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Abstract

Directional data consist of observations distributed on a (hyper)sphere, and appear in many
applied fields, such as astronomy, ecology, and environmental science. This paper studies
both statistical and computational problems of kernel smoothing for directional data. We
generalize the classical mean shift algorithm to directional data, which allows us to identify
local modes of the directional kernel density estimator (KDE). The statistical convergence
rates of the directional KDE and its derivatives are derived, and the problem of mode
estimation is examined. We also prove the ascending property of the directional mean shift
algorithm and investigate a general problem of gradient ascent on the unit hypersphere. To
demonstrate the applicability of the algorithm, we evaluate it as a mode clustering method
on both simulated and real-world data sets.

Keywords: Directional data, mean shift algorithm, kernel smoothing, mode clustering,
optimization on a manifold

1. Introduction

A directional data set (or simply directional data) is the collection of observations on a
(hyper)sphere. It occurs in many scientific problems when measurements are taken on the
surface of a spherical object, such as Earth or other planets. For instance, the locations
of earthquakes are often represented by their longitudes and latitudes (Taylor and Yin,
2009; Craig et al., 2011); thus, the locations can be viewed as random variables on a two-
dimensional (2D) sphere. In astronomical surveys, the locations of galaxies are usually
recorded by their angular positions (right ascensions and declinations) in the sky, leading to
observations on a 2D sphere (York et al., 2000; Skrutskie et al., 2006; Abbott et al., 2016).
In planetary science, observations often comprise locations on a planet, such as Mars, and
can also be considered as random variables on a 2D sphere (Cabrol and Grin, 2010; Barlow,
2015; Garcia-Portugués et al., 2020).

These observations on a sphere can be regarded as independently and identically dis-
tributed random variables from a density function supported on the sphere (called a direc-
tional density function). The local modes of a density function are often of research interest
because they signal high density areas (Scott, 2012) and can be used to cluster data (Sasaki
et al., 2018; Chacon, 2020). However, identifying the local modes of a directional density
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Figure 1: Clustering of directional data using the proposed directional mean shift algorithm
(Algorithm 1). Additional details of the simulated data can be found in Section 6.1.2.

function is a nontrivial task that involves both statistical and computational challenges.
From a statistical perspective, it is necessary to obtain an accurate estimator of the un-
derlying directional density (as well as its derivatives). From a computational perspective,
it is needful to design an algorithm to efficiently compute the local modes of the density
estimator.

To address the aforementioned challenges, we consider the idea of kernel smoothing be-
cause the kernel density estimator (KDE; Rosenblatt 1956; Parzen 1962) in the Euclidean
data setting is highly successful. Its statistical properties have been well-studied (Wasser-
man, 2006; Scott, 2015; Chen, 2017), and the local modes of a Euclidean KDE are often good
estimators of the local modes of the underlying density function (Parzen, 1962; Romano,
1988; Vieu, 1996; Chen et al., 2016). Moreover, in Euclidean KDEs, there is an elegant
algorithm known as the mean shift algorithm (Fukunaga and Hostetler, 1975; Cheng, 1995;
Comaniciu and Meer, 2002; Carreira-Perpindn, 2015) that allows us to numerically obtain
the local modes at a low cost.

Although kernel smoothing has been applied to directional data since the seminal work
of Hall et al. (1987) and other studies have been conducted on analyzing its performance as
a density estimator (Bai et al., 1988; Zhao and Wu, 2001; Garcia-Portugués, 2013; Ley and
Verdebout, 2018), little is known about the behavior of the derivatives of a directional KDE.
To the best of our knowledge, Klemela (2000) was the only work to examine the derivatives
of a particular type of directional KDE; however, their estimators are rarely used in practice.
Thus, the statistical properties of the gradient system induced by a general directional KDE
and the resulting local modes are still open problems.

Computationally, the standard mean shift algorithm was first generalized to directional
data setting by Oba et al. (2005). Using the directional mean shift algorithm, we are able
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to determine the local modes of the directional KDE and perform mode clustering (mean
shift clustering) of spherical data. Figure 1 presents an example of mode clustering with
our proposed algorithm. However, the algorithmic rate of convergence of the mean shift
algorithm with directional data remains unclear. We address this problem by viewing the
directional mean shift algorithm as a special case of gradient ascent methods on the g¢-
dimensional unit sphere Q, = {x € R?™! : || =23+ + 22,1 =1} and develop some
linear convergence results for the general gradient ascent method on €.

Notation. Bold-faced variables (e.g., x, ) represent vectors, while capitalized (bold-
faced) variables (e.g., X1, ..., X,;) denote random variables (or random vectors). The set
of real numbers is denoted by R, while the unit ¢-dimensional sphere embedded in R%+!
is denoted by Q4. The norm ||-||, is the usual Euclidean norm (or so-called Ls-norm) in
R? for some positive integer d. The directional density is denoted by f unless otherwise
specified, and the probability of a set of events is denoted by P. If a random vector X
is distributed as f(-), the expectations of functions of X are denoted by Ef or E when
the underlying distribution function is clear. We use the big-O notation h(x) = O(g(z))

if the absolute value of h(z) is upper bounded by a positive constant multiple of g(z) for
|h(z)]
g(z)
vectors, the notation op(1) is short for a sequence of random vectors that converges to zero

in probability. The expression Op(1) denotes a sequence that is bounded in probability.
Additional details of stochastic 0 and O symbols can be found in Section 2.2 of van der
Vaart (1998). The notation a, < b, indicates that z—: has lower and upper bounds away
from zero and infinity, respectively.

Main results.

= 0. For random

all sufficiently large x. In contrast, h(x) = o(g(x)) when lim,_,

1. We revisit the mean shift algorithm with directional data (Algorithm 1) and provide
some new insights on its iterative formula, which can be expressed in terms of the
total gradient of the directional KDE (Sections 3 and 4.1).

2. From the perspective of statistical learning theory, we establish uniform convergence
rates of the gradient and Hessian of the directional KDE (Theorem 2 and 4).

3. Moreover, we derive the asymptotic properties of estimated local modes around the
true (population) local modes (Theorem 6).

4. With regard to computational learning theory, we prove the ascending and converging
properties of the directional mean shift algorithm (Theorems 8 and 11).

5. In addition, we prove that the directional mean shift algorithm converges linearly to
an estimated local mode under suitable initialization (Theorem 12).

6. We demonstrate the applicability of the directional mean shift algorithm by using it
as a clustering method on both simulated and real-world data sets (Section 6).

Related work. The directional KDE has a long history in statistics since the work of
Hall et al. (1987). Its statistical convergence rates and asymptotic distributions have been
studied by Bai et al. (1988); Zhao and Wu (2001). In addition, Hall et al. (1987); Bai et al.
(1988); Garcia-Portugués (2013); Garcia-Portugués et al. (2013) considered the problem of
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selecting the smoothing bandwidth of directional KDEs. A study by Klemel& (2000) was the
first to estimate the derivatives of a directional density. More generally, Hendriks (1990);
Pelletier (2005); Berry and Sauer (2017) considered the nonparametric density estimation on
(Riemannian) manifolds (with boundary). The uniform convergence rate and asymptotic
results of the KDE on Riemannian manifolds have also been investigated in Henry and
Rodriguez (2009); Jiang (2017); Kim et al. (2019). As the unit hypersphere €2, is a ¢-
dimensional manifold with constant curvature and positive reach (Federer, 1959), their
analyses and results are applicable to the directional KDE.

The standard mean shift algorithm with Euclidean data is a popular approach to various
tasks such as clustering (Fukunaga and Hostetler, 1975), image segmentation (Comaniciu
and Meer, 2002), and object tracking (Comaniciu et al., 2003); see a comprehensive review
in Carreira-Perpindn (2015). Its convergence properties have been well-studied in Cheng
(1995); Li et al. (2007); Aliyari Ghassabeh (2013, 2015); Arias-Castro et al. (2016); Wang
et al. (2016). The algorithmic convergence rates of mean shift algorithms with Gaussian
and Epanechnikov kernels are generally linear, except for some extreme values of the band-
width (Carreira-Perpinan, 2007; Huang et al., 2018). It can be improved to be superlinear
by dynamically updating the data set for estimating the density (Zhang et al., 2006). There
are other methods to accelerate the mean shift algorithm by combining stochastic optimiza-
tion with blurring or random sampling (Carreira-Perpinan, 2006, 2008; Yuan and Li, 2009;
Hyrien and Baran, 2016). The mean shift algorithm with directional data was studied
by Oba et al. (2005); Kafai et al. (2010); Kobayashi and Otsu (2010); Shou-Jen Chang-
Chien et al. (2010); Chang-Chien et al. (2012); Yang et al. (2014) in the last two decades.
More generally, Tuzel et al. (2005); Subbarao and Meer (2006, 2009); Cetingul and Vidal
(2009); Caseiro et al. (2012); Ashizawa et al. (2017) proposed their mean shift algorithms
on manifolds using logarithmic and exponential maps, heat kernel, or direct log-density es-
timation via least squares. These mean shift algorithms on general manifolds are applicable
to directional data, though they are more complicated than our interested method.

Outline. The remainder of the paper is organized as follows. Section 2 reviews some
background knowledge on directional KDEs and differential geometry, while Section 3
provides a detailed derivation of the mean shift algorithm with directional data. Sec-
tion 4 focuses on the statistical learning theory of the directional KDE; we formulate the
gradient and Hessian estimators of directional KDEs and establish their pointwise and
uniform consistency results as well as a mode consistency theory. Section 5 considers
the computational learning theory of the directional mean shift algorithm; we study the
ascending and converging properties of the algorithm. Simulation studies and applica-
tions to real-world data sets are unfolded in Section 6. Proofs of theorems and techni-
cal lemmas are deferred to Appendix D. All the code for our experiments is available at
https://github.com/zhangyk8/DirMs.

2. Preliminaries

This section is devoted to a brief review of the directional KDE and some technical concepts
of differential geometry on €.
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2.1 Kernel Density Estimation with Directional Data

Let X1,..., X, € Q, C R+ be a random sample generated from the underlying directional
density function f on €, with qu f(x) wg(dx) = 1, where w, is the Lebesgue measure on
Q4. A well-known fact about the surface area of €2, is that

41
_ or'e .
Wy =wq () = @ for any integer ¢ > 1, (1)
where I is the Gamma function defined as T'(z) = [;° #* e~ “dx with the real part of the
complex integration variable z (if applicable) being positive. The directional KDE at point
x € Q is often written as (Hall et al., 1987; Bai et al., 1988; Garcia-Portugués, 2013):

~ c "~ — 2T X;
fu(x) = h’zl(L)ZL <1h2XZ) ) (2)
i=1

where L is a directional kernel (a rapidly decaying function with nonnegative values and
defined on (—dy,00) C R for some constant 6, > 0)!, h > 0 is the bandwidth parameter,
and cp 4(L) is a normalizing constant satisfying

T
na(D) = [ L (P55 )ealdn) = 1n(0) = 100(D) 3)

with Ag(L) = @41 [ Ler)rd=1(2 — rh?2)81dr and A (L) = 282w,y [2° L(r)rsLdr;
see (a) of Lemma 21 in Appendix D.2 for details.

As in Euclidean kernel smoothing, bandwidth selection is a critical component in deter-
mining the performance of directional KDEs. There is extensive literature (Hall et al., 1987;
Bai et al., 1988; Taylor, 2008; Marzio et al., 2011; Oliveira et al., 2012; Garcia-Portugués,
2013; Saavedra-Nieves and Crujeiras, 2020) that investigates various reliable bandwidth
selection mechanisms. On the contrary, kernel selection is less crucial, and a popular can-
didate is the so-called von Mises kernel L(r) = e™". Its name originates from the famous
g-von Mises-Fisher (vMF) distribution on €, which is denoted by vMF(u, ) and has the
density

qg—1

fomr (5 p,v) = Cy(v) .exp(yu,Ta:) with  Cy(v) = (277)(1;;q 1 (1/)7 (4)

2

where p € €} is the directional mean, v > 0 is the concentration parameter, and

v\« 1
Ia(V) = — (2) / (1 - t2)a7% . €tht
= 1
2l (a+35) /-1

is the modified Bessel function of the first kind of order v. See Figure 2 for contour plots of
a von Mises-Fisher density and a mixture of von Mises-Fisher densities on 2o, respectively.

1. Normally, the kernel L is only required to be defined on [0, c0). We extend its domain to (—dr,00) C R
so that the usual derivatives of f, can be defined in R9™* or at least a small neighborhood around €2, in
R?™" under some mild conditions on L. See Section 2.2 and condition (D2’) in Section 4.2 for details.
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(a) fomr,2(2; p,v) with pp = (0,0,1) and v = 4.0 (b) 2 fomr2(®; p1,v1) + 2 - fomr 2 (5 p2, v2)
with K1 = (0703 1)al~"2 = (17070)7
and 1 =15 =5.0

Figure 2: Contour plots of a 2-von Mises-Fisher density and a mixture of 2-vMF densities

Using the von-Mises kernel, the directional KDE in (2) becomes a mixture of g-von
Mises-Fisher densities as follows:

~ 1 @& 1 1 - ' X;
fulx) =~ > four <5'3;Xz', ﬁ) = T > exp <T> '
=1

n(2m) "5 Ty (1/h2)ha—1 =
2

For a more detailed discussion of the statistical properties of the von Mises-Fisher dis-
tribution and directional KDE, we refer the interested reader to Mardia and Jupp (2000);
Banerjee et al. (2005); Pewsey and Garcia-Portugués (2021).

