
Journal of Cosmology
and Astroparticle
Physics

     

PAPER

Jackiw-Teitelboim and Kantowski-Sachs quantum
cosmology
To cite this article: Georgios Fanaras and Alexander Vilenkin JCAP03(2022)056

 

View the article online for updates and enhancements.

You may also like
Is spacetime absolutely or just most
probably Lorentzian?
Aharon Davidson and Ben Yellin

-

Spontaneous excitation of a static
multilevel atom coupled with
electromagnetic vacuum fluctuations in
Schwarzschild spacetime
Wenting Zhou and Hongwei Yu

-

The Hartle–Hawking wave function in 2D
causal set quantum gravity
Lisa Glaser and Sumati Surya

-

This content was downloaded from IP address 108.20.157.98 on 30/12/2024 at 20:58

https://doi.org/10.1088/1475-7516/2022/03/056


J
C
A
P
0
3
(
2
0
2
2
)
0
5
6

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Jackiw-Teitelboim and
Kantowski-Sachs quantum cosmology

Georgios Fanaras and Alexander Vilenkin
Institute of Cosmology, Department of Physics and Astronomy, Tufts University,
Medford, MA 02155, U.S.A.

E-mail: georgios.fanaras@tufts.edu, vilenkin@cosmos2.phy.tufts.edu

Received December 13, 2021
Accepted February 26, 2022
Published March 25, 2022

Abstract. We study quantum cosmology of the 2D Jackiw-Teitelboim (JT) gravity with � >
0 and calculate the Hartle-Hawking (HH) wave function for this model in the minisuperspace
framework. Our approach is guided by the observation that the JT dynamics can be mapped
exactly onto that of the Kantowski-Sachs (KS) model describing a homogeneous universe
with spatial sections of S1 ◊S2 topology. This allows us to establish a JT-KS correspondence
between the wave functions of the models. We obtain the semiclassical Hartle-Hawking wave
function by evaluating the path integral with appropriate boundary conditions and employing
the methods of Picard-Lefschetz theory. The JT-KS connection formulas allow us to translate
this result to JT gravity, define the HH wave function and obtain a probability distribution
for the dilaton field.

Keywords: quantum cosmology, gravity

ArXiv ePrint: 2112.00919

c• 2022 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2022/03/056

mailto:georgios.fanaras@tufts.edu
mailto:vilenkin@cosmos2.phy.tufts.edu
https://arxiv.org/abs/2112.00919
https://doi.org/10.1088/1475-7516/2022/03/056


J
C
A
P
0
3
(
2
0
2
2
)
0
5
6

Contents

1 Introduction 1

2 JT gravity 4

2.1 The action 4
2.2 Semiclassical wave function 5
2.3 Exact solutions of the WDW equation 5
2.4 Dimensional reduction 7

3 Kantowski-Sachs model 9

3.1 Classical dynamics 9
3.2 WDW equation 10
3.3 Transition amplitude 11

4 Hartle-Hawking wave function 13

4.1 Boundary conditions 13
4.2 Saddle points 16
4.3 Prefactor 17
4.4 Integration contours 18
4.5 Perturbing the saddle points 20
4.6 The Hartle-Hawking wave function 22

4.6.1 Ha > 1 22
4.6.2 Ha < 1 23

5 Probability distribution 25

6 Back to JT 26

7 Discussion 28

A Higher order corrections 29

1 Introduction

In quantum cosmology the entire universe is treated quantum mechanically and is described
by a wave function, rather than by a classical spacetime. The wave function �(g, „) is defined
on the space of all 3-geometries (g) and matter field configurations („), called superspace. It
can be found by solving the Wheeler-DeWitt (WDW) equation

H� = 0, (1.1)

where H is the Hamiltonian operator. Alternatively, one can consider the transition ampli-
tude from the initial state (gÕ, „Õ) to the final state (g, „), which can be expressed as a path
integral,

G(g, „|gÕ, „Õ) =
⁄ (g,„)

(gÕ,„Õ)
eiS , (1.2)
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where S is the action and the integration is over the histories interpolating between the initial
and final configurations. In general, G is a Green’s function of the WDW equation [1]. But
if (gÕ, „Õ) is at the boundary of superspace, or if the geometries that are being integrated
over have a single boundary at g, then G is a solution of the WDW equation and the path
integral (1.2) may be used to define a wave function of the universe.

The choice of the boundary conditions for the WDW equation and of the class of paths
included in the path integral representation of � has been a subject of ongoing debate. The
most developed proposals in this regard are the Hartle-Hawking [2] and the tunneling [3, 4]
wave functions.1 The intuition behind both of these proposals is that the universe originates
‘out of nothing’ in a non-singular way. But despite a large amount of work, a consensus on
the precise definition of these wave functions has not yet been reached. In fact, the two wave
functions are often confused with one another.

The Hartle-Hawking (HH) wave function is usually defined in terms of a Euclidean path
integral,

�HH(g, „) =
⁄ (g,„)

e≠SE , (1.3)

where SE is the Euclidean action and the integration is over regular compact geometries
with a single boundary on which the boundary values (g, „) are specified. The tunneling
wave function is defined either by an outgoing-wave boundary condition in superspace or by
a path integral over Lorentzian histories interpolating between a vanishing 3-geometry and
the configuration (g, „). Here we will focus on the HH wave function; the tunneling wave
function will be discussed in a separate publication.

In the last few years there has been a renewed interest in quantum cosmology, inspired
by recent work on the exactly soluble (1 + 1)-dimensional quantum gravity model — the
Jackiw-Teitelboim (JT) gravity [10, 11]. This model can be thought of as a quantum theory
of a one-dimensional closed universe. Apart from the scale factor a, it also includes an
evolving scalar field „ — the dilaton, which makes a comparison with higher-dimensional
models somewhat less informative. On the positive side, one can hope that exact solubility
of the model may provide new insights into the nature of the wave function of the universe.2

The HH wave function for JT gravity has been recently discussed in the interesting
paper by Maldacena, Turiaci and Yang (MTY) [13]. They calculated the wave function in
the leading semiclassical order in the limit of large a and included the pre-exponential factor
suggested by the Schwarzian analysis. In di�erence from the Hartle and Hawking approach,
MTY focused on the outgoing branch of the wave function, describing expanding universes
at large a. As a result the asymptotic behavior of � is more consistent with the tunneling
boundary conditions.

Another interesting recent work is the paper by Iliesiu, Krutho�, Turiaci and Verlinde
(IKTV) [14]. They presented an exact solution to the WDW equation of JT gravity, which
they interpreted as the HH wave function, but their choice of boundary conditions was
di�erent from the earlier literature. Hartle & Hawking and most of the subsequent authors
required that geometries included in the path integral close o� smoothly in the limit of small
universes. Instead, IKTV imposed a boundary condition in the opposite limit, requiring that
the wave function exhibits Schwarzian behavior when the universe is large. The assumption
of regularity and closure is implicit in their discussion, but these conditions are not explicitly

1For early work closely related to HH and tunneling proposals, see refs. [5] and [6–9] respectively.
2An exact quantization of JT model was first developed by Henneaux [12]. For recent discussions see

refs. [13–16] and references therein.
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enforced. The resulting wave function agrees with the semiclassical analysis of MTY in the
appropriate limit. However, IKTV note an unexpected feature: the wave function develops
a strong singularity at a finite value of the scale factor.

In the present paper we take a di�erent approach to JT quantum cosmology. It is based
on the observation of MTY that JT model can be obtained from 4D gravity by dimensional
reduction. We shall use this connection between 2D and 4D theories as a guide to defining
the cosmological HH wave function in the JT model. In their paper MTY discussed a
dimensional reduction from a nearly extremal Schwarzschild-de Sitter solution, with the
extra two dimensions compactified on a sphere (see also [17, 18] for earlier work). Since our
emphasis is on the cosmological aspects of the theory, we find it more useful to consider
a cosmological 4D model describing a homogeneous universe with spatial sections having
S1 ◊ S2 topology, known as the Kantowski-Sachs model. The main di�erence from the
MTY and IKTV work is that we impose the boundary conditions in the small universe limit,
requiring that the geometry closes o� in a regular way.

We begin in the next section by reviewing JT gravity and its quantization, discussing
in particular the semiclassical analysis of MTY and the exact solutions of IKTV. We argue
that these solutions are not suitable to represent the HH wave function. We also discuss how
JT model can be obtained by dimensional reduction from 4D gravity.

In section 3 we review the quantum cosmology of the Kantowski-Sachs (KS) model,
following largely the treatment of Halliwell and Louko (HL) [19]. We establish an exact
correspondence between the WDW equations for KS and JT models. Furthermore, we show
that the transition amplitude between states with specified initial and final scale factors
calculated by HL is closely related to the wave function found by IKTV. It follows from this
analysis that their wave function satisfies an equation with a singular source and thus is not
a solution of the WDW equation. This accounts for the divergence of the wave function
pointed out by IKTV.

The semiclassical HH wave function for the KS model is discussed in section 4. HL
studied this wave function only for a vanishing cosmological constant, � = 0. Here we will
need to extend their analysis to the case of � > 0, which is significantly more complicated.
We impose the boundary conditions of smooth closure in the limit of small universes and
follow standard methods to reduce the problem to evaluation of a lapse (N) integral over
some contour C in the complex N plane. The choice of the contour C is restricted by the
requirements that the HH wave function is expected to satisfy. We argue that there is only
a single acceptable choice, with all other acceptable choices equivalent to it.

In the semiclassical limit the dominant contribution to the integral is given by saddle
points of the action. We find these saddle points, as well as the steepest descent and ascent
lines, and use the Picard-Lefschetz prescription to deform the contour so that the integral
becomes absolutely convergent. The integral is then evaluated in the WKB approximation
for the range of parameters most relevant for the connection to JT.

