 –8 16–144 16 10 –14 46–48 48.1

Polarized electron current sheet 10 –8 24–190 59 10 –14 48 69.2

Halo electrons in the solar wind 10 –8 14–360 6.8 10 –14 47–48 8.5

Electrons in force-free current sheets 10 –8 24–28 7.9 10 –14 48 7.9

Electrons in the injection fronts 10 –8 12–376 4.6 10 –14 47–48 6.4

Note. ϵcheb and ϵbisc are the relative error controls in Chebyshev polynomial interpolation and bisection root finding, 
respectively. Ncutoff is the number of Chebyshev coefficients to interpolate each distribution using Chebyshev polynomials. 
Nbisc is the number of iteration for convergence of root finding using the bisection method. tcheb and tbisc are the time costs of 
Chebyshev polynomial interpolation and bisection root finding, respectively. Note that Ncutoff is shown as a range because it 
varies for the marginal and conditional distributions.

Table 3 
Computational Details of the Six Representative Distribution Functions
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relatively small and the time cost is affordable with parallelizations. With increasing sample size, however, using 
the inverse transform sampling in higher dimensions is challenging, because one needs to perform approximately 
the same number of inversions as the sample size. Although function approximation in two dimensions starts  to 
emerge (Townsend & Trefethen,  2013), fundamental algorithmic issues on how to numerically approximate 
general distribution functions with more variables remain. Once these issues have been resolved, the inverse 
transform sampling method will be immediately useable in higher dimensions. Rejction sampling has a similar 
problem in higher dimensions. As the dimensions get larger, the ratio of the embedded volume to the total volume 
goes to zero. Thus a significant number of unwanted samples are rejected before a useful sample is obtained. In 
high dimensions, the Metropolis-Hastings algorithm is usually used, which is beyond the scope of our study.

Appendix A:  Computation of the Chebyshev Coeffcients ck

The evaluation of the Chebyshev coefficients ck through the use of FFT has been well established (see Refs. 
Ahmed & Fisher, 1968; Mason & Handscomb, 2002; Orszag, 1971a, 1971b). Equation 8 can be viewed as the 
discrete Chebyshev transform f(xk) → ck. The connection to discrete Fourier transform can be seen through a 
change in variables

𝑔𝑔(𝜃𝜃) = 𝑓𝑓 (cos 𝜃𝜃), 𝜙𝜙𝑘𝑘 =
𝑘𝑘𝑘𝑘

𝑛𝑛
, 𝑥𝑥𝑘𝑘 = cos (𝜙𝜙𝑘𝑘) .� (A1)

Equation 8 can be rewritten as

𝑐𝑐𝑘𝑘 =
2

𝑛𝑛

𝑛𝑛
∑′′

𝑗𝑗=0

𝑔𝑔

(
𝑗𝑗𝑗𝑗

𝑛𝑛

)

cos

(
𝑗𝑗𝑗𝑗𝑗𝑗

𝑛𝑛

)

(𝑘𝑘 = 0, 1,⋯ , 𝑛𝑛).� (A2)

Since cos θ and thus g(θ) are even functions of θ, we can rewrite Equation A2

𝑐𝑐𝑘𝑘 =
1

𝑛𝑛

𝑛𝑛
∑′′

𝑗𝑗=−𝑛𝑛

𝑔𝑔

(
𝑗𝑗𝑗𝑗

𝑛𝑛

)

exp

(

𝑖𝑖
𝑗𝑗𝑗𝑗𝑗𝑗

𝑛𝑛

)

(𝑘𝑘 = −𝑛𝑛𝑛−𝑛𝑛 + 1,⋯ , 𝑛𝑛).� (A3)

Furthermore, since cos θ and thus g(θ) are 2π-periodic functions of θ, we can rewrite Equation A3 in the form of 
discrete Fourier transform

𝑐𝑐𝑘𝑘 =
1

𝑛𝑛

2𝑛𝑛−1∑

𝑗𝑗=0

𝑔𝑔

(
𝑗𝑗𝑗𝑗

𝑛𝑛

)

exp

(

𝑖𝑖
𝑗𝑗𝑗𝑗𝑗𝑗

𝑛𝑛

)

(𝑘𝑘 = 0, 1,⋯ , 2𝑛𝑛 − 1).� (A4)

Appendix B:  Evaluation of the Chebyshev Sum
The Clenshaw algorithm is a recursive method to calculate the sum of Chebyshev polynomials. Let us consider 
a general sum

𝑆𝑆𝑛𝑛(𝑥𝑥) =

𝑛𝑛∑

𝑗𝑗=0

𝑎𝑎𝑗𝑗𝑃𝑃𝑗𝑗(𝑥𝑥),� (B1)

where Pj(x) satisfies the recurrence relation

𝑃𝑃𝑟𝑟+1(𝑥𝑥) + 𝛼𝛼𝑟𝑟𝑃𝑃𝑟𝑟(𝑥𝑥) + 𝛽𝛽𝑟𝑟𝑃𝑃𝑟𝑟−1(𝑥𝑥) = 0,� (B2)

and αr, βr may be functions of x as well as of r.

We construct the sequence bn, bn−1, ⋯ , b0, where bn+1 = bn+2 = 0 and

𝑏𝑏𝑟𝑟 + 𝛼𝛼𝑟𝑟𝑏𝑏𝑟𝑟+1 + 𝛽𝛽𝑟𝑟+1𝑏𝑏𝑟𝑟+2 = 𝑎𝑎𝑟𝑟, (𝑟𝑟 = 𝑛𝑛𝑛 𝑛𝑛 − 1,⋯ , 0).� (B3)

By replacing aj in Equation B1 with the sequence {bj} and using the recurrence relation B2, we obtain

𝑆𝑆𝑛𝑛(𝑥𝑥) = 𝑏𝑏0𝑃𝑃0(𝑥𝑥) + 𝑏𝑏1 {𝛼𝛼0𝑃𝑃0(𝑥𝑥) + 𝑃𝑃1(𝑥𝑥)} .� (B4)



Journal of Geophysical Research: Space Physics

AN ET AL.

10.1029/2021JA030031

10 of 10

In the case of Chebyshev polynomials, we have

𝑃𝑃𝑟𝑟(𝑥𝑥) = 𝑇𝑇𝑟𝑟(𝑥𝑥), 𝛼𝛼 = −2𝑥𝑥𝑥 𝑥𝑥 = 1.� (B5)

The recurrence relation is

𝑏𝑏𝑟𝑟 − 2𝑥𝑥𝑥𝑥𝑟𝑟+1 + 𝑏𝑏𝑟𝑟+2 = 𝑎𝑎𝑟𝑟, (𝑟𝑟 = 𝑛𝑛𝑛 𝑛𝑛 − 1,⋯ , 0).� (B6)

The Chebyshev sum is

𝑆𝑆𝑛𝑛(𝑥𝑥) =

𝑛𝑛∑

𝑗𝑗=0

𝑎𝑎𝑗𝑗𝑇𝑇𝑗𝑗(𝑥𝑥) = 𝑏𝑏0 − 𝑏𝑏1𝑥𝑥𝑥� (B7)

Data Availability Statement
The code Chebsampling that has been developed in this manuscript is publicly available at https://doi.org/ 
10.5281/zenodo.6109523. A compute capsule for reproducing the runs in this manuscript has been set up at 
https://codeocean.com/capsule/0988490/tree/v2.
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