2.2 Gradient and Hessian on a Sphere

For a function defined on a manifold, its gradient and Hessian are defined through the
tangent space of the manifold. Whereas the formal definitions of the gradient and Hessian
on a general manifold are often involved (see Appendix B), their representations are simple
when the manifold is a (hyper)sphere €.

Let T, = T (€2,) be the tangent space of the sphere Q, at point « € §2,. For the sphere
24, the tangent space has a simple representation in the ambient space Rt as follows:

To~{ve RIH Ty = 0}, (5)

where Vi ~ V5 signifies that the two vector spaces are isomorphic. In what follows, the
expression v € T} indicates that v is a vector tangent to {1, at x.

A geodesic on () is a non-constant, parametrized curve 7y : [0, 1] — €, of constant speed
and (locally) minimum length between two points on €. It can be represented by part of
a great circle on the sphere €2,. For a smooth function f : 0, — R, its differential in the
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(tangent) direction v € T, with [|v]|, = 1 at point & € € is defined as follows. We first
define a geodesic curve « : (—¢, €) = Q; with a(0) = « and ¢/ (0) = v. Then the differential
(at @) dfy : T — R is given by

Falw) = 5 7o) ()

t=0

With this, the Riemannian gradient grad f(x) € T C R9T! is defined as

dfz(v) = (grad f(z),v) = v’ grad f(x). (7)

The Riemannian Hessian Hf(x) € T, x Ty is the second derivative of f within the
tangent space T,. We characterize its matrix representation as follows. Let v,u € T, C
R+ be two unit vectors inside the tangent space T,. We consider two geodesic curves
a,B : (—e€) = Qq with a(0) = (0) = « and &/(0) = v and /(0) = u. We define a
second-order differential as

d /
& fu(v,u) = Y (1) ‘t:O

and the Riemannian Hessian Hf(x) is a (¢ + 1) x (¢ + 1) matrix satisfying
d?fo(v,u) = (grad (grad f,v)(z),u) = v Hf(z)u (8)
and belongs to Ty x Ty. To ensure that H f(x) belongs to Ty x Ty, it has to satisfy

Hf(x) = (I — 22’ Hf(x) = Hf(@) (L1 — zz"), (9)
where 1,41 is the (¢ + 1) x (¢ + 1) identity matrix and (I,+1 — zz!) is a projection matrix
onto the tangent space Ty. Note that d?fz(v,u) = d?fz(u,v) can be easily verified.

Although (7) and (8) define the Riemannian gradient and Riemannian Hessian on a
sphere, it is unclear how they are related to the total gradient operator V, where Vg(x) €
R*! and the ¢-th component is

dg(z)

Va(@))e = 2

for any differentiable function g : R¥t! — R. Whereas the total gradient V cannot be
applied to a directional density (because it is only supported on €), the directional KDE
fh is well-defined outside of €, (after smoothly extending the domain of the kernel L from
[0,00) to R), and its total gradient th(m) € R%*! can be defined for any point & € RI+!,

To associate the total gradient with the Riemannian gradient, we consider the following
construction. Assume tentatively that f is well-defined and smooth in R9*1\ {0}, not limited
to Q4. In this case, V f(z) is well-defined R9™1\ {0} and all subsequent derivations can also
be applied to the directional KDE ﬁL For any point € {2, and unit vector v € Ty, we
define a geodesic curve « : (—¢,€) — Q4 with a(0) = « and o/(0) = v. Then, a differential
of f at © € Q) is a linear map characterized by

dfz(v) = %f(a(t)) = Vf(at) ()| =Vf(@)a'(0)=Vf(x)v

t=0 t=0
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Figure 3: Visualization of a differential of the directional density f on the unit sphere and
its gradient

for any given v € T. Thus, by the definition of the Riemannian gradient in (7),
dfz(v) = v grad f(x) = Vf(x) v = Tang (V f())" v,
and we conclude that

grad f(z) = Tang (V/ () = (Is1 —z2") V(). (10)

which is the tangent component of the total gradient V f(x). That is, the Riemannian
gradient is the same as the tangent component of the total gradient. In addition, we can
define the radial component of the total gradient as

Rad(Vf(z)) = Vf(z) — Tang (V f(z)) = 22’ V f(z). (11)

See Figure 3 for a graphical illustration.
In the same context, we use the fact that o”(0) = —ax for the geodesic curve o and
deduce that for any unit vector v € T, C RI+!,

d2
o Hf (@) = L5 f )]

W CORL0) N

dt
q+1 g+1 82 ’ q+1 P

= |33 g F () ol () + 3 5 F o) - of () (12)
i=1j=1 " i=1 " t=0

= a/(0)"VV f(a(0))a’ (0) + V f((0))"a" (0)
=o' VVf(z)v + Vf(z) a"(0)
= v (VVf(x) - Vf(x) xl)v.
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One may conjecture that (VVf(z) — Vf(x)Ta”(0)) is the Riemannian Hessian matrix.
However, it does not satisfy the projection condition in Equation (9). To this end, we select

Hf(@) = (Iypr — 2" [VVf(@) = V(@) @] (L1 — za). (13)

One can verify that the Hessian matrix in (13) satisfies both (8) and (9); thus, it charac-
terizes the relationship between the Riemannian Hessian and total gradient operator. More
importantly, the Hessian matrix in (13) is indeed the Riemannian Hessian on €2,. Detailed
definitions of Riemannian Hessians can be found in Section 2 and 4.2 of Absil et al. (2013).

3. Mean Shift Algorithm with Directional Data

In this section, we present a detailed derivation of the mean shift algorithm with directional
data. Given the directional KDE ﬁl(a}) in (2), Kobayashi and Otsu (2010); Yang et al.
(2014) introduced a Lagrangian multiplier to maximize f,(z) under the constraint %@ = 1
and derived the directional mean shift algorithm. To make a better comparison with the
standard mean shift algorithm with Euclidean data, we provide an alternative derivation.

n 2
Given a Euclidean KDE of the form p,(x) = :“T’Z ; k Q ‘ w%& 2> with a differentiable
kernel profile k : [0,00) — [0, 00), its (total) gradient has the following decomposition:

2)1 Z?lxlg(”thin)_x, (14)

2
—X;
Zﬁlg(Hwh 2)

term 2
where g(z) = —k/(z) is the derivative of the selected kernel profile. As noted by Comaniciu
and Meer (2002), the first term is proportional to the density estimate at  with the “kernel”
G(x) =cga -g(]|||3), and the second term is the so-called mean shift vector, which points
toward the direction of maximum increase in the density estimator p,,. Thus, the standard
mean shift algorithm with Euclidean data translates each query point according to the
corresponding mean shift vector, which leads to a converging path to a local mode of p,
under some conditions (Li et al., 2007; Aliyari Ghassabeh, 2015; Arias-Castro et al., 2016).
The key insight in our derivation of the directional mean shift algorithm is the following
alternative representation of the directional KDE as:
2
) ; (15)
2

ra _ ch,q(L) . 1

fulw) = =020 0 5
=1

given a directional random sample Xi,..., X, € €};. Recall that the original directional

~ n —~ ~

KDE in (2) is fi(x) = enq(L) > L (1*“]”§X¢> . Both fj, and f;, can be defined on any point

i=1

n

m—XZ'
h

2

. 254 |
Vpn(z) = nhi+2 [Zg (

=1

~~

term 1

a:—XZ-
h

in R4T1\{0}. Although ﬁ(a:) + fp(x) for @ ¢ €2, their function values are identical on the
sphere; that is, N
fn(x) = fu(x), VaeQ (16)
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due to the fact that 3 ||z — X;|[3=1-2TX; for any x € Q.

Since the two d1rect10nal KDEs are the same on (), either of them can be used to
express our density estimator. The power of the expression fh is that its total gradient has
a similar decomposition as the total gradient of the Euclidean KDE (cf. (14)):

2)} 22?21 X L (é

2 S L’(

term 2

m—Xi
h

Vfn(@) = ChﬁquQL) Z(m - X;)- L <;

z — X;
h

e

term 1

Similar to the density gradient estimator with Euclidean data (cf. Equation (14)), the
first term of the product in (17) can be viewed as a proportional form of the directional
density estimate at & with “kernel” G(r) = —L'(r):

~ c 2 c - —z''X;
Fro(@) = h,q Z L/< >_ h,iEG)Z_L/<1 - Xz) (18)

2 i=1
given that —L'(r) is non-negative on [0,00). Some commonly used kernel functions, such
as the von-Mises kernel L(r) = e™", easily satisfy this condition. The second term of the
product in (17) is indeed the directional mean shift vector

2
=X .
o (3R s xw ()
‘:'h(:'l:): N Ma—x ) —T= nop e -, (19)
S L5 |15 , dim U (=

T
)7 1—m2Xi
which is the difference between a weighted sample mean with weights # 1=
S ()
1,...,n, and @, the current query point of the directional density estimation. It is worth
mentioning that these weights are strictly positive when the von-Mises kernel L(r) = e™" is

applied. From Equations (18) and (19), the total gradient estimator at  becomes

x— X;
h

Vii(e) = 5 Fuc(@)-So)
yielding
_ chg(G)R? V fi(z)
En(z) = :

cha(l)  fra(x)

As is illustrated in (10), the total gradient of the directional KDE at =, V fu(x), becomes
the Riemannian gradient of fj(x) = fn(x) on €, after being projected onto the tangent
space Tp. This suggests that the directional mean shift vector Zp,(x), which is parallel to

10
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Algorithm 1 Mean Shift Algorithm with Directional Data
Input:

e Directional data sample X1, ..., X, ~ f(x) on Q.

e The smoothing bandwidth h.

e An initial point gy € €, and the precision threshold e > 0.
while 1 — g, g, > e do

7 x.
Z?:l XL (1 ZSQXZ>
I (SR

gs-i—l = (20)

end while
Output: A candidate local mode of directional KDE, ys.

the total gradient of fh at x, points in the direction of maximum increase in the estimated
density fp, after being projected onto the tangent space T,. However, due to the manifold
structure of €, translating a point & € €, in the mean shift direction =Zj(x) deviates
the point from ,. We thus project the translated point x + =Zp(x) onto €2, by a simple

standardization: x + Zp,(x) — % In summary, starting at point x, the directional
mean shift algorithm moves this point to a new location % This movement creates

a path leading to a local mode of the estimated directional density under suitable conditions
(Theorems 8 and 11).

We can encapsulate the directional mean shift algorithm into a single fixed-point equa-
tion. Let {ys}ory C Qg denote the path of successive points defined by the directional mean
shift algorithm, where yg is the initial point of the iteration. Translating the query point
Ys by the directional mean shift vector (19) at step s leads to

> Xl (%)
s ()
When L(r) is decreasing, L'(r) is non-positive on [0, c0) and
o xr ()], [sm e ()|
T ()| S ()

given that Z r (1 ys ) # 0. (Here L'(r) can be replaced by subgradients at non-

Zh (:’/J\S) + ’gs =

2

1Zn (Ys) + ’gst =

dlfferentlable pomts of L. See also Remark 9.) Again, many commonly used kernel func-
tions, such as the von-Mises kernel L(r) = e", have nonzero derivatives on [0,00) and
satisfy this mild condition. Therefore,

~ R n g (1-gfX;

o B e M X (TR

s+l = T2~ Y. T .
En@) 4ol o, xow (52|

11
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V f ()

Figure 4: Illustration of one-step iteration of Algorithm 1

is the resulting fixed-point equation for s = 0,1, ..., whose right-hand side is a standardized
weighted sample mean at ys; computed with “kernel” G(r) = —L/(r). The entire mean
shift algorithm with directional data is summarized in Algorithm 1 (see also Figure 4 for a
graphical illustration).

Analogous to the mean shift algorithm with Euclidean data, Algorithm 1 can be lever-
aged for mode seeking and clustering with directional data. We derive statistical and
computational learning theory for mode seeking in Sections 4 and 5. For clustering, we
demonstrate with both simulated and real-world data sets that the algorithm can be used
to cluster directional data in Section 6. It should also be noted that the directional mean
shift algorithm can be viewed as a gradient ascent method on ), with an adaptive step size;
see Section 5.2 for details.

More importantly, similar to the standard mean shift algorithm with Euclidean data,
the directional mean shift algorithm has several advantages over a regular gradient ascent
method. First, the directional mean shift algorithm requires no tuning of the step size pa-
rameter, yet exhibits mathematical simplicity when it is written as the fixed-point iteration
(20). Second, the algorithm does not need to estimate the normalizing constant cj 4(L) of
the directional KDE in its application. Specifically, in order to identify local modes of the
directional KDE using our algorithm, it is only necessary to specify the directional kernel
L up to a constant. This avoids additional computational cost in estimating the normaliz-
ing constant ¢y, 4(L) for the kernel, because the constant ¢y, 4(L) often involves complicated
functions for high dimensional directional data. For instance, estimating the normalizing
constant of the von Mises kernel involves an approximation of a modified Bessel function

of the first kind, though several efficient algorithms have been developed; see, for instance,
Sra (2012).

12
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4. Statistical Learning Theory of Directional KDE and its Derivatives
Because the (directional) mean shift algorithm is inspired by a gradient ascent method, we

study the gradient and Hessian systems of the two estimators f and fj.