In section 5 we use the HH wave function calculated in the preceding section to find the
probability distribution for the radius of S2 at a given radius of S1 in our S1 ◊ S2 model.
In section 6 we use the correspondence between JT and KS models to define the HH wave
function in JT gravity. We use this wave function to determine the probability distribution
for the dilaton field „. Our results are summarized and discussed in section 7. Some technical
details are relegated to the appendix.
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2 JT gravity

2.1 The action

The action of the JT model is [10, 11]

S =
⁄

d2x
Ô

≠g„(R ≠ 2H2) ≠ 2
⁄

B

„bK, (2.1)

where R is the 2D spacetime curvature, H = const., „ is the dilaton field, „b is its value at
the boundary, and K is the extrinsic curvature of the boundary curve B. Throughout the
paper we shall assume that H > 0. Variation with respect to „ yields R = 2H2, telling us
that the 2D spacetime is a de Sitter space with expansion rate H.

With the metric represented as

ds2 = ≠N2dt2 + a2dx2, (2.2)

where 0 < x < 2fi and N is the lapse function, the state vector is a functional

�[a(x), „(x)]. (2.3)

We can choose the gauge so that „b = const. at the boundary. Furthermore, we are going
to adopt a minisuperspace picture, where a = a(t), independent of x, and the boundary is a
circle, t = const. Then � is an ordinary function �(a, „). It has been shown in [14] that due
to the simplicity of the model, the wave functional (2.3) can be recovered from the minisu-
perspace wave function �(a, „). Here, we shall restrict our analysis to the minisuperspace
model with a = a(t), „ = „(t).

After integration by parts the action (2.1) can be represented as

S = ≠4fi
⁄

dt

A
ȧ„̇

N
+ NH2a„

B

, (2.4)

where dots stand for derivatives with respect to t. We are going to use the gauge N = const.
The momenta conjugate to a and „ are

�a = ≠4fi

N
„̇, �„ = ≠4fi

N
ȧ. (2.5)

The equations of motion obtained by varying the action with respect to a and „ are

ä ≠ H2a = 0, (2.6)
„̈ ≠ H2„ = 0, (2.7)

where we have set N = 1. The Hamiltonian constraint is obtained by varying with respect
to N :

ȧ„̇ = H2a„, (2.8)
or

�a�„ = 16fi2H2a„. (2.9)
The classical solution of these equations is

a = a0 cosh(Ht), „ = „0 sinh(Ht) (2.10)

with a0, „0 = const. We shall set a0 = H≠1, so that the metric covers the full de Sitter space
in a nonsingular way.
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2.2 Semiclassical wave function

To lowest order in the WKB approximation, the wave function is given by

� ≥ eiScl , (2.11)

where Scl is the classical action,

Scl = ≠2
⁄ 2fi

0
dx a„bK = ≠4fia„bK. (2.12)

Here, we used the fact that R = 2H2 in the classical solution, so only the surface terms make
a contribution, and that „ and K are constant on the boundary. Following the no-boundary
philosophy, we assume that the (Euclideanized) geometry closes o� smoothly, so that there
is no boundary contribution at a = 0.

In the classically allowed region (a > H≠1), the extrinsic curvature K is given by

K = ȧ

a
= H tanh(Ht) = a≠1


H2a2 ≠ 1, (2.13)

where we have used eq. (2.10) with a0 = H≠1. Substituting this in eqs. (2.12) and (2.11), we
obtain

� Ã exp
1
≠4fii„b


H2a2 ≠ 1

2
. (2.14)

A linearly independent WKB wave function is a complex conjugate of (2.14). A general
WKB solution is a linear combination of the two. The semiclassical approximation applies
when the action is large, „b

Ô
H2a2 ≠ 1 ∫ 1.

The momentum operator �„ acting on � gives

�„� = ≠iˆ„� = ≠4fi


H2a2 ≠ 1�. (2.15)

The classical momentum is given by eq. (2.5), so we get

ȧ =


H2a2 ≠ 1. (2.16)

This agrees with the expanding branch of the classical solution (2.10). The complex conjugate
wave function describes a contracting universe.

2.3 Exact solutions of the WDW equation

The WDW equation corresponding to the Hamiltonian constraint (2.8) is

(ˆaˆ„ + 16fi2H2a„)�̃ = 0. (2.17)

Here,
�̃ = �/a (2.18)

and the factor 1/a comes from the factor ordering indicated by the exact quantization of the
JT model by Henneaux [12] (see IKTV [14] for a detailed explanation). Following MTY [13],
we introduce new variables

u = „2, v = (2fi)2(H2a2 ≠ 1). (2.19)
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Then the WDW equation becomes

(ˆuˆv + 1)�̃ = 0. (2.20)

Yet another change of variables

T =
Ô

uv, › = 1
2 ln v

u
(2.21)

brings the equation to a separable form

≠ 1
T

ˆT (TˆT �̃) + 1
T 2 ˆ2

› �̃ ≠ 4�̃ = 0. (2.22)

With the ansatz
�̃m = em›fm(T ) (2.23)

we obtain an equation for fm(T ):

fm
ÕÕ + 1

T
fm

Õ ≠ m2

T 2 fm + 4fm = 0. (2.24)

The solution is
fm(T ) = Zm(2T ), (2.25)

where Zm is a Bessel function.
Following MTY, IKTV required that the wave function should describe an expanding

universe in the limit of large a. Then the appropriate choice of Bessel functions is H(2)
m (2T ).

The general solution of the WDW equation is then a linear combination of functions of the
form (2.23):

�̃m =
3

v

u

4
m/2

H(2)
m (2T ). (2.26)

In terms of the variables a and „, the argument of the Bessel functions is

2T = 4fi„


H2a2 ≠ 1. (2.27)

The asymptotic form of the Bessel functions at large T is H(2)
m (2T ) Ã T ≠1/2e≠2iT ; hence

�m(Ha„ ∫ 1) Ã
3

a

„

4
m+1/2

exp
1
≠4fii„


H2a2 ≠ 1

2
, (2.28)

where we have accounted for the factor 1/a relating �m and �̃m. All these functions have
the same asymptotic exponential factor as the WKB wave function (2.14). So in order to
choose between them one has to determine the pre-exponential factor.

In the path integral formulation, the semiclassical pre-factor is determined by quantum
fluctuations about the classical solution. In the JT model these are fluctuations in the shape
of the boundary curve, which are described by the Schwarzian theory and yield a one-loop
pre-factor („/a)3/2 at large a [20]. It is shown in [20] that this result is one-loop exact, so
there are no further corrections. This pre-factor is obtained by setting m = ≠2 in (2.28).
Then the exact wave function takes the form

�(a, „) = a„2

H2a2 ≠ 1H(2)
2

1
4fi„


H2a2 ≠ 1

2
(Ha > 1). (2.29)

– 6 –
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Analytic continuation of this wave function to Ha < 1 is not unique because of the singularity
at Ha = 1. IKTV specify the wave function in the entire range of a by replacing the Hankel
function in (2.29) with K2

1
i


„2(H2a2 ≠ 1 ≠ i‘)
2
, which gives3

�(a, „) = 2i

fi

a„2

H2a2 ≠ 1K2
1
4fi„


H2a2 ≠ 1

2
(Ha < 1). (2.30)

IKTV identify the wave function (2.29), (2.30) with the HH wave function for JT grav-
ity. There are however some problems with this identification. We first note that one of the
defining properties of the HH wave function is that it is real. This can be interpreted as
reflecting the CPT invariance of the HH state [21]. On the other hand, the tunneling wave
function is specified by the outgoing wave boundary condition, which in the present context
requires that the large a asymptotic of � should only include terms corresponding to expand-
ing universes. This seems to suggest that the wave function described by eqs. (2.29), (2.30)
is more appropriately interpreted as the tunneling wave function.

More importantly, the wave function (2.29) has a singularity at a = H≠1. It is actually
not a solution of the WDW equation. We will show in section III.C that it satisfies

H� Ã ”(„)”ÕÕ(a ≠ H≠1). (2.31)

Hence it is not suitable for the role of HH or tunneling wave function.
IKTV have also proposed another candidate for the HH wave function:

�(a, „) = a„2

H2a2 ≠ 1J2
1
4fi„


H2a2 ≠ 1

2
. (2.32)

This wave function is real and non-singular. However, its behavior in the classically forbidden
range a < H≠1 is very di�erent from what is expected for the semiclassical HH wave function.
We have

�(a < H≠1) = a„2

1 ≠ H2a2 I2

3
4fi

Ò
„2(1 ≠ H2a2)

4
≥ a„3/2

Ô
4fi(1 ≠ H2a2)5/4 exp

1
4fi|„|


1 ≠ H2a2

2
,

(2.33)
where the last expression is the asymptotic form of � assuming that the argument of I2 is
large. As a varies from a = 0 to a ≥ H≠1, the exponential factor in � decreases, which is
opposite to the expected behavior of the HH wave function.

2.4 Dimensional reduction

MTY discussed the relation between JT and Einstein 4D gravity using dimensional reduction
from a nearly extremal Schwarzschild-de Sitter solution. Since our emphasis is on the cos-
mological aspects of the theory, we find it more useful to consider a cosmological 4D model
describing a universe with spatial sections having S1 ◊ S2 topology and the metric

ds2 = ≠dt2 + a2(x, t)dx2 + b2(x, t)d�2. (2.34)

Here, 0 < x < 2fi and d�2 is the metric on a unit sphere. Substituting this in the Einstein-
Hilbert action (in Planck units)

S = 1
16fi

⁄
d4x

Ò
≠g(4)

1
R(4) ≠ 2�

2
, (2.35)

3The inclusion of the term i‘ with ‘ æ +0 is needed to make the solution well-defined on the branch cut.
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where � is the 4D cosmological constant, and integrating over the angular variables we obtain

S =
⁄

d2x
Ô

≠g

C
b2

4 R + 1
2(Òb)2 + 1

2 ≠ 1
2�b2

D

. (2.36)

Here, R and g are respectively the 2D curvature scalar and the metric determinant and we
have omitted the boundary term.

Following [22], we can remove the gradient term in the action by a conformal rescaling

ḡµ‹ = �2(b)gµ‹ (2.37)

with
d ln �
d ln b

= 1
2 . (2.38)

This has the solution
� = (b/2)1/2, (2.39)

where we have chosen the normalization factor for future convenience. The action then
reduces to

S =
⁄

d2x


≠ḡ
Ë
„̄R̄ ≠ V („̄)

È
, (2.40)

where „̄ = b2/4 and
V („̄) = 2�

Ò
„̄ ≠ 1

2
Ò

„̄
. (2.41)

We define
„̄ = „0 + „, (2.42)

where „0 = 1/4�, so that V („0) = 0. We shall assume that � π 1, so „0 ∫ 1. Then, for
|„| π „0 we can expand the potential (2.41) around „ = 0. Neglecting quadratic and higher
order terms in the expansion, we obtain an approximate JT action

S ¥ „0

⁄
d2x


≠ḡR̄ +

⁄
d2x


≠ḡ„

1
R̄ ≠ 2�̄

2
, (2.43)

where �̄ = 2�3/2.
Since the second term in (2.43) already includes a factor of „, we can use

ḡµ‹ ¥ 1
2
Ô

�
gµ‹ , R̄ ¥ 2

Ô
�R. (2.44)

Hence, in the same approximation we can rewrite the action in terms of the original metric
gµ‹ and the cosmological constant � as

S ¥ „0

⁄
d2x

Ô
≠gR +

⁄
d2x

Ô
≠g„ (R ≠ 2�) , (2.45)

The above analysis suggests that in the appropriate limit the dynamics of the 4D cos-
mological model (2.34) is well approximated by that of the JT gravity (2.1) with � = H2.
The radius of the sphere S2 in this limit is b ¥ H≠1. We will focus on this regime in most
of the paper, but in the next section we will see that in the minisuperspace setting the two
models are even more closely related and can be mapped onto one another for arbitrary
values of the scale factors a and b.

– 8 –
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3 Kantowski-Sachs model

3.1 Classical dynamics

As already mentioned, our focus in this paper will be on homogeneous minisuperspace models.
Hence we will use a homogeneous version of the model (2.34), with the scale factors a and
b independent of x, for dimensional reduction. This is the Kantowski-Sachs (KS) model [23]
describing a homogeneous universe with spatial sections of S1 ◊ S2 topology.

Following Halliwell and Louko [19], we represent the metric of the KS model as

ds2 = ≠N2

a2 d·2 + a2dx2 + b2d�2, (3.1)

where N , a and b are functions of time · , which we can choose to vary in the range 0 < · < 1.
After substituting this in the Lorentzian Einstein-Hilbert action with a cosmological constant
� © H2 and integrating over x and over the angular variables, the action reduces to

S = ≠fi
⁄ 1

0
d·

C
ḃċ

N
+ N(H2b2 ≠ 1)

D

, (3.2)

where we have introduced a new variable c = a2b.
The factor 1/a2 is added in the first term of (3.1) in order to simplify the equations of

motion, which take the form

b̈ = 0, (3.3)
c̈

N2 ≠ 2H2b = 0, (3.4)

where overdots stand for derivatives with respect to · . The constraint equation is obtained
by varying the action with respect to N :

ḃċ

N
≠ N(H2b2 ≠ 1) = 0. (3.5)

An important solution of these equations is obtained by setting ḃ = 0. Then eq. (3.5)
tells us that b = H≠1 and eq. (3.4), expressed in terms of the proper time variable t =s

d·/a(·), becomes
d2a

dt2 = H2a, (3.6)

which has a solution
a(t) = H≠1 cosh(Ht), (3.7)

where we have set N = 1. This is the Nariai solution, which is a product of a 2D de Sitter
space and a 2-sphere of radius H≠1 [24].

It follows from eq. (3.3) that ḃ cannot change sign, indicating that the Nariai solution
is unstable. If we perturb it by giving the radius of the sphere b a slight velocity, the sphere
will collapse if ḃ < 0 and will expand to infinite size if ḃ > 0.

The Euclidean continuation of the Nariai solution is a product of two spheres of radius
H≠1. It is often referred to as the Nariai instanton and describes nucleation of extremal
black holes in de Sitter space [25, 26].

– 9 –
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3.2 WDW equation

The quantum cosmology of the KS model has been studied by a number of authors [19, 27–
30]. Some exact solutions of the WDW equation have been found and semiclassical methods
have been used to study more general solutions. Here we will follow the method of Halliwell
and Louko (HL) [19] which allows one not only to find the saddle points of the action, but
also helps to determine which saddle points contribute to the semiclassical wave function.
This method will also be useful for interpreting the solution (2.29) found by IKTV.

The momenta conjugate to the variables b and c are

pb = ≠fiċ/N, pc = ≠fiḃ/N. (3.8)

Using this in the constraint equation (3.5) and replacing pb æ ≠iˆ/ˆb, pc æ ≠iˆ/ˆc, we
obtain the WDW equation

fiH� =
Ë
ˆbˆc + fi2(H2b2 ≠ 1)

È
� = 0. (3.9)

This equation can be simplified by introducing a new variable ›, which is related to b
as d› = fi2(H2b2 ≠ 1)db. Choosing the integration constant so that ›(Hb = 1) = 0, we have

› = fi2

3H
(H3b3 ≠ 3Hb + 2) = fi2

3H
(Hb ≠ 1)2(Hb + 2). (3.10)

We also introduce the variable fl = c ≠ H≠3; then the WDW equation becomes

(ˆ›ˆfl + 1)� = 0. (3.11)

We note that this equation has the same form as eq. (2.20) for the JT model. The
di�erence is that eq. (2.20) is for the function �̃ = �/a, where the factor 1/a appeared due
to a particular choice of the factor ordering. Following the same steps as in section 2.3, we
find that eq. (3.11) has exact solutions

�m =
3

fl

›

4
m/2

H(2)
m (2


›fl). (3.12)

The solution with m = ≠2 corresponds to the IKTV solution (2.29). We expect this solution
to agree with (2.29) when b ¥ H≠1. The argument of the Hankel function in (3.12) is

2


›fl = 2fi

H2

Û
Hb + 2

3 (Hb ≠ 1)


H3a2b ≠ 1 ¥ 2fi

H2 (Hb ≠ 1)


H2a2 ≠ 1. (3.13)

Comparing this with the argument of the Hankel function in (2.29), we can identify

Hb ≠ 1
H2 ¥ 2„. (3.14)

It is interesting to note that the correspondence between the two wave function extends
beyond this approximation. If we define

ã = (Hb)1/2a, „ = (Hb ≠ 1)
2H2

Û
Hb + 2

3 , (3.15)
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then ã�(ã, „) exactly reproduces the wave function (2.29). More generally, the transforma-
tion (3.15) can be used to obtain a solution to the WDW equation of the JT model from that
of the KS model and vice versa. Note also that ã and „ are simply related to the variables ›
and fl:

› = 4fi2H3„2, fl = H≠3(H2ã2 ≠ 1). (3.16)

We thus see that JT and KS minisuperspace models are formally equivalent to one
another. This equivalence, however, does not extend beyond minisuperspace. In the JT case,
the minisuperspace wave function can be extended to a wave function in full superspace,
but in the KS model the number of variables in the wave function and the pre-exponential
factor depend on which perturbation modes are included in the minisuperspace truncation.
Equivalence between the two models at the minisuperspace level will nevertheless be su�cient
for our purposes here.

3.3 Transition amplitude

We now consider the transition amplitude from the initial state {bÕ, cÕ} to the final state
{b, c}. We will be particularly interested in the initial state

{bÕ, cÕ} = {H≠1, H≠3} (3.17)

corresponding to the bounce point of the Nariai solution. We shall refer to it as ‘Nariai initial
conditions’.

The general framework for calculating transition amplitudes has been discussed by
HL [19]. For a general minisuperspace model described by the Hamiltonian

H = 1
2f–—(q)p–p— + V (q), (3.18)

where q– are the generalized coordinates and p– their conjugate momenta, the transition
amplitude between qÕ and q is

G(q|qÕ) =
⁄ Œ

0
dN

⁄
DpDqeiS =

⁄ Œ

0
dNÈq, N |qÕ, 0Í. (3.19)

Here N is the lapse parameter, the action is

S =
⁄ 1

0
d· (p–q̇– ≠ NH) (3.20)

and the path integral is over histories interpolating between qÕ and q.
HL show that the amplitude (3.19) satisfies

HG(q|qÕ) = ≠iÈq, 0|qÕ, 0Í = ≠i”(q, qÕ), (3.21)

where
H = ≠1

2Ò2 + ’R + V (3.22)

is the Hamiltonian operator, Ò2 and R are the Laplacian and the curvature scalar in the
metric f–—, and ’ is the conformal coupling. The magnitude of ’ depends on the dimension
of superspace and vanishes in the case of 2D, which is of interest to us here. We see from
eq. (3.21) that G is a Green’s function of the WDW equation.
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For the KS model the Hamiltonian is quadratic and the path integral in (3.19) can
be performed exactly. Then, up to an overall multiplicative constant, HL found that the
amplitude reduces to

G(b, c|bÕ, cÕ) =
⁄ Œ

0

dN

N
exp

5
i

2

3
–N ≠ —

N

46
, (3.23)

where
– = 1 ≠ H2

3 (b2 + bbÕ + bÕ2), — = (2fi)2(c ≠ cÕ)(b ≠ bÕ). (3.24)

This amplitude should satisfy
HG(b, c|bÕ, cÕ) Ã ≠i”(b ≠ bÕ)”(c ≠ cÕ). (3.25)

The integral over N in (3.23) can be expressed in terms of Bessel functions [19]. With
Nariai initial conditions (3.17) we have

– = ≠1
3(Hb ≠ 1)(Hb + 2), — =

3 2fi

H2

42
(H3c ≠ 1)(Hb ≠ 1) (3.26)

and
G = ≠ifiH(2)

0

1
≠–—

2
(H3c > 1) (3.27)

G = 2K0
1

–—
2

(H3c < 1) . (3.28)

The amplitude G in eqs. (3.27), (3.28) is similar to the IKTV wave function (2.29), (2.30).
The di�erence is in the prefactor and in the index of the Bessel functions. The two objects
are closely related, as we will now show.