4.1 Gradient and Hessian of Directional KDEs

We have demonstrated that it is valid to deduce two mathematically equivalent directional
KDEs (2) and (15) for estimating the true directional density f. Somewhat surprisingly,
the corresponding total gradients are different in general. The total gradient of fj, is

2
7 (21)
2
while the total gradient of ]?h is

Vi (2) = - hall) ZXL’< wX) (22)

nh?

n

Vi) = P S x) <§

i=1

iB—Xi
h

Although the total gradients th and th have different values even on ), they both play
a vital role in the directional mean shift algorithm (Algorithm 1). On the one hand, we
have argued in Section 3 that V f;(x) has a similar decomposition as the total gradient of
the Euclidean KDE, and derived Algorithm 1 based on Vﬁ(w) On the other hand, given
the form of V fj,(x) in (22), the fixed-point equation (20) in Algorithm 1 can be written as

Vin(@s)
V@),

As argued in Section 2.2 and (11), any total gradient at © € Qg can be decomposed into

gs+1 = (23)

radial and tangent components. Therefore, the total gradient th(zc) is decomposed as
V(@) = 2z V fu(@) + (I11 — xz") V(@)

Ch, (L) " 1-— :I:TXZ'
= nqhQ Z Zr (1 — ITXZ) L/ <h2>

=1
Chg(L) & T 1-27X;

= Rad (V]?h(m)) + Tang (Vﬁz(w» )

where Rad and Tang are the radial and tangent components of the total gradient, as in (11)
and (10). Similarly, we decompose V fy,(x) as

Vin(x) = 22"V fi(z) + (Igt1 — zz™) V fu(x)
L) « (1 —z2T X,
—chﬁquz ) Z xx! X; - L (ZQ )

=1
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3

Ch,q(L)
nh?

+

_2Tx.
(z-2"X: - X,)- I (1:2X>

1=

1
=Rad (Vﬁl w)) + Tang (V]?h(:c)) )

Therefore, the difference between the two total gradients V f,(z) and 7 (x) is

Vii(@) - Vila) = ol ZU(“”X) . (24)

which is parallel to the radial direction x. This implies that given kernel L, the Riemannian
gradients of the two estimators are the same, that is,

gradfh(az) = Tang (th(m)) = Vﬁb(m) - [mTVﬁl(m)} X

Later, we demonstrate in Theorems 2 and 4 that the Riemannian gradients of fh and ﬁL are
consistent estimators of the Riemannian gradient of the underlying density f that generates
directional data. One can also deduce the same fixed-point equation (20) (or equivalently

(23)) from the Riemannian/tangent gradient estimator grad f,(x) = Tang (Vﬁ(w)), al-

though the assumption on the directional estimated density fh is stricter. See Appendix C
for detailed derivations.

Having demonstrated that the Riemannian gradlents of fh and fh are identical, we now
study the Riemannian Hessians of fh and fh y (13), the Riemannian Hessian of fh is
associated with the total gradient operator V via

Hfn(@) = (1 — 22”) [V (@) = V@) @11 | (g1 — 22" (26)

and similarly for Hﬁ(m) The following lemma shows that when a directional kernel L is
smooth, the two Riemannian Hessians are identical.

Lemma 1 Assume that kernel L is twice continuously differentiable. Then,
H (@) = Hfu(x)
for any point x € €.

The proof of Lemma 1 can be found in Appendix D.1. As a result, we can compute the
Riemannian Hessian estimator at point € €, based on either fj(x) or f5(x), which will
produce the same expression. Later, in Theorems 2 and 4, we demonstrate that %]?h(m) is
a (uniformly) consistent estimator of H f(x) defined in (13).

14
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4.2 Assumptions

To apply the total gradient operator V to a directional density f that generates data, we
extend it from Q, to RIT1\ {0} by defining f(z) = f <L> for all x € R4T1\ {0}. In this

[l

T
extension, we assume that the total gradient V f(x) = (agiw), - gf (x)) and total Hessian
1 Tq+1
; _ a2f(m))
trix VV f(2) = (

matrix f(z) 92075 ) | <i j<qil

square integrable on €. This extension has also been used by Zhao and Wu (2001); Garcia-
Portugués et al. (2013); Garcia-Portugués (2013). Note that the Riemannian gradient and
Hessian are invariant under this extension.

To establish the consistency results of gradient and Hessian estimators (cf. (25) and
(26) or (38) in its explicit form), we consider the following assumptions.

in R9*! exist, and are continuous on R%*! \ {0} and

e (D1) Assume that the extended density function f is at least three times continuously
differentiable on RY!\ {0} and that its derivatives are square integrable on €2,.

e (D2) Assume that L : [0,00) — [0,00) is a bounded and Riemann integrable function
such that

0< / Lk(r)rgfldr < 00
0
forallg>1and &k =1,2.

e (D2’) Under (D2), we further assume that L is a twice continuously differentiable
function on (=4, 00) C R for some constant d7, > 0 such that

oo oo
0< / L'(rrildr < oo, 0< / L"(rFri—tdr < oo
0 0

forallg>1and k=1,2.

Here, conditions (D1) and (D2) are required for the consistency of the directional KDE
(Hall et al., 1987; Klemeld, 2000; Zhao and Wu, 2001; Garcia-Portugués et al., 2013; Garcia-
Portugués, 2013). The stronger condition (D2’) is imposed for the consistency of Rieman-
nian gradient estimator grad f,(x) = Tang <Vﬁ1 (:1:)) and Hessian estimator 7/ (x). The

differentiability condition in (D2’) can be relaxed so that L, after being smoothly extrapo-
lated from [0, c0) to (—dr,, 00) for some constant dz, > 0, is (twice) continuously differentiable
except for a set of points with Lebesgue measure 0 on (—dz,00). One can justify via integra-
tion by parts that many commonly used kernels, such as the von-Mises kernel L(r) = e™"
or compactly supported kernels, satisfy condition (D2’).

Under conditions (D1) and (D2), the pointwise convergence rate of Fn is

fi(@) = (@) = 0(h®) + Or <\/ ni) ;

see, for instance, Hall et al. (1987); Zhao and Wu (2001); Garcia-Portugués (2013); Garcia-
Portugués et al. (2013). Moreover, Bai et al. (1988) used a piecewise constant kernel function
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to approximate the given kernel L and derived the uniform convergence rate as

1o — flloo = sup | fu(@) — f(=) =0<h2>+op< k’g”>. (27)

xe)y nhd

One can also prove the uniform consistency of the directional KDE by slightly modifying the
technique in Giné and Guillou (2002) and Einmahl and Mason (2005) for the consistency
results of the usual Euclidean KDE. We will leverage such technique in our proof for the
uniform convergence rates of the Riemannian gradient and Hessian estimators.

4.3 Pointwise Consistency

Our derivations of the pointwise convergence rates of the (Riemannian) gradient and Hessian
estimators of the directional KDE fh are analogous to the arguments for the usual Euclidean
KDE (Silverman, 1986; Scott, 2015), which rely on the Taylor’s expansion. The difference
in the directional KDE case is that the integrals are taken over the Lebesgue measure w, on
2, when we compute the expectations E [grad ]?h(a:)] and E [’Hfh(a:)] The key argument
for evaluating directional integrals is the following change-of-variable formula

we(dw) = (1 —12)2  dt w1 (dE),

where t = xy for a fixed point y € Q, and § € €); is a unit vector orthogonal to y.
The formula is proved in Lemma 2 of Garcia-Portugués et al. (2013) and on pages 91-93
in Efthimiou and Frye (2014) in two different ways. The surface area of €, in (1) easily
follows from this formula. With this formula, we have the following convergence results.

Theorem 2 Assume conditions (D1) and (D2’). For any fized x € Qy, we have

grad f,(z) — grad f(z) = O(h?) + Op ( nh}ﬁ?)

as h — 0 and nhit? — oco.
Under the same condition, for any fized x© € €, we have

Hfylw) — Hf(@) = O(*) + Op (\/ nhﬂ)

as h = 0 and nhit* = oo.

The proof of Theorem 2 is lengthy and deferred to Appendix D.2. Theorem 2 demon-
strates that the Riemannian gradient of a directional KDE is a consistent estimator of the
Riemannian gradient of the directional density that generates data. A similar result holds
for the Riemannian Hessian. It cannot be claimed that the total gradients th or Vfp
converge to V f since the radial component of f depends on how f is extended to points
outside €),. Lemma 10 below and the proof of Theorem 2 demonstrate that the limiting

behaviors of Rad <Vﬁ(m)> and Rad <th(m)> are different; the former one is of the order
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O (h™?) 4+ Op (Mﬁ) while the latter one is of the order O(1) + Op (”nh%)' Note

that Klemeld (2000) also derived similar convergence rates of the derivatives of a direc-
tional KDE, while the definitions of directional KDE and its derivatives in Klemeld (2000)
are different from ours and the results are more complex.

Remark 3 Under some smoothness conditions (Chacén et al., 2011), the pointwise con-
vergence rates of gradient and Hessian estimators defined by the usual Euclidean KDE are

1 1
2 2
O(h )-l-Op <nhd+2> and O(h )+Op (nhd+4>’

where d represents the dimension of the Fuclidean data. Therefore, our pointwise consis-
tency results for the Riemannian gradient and Hessian of the directional KDE in Theorem 2
align with the pointwise convergence rates of the usual Fuclidean KDE, in the sense that
the dimension d is replaced by the (intrinsic) manifold dimension q of directional data.

4.4 Uniform Consistency

We now strengthen the convergence results in Theorem 2 to uniform convergence rates with
the assumptions and techniques developed by Giné and Guillou (2002) and Einmahl and
Mason (2005).

Let [1] = (71,...,7g+1) be a multi-index (that is, 71, ..., Tg41 are non-negative integers
q+1 - -

and [[7]] = 3 7;). Define DI"l = 88{11 ---8‘9 f;rll as the |[7]|-th order partial derivative
j=1 1 T1

operator. Given the directional KDE in (15), we define the following function class of the
kernel function L and its partial derivatives as

K= {UI—>K <z;“> ‘u,z € Qg h > 0,K(z) = DL (;qug) 7| _0,1,2}.

Under condition (D2’), K is a collection of bounded measurable functions on §2,. To guar-
antee the uniform consistency of the directional KDE itself as well as its (Riemannian)
gradient and Hessian, we assume the following;:

e (K1) K is a bounded VC (subgraph) class of measurable functions on €, that is,
there exist constants A, > 0 such that for any 0 < e < 1,

€

A 9
sup N (K. La(Q).l|Fly@) < () ,

where N(T,dr,€) is the e-covering number of the pseudometric space (T, dr), @ is

any probability measure on (), and F' is an envelope function of K. The constants A

and v are usually called the VC (Vapnik-Chervonenkis) characteristics of K and the
1

norm ||F||z,(q) is defined as [fﬂq |F(a:)|2dQ(a:)} ’.

Given the differentiability of kernel L guaranteed by (D2’), we can take F' as a constant

envelope function
1
Ce=_sw DU (el

xRt |[r]|=0,1,2
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when it is finite. Condition (K1) is not stringent in practice and can be satisfied by many
kernel functions, such as the von-Mises kernel L(r) = e~ and many compactly supported
kernels on [0,00). For these kernel options, the resulting function class I comprises only
functions of the form u +— @ (JAu + b|), where ® is a real-valued function of bounded
variation on [0, 00), A ranges over matrices in R+D>(a+1) and b ranges over R?T1. Thus,
K is of VC (subgraph) class by Lemma 22 in Nolan and Pollard (1987).

Under conditions (D1), (D2’), and (K1), the uniform consistency results of the di-
rectional KDE (restated) as well as its Riemannian gradient and Hessian estimators are
summarized as the following theorem, whose proof can be founded in Appendix D.3.

Theorem 4 Assume (D1), (D2’), and (K1). The uniform convergence rate ofﬁ is given
by

SwWﬁ@%J@H=0@%+OP<|MMg

xelly nhd

nhd
as h—0 andmﬁoo.

Furthermore, the uniform convergence rate of grad J/”;L(:c) on g 1s

= O(h?) + Op ( ‘HIZ%') ,

as h — 0 and % — 0. Finally, the uniform convergence rate of ’Hfh(a:) on Qg is
= O(h?®) + Op < !Zfﬂ) ,

1s the elementwise maximum norm for a vector in

sup ngadfh(a:) — grad f(az)‘

ey max

sup || (@) — 1 (@)

xeQy

max

as h — 0 and ﬁ};qgtj — 00, where ||-||

RITY or a matriz in R@tDx(@+1),

max

Remark 5 Theorem 4 can also be generalized to higher-order derivatives. All that is nec-
essary is to modify the assumptions (D2’) and (K1) to higher-order derivatives (projected
on the tangent direction) as well as strengthen the differentiable assumptions on f in (D1).
The elementwise mazimum norm between the derivative estimator and the true quantity will

embrace the rate
2 |log h|
O(r") + Op ( nhq+2m> ;

where m is the highest order of derivatives desired.

4.5 Mode Consistency

Consistency of estimating local modes has been established for the usual Euclidean KDE
by Chen et al. (2016), where the authors demonstrated that with probability tending to 1,
the number of estimated local modes is the same as the number of true local modes under
appropriate assumptions. Moreover, the convergence rate of the Hausdorff distance (a
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common distance between two sets) between the collection of local modes and its estimator
is elucidated. Here, we reproduce the consistency of estimating local modes of a directional
density f supported on 2, by the local modes of the directional KDE fj,.

Given two sets A, B C €, their Hausdorff distance is

Haus(A,B) =inf{r >0: AC B&r,BC Adr}, (28)

. 2
where A@r = {y € Qq:infpcallx —yl|l, <1} = {y GqusupmeAa:Tyz 1—%}. The

equality follows from the fact that ||z||3 = 1 for any = € Q.
Let C'5 be the upper bound for the partial derivatives of the directional density f on
the compact manifold €, up to the third order. Such constant exists under condition (D1).

Let M, = {7731, ,ﬁf(n} be the collection of local modes of f, and M = {mq,...mg}

be the collection of local modes of f. Here, IA(n is the number of estimated local modes and
K is the number of true local modes. We consider the following assumptions.

e (M1) There exists A\ > 0 such that
0 <X < [Ai(my)|, forallj=1,.., K,

where 0 > A(x) > --- > \j(x) are the ¢ smallest (negatively-largest) eigenvalues of
the Riemannian Hessian H f(x).

e (M2) There exist O1, p, > 0 such that

A
{o € 05 1Tang(VH@)ae < 01, 0(@) < -5 <0} < Mo

where A, is defined in (M1) and 0 < p, < min {\/2 — 2cos (gé;)ﬂ}

Condition (M1) is imposed so that every local mode of f is isolated from other critical
points; see Lemma 3.2 in Banyaga and Hurtubise (2004). The condition also guarantees
that the number of local modes of f supported on the compact manifold €, is finite. As
noted by Chen et al. (2016), condition (M1) always holds when f is a Morse function on
Q. The second condition (M2) regularizes the behavior of f so that points with near 0
(Riemannian) gradients and negative eigenvalues of H f(x) within the tangent space T
must be close to local modes. See the paper by Chen et al. (2016) for detailed discussion.

The constant \/ 2 —2cos (;’é;) is selected so that the great-circle distance from my to the

boundary of my @ p,, that is, arccos(mga:) with & € 05}, is less than g’ég for any my € M,

where S, = {x € Qg : ||z — myl|, < pi} and 0S; = {x € Qy : ||z — myl|, = pi}.

It should be emphasized that condition (M1) is a weak condition that can be satisfied
by the local modes of common directional densities. We take the von-Mises-Fisher density
as an example. With the formula (4), we naturally extend four to R*! and deduce that

V fomr(x) = vpCy(v) - exp (I/;LT:IJ) and  VVfur(z) = 2up’ Cy(v) - exp (V,uTaz) ,

19



ZHANG AND CHEN

which in turn indicates that at the mode p € €1,

Hfonr (1) = (Igsr — ") VV four () (Igr1 — ") — "V four (1) (Igg1 — ppe’)
= —vCq(v) - " (Ig11 — NNT) :

By Brauer’s theorem (Example 1.2.8 in Horn and Johnson 2012), we conclude that the
eigenvalues of H fumr(p) are 0 with (algebraic) multiplicity 1, which is associated with
the eigenvector p, and —vCy(v) - ¥ with multiplicity ¢, which are associated with the
eigenvectors in Tj,.

Given these assumptions, the mode consistency of the directional KDE is as follows.

Theorem 6 Assume (D1), (D2’°), (K1), and (M1-2). For any ¢ € (0,1), when h is suffi-
ciently small and n is sufficiently large,

(a) there must be at least one estimated local mode my, within Sy = my @ ps for every
my € M, and

(b) the collection of estimated modes satisfies M\n C M ® p. and there is a unique esti-
mated local mode Ty, within Sy = my @ p.

with probability at least 1 — §. In total, when h is sufficiently small and n is sufficiently
large, there exist some constants Az, Bs > 0 such that

P (f{n £ K) < Bge—Asnhttt

(¢) The Hausdorff distance between the collection of local modes and its estimator satisfies

— 1
s (.50) 001+ )

as h — 0 and nh?t? — co.

The proof of Theorem 6 is in Appendix D.4. It states that asymptotically, the set of
estimated local modes are close to the set of true local modes and there exists a 1—1 mapping
between pairs of estimated and true local modes. Thus, the local modes of the directional
KDE are good estimators of the local modes of the population directional density.

Remark 7 Unlike the statement of Theorem 1 by Chen et al. (2016), the radius p. in
(M2) for M to contain ./\//Yn can be selected to be independent of the dimension of the
data. The reason lies in the fact that the proof of statement (a) in Theorem 6 performs a
Taylor’s expansion to the third order and leverages the constant upper bound for the third-
order partial derivatives. The same technique can be used to improve the original proof in
Theorem 1 of Chen et al. (2016) to obtain a dimension-free radius for mode consistency.
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5. Computational Learning Theory of Directional Mean Shift Algorithm

In this section, we study the algorithmic convergence of Algorithm 1. We start with the
ascending property and convergence of Algorithm 1, and then prove the linear convergence
of gradient ascent algorithms on the sphere (). By shrinking the bandwidth parameter, the
adaptive step size of Algorithm 1 as a gradient ascent iteration on €1, can be sufficiently
small so that the algorithm converges linearly to the estimated local modes around their
neighborhoods. Finally, we discuss on the computational complexity of Algorithm 1.

5.1 Ascending Property and Convergence of Algorithm 1

Let {ys}oo, be the path of successive points generated by Algorithm 1. The corresponding
sequence of directional density estimates is given by

~ Xz
Su(Ys :Chq ZL< ) fors=0,1,....

Theorem 8 (Ascending Property) If kernel L : [0,00) — [0,00) is monotonically de-
-~ oo

creasing, differentiable, and conver with L(0) < oo, then the sequence {fh(fjs)} . 8 mono-
s=

tonically increasing and thus converges.

At a high level, the proof of Theorem 8 follows from the inequality
L(xz) — L(x1) > L'(x1) - (z2 — 1), (29)

which is guaranteed by the convexity and differentiability of the kernel function L; see
Appendix D.5 for details.

Remark 9 Note that the differentiability of kernel L in Theorem 8 can be relaxzed. The
momnotonicity and convexity of L already imply that L is differentiable except for a countable
set of points N (see Section 6.2 and 6.6 in Royden and Fitzpatrick 2010). Moreover, the
left and right derivatives of L on N ewist and are finite. Therefore, for any x1 € N, we can
replace L' (x1) in (29) by any subgradient g,, without impacting other parts of the inequality.
Furthermore, as the left or right derivatives of the convex function L are non-decreasing,
any subgradient g, at point x1 satisfies L'(x]) < gz, < L'(27); thus, (29) holds.

~ oo
The ascending property of { fh(:l’js)} under the directional mean shift algorithm is

not sufficient to guarantee the convergence of its iterative sequence {ys}5°,. To derive the
convergence of {y,}22, we make the following assumptions on the directional KDE fj,.

e (C1) The number of local modes of ﬁl on (), is finite, and the modes are isolated
from other critical points.

e (C2) Given the current values of n and h > 0, we assume that ﬁ}gVﬁl(Tﬁk) # 0 for
all Ty, € M, that is, Z miX, L' (1 m’“ ) # 0.
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Condition (C1) is a weak condition when the uniform consistency (Theorem 4) and
mode consistency (Theorem 6) are established. In reality, condition (C1) is implied by
conditions (D1) and (M1-2) on f as well as (D2’) and (K1) on the kernel function L with a
probability tending to 1 as the sample size increases and the bandwidth parameter decreases
accordingly.

Condition (C2) may look strange at first glance; however, it is a reasonable and common
assumption. In practice, it will be valid with those commonly chosen kernel functions,
a reasonable sample size n, and a properly tuned bandwidth parameter A > 0. More
importantly, because the directional density f is always positive around its local mode, the
following lemma demonstrates that condition (C2) holds with probability tending to 1 as
the sample size increases to infinity and the bandwidth parameter tends to 0 accordingly.

Lemma 10 Assume conditions (D1) and (D2’°). For any fized x € Q,, we have

h? - Rad (Vj?h(ﬂﬂ)) = h? V(@) = 2f()CLq+0(1) + Op (\/ n1hq>

_ Jo L’(r)r%fldr
I5 L(T)rgfldr
stands for an asymptotic equivalence.

as nh? — oo and h — 0, where Cr, 4 = > 0 us a constant depending only on

kernel L and dimension q and “<”

The proof of Lemma 10 can be found in Appendix D.5. With Lemma 10, we know
that while the tangent component of V f;, at each local mode is 0, its radial component is
diverging; thus, condition (C2) holds asymptotically. This is not a surprising result, because
observations in a directional data sample are supported on the sphere and the directional
KDE fh would thus decrease rapidly when moving away from the sphere. In addition, the
limiting behavior of th determines the adaptive step size of the directional mean shift
algorithm when it approaches the estimated local modes (see Section 5.2 for details). A
similar asymptotic behavior of the step size of the mean shift algorithm in the Euclidean
setting has been noticed by Cheng (1995) and restated by Arias-Castro et al. (2016).

We now state the convergence of Algorithm 1 under conditions (C1) and (C2).

Theorem 11 Assume (C1) and (C2) and the conditions on kernel L in Theorem 8. We
further assume that L is continuously differentiable. Then, for each local mode my, € M\n,
there exists a Ty, > 0 such that the sequence {ys}22, converges to my, whenever the initial
point Yo € Qg satisfies ||go — mylly < Tk. Moreover, under conditions (D1) and (D2’),
there exists a fized constant r* > 0 such that P(ty, > r*) — 1 as h — 0 and nh? — cc.

The proof of Theorem 11 is in Appendix D.5. The theorem implies that when we
initialize the directional mean shift algorithm (Algorithm 1) sufficiently close to an estimated
local mode, it will converge to this mode.

5.2 Linear Convergence of Gradient Ascent Algorithms on (),

We now discuss the linear convergence of gradient ascent algorithms on €2,. Because the
sphere €, is not a conventional Euclidean space but a Riemannian manifold, the definition
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of a gradient ascent update is more complex. We first provide a brief introduction to some
useful concepts from differential geometry. The interested readers can consult Appendix B
for additional details.

An exponential map at x € €, is a mapping Exp,, : T, — 4 such that a vector v € T,
is mapped to point y := Exp,(v) € Q4 with v(0) = ,7(1) = y and +/(0) = v, where
v :[0,1] = Qq is a geodesic. An intuitive way of thinking of the exponential map evaluated
at v on the sphere (2, is that starting at point x, we identify another point y on ), along
the great circle in the direction of v so that the geodesic distance between x and y is ||v]|,.

The inverse of the exponential map is a mapping Exp,' : U C Qg — T, such that
Exp,!(y) represents the vector in T}, starting at @, pointing to y, and with its length equal
to the geodesic distance between x and y. Exp,! is sometimes called the logarithmic map.

On 2y, the notion of parallel transport provides a sensible way to transport a vector
along a geodesic (Zhang and Sra, 2016). Intuitively, a tangent vector v € T, at © € Qq
of a geodesic v is still a tangent vector I'4(v) € Ty, of v after being transported to point
y along 7. Furthermore, parallel transport preserves inner products, that is, (u,v)s =
(IT'%(u),T%(v))y. The above concepts can be defined on a general Riemannian manifold;
however, for our purposes, it suffices to focus on the case of ).

Adopting the notation of Zhang and Sra (2016), a gradient ascent algorithm applied to
an objective function f on €, (a Riemannian manifold) is written as

Ys+1 = Exp,_(n-grad f(ys,)). (30)

Recall that given a sequence {ys}oo, converging to mj € M, the convergence is said

to be linear if there exists a positive constant T < 1 (rate of convergence) such that
llys+1 — my|| < T ||lys — my|| when s is sufficiently large (Boyd and Vandenberghe, 2004).
In our context, the norm |[|-|| refers to the geodesic (or great-circle) distance d(x,y) =
HExp; L(y) | !2 between two points @,y € 2,. An equivalent statement of linear convergence
is that the algorithm takes O(log(1/€)) iterations to converge to an e-error of my.

Here, we first prove the linear convergence results for the gradient ascent algorithm
with f and fh on ), under a feasible range of step size . We then demonstrate that the
directional mean shift algorithm is an exemplification of the gradient ascent algorithm on €,
with an adaptive step size, and that its step size eventually falls into the feasible range with
a properly tuned bandwidth parameter. Using the notation in Zhang and Sra (2016), we

C

let ¢(1,¢) = FIGR One can show by differentiating (1, ¢) that ((1, ¢) is strictly increasing

and ((1,¢) > 1 for any ¢ > 0.

Theorem 12 Assume (D1) and (M1).

(a) Linear convergence of gradient ascent with f: Given a convergence radius ro

with 0 < rg < 4/2—2cos [3)‘*3], the iterative sequence {ys}o, defined by the
2(q+1)2C;3

population-level gradient ascent algorithm (30) satisfies

d(ys,my) < Y -d(yo,my) with Y= m
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) 1
whenevern < min {X’ @D
for some my, € M. We recall from Section 4.5 that C3 is an upper bound for the
derivatives of the directional density f up to the third order, A« > 0 is defined in

(M1), and M is the set of local modes of the directional density f.

} and the initial pointyo € {z € Qg : ||z — my||y < 1o}

We further assume (D2’°) and (K1) in the sequel.