The Bessel functions appearing in eqs. (3.27), (3.28) can be expressed as Z0(X), where

X =


H3c ≠ 1f(b) = 4fi„


H2ã2 ≠ 1 (3.29)
with

f(b) = 2fi

H2 (Hb ≠ 1)

Û
Hb + 2

3 = 4fi„, (3.30)

where we have used the notation Z‹ for a Bessel function (of any kind) with index ‹ and
eqs. (3.15) relating a and b to ã and „. Di�erentiating twice with respect to c, we obtain

ˆ2Z0
ˆc2 = H6f2(b)

4(H3c ≠ 1)

C

≠Z Õ
1 + 1

f(b)
Ô

H3c ≠ 1
Z1

D

= H6f2(b)
4(H3c ≠ 1)Z2 = (2fiH3)2 „2

ã2 ≠ 1Z2.

(3.31)
Here prime stands for a derivative with respect to the argument and we used an iteration
formula for Bessel functions in the second step.

Now, the expression on the right-hand side of eq. (3.31) has the same form as the wave
function (2.29) of IKTV. We conclude that

�IKTV = C
ˆ2

ˆc2 G(b, c|H≠1, H≠3) (3.32)

with C = const. Furthermore, it follows from eq. (3.25) that4

H�IKTV Ã ≠i”(b ≠ H≠1)”ÕÕ(c ≠ H≠3). (3.33)
Hence �IKTV is not a solution of the WDW equation. It has a distributional source at
a = b = H≠1, which is more singular than that of a Green’s function.

4Note that ˆ/ˆc commutes with H.
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4 Hartle-Hawking wave function

In the original Hartle & Hawling paper [2] the HH wave function is defined as

�(gb) =
⁄

gb

Dge≠SE(g), (4.1)

where the integration is over “regular” 4D Euclidean geometries g, having a single boundary
B with a 3-metric gb. For simplicity we specialize to models without any matter fields. As
it stands, this definition is rather problematic. The Euclidean action SE is unbounded from
below, so the integral in (4.1) is divergent. This can often be dealt with by a suitable analytic
continuation of the integration variables. Another problem is that the metrics contributing
to the path integral are generally rather irregular, even non-di�erentiable. So the notion
of integrating over regular geometries needs to be defined. The same problem arises in JT
gravity.

IKTV attempted to get around this issue by focusing on the upper limit of integration
in (4.1), with the hope that the regularity condition would somehow take care of itself. They
allowed the boundary curve of the 2D geometry to fluctuate and required that the asymptotic
form of the wave function agrees with the semiclassical pre-exponential factor resulting from
these fluctuations. Another approach that they used was to calculate the path integral (4.1)
for JT gravity with � < 0, where it is better defined, and then analytically continue to � > 0.
IKTV find that the two approaches agree and yield the wave function (2.29). Our analysis
shows, however, that this wave function is unsatisfactory, as it is not a solution of the WDW
equation. Instead, it is related to the transition amplitude from a Nariai initial state with
a = H≠1 and „ = 0. The path integral (3.19) for this amplitude is over geometries with two
boundaries — one with the specified values of a and „ and the other with the ‘Nariai’ values.
This does not square well with the intuitive idea of quantum creation of the universe from
nothing.

We therefore need to revisit the question of how the path integral over regular Euclidean
geometries has to be defined. In the context of minisuperspace KS model, this issue has been
discussed in detail by HL [19], whose approach we largely follow.

4.1 Boundary conditions

To discuss the boundary conditions for the no-boundary path integral, it is more convenient
to represent the Euclideanized KS metric as

ds2
E = N2dt2 + a2(t)dx2 + b2(t)d�2. (4.2)

The Euclidean action is then [19]

SE = fi
⁄ 1

0
dt

5
≠ 1

N

1
aḃ2 + 2bȧḃ

2
+ Na(H2b2 ≠ 1)

6
+ Sb, (4.3)

where Sb is the boundary term5

Sb = ≠
5

fi

N

d

dt
(ab2)

6

t=0
. (4.4)

5The Gibbons-Hawking boundary terms in the gravitational action cancel out after integration by parts if
the geometry has two boundaries — at t = 0 and t = 1. But for a compact geometry with a single boundary
at t = 1, the boundary term at t = 0 has to be kept [19].
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The time variable t is defined so that 0 < t < 1 with t = 1 corresponding to the boundary B
and t = 0 corresponding to the “bottom” B0 of the 4-geometry g.

The boundary conditions at t = 1 fix the values of {a, b}, while the boundary conditions
at t = 0 should be chosen so that the geometry closes smoothly at B0. HL show that for a
classical 4-geometry (4.2) there are two choices:

a(0) = 0,
1
N

ȧ(0) = ±1,
1
N

ḃ(0) = 0 (4.5)

and
b(0) = 0,

1
N

ḃ(0) = ±1,
1
N

ȧ(0) = 0, (4.6)

where overdots now stand for derivatives with respect to t.
The time derivatives ȧ and ḃ are related to the (Euclidean) momenta conjugate to a

and b:
pa = ≠2fi

N
bḃ, pb = ≠2fi

N
(aḃ + bȧ), (4.7)

so these boundary conditions correspond to fixing {a, pa, pb} or {b, pa, pb} at B0. It is however
inconsistent in quantum theory to fix a coordinate and its conjugate momentum. Hence the
best one can do is to impose two out of the three conditions, for example

a(0) = 0, pb(0) = û2fib(0) (4.8)

or
b(0) = 0, pa(0) = 0. (4.9)

HL note that if classical field equations hold, then with either of these choices all three
conditions in (4.5) or (4.6) are satisfied. One can therefore expect that in the semiclassical
regime the path integral will be dominated by regular geometries. Since we are interested
in dimensional reduction of KS model with the S2 part integrated out, we will focus on the
boundary conditions (4.8), which correspond to fixing a and ȧ on B0.

HL suggest that a better choice of variables, suitable for the boundary conditions (4.8),
would be

A = 2fib2, B = 2fiab (4.10)
with the conjugate momenta

PA = ≠ ȧ

2N
, PB = ≠ ḃ

N
. (4.11)

The boundary conditions (4.8) then take the form

BÕ = 0, PA
Õ = û1

2 , (4.12)

where primes indicate the values at t = 0.
The HH wave function can now be expressed as [19]

�NB(A, B) = G(A, B|PA
Õ, BÕ) =

⁄
dN

⁄
DQ–DP– exp(≠SE), (4.13)

where the path integral is taken over histories with fixed {A, B} and {PA
Õ, BÕ}. Unlike the

case of fixed initial values aÕ and bÕ, this path integral cannot be evaluated exactly. We
therefore use the WKB method to express �HH approximately as

�HH(Q–) =
⁄

C

µ
1
Q–, Z—, N

2
exp

Ë
≠SE(Q–; N |Z—)

È
dN, (4.14)
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where Q– = {A, B}, Z— = {PA
Õ, BÕ}, µ is the semiclassical prefactor of the propagator and

SE = fi

C
H2

3 N(b2 + bbÕ + bÕ2) ≠ N ≠ 1
N

(b ≠ bÕ)
A

a2b ≠ BÕ2

bÕ

B

+ 2bÕ2PA
Õ + 2BÕPB

Õ
D

(4.15)

is the Euclidean action evaluated on a history satisfying the boundary conditions and the
second order equations (3.3), (3.4) for a and b, but not the constraint equation (3.5). Note
that the last term in (4.15) can be neglected since it does not contribute to the path integral
and the semiclassical prefactor. The integration contour C in (4.14) is generally complex;
we shall discuss the choice of this contour in section 4.4. The calculation of the prefactor is
discussed in section 4.3.

HL discussed the calculation of the HH wave functions for KS model only for the case
of a vanishing cosmological constant, H = 0. Eqs. (4.14), (4.15) apply for arbitrary H, but
from this point on we cannot directly use the results of HL and will have to extend their
analysis to H > 0.

The initial value bÕ in eq. (4.15) has to be expressed in terms of the boundary values
A, B (or a, b), BÕ, PA

Õ, and the lapse N . This can be done using the solutions ā(·), b̄(·) of
the second order field equations (3.3), (3.4) (but not of the constraint equation). HL give
these solutions in terms of the time variable · , which is related to t as d· = a(t)dt:

b̄(·) = (b ≠ bÕ)· + bÕ (4.16)

ā2(·)b̄(·) = ≠H2N2

3 (b ≠ bÕ)·3 ≠ H2N2bÕ·2 +
C

a2b ≠ aÕ2bÕ + H2N2

3 (b + 2bÕ)
D

· + aÕ2bÕ.