(b) Linear convergence of gradient ascent with fh Let the sample-based gradient

ascent update on $q be Ysi1 = Exp,, (17 . gradﬁl(ﬁs)). With the same choice of the

convergence radius ro > 0 and T = \/@ as in (a), if h — 0 and ﬁ}é?;j — 00,
then for any 6 € (0,1),

A s ~ log h
d (ySa mk‘) <71 d(y(]v mk) + O(hQ) +Op ( ’nfLQ-FJ)

with probability at least 1 — §, whenever n < min {/\%, m} and the initial
point Yo € {z € Qg : ||z — my||y < 1o} for some my, € M.

The proof of Theorem 12 is in Appendix D.6. As shown in (a) of Theorem 12, the linear
convergence radius of gradient ascent algorithm (30) on €, generally depends on the lower
bound A, on absolute eigenvalues of the Riemannian Hessian Hf(x) (within the tangent
space Ty), the upper bound Cj5 for the (partial) derivatives of f up to the third order, and
manifold dimension gq.

In practice, we are more interested in the algorithmic convergence rate of sample-based
gradient ascent algorithms with directional KDEs to the estimated local modes ]\/E,1 As
indicated by Theorem 4, the Hessian matrices of f; at its local modes have only negative

eigenvalues within the corresponding tangent spaces given (M1), sufficiently small h, and
hat4
Inlog hl*

local modes of directional KDEs are non-degenerate and fh is geodesically strongly concave
(see Appendix B for a precise definition) around small neighborhoods of the estimated
local modes. Together with an application of smooth kernels, says the von Mises kernel,
fn is f-smooth on ), and, consequently, a sample-based gradient ascent algorithm with

sufficiently large In reality, unless the data configuration is highly abnormal, the

the directional KDE f; converges linearly to the estimated local modes around their small
neighborhoods, given a proper step size.

With respect to the directional mean shift algorithm, we recall from the fixed-point
equation (23) that the geodesic distance between ys;1 and ys (one-step iteration) is

V()75
Vi@

arccos

.

To derive the adaptive step size 7, of the directional mean shift algorithm as a sample-based
gradient ascent iteration ys+1 = Expy, (ﬁs - grad fh(ﬁs)) on ), we notice the following
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geodesic distance equation:

This shows that the directional mean shift algorithm is a gradient ascent method on €,
with an adaptive step size

778 ’ grad fh('!/js) )2

Vi (Gs) " Gs 1

s = arccos — : —
Hth(ys) ‘2 ‘ grad fn(ys)

,

for s = 0,1,.... We denote the angle between the total gradient estimator th(gjs) and Ys
by 5. By the orthogonality of 4, and grad ﬁ(ﬂs) = Tang (Vﬁ(ﬁs)), the expression for

the adaptive step size 75 becomes

~

. 0
Ns = = P
() ],
for s = 0,1,.... As the directional mean shift algorithm approaches a local mode of fh,

55 tends to 0 and siflsﬁ is approximately equal to 1. Thus, the step size 7)s is essentially
V@)

The larger the norm of th(g’js) at step s, the shorter the step size of Algorithm 1. Be-
cause the tangent component of V fj,(ys) is small around the estimated local modes, its

controlled by the (Euclidean) norm of the total gradient estimator, that is,

Lemma 10 suggests

radial component Rad (vﬁ(@g) dominates the norm HV]/”;L('Q;) )

that ||V 7u(5)
bandwidth parameter decreases to 0 accordingly; therefore, one can always select a small
bandwidth parameter h such that the step size 75 lies within the feasible range for linear

convergence. Algorithm 1 thus converges (at least) linearly around the local modes of the
directional KDE fj,.

‘ can be sufficiently large as the sample size increases to infinity and the

5.3 Computational Complexity

Given a fixed data set { X1, ..., X;,} C €y, the time complexity of Algorithm 1 is O(n x q) for
one iteration of the algorithm on a single query point. When Algorithm 1 is applied to the
entire data set as the set of query points, each iteration exhibits O(n? x q) time complexity.
Assuming that the algorithm converges linearly, the total time complexity for reaching an
e-error is O (n2 x q x log(1/ e)) The space complexity of mode clustering with Algorithm 1
is, in general, O(n x ¢q) if mode clustering is performed on the entire data set to estimate
the directional density and only the current set of iteration points are stored in memory.
Algorithm 1 inevitably faces a computational bottleneck or even inferior performance when
the (intrinsic) dimension q is large. This drawback of the algorithm results not only from its
time and space complexity, but also from its original dependency on nonparametric density
estimation, which is known to suffer from the curse of dimensionality.

25



ZHANG AND CHEN

6. Experiments

In this section, we present our experimental results of the directional mean shift algorithm
on both simulated and real-world data sets. Unless stated otherwise, we use the von Mises
kernel L(r) = e™" in the directional KDE (2) to estimate the directional densities and
their derivatives. Given the data sample { X7, ..., X, }, the default bandwidth parameter is
selected via the rule of thumb in Proposition 2 in Garcia-Portugués (2013):

1
Ar3 T, (D)2 aH
hror = | —3 — — — (31)
vz |2q-Zer (20) + (¢ +2)V -Im(Ql/)} n
2 2

for ¢ > 1, which is the optimal bandwidth for the directional KDE that minimizes the
asymptotic mean integrated squared error when the underlying density is a von Mises-
Fisher density and the von Mises kernel is applied. The estimated concentration parameter
v is given by (4.4) in Banerjee et al. (2005) as

R(qg+1— R?)
1-R2

/V\:

= e X . . . .
where R = M (see also Sra (2012) for a detailed discussion and experiments on

the numerical approximation of the concentration parameter for von Mises-Fisher distribu-
tions). We also perform mode clustering (Chen et al., 2016) (sometimes called mean shift
clustering in Fukunaga and Hostetler 1975; Cheng 1995) on the original data sets in our
simulation studies, in which data points are assigned to the same cluster if they converge
to the same (estimated) local mode. When such procedure is carried out on the entire
data space, it partitions the space into different regions called basins of attraction of the
(directional) KDE. As the true density component from which a data point is generated
is known a priori in our simulation studies (i.e., we know the label of each observation),
we also provide the misclassification rates or confusion matrices of mode clustering with
the directional mean shift algorithm, though one should be aware that mode clustering, by
its nature, embraces non-overlapping basins of attraction (Banyaga and Hurtubise, 2004;
Chacén, 2015). Figures 6, 8, and 9 in this section as well as Figures 10 and 11 in Appendix A
are plotted via the Matplotlib Basemap Toolkit (https://matplotlib.org/basemap/).

6.1 Simulation Studies
6.1.1 CIRCULAR CASE

To evaluate the effectiveness of Algorithm 1, we first randomly generate 60 data points from
a circular density

ef‘xl

filz) = T A () + 47r1'10(6) exp [6 cos <$ — g)} ,

which is a mixture of a Laplace density with mean 0 and scale 1 truncated to [—m, 7] and a
von Mises density with mean 7 and concentration parameter v = 6. The von Mises(-Fisher)
distributed samples are generated via rejection sampling with the uniform distribution as
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Figure 5: Directional mean shift algorithm performed on simulated data on ;. Panel (a)-
(c): Outcomes under different iterations of the algorithm. Panel (d)-(f): Corresponding
locations of points in panels (a)-(c) on a unit circle. Panel (g) and (h): Visualization of
the affiliations of data points after mode clustering.

the proposal density. The true local modes are 0 and 7 in terms of angular representations
or (0,0) and (0,1) in Cartesian coordinates. The directional KDE on the simulated data
and directional mean shift iterations are presented in Figure 5. The bandwidth parameter
here is selected as h = 0.3 < hror ~ 0.4181 because the aforementioned rule of thumb
hrot tends to be oversmoothing when the underlying density is not von Mises distributed.
In addition, the tolerance level for terminating the algorithm is set to e = 1077,
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Figure 5 empirically demonstrates the validity of Algorithm 1 on the unit circle 1,
in which all the simulated data points converge to the local modes of the circular density
estimator. In addition, the misclassification rate in this simulation study is 0.1.

6.1.2 SPHERICAL CASE

We simulate 1000 data points from the following density

fa(x) = 0.3 fomr(x; p1,v1) + 0.3 - fomr(x; 2, v2) + 0.4 - fomr(x; s, v3)

with p; ~ (—0.35,—0.61, —0.71), po ~ (0.5,0,0.87), pus = (—0.87,0.5,0) (or [—120°, —45°],
[0°,60°], [150°,0°] in their precise spherical [longitude, latitude] coordinates), and v; =
vy = 8, v3 = 5. The bandwidth parameter is selected using (31), and the tolerance level for
terminating the algorithm is again set to e = 10~7. The results are presented in Figure 6.
In Figure 6, all simulated data points converge to the local modes of the estimated direc-
tional density under the application of Algorithm 1; therefore, all the original data points
are clustered according to where they converge. The confusion matrix in this simulation

278 0 9
studyis | 0 323 1 | and the misclassification rate is thus 0.038. Moreover, the total
20 8§ 361

number of iterative steps is much lower than the case with a single mode in Appendix A.1
(Figure 10). We also observe that most of data points already converge to the local modes
of the directional KDE after a few initial steps, while most of the subsequent iterations
handle those points that are geodesically far away from an estimated local mode and have
small estimated (tangent/Riemannian) gradients on their iterative paths.

6.1.3 ¢g-DIRECTIONAL CASE WITH ¢ > 2

Our algorithmic formulation of the directional mean shift algorithm (Algorithm 1) and its
associated learning theory are valid on any general (intrinsic) dimension ¢ of Q4. For this
reason, we are also interested in how the algorithm behaves as the dimension ¢ of directional
data increases. We randomly simulate 1000 data points from each of the following densities

repeatedly,
4

Z 0.25 - fomr(x; Hiq, V/)
i=1

with p; g = €; 441 € Q4 C Rt for ¢ = 3,4,...,12 and i = 1, ..., 4, where the concentration
parameter v/ = 10 and the mixture weight of each density component are constant. Here,
{ei7q+1}’i]:11 C Q, is the standard basis of the ambient Euclidean space R™!. For each
value of dimension ¢, we repeat the data simulation process 20 times and compute the
average misclassification rate of mode clustering with Algorithm 1 on each simulated data
set accordingly. Figure 7 shows the boxplots of misclassification rates.

As the dimension ¢ of directional data becomes larger, the misclassification rates of
mode clustering with Algorithm 1 also gradually increase to 1 (the worst case), which in
turn implies that the ability of Algorithm 1 to identify the density component from which
a data point is simulated tends to deteriorate with respect to the dimension. Such inferior
performances of the directional mean shift algorithm on higher-dimensional hyperspheres
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(g) Mode clustering (Hammer projection view)

Figure 6: Directional mean shift algorithm performed on simulated data with three local
modes on (2. Panel (a)-(c): Outcomes under different iterations of the algorithm dis-
played in a cylindrical equidistant view. Panel (d)-(f): Corresponding locations of points
in panels (a)-(c) in an orthographic view. Note: two local modes are at the back of the
sphere; thus, we cannot directly see them. Panel (g): Clustering result under the Hammer
projection (page 160 in Snyder et al. 1989).
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Figure 7: Boxplots of misclassification rates of mode clustering under different values of
dimension ¢

are not surprising because (i) we do not fine-tune the bandwidth parameter (but simply
apply the rule of thumb (31)), and (ii) the algorithm is subject to the curse of dimensionality
(see also Section 5.3). However, since directional data in real-world applications mostly lie
on a (hyper)sphere with dimension ¢ < 3, Algorithm 1 is effective in practice, as we will
demonstrate in Section 6.2.

6.2 Real-World Applications

We illustrate the practical relevance of the directional mean shift algorithm (Algorithm 1)
with two applications in astronomy and seismology.

6.2.1 CRATERS ON MARS

The distribution and cluster configuration of craters on Mars shed light on the planetary
subsurface structure (water or ice), relative surfaces ages, resurfacing history, and past
geologic processes (Cabrol and Grin, 2010; Barlow, 2015). Garcia-Portugués et al. (2020)
conducted three different statistical tests (Cramer-von Mises, Rothman, and Anderson-
Darling-like tests) on Martian crater data to statistically validate the non-uniformity of
the crater distribution on Mars. We apply the directional KDE (2) together with the
directional mean shift algorithm to further estimate the density of craters and determine
crater clusters on the surface of Mars. Martian crater data are publicly available on the
Gazetteer of Planetary Nomenclature database (https://planetarynames.wr.usgs.gov/
AdvancedSearch) of the International Astronomical Union (IUA). The positions of craters
are recorded in areocentric coordinates (the planetocentric coordinates on Mars) so that the
areocentric longitudes range from 0° to 360° and areocentric latitudes range from —90° to
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90°. As craters with areocentric longitudes greater than 180° are on the western hemisphere
of Mars, we transform their longitudes back to the interval (—180°,0°). (Note that 360°
in longitude corresponds to 0° west/east after transformation.) In addition, we remove
those small craters whose diameters are less than 5 kilometers from the crater data, as their
presence may provide spurious information. After trimming, the data set contains 1653
craters. The bandwidth parameter is selected using (31), which becomes hroT ~ 0.338 for
the trimmed data set. The estimated distribution of craters on Mars and clustering results
are presented in Figure 8.