(4.17)

Expressed in terms of · , the boundary condition (1/N)(da/dt) = ±1 takes the form

ā

N

dā

d·
(· = 0) = û2PA

Õ = ±1. (4.18)

To implement this boundary condition, we di�erentiate eq. (4.17) with respect to · and take
the limit · æ 0. This gives (after dividing by bÕ2)

4NPA
Õ

b
bÕ = ≠a2 + BÕ2

bÕ2 ≠ H2N2

3b
(b + 2bÕ). (4.19)

where we have used aÕ = BÕ/bÕ.
We now have to solve eq. (4.19) for bÕ, substitute the result into the action (4.15), and

use it to evaluate SE and the pre-factor in (4.14) with the values of P Õ
A

and BÕ specified by
the boundary conditions (4.12). This calculation is significantly simplified if we note that
the solution of eq. (4.19) minimizes the action (with our boundary conditions), and thus
ˆSE/ˆbÕ = 0. It follows that when calculating the derivative of SE with respect to BÕ in
the determinantal prefactor in (4.14), we only need to account for an explicit dependence of
SE on this variable and can disregard the dependence through bÕ. This means that we can
substitute the boundary value BÕ = 0 directly in eq. (4.19). Then, instead of a cubic equation
we get a linear equation for bÕ, with the solution

bÕ = ≠ b

2N

a2 + H2N2/3
2PA

Õ + H2N/3 . (4.20)
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Substituting this in the action (4.15) we find

SE = fiN

3 (H2b2 ≠ 3) ≠ fi

N
a2b2 ≠ fib2

4N2

1
a2 + H

2
N

2

3

22

2P Õ
A

+ H2N

3
≠ fiBÕ2

N

!
a2 + H2N2 + 4NP Õ

A

"

a2 + H2N2/3 . (4.21)

where we have not substituted the boundary values PA
Õ, BÕ yet, in order to calculate the

prefactor.

4.2 Saddle points

Without making any approximations for the action, the saddle points cannot be found in
closed form. Since we will be mostly interested in the regime where b ¥ H≠1, we will first find
the saddles for b = H≠1 and then treat deviations from these points as small perturbations.

We also have to decide on the choice of sign in the boundary condition (4.12) for P Õ
A

.
Here we will follow HL and pick P Õ

A
= ≠1/2. Their justification is that for this choice the final

boundary B is to the “future” of the initial boundary B0. In fact, there is a stronger argument:
it can be shown that choosing the opposite sign in (4.12) does not yield convergent contours
for the HH wave function. Furthermore, the characteristic exponential factor exp(fi/H2) can
only be retrieved with the choice P Õ

A
= ≠1/2.

Thus, setting b = H≠1, BÕ = 0 and P Õ
A

= ≠1/2 we have

SE0 = ≠2fiN

3 ≠ fia2

H2N
≠ fi

!
3a2 + H2N2"2

12H2N2 (H2N ≠ 3) , (4.22)

where the extra subscript “0” indicates that the action is evaluated at Hb = 1. Note the
singularities at N = 0 and N = 3/H2.

For the following analysis it will be convenient to introduce the rescaled variables

u = H2a2 , Ñ = H2N , S̃E = H2SE
fi

. (4.23)

The rescaled action (4.22) is given by

S̃E0 = ≠2Ñ

3 ≠ u

Ñ
≠

1
3u + Ñ2

22

12Ñ2
1
Ñ ≠ 3

2 . (4.24)

In order to evaluate the integral (4.14) using the method of steepest descent, we first
determine the extrema of the action S̃E0. These are given by

ˆ ˜SE0

ˆÑ
= 0. (4.25)

The resulting equation is quintic in Ñ :
1
Ñ2 ≠ 2Ñ + u

2 1
Ñ3 ≠ 4Ñ2 ≠ 3Ñu + 6u

2
= 0 . (4.26)

Its solutions are

Ñ1,2 = 1 ±
Ô

1 ≠ u (4.27)

Ñ3 = 4
3 + 16 + 9u

3A
+ A

3 (4.28)

Ñ4,5 = 4
3 ≠

1
1 û i

Ô
3
2

(16 + 9u)
6A

≠

1
1 ± i

Ô
3
2

A

6 (4.29)
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where the quantity A is given by

A = (64 ≠ 27u + 9


≠128u ≠ 39u2 ≠ 9u3)1/3 . (4.30)

The solutions 3, 4, 5 are expressed here in a rather complicated form. Taking a closer look
at the quantity A we can express it in a more convenient way with the Euler representation
of complex numbers. After some straightforward calculations we arrive at

A =
Ô

16 + 9u ei
◊

3 , (4.31)

where ◊ is given by

◊ = arctan
C

9
Ô

9u3 + 39u2 + 128u

64 ≠ 27u

D

. (4.32)

The saddles Ñ3,4,5 are then simplified to:

Ñ3 = 4
3 + 2

Ô
16 + 9u

3 cos ◊

3 (4.33)

Ñ4,5 = 4
3 ≠ 2

Ô
16 + 9u

3 cos
5

◊ ± fi

3

6
. (4.34)

It is clear that the saddles 3, 4, 5 are always real. Ñ1 and Ñ2 are also real for u Æ 1, while
for u > 1 they form a complex conjugate pair.

4.3 Prefactor

The semiclassical prefactor for the propagator is given by [31]

µ = f≠1/4Ô
Df Õ≠1/4 (4.35)

where f Õ and f are the determinants of the minisuperspace metric fµ‹ evaluated at t = 0 and
t = 1 respectively and D is the Van Vleck-Morette determinant [32, 33]. In the representation
A = 2fib2 and B = 2fiab the Hamiltonian for the KS model takes the form [19]

H = ≠P 2
B ≠ 4APAPB

B
+ 1 ≠ H2

2fi
A = 1

2fµ‹PµP‹ + V (4.36)

where V = 1 ≠ AH2/(2fi) . Thus the minisuperspace metric and its determinant are

fµ‹ =
A

B
2

8A2 ≠ B

4A

≠ B

4A
0

B

, f Ã B2

A2 . (4.37)

The action (4.21) expressed in variables {A, B} is given by

SE = fiN

3

A
AH2

2fi
≠ 3

B

≠ B2

4Nfi
≠ A

8N2

1
B

2

2fiA
+ H

2
N

2

3

22

2P Õ
A

+ H2N

3
≠ fiBÕ2

N

A
B

2

2fiA
+ H2N2 + 4NP Õ

A

B2

2fiA
+ H2N2

3

B

(4.38)
and the Van Vleck-Morette determinant D can be calculated as

D © det
C

≠ ˆ2SE
ˆQ–ˆZ—

D

= 3BBÕ

AN2 (H2N + 6P Õ
A

) , (4.39)
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where, as before, Q– = {A, B}, Z— = {PA
Õ, BÕ}. Inserting the above relations in eq. (4.35)

for the prefactor and switching back to variables {a, b}, we obtain6

µ (a, b, N) Ã bÕ

N
Ô

H2N ≠ 3
(4.40)

where bÕ is a function of a, b, N and is given by eq. (4.20) and we have now inserted the
boundary value of P Õ

A
= ≠1/2.

The prefactor in eq. (4.40) introduces a branch cut, which we can choose to lie at
N > 3/H2 along the real axis. From the analysis that follows, we will see that the choice of
a suitable contour will not be a�ected significantly by this branch cut.

4.4 Integration contours

One of the key issues that remains to be addressed is the choice of the integration contour
over N in eq. (4.14). No general prescription for this choice has yet been given. Integration
over real or pure imaginary values of N yields divergent integrals, so one has to look for
a non-trivial contour in the complex plane that would make the integral convergent. The
consensus view appears to be that the contour C should satisfy the following three criteria
(see, e.g., [34]). (1) C should not have ends: it must be either infinite or closed. This
guarantees that �HH is a solution of the WDW equation (rather than a Green’s function).
(2) The HH wave function should be real. This can be achieved by choosing a contour which
is symmetric with respect to the real N axis. This requirement can be thought of as an
expression of the CPT invariance of the HH state [21]. (3) The wave function should predict
a classical spacetime when the universe is large. This means that in the appropriate limit
�HH should be a superposition of rapidly oscillating terms of the form eiS , where S is the
classical action. We shall adopt these criteria as the defining properties of �HH.

Let us first consider infinite contours. From eq. (4.22) we find that SE ≥ ≠3N/8 for
|N | æ Œ. It follows that the integral over N can be convergent only if the asymptotic
directions of the contour are at | arg N | > fi/2. Some inequivalent choices are illustrated in
figure 1. These contours are symmetric with respect to the real axis, so they define a real
wave function. We will first consider the contour B which crosses the real axis at 0 < N < 3
and will comment on the other choices at the end of this section. Note that the contour B
may almost coincide with the imaginary axis. It could cross the real axis at N = +‘ and
asymptote to arg N = ±(fi/2 + ‘Õ), where ‘, ‘Õ æ +0.

The integration contour B can be turned into a closed contour by adding to it an infinite
arc |N | = const. æ Œ. The integral over the arc vanishes in the limit, so the original integral
remains unchanged. The resulting contour can be distorted into a finite closed contour which
encircles the singularity at N = 0 but does not encircle the singularity at N = 3. Thus the
infinite contours of type B are equivalent to this kind of closed contours. Following the Picard-
Lefschetz prescription,7 the closed contour can now be distorted so that it passes through
saddle points following the steepest descent and ascent lines, making the integral absolutely
convergent. Let us first consider the case of a > H≠1. The saddle points for this case are
shown in figure 2. The steepest descent and ascent lines are defined by Im SE = const. The
lines passing through the saddle points are also shown in the figure, with arrows indicating
the direction in which ≠ Re SE is decreasing. The contour encircling the singularity at N = 0

6We note that there is an error in the expression (6.5) for the prefactor in ref. [19]. We are grateful to
Jorma Louko for a discussion of this point.

7For a simple review of Picard-Lefschetz theory see, e.g., ref. [35].
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Figure 1. Examples of convergent infinite contours in the complex N plane. The singularities
N = {0, 3} are shown in circles.

Figure 2. The steepest descent contours for u > 1 and Hb = 1. The arrowheads point to the
direction where Re(≠S̃E) decreases. The saddles Ñi are marked with solid dots and the singularities
with circles. Note the branch cut at Ñ œ (3+, +Œ). The HH contour corresponds to the solid curve
encircling the singularity N = 0; it is dominated by saddles N1, N2.

can be distorted into the contour passing through the saddle points N1, N4, N2 and N5. This
contour is dominated by the saddles at N1 and N2.

We now consider the case of a < H≠1, when all saddle points lie on the real axis. The
steepest descent and ascent lines in this case are illustrated in figure 3. The contour encircling
N = 0 can now be deformed into the contour passing through N4 and N5. It is dominated
by the saddle at N4.
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Figure 3. The steepest descent contours for u < 1 and Hb = 1. In this case, all the saddles are real.
The HH contour corresponds to the solid curve encircling the singularity N = 0 and dominated by
saddle N4.

We finally comment on other possible choices of the integration contour. A contour of
type A in figure1 crosses the real axis at N < 0. After it is closed by adding an infinite arc,
this contour does not encircle any singularities, so it can be continuously shrunk to a point.
The wave function defined by this contour is therefore identically zero.

Another possibility is to choose the branch cut to lie at Ñ < 3 on the real axis and choose
the contour that crosses the real axis at Ñ > 3 (see contour C in figure 1). For a > H≠1 such
a contour can be deformed into a contour that runs along the steepest descent/ascent lines
from N3 to N1, then takes a turn and goes to N5, and from there runs above the branch cut
along the real axis to N æ ≠Œ. This has to be supplemented by another half of the contour
that runs symmetrically from N3 through N2 and N5 to ≠Œ in the lower half-plane. The
resulting wave function is then non-oscillating, with the main contribution given by the real
saddle point N3. This is in conflict with the defining property (3) of the HH wave function.
We thus conclude that the only acceptable choice of integration contour is an infinite contour
of type B or equivalently a closed contour encircling the singularity at N = 0.

4.5 Perturbing the saddle points

To make a connection with JT gravity, we need to know the KS wave function for b very close
but not equal to H≠1. The saddle points and the steepest descent/ascent lines will then be
slightly di�erent from those we found in the subsections 4.4. For a > H≠1 we are interested
in the complex saddle points N1,2 which dominate the integral. Let us define the shift x of
the saddle point Ñi as

Ñ = Ñi + x, (4.41)

where i = 1, 2, Ñi are given by (4.27) and |x| π 1. We insert this into the action and expand
to second order in x. This gives:

S̃E ¥ ≠1 û 2i(1 ≠ Hb)
Ô

u ≠ 1 ≠ 2(1 ≠ Hb)x + f(u)x2 + O(x3) (4.42)

– 20 –



J
C
A
P
0
3
(
2
0
2
2
)
0
5
6

Figure 4. The perturbed steepest descent contours for u > 1 and Hb > 1. The HH contour does not
pass through the saddles N4 and N5.

where the upper and lower signs are for N1 and N2 respectively and the function f(u) is
given in the appendix.

The action is extremized with
x = 1 ≠ Hb

f(u) . (4.43)

Since x depends linearly on (1 ≠ Hb) the contribution of the x-dependent terms to the action
is O[(1 ≠ Hb)2]. Thus the action of the dominant saddle points is

SE ¥ ≠ fi

H2 û 2ifi

H2 (1 ≠ Hb)


H2a2 ≠ 1 + O[(1 ≠ Hb)2]. (4.44)

The steepest descent/ascent lines can be calculated numerically for any values of a and
b. For Ha > 1 the character of these lines changes when Hb is moved away from 1, even for
an arbitrarily small amount. For Hb > 1, the steepest descent contour passing through N1
follows nearly the same path as for Hb = 1, but short of reaching N5 it makes a turn and runs
along the real axis towards N = 0. Then it runs back, repeats the same path symmetrically
in the lower half-plane and arrives at N2. From there it runs towards N4 following nearly
the same path as for Hb = 1, but short of reaching N4 it makes a turn and runs towards the
singularity at N = 3. Finally it runs back symmetrically and returns to N1. This contour is
illustrated in figure 4. The only change compared to the original Hb = 1 contour is that small
segments near N4 and N5 are now replaced by sharp spikes running towards the singularities
and back. The integrals over the upper and lower halves of these spikes nearly cancel one
another, so their combined contribution to the wave function is very small.

For Hb < 1 the situation is very similar, except now instead of shooting to the right the
spikes shoot to the left. The spike originating near N5 runs along the negative real axis to
≠Œ and back, and the spike originating near N4 runs to N = 0 and back (see figure 5). As
before, the contour is dominated by the saddles N1 and N2, with the spikes making a very
small contribution.

– 21 –



J
C
A
P
0
3
(
2
0
2
2
)
0
5
6

Figure 5. The perturbed steepest descent contours for u > 1 and Hb < 1. The HH contour does not
pass through the saddles N4 and N5.

For Ha < 1, small deviations of Hb from 1 do not change the character of the steepest
descent lines. The contour is still dominated by the real saddle N4, and the steepest descent
line passing through this saddle also passes through N5. At some critical value of Hb > 1
the saddles N1 and N4 merge, and at greater values they become a complex conjugate pair.
A similar situation occurs for saddles N2 and N4 when Hb < 1. Generally, the saddle N4
remains real in a range of (Hb ≠ 1) that depends on u. It can be shown that as u increases
from 0 to 1, the range of (Hb ≠ 1) for which N4 remain real shrinks from ≥ 1 until it reaches
zero at u = 1, where the saddles N1,2,4 merge. For example, when u π 1 the contour behavior
does not change qualitatively for 0 < Hb <

Ô
3 and for u = 0.9 the range is |1 ≠ Hb| ≥ 0.008.

It would be interesting to map the behavior of the contours and saddles for the full range of
a and b, but we will not attempt this here.

4.6 The Hartle-Hawking wave function

We are now ready to calculate the semiclassical Hartle-Hawking wave function.

4.6.1 Ha > 1

For Ha > 1 we need to expand the action (4.22) up to quadratic order in (N ≠ Ni) at saddle
points Ni (i = 1, 2) and then do the Gaussian integrals. Up to an overall numerical factor,
the corresponding contributions to the wave function are

bÕ(Ni)
Ni

Ô
3 ≠ H2Ni

Û
1

SNN (Ni)
e≠SE(Ni). (4.45)

Here the factor bÕ(Ni)/
1
Ni

Ô
3 ≠ H2Ni

2
comes from eq. (4.40), SE(Ni) from eq. (4.44) and

SNN = ˆ2SE
(ˆN)2 . (4.46)
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At N = Ni we have

SNN (N1,2) = 6fi
!
H2a2 ≠ 1

"

a4H2 (H2a2 + 3)
Ë
≠2 ± 2i


H2a2 ≠ 1 ± iH2a2


H2a2 ≠ 1

È
(4.47)

and
bÕ(Ni)

Ë
N2

i

1
3 ≠ H2Ni

2
SNN (Ni)

È≠1/2
= H


6fi (H2a2 ≠ 1)

, (4.48)

Combining the contributions of the two saddle points, we obtain an approximate semiclassical
HH wave function. Up to an overall constant factor it is given by

�HH(Ha > 1) Ã A exp
3

fi

H2

4
cos

3 2fi

H2 (1 ≠ Hb)


H2a2 ≠ 1
4

, (4.49)

where
A = 1Ô

H2a2 ≠ 1
. (4.50)

Note that we neglected corrections O(1≠Hb) in the prefactor, but kept them in the exponent,
which includes a large factor H≠2. The WKB approximation is essentially an expansion in
powers of H. It is easily verified that the wave function (4.49) satisfies the WDW equation
to the leading order in H and (Hb ≠ 1).

As one might expect, �HH exhibits the characteristic WKB divergence at the turning
point a = 1/H. This divergence is much milder than that in the IKTV solution. The WKB
approximation breaks down near the turning point, and we expect the exact wave function
to remain finite there.

4.6.2 Ha < 1

For Ha < 1 the integral over N is dominated by the saddle point N4. This case is di�cult
to handle analytically, so we will only consider the limiting case Ha π 1. In this regime, we
are able to go beyond the approximation Hb ¥ 1, as long as the qualitative behavior of the
contours and the respective saddles does not change (see section 4.5).

Let us first note that for Ha π 1 and Hb ¥ 1, eq. (4.34) gives

H2N4 ¥
Ú

3
2Ha. (4.51)

Let us further assume (to be verified shortly) that H2N4 = O(Ha) in a wide range of Hb . 1.
Then the action can be approximated by8

SE ¥ fiN

3 (H2b2 ≠ 3) ≠ fi

N
a2b2 (4.52)

and the corresponding saddles are

N4,5 = ± ab


1 ≠ H2b2/3
. (4.53)

8This can be seen from eq. (A.1) for SE in the appendix by noticing that the first two terms in both of the
big parentheses in that equation are O(Ha) while the last terms are O(H2

a
2).
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Figure 6. A graph of (log �HH, a) for bH = 1. A numerical WKB solution for the HH wavefunction
is shown by the solid curve. It diverges abruptly at aH = 1, due to the WKB prefactor. The blue
dashed line corresponds to the aH π 1 approximation. Note that both curves diverge to ≠Œ at
a = 0 due to the pre-exponential factor

Ô
a in (4.55).