As illustrated in Figure 8, the directional mean shift algorithm is capable of recovering
the local modes of the estimated Martian crater density. Because we do not properly tune
the bandwidth parameter, there is a spurious local mode around (180°W,30°S). Never-
theless, the mode clustering based on Algorithm 1 succeeds in capturing two major crater
clusters (or basins of attraction) on Mars, in which one cluster is densely cratered while the
other is lightly catered. This finding aligns with prior research on the Martian crater distri-
bution, stating that Mars can be divided into two general classes of terrain (Soderblom et al.,
1974). In Appendix A.2, we perform mode clustering with various smoothing bandwidths
to illustrate multi-scale structures in the data.

6.2.2 EARTHQUAKES ON EARTH

Earthquakes on Earth tend to occur more frequently in some regions than others. We
again leverage the directional KDE (2) as well as the directional mean shift algorithm to
analyze earthquakes with magnitudes of 2.5+ occurring between 2020-08-21 00:00:00 UTC
and 2020-09-21 23:59:59 UTC around the world. The earthquake data can be obtained
from the Earthquake Catalog (https://earthquake.usgs.gov/earthquakes/search/) of
the United States Geological Survey. The data set contains 1666 earthquakes worldwide
for this one-month period. We use the default bandwidth estimator (31), which yields
hroT ~ 0.245 on the earthquake data set, and set the tolerance level to e = 10~7 throughout
the analysis.

Figure 9 displays the results. There are seven local modes recovered by the directional
mean shift algorithm, and they are located near (from left to right and top to bottom in
Panel (g) of Figure 9) the Gulf of Alaska, the west side of the Rocky Mountain in Nevada, the
Caribbean Sea, the west side of the Andes mountains in Chile, the Middle East, Indonesia,
and Fiji. These regions are well-known active seismic areas along subduction zones, and our
clustering of earthquake data elegantly partitions earthquakes into these regions without
any prior knowledge from seismology.

7. Conclusion

In this paper, we generalize the standard mean shift algorithm to directional data based on
a total gradient (or differential) of the directional KDE and formulate it as a fixed-point
iteration. We derive the explicit forms of the (Riemannian) gradient and Hessian estimators
from a general directional KDE and establish pointwise and uniform rates of convergence
for the two derivative estimators. With these powerful uniform consistency results, we
demonstrate that the collection of estimated local modes obtained by the directional mean
shift algorithm is a statistically consistent estimator of the set of true local modes under
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Figure 8: Directional mean shift algorithm performed on Martian crater data. The anal-
ysis is displayed in a similar way to Figure 6. Panel (a)-(c): Outcomes under different
iterations of the algorithm displayed in a cylindrical equidistant view. Panel (d)-(f):
Corresponding locations of points in panels (a)-(c) in an orthographic view. Panel (g):
Clustering result under the Hammer projection.
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Figure 9: Directional mean shift algorithm performed on earthquake data for a one-month
period. The first two rows display the analysis similar to Figure 6. Panel (a)-(c): Out-
comes under different iterations of the algorithm displayed in a cylindrical equidistant view.
Panel (d)-(f): Corresponding locations of points in panels (a)-(c) in an orthographic view.
Panel (g): Contour plots of estimated density. Panel (h): Clustering result using the
directional mean shift algorithm.
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some mild regularity conditions. Additionally, the ascending property and convergence of
the proposed algorithm are proved. Finally, given a proper bandwidth parameter (or step
size for other general gradient ascent algorithms on €2;), we argue that the directional mean
shift algorithm (or other general gradient ascent algorithms on ) converge(s) linearly
to the (estimated) local modes within their small neighborhoods regardless of whether a
population-level or sample-based version of gradient ascent is applied.

Possible future extensions of our work are as follows.

e Bandwidth Selection. Current studies on bandwidth selectors for directional kernel
smoothing settings primarily optimize the directional KDE itself. Research on band-
width selection for derivatives of the directional KDE, especially gradient and Hessian
estimators, has lagged behind. A well-designed bandwidth selector for the first-order
derivatives of the directional KDE can further improve the algorithmic convergence
rate of our algorithm in real-world applications. There are at least two common ap-
proaches to perform such bandwidth selection. The first is to calculate the explicit
forms of dominating constants in the bias and stochastic variation terms when we de-
rive pointwise convergence rates of the (Riemannian) gradient and Hessian estimators
in Theorem 2. Then, under some assumptions on the underlying directional distribu-
tion, such as the von Mises Fisher distribution, a directional analogue to the rule of
thumb of Silverman (1986) for gradient and Hessian estimators can be explicated, al-
though the calculations may be heavy. Another approach is to rely on data-adaptive
methods, such as cross-validation (Hall et al., 1987) and bootstrap (Marzio et al.,
2011; Saavedra-Nieves and Crujeiras, 2020), which should be suitable for estimating
the derivatives of the directional KDE. In addition, a bandwidth selector that is lo-
cally adaptive to the distribution of directional data is of great significance when the
dimension is high.

e Accelerated Directional Mean Shift. Another future direction is to accelerate
the current directional mean shift algorithm when the sample size is large, as the
number of iterations for convergence is over 150 in one of our real-world applications.
There are several feasible approaches mentioned in Section 1 for the Euclidean mean
shift algorithm. One of the most notable methods is the blurring procedure (Carreira-
Perpinan, 2006, 2008), in which the (Gaussian) mean shift algorithm is performed with
a crucial modification that successively updates the data set for density estimation
after each mean shift iteration. It has been demonstrated that the blurring procedure
improves the convergence rate of the (Gaussian) mean shift algorithm to be cubic or
even higher order with Gaussian clusters and an appropriate step size. We present
preliminary results of introducing blurring procedures into the directional mean shift
algorithm with the von-Mises kernel in Appendix A.3, where the blurring procedures
are able to substantially reduce the total number of iterations. However, in addition
to those valid estimated local modes identified by the original directional mean shift
algorithm, the blurring version also recovers some spurious local mode estimates (see
Table 1 in Appendix A.3 for additional details). Because the current stopping criterion
applied in the blurring directional mean shift algorithm is adopted from the criterion
for Gaussian blurring mean shift (Carreira-Perpindn, 2006), we plan to develop an
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improved stopping criterion for the blurring directional mean shift algorithm and
investigate its rate of convergence.

e Connections to the EM Algorithm. As pointed out by Carreira-Perpinan (2007),
the Gaussian mean shift algorithm for Euclidean data is an EM algorithm, while the
mean shift algorithm with a non-Gaussian kernel is a generalized EM algorithm. It is
unclear whether the directional mean shift algorithm with the von Mises kernel is also
an EM algorithm on a mixture of von Mises-Fisher distributions on €, (Banerjee et al.,
2005) or even a generalized EM algorithm when other kernels are used in Algorithm 1.
Bridging this connection can help establish the linear rate of convergence for the
algorithm from a different angle.
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Appendix A. Additional Experimental Results

A.1 Spherical Case with One Mode (Simulation Study)

We simulate 1000 data points from the density fo(x) = fomr(x; p,v) with p = (1,0,0)
and v = 5. The bandwidth parameter is selected using (31) and the tolerance level for
terminating the algorithm is set to e = 10~7. As presented in Figure 10, all the simulated
data points converge to the mode of the estimated directional density except for a small
portion of outliers. In addition, the misclassification rate in this example is 0.011, because
there are some spurious local modes in the low density region. The total number of iterative
steps in this case is greater than the case with three local modes in Figure 6.

A.2 Additional Mode Clustering Results on the Martian Crater Data

We varies the bandwidth parameter h from 0.1 to 0.6 with a step size 0.05 when conducting
mode clustering on the trimmed Martian crater data set. The tolerance level for stopping
Algorithm 1 is set to € = 1077. The number of crater clusters on Mars yielded from
Algorithm 1 ranges from 37 when h = 0.1 to 1 when A = 0.6 in Figure 11. Those small
crater clusters yielded by the directional mean shift algorithm with a small bandwidth
parameter are of practical significance, since it may give astronomers more insight into the
planetary subsurface structure and geologic processes on Mars.

A.3 Preliminary Experiments on Blurring Directional Mean Shift Algorithm
with the von-Mises Kernel

We randomly generate 1000 data points from von Mises-Fisher distributions with one
([1,0,0]), two ([0,1,0], [0,0,1]), and three (][0,1,0], [1,0,0], [0,-1,0]) true local modes via re-
jection sampling, respectively. Both the original directional mean shift algorithm with the
von Mises-Fisher kernel and its blurring version are implemented on these simulated data
sets. The stopping criterion for the blurring directional mean shift algorithm is adopted
from the Gaussian Blurring mean shift algorithm with Euclidean data (Carreira-Perpinan,
2006), that is,

(’H (e(s+1)) o (e(s)ﬂ < 10—8) OR (:L zn:ezgsﬂ) < 6) ’

=1

where e(s) — (658), “_,e,gls))’ 658) = ’ :/y\l(s) — g§S+1)"27 {:/y\Z(O)}n . = {XZ}?:I is the original
1=
data set, H(e) = — Zf; 1 filog fi is the entropy, f; is the relative frequency of bin i (so

Zil fi = 1), and the bins span the interval [0, max(e)]. The number of bins B is chosen
as B = 0.9n, where n is the number of data points in the original data set. Among all
the experiments, the bandwidth parameter is selected using the rule of thumb (31). The
tolerance level is set to e = 10~7. The repeated experimental results are recorded in Table 1,
where the column “Avg. Err. of Est. Modes” presents the average distances between all the
estimated local modes (identified by the original directional mean shift algorithm) and the
nearest local mode estimates yielded by the blurring directional mean shift algorithm. As
shown by Table 1, the blurring procedure is able to substantially reduce the total number
of iterations for the directional mean shift algorithm with the von-Mises kernel. However,
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(g) Mode clustering (Cylindrical equidistant view)

Figure 10: Directional mean shift algorithm performed on simulated data with one mode
on Q9. The analysis is displayed similar to Figure 6. Panel (a)-(c): Outcomes under
different iterations of the algorithm displayed in a cylindrical equidistant view. Panel (d)-
(f): Corresponding locations of points in panels (a-c) in an orthographic view. Panel (g):
Clustering result in a cylindrical equidistant view.
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(g) 2 clusters (Step 155, 68, 57, and 61 (both (h) 1 cluster (Step 69 (converged), h = 0.6)
converged) when h = 0.4,0.45,0.5,0.55). The
plot here is for h = 0.4.

Figure 11: Directional mean shift algorithm with various bandwidth parameters performed
on Martian crater data. The figures are visualized in their Hammer projections.
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’ Method (Scenario) # Est. Modes # Steps Avg. Err. of Est. Modes

DMS (One mode) 4.25 (1.670) 86.30 (48.774) —
BDMS (One mode) 1195 (2.156)  17.10 (2.700) 0.074 (0.0492)

DMS (Two modes) 2.40 (0.490) 30.55 (5.757) -
BDMS (Two modes)  3.60 (1.114 9.90 (1.868) 0.045 (0.0240)

(

(1.114)
DMS (Three modes) 3.00 (0.000) 28.65 (5.790) -
BDMS (Three modes)  3.10 (0.300) 7.75 (0.698) 0.034 (0.0090)

Table 1: Comparisons between the Directional Mean Shift (DMS) and Blurring Directional
Mean Shift (BDMS) algorithms. The means and standard errors (within round brackets)
are calculated with 20 repeated experiments.

besides those valid estimated local modes identified by the original directional mean shift
algorithm, the blurring version also recovers some spurious local mode estimates. The
number of spurious local mode estimates from the blurring directional mean shift algorithm
tends to decrease as the number of true local modes increases, given that the true local modes
are well-separated. It illuminates a promising avenue to further accelerate the directional
mean shift algorithm if a more delicate stopping criterion is designed.

Appendix B. Review of Geometry of Riemannian Manifolds

e (Riemannian) Manifold. A m-dimensional manifold M C R” with D > m is a second
countable Hausdorff space where each point has a neighborhood that is homeomorphic
to the m-dimensional Euclidean space. For each point p € M, it is possible to define a
coordinate chart (U, ) centered at p as a homeomorphism ¢ : U — ¢(U) C R™, where
U is an open subset of M containing p. Somewhat informally, if two coordinate charts
(U, ) and (V, 1) are smoothly compatible, that is, either U NV = () or the transition map
Yoy :pUNV)—=yYp(UNV)is a difftomorphism, then M is a smooth manifold. See
Chapter 1 in Lee (2012) for more formal definitions and discussions on smooth manifolds.
A Riemannian manifold (M, g) is a real smooth manifold equipped with an inner product
gp on the tangent space T,(M) of every point p € M, such that if u,v are two vector fields
on M then p — (u,v), := gp(u, v) is a smooth function.

e Curvature. The curvature of a Riemannian manifold is characterized by its Riemannian
metric tensor at each point. Sectional curvature is the Gaussian curvature of a two dimen-
sional submanifold formed as the image of a two-dimensional subspace of a tangent space
after exponential mapping. See Section 3-2 in Do Carmo (2016) for detailed discussions on
the Gaussian curvature. It is known that a two-dimensional submanifold with positive, zero,
or negative sectional curvature is locally isometric to a two-dimensional sphere, a Euclidean
plane, or a hyperbolic plane with the same Gaussian curvature (Zhang and Sra, 2016).

e Differential. Given a smooth m-dimensional manifold M, the differential (or total
gradient) of a smooth function f: U C M — R at p € U is defined as a linear map

dfp : Tp(M) — Tf(p) (R) ~ R,
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where U is an open subset of M, T,(M) is the tangent space of M at p, and Vi ~ V5
means that these two vector spaces are isomorphic. Other commonly used notations for the
differential are: df,(v) = v(f)(p) = vp(f) = (v- f)(p) for v € T,(M). See Section 2-4 in
Do Carmo (2016) and Section 3.1 in Banyaga and Hurtubise (2004) for more details.