We note that eq. (4.53) agrees with our assumption that H2N4 = O(Ha) for Hb . 1, verifying
that this assumption is consistent. Substituting (4.53) into the action we obtain

SE ¥ ≠2fiabÔ
3


3 ≠ H2b2. (4.54)

The WKB prefactor in the regime Ha π 1 can be found along the same lines as for Ha > 1.
To lowest order in Ha, it is proportional to

Ô
a. Thus, the wave function is given by

�HH Ã
Ô

a exp
32fiabÔ

3


3 ≠ H2b2
4

. (4.55)

This approximation applies for H π Ha π 1, which is a wide range in the sub-Planckian
regime H π 1. Also, we have to constrain the values of b to Hb <

Ô
3 in order for the saddles

to remain real and the wavefunction to be non-oscillatory. (Note that our approximation
breaks down at Hb ¥

Ô
3, where the lapse parameter N in eq. (4.53) becomes large.)

Keeping the scale factor a fixed, the solution has a maximum at Hb =


3/2. This peak
is not in the range Hb ¥ 1 which is of most interest for dimensional reduction to JT. Note,
however, that the maximum of the wave function (4.55) at a fixed ã = a

Ô
Hb is at Hb = 1.

This is more relevant, since ã plays the role of the scale factor after dimensional reduction.
A numerical WKB solution for �HH in the full range a < 1/H with Hb = 1 is shown in
figure 6.

Finally, it can be verified that the wave function (4.55) satisfies the WDW equation to
the leading order in H and that it grows exponentially with a, as expected.
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5 Probability distribution

Probability distributions in minisuperspace quantum cosmology can be expressed in terms
of the conserved current density

j– = i


≠ff–— (�úˆ—� ≠ �ˆ—�ú) , (5.1)
ˆ–j– = 0, (5.2)

where f–— is the minisuperspace metric and f = det(f–—). In a d-dimensional minisuperspace
one of the coordinates (or a combination of coordinates), call it T , can be designated as a
“clock”. Then the probability distribution for the other coordinates on surfaces of constant
T is given by

dP Ã j–d�–, (5.3)

where d�– is the (d ≠ 1)-dimensional surface element. If the clock variable T exhibits semi-
classical behavior and its classical evolution is monotonic (which are the properties one can
reasonably require from a good clock), then it can be shown that the probability defined by
eq. (5.3) is positive definite [36].

An obvious problem with the HH wave function is that it is real, so the current is
identically zero. In the classically allowed range Ha > 1 this can be circumvented if we cal-
culate the current using only the branch of the wave function describing expanding universes.
Eq. (4.49) for �HH would then be replaced by

�+(Ha > 1) Ã 1Ô
H2a2 ≠ 1

exp
52fii

H2 (Hb ≠ 1)


H2a2 ≠ 1 + F (a)(Hb ≠ 1)2 + O
1
(Hb ≠ 1)3

26
,

(5.4)
where we have dropped the constant factor exp

#
fi/H2$

. We have also included a quadratic
in (Hb ≠ 1) correction in the exponential; we shall see that it plays an important role in the
probability distribution. The coe�cient function F (a) is given in the appendix.

In the KS model, a natural choice for the clock variable is the scale factor a (on the
expanding branch of the wave function). Alternatively, we can use c = a2b, since we are
working in the regime where b ¥ H≠1 = const. We shall adopt the latter choice, which is
more convenient. It is also more appropriate for the dimensional reduction, since c Ã ã2,
where ã is the scale factor of the JT model. Then the probability distribution for b, eq. (5.3),
takes the form9

dP Ã jcdb, (5.5)

where
jc Ã ≠i (�úˆb� ≠ �ˆb�ú) . (5.6)

Substituting the wave function �+ in jc and setting Hb = 1 in the pre-exponential factor,
we obtain

dP Ã dbÔ
H2a2 ≠ 1

exp
Ë
2(Hb ≠ 1)2ReF (a)

È
. (5.7)

The real part of F (a) is calculated in the appendix:

ReF (a) = ≠ 2fi

3H2(H2a2 ≠ 1) . (5.8)

9Note that with b and c used as minisuperspace coordinates, the metric is f
bc = const., f

bb = f
cc = 0, and

its determinant is f = ≠(fbc)≠2 = const.
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Thus the probability distribution is

dP Ã dbÔ
H2a2 ≠ 1

exp
C

≠ 4fi(Hb ≠ 1)2

3H2(H2a2 ≠ 1)

D

. (5.9)

There are a few interesting things to note about this distribution. It is peaked at b = H≠1

with variance ”b ≥ Ha. Our approximations are accurate for ”b π H≠1, that is for

H≠1 . a π H≠2. (5.10)

The distribution is obviously normalizable. Moreover, we note that
⁄ Œ

≠Œ

dP

db
db = const., (5.11)

independent of a, so we can normalize the distribution to one. This is a direct consequence
of conservation of j–.

6 Back to JT

Once we have found the HH wave function �(KS)
HH (a, b) for the KS model, we can define the

HH wave function for JT gravity as the wave function obtained from �(KS)
HH by dimensional

reduction. This amounts to expressing the scale factors a, b in terms of the JT variables
ã, „ using the connection formulas (3.15) and adding an extra factor of ã to account for the
di�erence between � and �̃ in the JT model.

An issue that needs to be addressed is that of the boundary conditions (4.12) that we
used in the path integral for �(KS)

HH . These boundary conditions were imposed to ensure a
smooth closure of the geometry at t = 0; they are equivalent to a(0) = 0, ȧ(0)/N = 1.
However, after dimensional reduction the new scale factor is given by ã = a

Ô
Hb, so the

appropriate boundary conditions would now be

ã(0) = 0, ˙̃a(0)/N = 1. (6.1)

This is equivalent to (4.12) only if Hb(0) = 1. Requiring in addition that the dilaton is
smooth at t = 0, we should add the condition

„̇(0) = 0. (6.2)

As we discussed in section 4.1, a smooth closure of a classical S1 ◊ S2 geometry re-
quires three boundary conditions, while only two conditions can be consistently imposed in
quantum theory. Classically, the three conditions are not independent and any two of them
imply the third. In the present case the situation is similar: it follows from the bound-
ary conditions (4.12) that Hb(0) = 1 if the constraint equation (3.5) is satisfied. Thus the
boundary conditions that we used are equivalent to smooth closure conditions for JT model
at the classical level. Quantum mechanically, di�erent choices of two conditions out of three
may be inequivalent, yielding wave functions satisfying WDW equations with di�erent factor
orderings. One can expect, however, that in the semiclassical regime these wave functions
will be close to one another, di�ering perhaps only in the pre-exponential factor.10

10The semiclassical wave function for an FRW universe with a uniform scalar field „ was studied in ref. [3] for
di�erent factor orderings in the WDW equation. A change of factor ordering had an e�ect on pre-exponential
factor, but it did not a�ect the semiclassical probability distribution for „. One can expect a similar situation
to occur in the JT model. Since no particular choice appears to be preferred, we shall proceed to use our
�(KS)

HH
for dimensional reduction.
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For Hb ¥ 1 the relations (3.15) become

Hb ¥ 1 + 2„H2 , a ¥ ã(1 ≠ „H2). (6.3)

Then in the classically allowed range Ha > 1 the wave function (4.49) becomes

�HH ≥ ãÔ
H2ã2 ≠ 1

exp
3

fi

H2

4
cos

1
4fi„


H2ã2 ≠ 1

2
, (6.4)

were we have neglected H2 corrections to the prefactor.
In the classically forbidden region we can use the small-Ha solution (4.55) to obtain the

JT wave function for Hã π 1. We find11

�HH ≥ ã3/2 exp
5 4ãfiÔ

6H

Ò
1 ≠ 6„2H4

6
, (6.5)

where we have neglected corrections to the prefactor. This expression is valid for ãH π 1
and „2H4 < 1/6. The wave function peaks at „ = 0 at a fixed ã. It can be shown that it
satisfies the WDW equation of JT gravity (2.17) to the leading order.

Similarly to the KS model, the expanding branch of the wave function (6.4) can be used
to find the probability distribution for the dilaton field „. The di�erence here is that now
the conserved current is given by eq. (5.1) with � replaced by �̃ = �/a. The reason is that
the di�erential operator in eq. (2.17) is not the covariant Laplacian, because of nonstandard
factor ordering in Henneaux’s quantization of the JT model. As a result the probability
distribution is obtained by simply using the connection formulas (3.15) in eq. (5.9) without
any extra factors of ã:

dP Ã d„Ô
H2ã2 ≠ 1

exp
C

≠ 16fiH2„2

3(H2ã2 ≠ 1)

D

. (6.6)

We expect this expression to be accurate for „ . H≠1”b π H≠2 and ã satisfying the condi-
tions (5.10).

We note that the classical solutions (2.10) of the JT model

a = H≠1 cosh(Ht), „ = „0 sinh(Ht) (6.7)

satisfy
„2

H2a2 ≠ 1 = „2
0 = const. (6.8)

These solutions are parametrized by „0 and eq. (6.6) gives a probability distribution for this
parameter:

dP Ã d„0 exp
A

≠16fiH2„2
0

3

B

. (6.9)

This distribution can be interpreted as describing an ensemble of (1 + 1)D universes that
nucleate with ã ¥ H≠1, „ ¥ 0 and „̇ ¥ H„0 and then evolve according to eqs. (6.7). Even
though the approximations we used to derive the wave function break down at ã & H≠2, the
classical solutions become increasingly accurate at large ã and we expect the distribution (6.9)
to remain accurate as well.

11For this calculation, it is helpful to rearrange the relation of „ and b in the form:


2

Hb


1 ≠ 6„2H4 =Ô

3 ≠ H2b2.
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7 Discussion

Our main goal in this paper was to define and calculate the Hartle-Hawking wave function
�HH in a (1 + 1)-dimensional minisuperspace JT model with a cosmological constant � =
H2 > 0. This model is closely related to that of a homogeneous 4D universe with the same
cosmological constant and having spatial topology S1 ◊ S2 (the KS model). Our approach
was first to find �HH for the KS model using its definition in terms of a Euclidean path
integral and then to use the exact correspondence between the two models to define �HH
for JT gravity. In our analysis of KS quantum cosmology we followed the work of Halliwell
and Louko [19]. However, this work was mostly limited to the case of a vanishing �, so to
implement our program we had to tackle the nontrivial task of extending it to � > 0.

The wave function that we found is normalizable, so we could obtain a normalized
probability distribution for the dilaton in the JT model. Note, on the other hand, that the
leading-order semiclassical wave function found by Maldacena et al. [13] is not normalizable,
even after including a Schwarzian prefactor.

Our wave function is di�erent from the exact WDW solution obtained earlier by Iliesiu
et al. [14]. This di�erence is due to a di�erent choice of the boundary conditions. The HH
wave function was originally defined as a path integral over smooth Euclidean geometries
with a single boundary. We adopted this definition here and imposed the condition of smooth
closure at a = 0, where a is the radius of S1. On the other hand, ref. [14] imposed boundary
conditions at large a requiring that �HH has the asymptotic form suggested by Schwarzian
theory, which accounts for quantum fluctuations of the boundary curve. Both boundary
conditions seem to be reasonable, but it appears that they are not compatible with one
another.

The wave function obtained in [14] using the Schwarzian boundary conditions has a
strong singularity at a = H≠1.12 We found that this wave function is not a solution of
the WDW equation. Instead, it satisfies an equation with a singular source at a = H≠1.
Furthermore, we showed that this wave function is closely related to the transition amplitude
in the KS model from a = b = H≠1 to specified values of a and b at the boundary, where b
is the radius of S2. Since a state with a = b = H≠1 (which corresponds to a = H≠1, „ = 0
in the JT model) can hardly be interpreted as “nothing”, we believe that the wave functions
discussed in [14] cannot be interpreted as the HH wave function. On the other hand, the
wave function we found in the present paper satisfies the WDW equation and has only a mild
singularity at a = H≠1, which one always expects in a WKB wave function at a classical
turning point. It seems therefore that our choice of boundary conditions yields a more
reasonable result for the HH wave function.

A possible reason why the Schwarzian boundary condition at large a fails to yield
a suitable candidate for the HH wave function is that it leaves the geometry at small a
completely unconstrained. It is assumed that the geometry closes o� at a = 0 in a nonsingular
way. However, this condition is not explicitly enforced, so one should not be surprised if
geometries included in the path integral include conical singularities and even gaps.

12An alternative approach, suggested in ref. [13], was to derive �HH by analytic continuation from JT gravity
with a negative cosmological constant. A Euclidean dS metric (with H = 1) is ds

2 = (1≠r
2)d◊

2+(1≠r
2)≠1

dr
2.

With r = cosh fl, this becomes ds
2 = ≠dfl

2 ≠ sinh2
fld◊

2, which is minus Euclidean AdS metric. This method
gives the same wave function as the Schwarzian boundary condition [14]. We note that the origin fl = 0
in AdS analytically continues to the horizon (r = 1) in dS. This may explain why the transition amplitude
from “nothing” (fl = 0) to some fl > 0 in AdS could be related to the transition amplitude from the horizon
(a = H

≠1) to some a > H
≠1 in dS.
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It is perhaps not surprising that the wave function we found using the boundary condi-
tion of smooth closure does not exhibit Schwarzian asymptotic behavior. An obvious reason
is that our analysis was restricted to minisuperspace, so the Schwarzian degrees of freedom
were not included. On the other hand, Iliesiu et al. [14] argued that the minisuperspace
wave function is simply related to the wave functional of full JT gravity. This issue needs to
be better understood. Another possibility is that the condition of smoothness (absence of a
conical singularity) at a = 0 is too restrictive. We know that the metrics contributing to the
path integral are generally rather irregular, so the Hartle-Hawking proposal of integrating
over smooth metrics should not be taken too literally. Finally, the Schwarzian boundary con-
dition was imposed in ref. [14] assuming that the dynamics of the boundary curve at large
a are completely decoupled from the geometry at small a. It is conceivable, however, that
the decoupling is incomplete, so the conditions of closure and maybe smoothness modify the
asymptotic behavior of �HH.

In this paper we utilized the familiar 4D minisuperspace framework in order to explore
the closely related JT quantum cosmology and to define the corresponding HH wave function.
Due to the simplicity of JT theory, one can hope that with better understanding the relation
between the two models will be reversed and JT cosmology will provide important insights
for the 4D case. Towards this goal, it would be interesting to do a path integral calculation of
�HH directly in JT model, without a reference to KS and without using the minisuperspace
truncation. This would help to understand the Schwarzian issue that we referred to above.
It would also be interesting to define the tunneling wave function in both JT and KS models.
We hope to return to these problems in future work.
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A Higher order corrections

The rescaled action of eq. (4.21) can be split into two components. The first is S̃E0 =
S̃E(bH = 1) and the second depends linearly on (1≠H2b2). Specifically, using the definitions
for S̃E, Ñ , u and defining v = H2b2 we can decompose the action in the following way:

S̃E =
A

≠2Ñ

3 ≠ u

Ñ
≠ (Ñ2 + 3u)2

12Ñ2(Ñ ≠ 3)

B

+
A

Ñ

3 ≠ u

Ñ
≠ (Ñ2 + 3u)2

12Ñ2(Ñ ≠ 3)

B

(v ≠ 1) . (A.1)

Note that this expression is exact and not an expansion to first order in (1 ≠ H2b2).
Setting v = 1 in the action (A.1) and taking a derivative with respect to Ñ , we obtain

eq. (4.26) for the saddles. These are the saddles of the zeroth order action S̃E0. We will refer
to the 5 solutions of this equation as Ñi with i = {1, 2, 3, 4, 5}.

It can be shown that if we introduce a perturbation x as in eq. (4.41), Ñ = Ñi + x, the
action is extremized for

x =
31 ≠ v

2v

4 1
f(Ñi, u)

+ 1
v

h(Ñi, u) (A.2)
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where the function h vanishes at all saddles Ñi. Thus the perturbed saddles will be given by

Ñı

i = Ñi +
31 ≠ v

2v

4 1
f(Ñi, u)

. (A.3)

Setting Ñ = Ñı

i
in the action (A.1) and expanding to 2nd order in (1 ≠ v) we notice the

following. The 0-th order term does not depend on the function f , as expected. The 1st
order term takes the form
S

U
A

Ñi

3 ≠ u

Ñi

≠ (Ñ2
i

+ 3u)2

12Ñ2
i
(Ñi ≠ 3)

B

+ 3
8f(Ñi, u)

1
Ñ2

i
≠ 2Ñi + u

2 1
Ñ3

i
≠ 4Ñ2

i
≠ 3Ñiu + 6u

2

(Ñi ≠ 3)2Ñ3
i

T

V (v ≠ 1) .

(A.4)
From (4.26) we see that the term depending on f vanishes. Thus, the action up to first order
corrections is

S̃E =
A

≠2Ñi

3 ≠ u

Ñi

≠ (Ñ2
i

+ 3u)2

12Ñ2
i
(Ñi ≠ 3)

B

+
A

Ñi

3 ≠ u

Ñi

≠ (Ñ2
i

+ 3u)2

12Ñ2
i
(Ñi ≠ 3)

B

(v ≠ 1)+O
Ë
(1 ≠ v)2

È
.

(A.5)
This equation is the same as eq. (A.1) with Ñ = Ñi. This means that the 1st order corrections
to the action are obtained by finding the saddles for v = 1 and inserting them into the action
for v ”= 1. The perturbed saddles contribute only to 2nd order and higher corrections to the
action. Note that we did not make any specification for which saddle we are referring to.
This analysis is true for all 5 saddles.

In the classically allowed region the contributing saddles for the Hartle-Hawking solution
are N1, N2. In this regime the function f(N1,2, a) is given by

f(N1,2) = 3(1 ≠ H2a2)
2 ± 2i

Ô
H2a2 ≠ 1 ± iH2a2

Ô
H2a2 ≠ 1

. (A.6)

Thus, the first order correction to the saddles with respect to (1 ≠ Hb) is given by

H2N1,2 = 1 ± i


H2a2 ≠ 1 ≠ (1 ≠ Hb)
A

2 ± 2i
Ô

H2a2 ≠ 1 ± iH2a2Ô
H2a2 ≠ 1

3(H2a2 ≠ 1)

B

(A.7)

and the action evaluated at N1,2 up to second order corrections is

SE(N1,2) ¥ SE1(N1,2) ≠ fi(1 ≠ Hb)2

3H2

A
2 ± 2i

Ô
H2a2 ≠ 1 ± iH2a2Ô

H2a2 ≠ 1
1 ≠ H2a2

B

(A.8)

where SE1(N1,2) is the action evaluated at N1,2 up to first order corrections in (1 ≠ Hb).
From the above we can specify the coe�cient function F (a) in eq. (5.4) as

F (a) = fi

3H2

A
2 ± 2i

Ô
H2a2 ≠ 1 ± iH2a2Ô

H2a2 ≠ 1
1 ≠ H2a2

B

. (A.9)

Its real part is
ReF (a) = 2fi

3H2(1 ≠ H2a2) . (A.10)
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