With an inner product structure on tangent spaces and the definition of differentials,
one can define the gradient of a smooth function f on M.

Definition 13 (Riemannian Gradient) The (Riemannian) gradient of a smooth func-
tion f : M — R is a differentiable map grad f : M — T M which assigns to each point
p € M a vector grad f(p) € T,(M) C RP such that

(grad f(p),v)p = dfp(v)  for allv € T,(M). (32)

Here T M is the tangent bundle, that is, the disjoint union of the tangent spaces at all points
of M.

In terms of the following definition, the Hessian matrices on a manifold are only well-
defined at critical points, that is, those points whose differentials vanish, though an extension
of the definition to non-critical points is possible.

Definition 14 (Riemannian Hessian) The Hessian H,f of a smooth function f : M —
R at a critical point p is a symmetric bilinear map

Hof : Tp(M) x T,(M) — R

defined as follows. For any tangent vectors v,w € T,(M), we choose extensions v and W to
vector fields on an open neighborhood of p and set

Hpf(v,w) = (V- (w- f)) (p) = vp(w- f).

The expression above is independent of the extensions v of v and w of w, since
v-(w- f)(p)—w-(0-f)(p)=[v,w],(f) =0

at a critical point p, where [v,w], is the commutator (or Lie bracket) of v and w at the
point p. Thus, Hyf is a well-defined symmetric bilinear form on T,(M) at the critical point

p-

Remark 15 Note that in general, v - (w- f) (p) and w - (v - f) (p) might be of different
values when p is not a critical point. This is essentially the definition of the vector [v,w], =

v-(w-f)(p)—w-(@-f)(p).

0
p’ Y Oxm P

Given a coordinate chart (U, ) around p € M, {8%1 } forms a basis for

T,(M), and the matrix of H, f with respect to this basis can be expressed by the m x m
matrix of second partial derivatives:

Q= (S o).
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It is possible to extend the definition of Hessian matrices of a smooth function f :
M — R to non-critical points based on the current definition (Milnor 1963). Given a local

m
coordinate chart (U, ¢) near a non-critical point ¢ and v = E iz ‘ w=> bja%j‘q, we
=1 7j=1

m
take w = ) bja%j‘q? where b; now denotes a constant function. Then

Haf o) = (@0 = [ 025 | =33 a2 o)
j=1 Bt

=1 j=1

m
so the matrix ( 65-25;- (q)) represents the bilinear function H, f with respect to the basis
K J Z y

8%1 PR % . Another feasible avenue to define the Hessian on a Riemannian manifold

starts from the notion of Riemannian gradient (Definition 13) and covariant derivative (or
affine connection). See Absil et al. (2013) for more details.

Definition 16 (Non-degenerate Critical Points and Morse Functions (Definition 3.1 in Banyaga
A critical point p € M of a differentiable function f : M — R is non-degenerate if the Hes-

sian Hy f is non-degenerate. In other words, the determinant of Qpf is non-zero. Otherwise,

p is a degenerate critical point. A differentiable function on M is a Morse function if all

its critical points are non-degenerate.

A standard result for a Morse function on a finite dimensional compact smooth manifold
M, including €, is that it has a finite number of critical points (Corollary 3.3 in Banyaga
and Hurtubise 2004). Another remarkable fact in Morse theory is that integral curves on M
(equivalently, gradient ascent paths with infinitely small step sizes) never intersect except
at critical points, so they partition the space (Morse, 1925, 1930; Banyaga and Hurtubise,
2004). It thus serves as the backbone of mode clustering (Chen et al., 2016). We have
presented some mode clustering results on €}, using both synthetic and real-world data in
Section 6.

B.1 Function Classes on Riemannian Manifolds
The key definitions in this subsection are modified from Section 2 in Zhang and Sra (2016).

Definition 17 (Geodesic Concavity) A function f : M — R is said to be geodesically
concave (or g-concave) if for any p,q € M, a geodesic v such that v(0) = p and y(1) = g,
and t € [0,1], it holds that

f(y(@®) = (1 —t)f(p) +tf(q).

Equivalently, it can be shown that there exists a tangent vector g, € T,(M) such that

F(@) < F(p) + {9p, Bxp, " (@))p, (33)

where gp is called a subgradient of f at p, or the gradient if f is differentiable, and (-,-)p
denotes the inner product in the tangent space of p induced by the Riemannian metric.
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See, for instance, Section 1.2 in Bubeck (2015) for the definition of subgradients of
convex functions.

Definition 18 (Geodesically Strong Concavity) A function f: M — R is said to be
geodesically p-strongly concave if for any p,q € M,

=

f(@) < f(p) + (gp. Exp, (0))p — 5 - d*(p, ), (34)

where d(p,q) = \/<Exp;1(q), Exp;l(q»p = HExpgl(q)H.

Definition 19 (Lipschitzness) A function f : M — R is said to be geodesically L-
Lipschitz if for any p,q € M,

|f(p) = fla)| < Ly -d(p,q). (35)

Definition 20 (5-Smoothness) A differentiable function f : M — R is said to be geodesi-
cally B-smooth if its gradient is 5-Lipschitz. That is, for any p,q € M,

llgp = TG(g)l| < B - d(,y), (36)

where T'Y is the parallel transport from q to p and 3> 0 is a constant.

Appendix C. An alternative derivation of Algorithm 1

From the expression of the Riemannian/tangent gradient estimator (25), we obtain that
grad fj(x) = Tang (th(m))

_ ang(D) Z": (@ X; X)) L (HTXl>

nh? 4 h?
=1

— X

_ T .
- X) i Xl ()
Y e Xl (1)

where we need to assume that :cTth(ac) # 0. (This is true in small neighborhoods of
estimated local modes under condition (C2), which in turn holds with high probability as the
sample size increases and bandwidth parameter decreases accordingly. This is guaranteed by
vfh(a:)

Lemma 10.) By equating the alternative directional mean shift vector E’h(m) = V@

to 0, we obtain that

A, V fi(Gs) Ui Y (W)

Jop1 = ——=" and ey = =sgn (L Vfi(Gs)) - 17— , (37
gV @) gl g( i )) Hwh(gs) 37

2

where sgn(z) = 1{;>0} — L{z<0}- Now, we discuss two mutually exclusive cases.
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o (Casel)If ySTth (ys) > 0, then the directional mean shift vector =) (y,) = %_
Ys h\Ys
Ys is parallel to the Riemannian gradient at ys after being projected to the tangent

space and points toward the direction of increasing the estimated density. Then, the
preceding fixed-point iteration (37) is correct and can be simplified as

V() iy XL (%) |

178—"_1 - o - n 1-y: X;
vah(ys) ’2 Zz‘:l L' (%)

o (Case 2) If yTth(ys) < 0, then the mean shift vector Z} (ys) is still parallel to
the Riemannian gradient at y, after being projected to the tangent space but points
toward the direction of decreasing the estimated density. Thus, the preceding fixed-
point equation (37) goes as

V n(5s)
vah(gs) ’2
but is not correct in this case. We need to flip the sign of the fixed-point function and
obtain that

—~ n 1-ys X;
Vi) DXl (S

Vi@,

Ys+1 = —

Ys+1 =

I 1—5, X,
‘2 Zi:l L ( zQ )

In both cases, the final fixed-point iteration equations coincide with our previous result in
Equation (20) or (23).

Appendix D. Proofs of Lemmas and Theorems

This section includes the proofs of our lemmas and theorems. Other auxiliary results are
also presented along the way.

D.1 Proof of Lemma 1

Lemma 1 Assume that kernel L is twice continuously differentiable. Then,
Hfn(@) = Hfn(@)
for any point x € €.
Proof Some straightforward matrix calculus shows that
c —z'X;
VV (@) = hq qu“ Ll( 02 >

n

+ ChaQ(L) Z(w o XZ)(JJ o XZ)T L <1 — wTXZ)

nht < h?
=1
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= A f

and
1-— .’IZTXZ‘)

hQ

~ Chq(L) —
VV fu(x) = hﬁq}; ) > x XL <
=1

According to the generalized form of the Hessian matrix on €2, in (13), we derive the Hessian
estimator of the directional density f as

(Ig+1 — :c:cT) [VVEL(Q:) - a:Tth(a:)} (Ig41 — a:acT)

Ch, (L) = 1 —Q?TXi
==z > Ly —za) I (m)

1=1
L) <& 1-a2' X,
+ C"?’z"f; ) > (I —z2”) Xi X[ (Iy11 — xa™) L (:2 )
=1
cha(L) 11—z X;
- h;f;gz ) > _(1=2"X) (Ippr — zz) L <hz>

i=1
chqg(L) & 1—2TX;
= (-[q—‘,-l - SBSDT) [nthl ZXZXZTL” <h2
i=1

Ch, (L) " 1— wTX-
+ =05 D @ Xl U —— 5 ) | (Tor — 22’
i=1

= (Ig41 — zz") [VVﬁl(w) - :BTVL]?;L(CL')} (Ig+1 —z2),

~ n
where we recall that Vf,(x) = Chr’l‘}fQL) Zl(a: - X;) - L/ (1_”}”;&) from (21) in the first
1=
equality. Thus, we conclude that the directional Hessian estimator at a point & € () is

defined to be

-~ . T Ch,q(L) n T 1-— :IZTXZ'
Hfh($) = (Iq+1 — ) [nh4 ;XzXZ L” T
cha(L) & 1-2TX; (38)
+ h;lq}; ) Za:TXinH L (iﬂ) ] (Ig41 — :ca:T)
i=1
The result follows. [ |

D.2 Proof of Theorem 2

Before we dive into the (pointwise and uniform) consistency of the Riemannian gradient
and Hessian estimators, we reiterate some common notation and terminology in directional
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data. For a variable € 2, and a fixed point y € €1, we denote t = "y the inner product
between x and y and write

T = ty + (1 - tQ)%Ev

where £ € (), is a unit vector orthogonal to y. Further, an area element on ), can be
written as

we(dw) = (1 —t2)2 ' dt w1 (dE).

We will make extensive use of Lemmas 1, 2 and 3 in Garcia-Portugués et al. (2013) as well
as their small extensions. Thus, we synthesize them in the following lemma.

Lemma 21 (A Change of Variables and Orthogonality in ;) The following results
are extended from Lemmas 2 and 3 in Garcia-Portugués et al. (2013):

(a) Under condition (D2) or the stronger condition (D2’), we have that

_ o q_
lim A (L ) = A(L) =230, 1/0 L(r)yrz"tdr,

where A\ q(L) = Wg—1 f02h72 L(r)yri Y2 = rh?)3 Ydr and Wg = wy(Qy) is the surface
area of Qg for ¢ > 1. In other words, A\ 4(L) = A\g(L) + o(1) as h — 0.

(b) Let f be a function defined in Qy, and let y € §y be a fized point. The integral
fQ x)wq(dx) can be expressed in one of the followmg equivalent integrals:

/ f (@) w,(dz) = / / 10— 2)5) (1 - )3y (d€)dr

(39)
/ / (ty + (1= ) Byg) (1 — ) (de) s

where By = (b1, ...,b)(g4+1)xq 15 the semi-orthonormal matriz (BZBy = 1, and
ByBg = I,41) resulting from the completion of y to the orthonormal basis {y, b1, ..., by}.

(¢) For any variable © = (x1,...,x4+1)" € Qq, it holds that

0, L
/Q ziwg(dx) =0, / T wg(dx) = { e Z 7&3 /Q Tz x) we(dx) =0,
q q

q 1 =D
GG i=i=k=m
/ L% T T Wy (d) = WS’%, i=k,j=m,i#j, / T j T Ty wq(dz) = 0

q q

otherwise,

for all i,j,k,m, £ = 1,...,q + 1, where @&, is the surface area of €y for ¢ > 1. In
particular, using the notation in (b), we have that

| Bugw, e =0
Q1
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Proof As we will use the argument of (a) in our proof of Theorem 2, we reproduce the
proof of Lemma 1 in Garcia-Portugués et al. (2013) here.
(a) Consider the functions

q

wp(r) = L(r)ri=1(2 — h?r)3- l[O,Qh*Q)(T%
w(r) = lim wy(r) = L(r)r5_12%_1]l[0700)(7‘).

h—0
Then, proving lim Anq(L) = Ag(L) is equivalent to proving lim fooo wp(r)dr = [}~ w(r)dr.

C0n81derﬁrstthecaseq>2 As 2 -12>0, then(2—h2) 1 <2571 Yo > 0,Vr €
[0,2h72). Then,

|wn(r)] < L(r)r2 =125 g g2y (r) < w(r), Vr € [0,00),Vh > 0.

Since fo r)dr < oo by condition (D2) on kernel L, by the Dominated Convergence
Theorem, it follows that }ILIII%) fo wp(r)dr = fo r)dr.
—

For the case ¢ = 1, wy(r) = L(r)r‘i (2—h? r)‘i Ljg2n-2)(r). Consider now the following
decomposition:

oo o0 1 1
/ wp(r)dr = / L(r)r 2(2 — h2r)7§ Il[ojh_z)(r)dr
0 0
oo 1 2 1
+/ L(r)r~2(2—h*r) 2 ]l[h7272h72)(7')d7'.
0
The limit of the first 1ntegral can be derived analogously with the Dominated Convergence
Theorem. As (2 —h%r)~ 2 is monotonically increasing with respect to r € [0, h72), we know

that (2 — h2r)~2 < 1, Vr € [0, h=2), Vh > 0. Therefore,

L)@ = h3) 31 oa(r)| < L) 3oy () S (), Vi € [0,00), ¥ > 0.

Then, as ]llin%] L(r)r_% (2—h27")_% Lo p-2y(r) = ) and [;* @ (r)dr < oo by condition (D2),
—
the Dominated Convergence Theorem guarantees that
oo 1 1 oo
lim L(r)r~2(2 — h*r)"2 Lig,p-2)(r)dr = / w(r)dr.
h—0 0 ’ 0

For the second integral, as a consequence of condition (D2), L must be decrease faster than
any power function in order for 0 < [;° LF(r)ri~ldr < oo forall ¢ > 1 and k = 1,2. In
particular, for some fixed hg > 0, L(r) < =%, ¥r € [h=2,2h72), Vh € (0, hg). Using this, it
results in:

2h~2 2h~2

lim L(r)r*%(Q — hQr)*%dr < lim r*%(2 — hQT)*%dr = lim h = 0.
h—0 Jp—2 h—0 Jp—2 h—0

This completes the proof.
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The proofs of (b) and the first two integral results in (c) can be found in Garcia-
Portugués et al. (2013) and thus omitted. We adopt some of the argument of Lemma 3 in
Garcia-Portugués et al. (2013) to prove the last three integrals in (c).

Recall that the n-dimensional spherical coordinates of & = (21, ..., ¥,,)T with norm r := ||z||,
are given by

T1 = TCOS ¢p1,

j—1
xj :rcosqﬁjkl;[lsm(;ﬁk, ji=2,...,n—2, o

.oon=2 J=r"1 H sin® ¢ 11, (40)

Tp_1 = rsinf kli[l sin ¢y, Pt

n—2
xy =rcosf ] sin ¢y,
\ k=1

where 0 < ¢; <, j=1,...,n—2,0<0<2m and 0 <r < oo. J denotes the Jacobian of
the transformation. Without loss of generality, we assume, by the g-spherical coordinates
(40), that z; = cos ¢1, xj; = cos g2 sin @1, and x, = cos ¢3sin ¢a sin ¢q1. Then,

/Q 3wy (dx) /%/ / cos ¢1Hsm Gq_rsin? 1 ¢ H de;df

J=q—1
2 pm (4—2) w42 5 )
:/ / X e / Hsm gk H d¢]d0></ cos” ¢1 sin?™ " p1dgy
0 0 j=q—1
2m T
:/ / X (‘?_.2) / Hsm gk H dqﬁ]dﬁx/ (1 — sin? ¢y sin?™! ¢y d(sin ¢;)
o Jo iZa-1

=wy—1 x0=0,

/ x?xjwq(daz)
Qq
q—3

2r e 1 s
:/ / X @y x/ cos ¢1cos¢>gsm¢1Hsm Gg—r sin?” 2 pysin?t ¢y H do;do
o Jo

Jj=q—1
2w (g—3) q—3
:/ / X e / [T sin* 6« H dp;df
0 0 0

k=1 j=q—1

iy vy
X / cos® ¢1 sin? p1depy / oS ¢hg sind 2 Podpa
0 _ 0
= Wg—2 X / cos? ¢y sin? prdgy x 0= 0,
0

and

2w pm s
(g-1) . . .
/ i xpwe(de) = / / X el X COS (1 COS g Sin P71 €OS 3 Sin P sin Pq
Q, o Jo 0
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q—4 1
x | [ sin® ¢g—psin?? g3sin?? gy sin?™ ¢y [ dep;dé
k=1

Jj=q—-1

2 pm _ P
:/ / VRS / [T sin” ¢4+ H do;d
0 0 0

k=1 Jj=q—1
X / cos ¢1 sin? ¢1dgy / cos ¢ sin? ™t odey / o8 ¢ sin?=2 dsdes
0 0 0

=wWg—3xX0x0x0=0.

The preceding argument teaches us that

/ LT LT wq(dx) :/ LT LT Ty we(da) = 0

q Q‘I

as long as one of the unique factors in the integrand has an odd multiplicity. (Indeed, any
integration of a monomial with an odd degree on 2, will yield 0.) Thus, the only nonzero
integrals in qu LT TpTm wq(dx) and fﬂq LT TpTm Ty we(dx) are

/ 2} wy(dz) and / x?w? wq(dx)
Q Qq
with ¢ # j. To compute the first integral, we define a vector field as

F(z) = (Fy(x), ..., Fyr1(x)) = (23, ...,x2+1)

with @ = (21,...,2441) € 4. By the divergence theorem (Theorem 10.51 in Rudin 1976),

a+1
/qu?wq(dw):q—i-l (Zx)

1
= — F.,x dx

] Qq< ) wq(dx)

1
= — div F dV

a+1Jy,

3, 3w
= rloydr = —— 1 ——
g1y T T g D+ 3)

where (-, -) is the usual inner product in R div F = Z TR
7;_

the solid g-dimensional sphere V in R9*L. The second integral can be evaluated based on

the preceding results as

/Q x%x?wq(dx) = q/ Zx

q Qq e

L[ @2 ey (da
- /Q(Z z) q(d)

q q

L dV is integrating
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1] @y 3wy _ Wy

ala+1l (¢+D(@+3)] (@+1)(g+3)

As a specific application of our above results, we know that quil Bz€w,—1(d€) = 0. |

Remark 22 Garcia-Portugués et al. (2013) also provided a key remark about how to gen-
eralize the arguments in (a) of Lemma 21. Under condition (D2’), one can apply the same
techniques in (a) to prove the result with the functions

@i (r) = LF(r)r+(2 — h2r) 371 052 (1),
. 9,,~,9_4
@ik (r) = lim i jx(r) = LF(r)r2 422771 o) (r);

9.4 q_ s
@), 6(1) = [ (M)]Fr2(2 = hPr)> Jq1[9,2g—?)(7“),
@ p(r) = M a5 (r) = [L/(n)]Fre 122 70 g o) (r);

@i (1) = (L7 (r)]ErE (2 — h2r) 277 g p-2) (1),

. 94,94

@i k(r) = }ng}) @y k() = L (F)]Fr2 42277 1 ) (r)
with i > —1, j < 1, and k = 1,2. For the case where & — j > 0, use the Dominated
Convergence Theorem. For the other cases, subdivide the integral over [0,2h~2) into the
intervals [0, h=2) and [h=2,2h=2). Then apply the Dominated Convergence Theorem in the

former and use a suitable power function to make the latter tend to 0 in the same way as
described in the proof of (a) in Lemma 21.

Theorem 2 Assume conditions (D1) and (D2’). For any fized x € Q4, we have

grad f,(z) — grad f(z) = O(h?) + Op (\/ nh}ﬁ?)

as h — 0 and nh?t? — oco.
Under the same condition, for any fized x € €y, we have

Hfu(@) = H[(x) = O(h?) + Op (\/ n,fm)

as h = 0 and nhit* = oo.

Proof Part A: Pointwise convergence rate of the Riemannian gradient estimator
grad fp(x). Recall from Section 4.1 that the tangent/Riemannian gradient estimator of a
directional KDE is uniquely defined under a given kernel function L. Thus, we can establish
the pointwise convergence rate under any total gradient (or differential) estimator, that is,
grad j/’;b(w) = grad f,(z) = Tang (Vﬁ(a:)) Here, we stick on the differential form (21),

V fu(z). (One may also prove Theorem 2 with th(a:) The proof of Lemma 10 provides a
starting point for this direction.)
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e Result 1: The expectation of the Riemannian gradient estimator, | [grad fh(m)], has
the following asymptotic behavior as h — 0:

E [grad fh(w)} =E [Tang (th(a:))} = (Iyy1 —xzz")E [th(a:

2
= (Ig41 — zc:cT) Vi(x)+ % (Ig41 — wa) Vi(x)- fo

2h? I T f()oo L/(r)r%—i_ld 2 2
=-> i) bi - 7 0
+ pa (" VV f(x)b;) b L0 ar + O(h?) + o(h*)

= (I11 — xa") Vf(z) + O(h?).

Derivation of Result 1. With the definition of B, from Lemma 21, the expected value of
V fn(x) is

E [th(a:)} - C’L;ILgL) /Qq(ac —y)- L <1_th'”> f(y) wy(dy)
:Chq / / m—ta:— 1—t2Bm§>L'<1h_2t>
x f (ta:+ MBO;E) 1— 25w, (dg)dt (41)

0 q—1

X flx+oge) - r%_1(2 — hQT)%_lwq_l(dE)dr

by (a) in Lemma 21 and a change of variable r = %, where az ¢ = —rh*x+hy/r(2 — h?r)BE.
By condition (D1), the Taylor’s expansion of f at @ is
flx+ agze)
1 1 [ o\
= f(x) + oag{Vf(a:) + §a£,€VVf(a:)az7§ + G (Z(awﬁ)i . 8x~> f(@) + o (||lawel3)
i=1 !

= (I) + (II) + (1II) + (IV) + o(h?),

where Ham’§||§ = r2h* + h%r(2 — h%r) = 2rh? by the orthogonality of & and columns of By,
and (g ¢); stands for the 7" entry of the vector age. Now we plug (I), (II), (III), (IV),

and o(h3) back into (41) respectively to compute the dominating term of E [th(:n)}
Plug in (I)
2h~
= cng(L)RI 2 () / (rh — /(2 = W7r) Byt
0 _

2
x L'(r)r2 =12 — h?r)2 w,_ i (d€)dr

=

2h—2 .
=0y af(x )/0 hg(L)RIL (1) - 12 (2 — B2r) 2~ dr 4+ 0
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@ 0g—1 - f(x) chq(L)hq{L(r)rg(Q—hQT)g1‘zh2
_/OWZL(T) [2-rdte—ntnit =t (L -1) i@ - n2n)i?] dr}
2h™2
=—5 wWg-1-zf(x) Chq(L)hq/O Lrri=t(2 = n%r)s ldr
+ (qu) Dq_1 - Tf () - cpg(L)hTH? /0%2 L(r)rz(2 — h?r)22dr

DL g+ (152 ) s o L2 — htr)d 2
Lo+ (157 2ite) fozh_QL()ql(Q_hw -

LT g J\T 2 fO TQdT (] 2
@+ (157 st L ot

as h — 0, where we use (c) of Lemma 21 with Bz& = .7, &b; in (i), conduct integration
by parts in (ii), plug in the expression (3) of cp4(L) in (iii), and take h — 0 with our
argument in (a) of Lemma 21 and Remark 22 to obtain (iv). The o(h?)-term in (iv) takes
into account those small error terms as h — 0. Likewise,

Plug in (II)
2h—2
= cpg(L)hT™ 2/ / thm_h\/WBg&) a;éf )
x L'(r)-rit(2 - r>%—1wq71<ds>dr

2h—2
= —cpg(L)hTH? / / wx"V f(x) L (r)rith (2 — B2r) 2w, 1 (d€)dr
0 Qg1
2h—2 41 1
+ cpg(L)hTH / / €T BIV f(x)L (r)r' T (2 — h?r)"T wy_1(d€)dr
0 Qq-1
2n—2 +1 g—1
+ cpq(L)hIT / / Bo& - 2"V (@)L (r)r'T (2= h2r) "7 wy_ 1 (d€)dr
0 Q-1
2h—2 . v
— eng(L)h0 / / Bat - €7 BIV f(2)L/(r)r3 (2 — h2r) b, (d€)dr
0 Qg1
. 2h2
O (DR - 22TV f(2) - wa/ L(r)rH(2 — k)3 dr 4040
0

2n—2 q q . 4 ) 4
— cng(L)h /0 /nq_1 (;&m) <;§ibi Vf(cc)) "(r)r2(2 = h7r) 2w (d€)dr

2h—2

0

_ /0%_2 L(r) [(T) (2= B3l g2 <(122> Pt - h%)gﬂ dr}
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% a 2h~2
5 (Z bib?> VI engit? [ Lyt i
i=1 0
(i) q+2 T _ 2h =2 . L
= cpqg(L)hT™ xx' Vf(x) w1 | —— L(r)r#(2 — h%r)% ldr
0
2h )
— epg(L)H - aa V f() - @g1 <> / P32 - 22y
0

Wg—1

o 2h™ 3(2 — h2r)514
2 (112) gy B HOV 0
fo L(r)yrz="(2—h 7") Ldr
- (152) wawroja. B HOr e
fo L(r)yr2=%2 — h2r)2 " tdr
1 2277 )32 — h2r)dr
(I . T \v4 0 .
+ 3 Uan —e2’) V(@) JP7 Ly L2 - h2r) 3L
—R2. S L) 2 = n2r)dlar
JE Ly (2 — h2r)Edr
W (a+2Y),, 27 ) fOOOL(r)r%dr _<q—2> 4 T ‘foooL(wr%Hdr
B < 2 )h Vi) fOOOL(r)r%_ldr 4 W ez V(@) I L(r)rz—'dr
T 2y I T Jo L r)ridr 2
+ (Tt —22?) VI(@) + O0) = 5 (g1 — 2a?) V() f0°°L<r>r%—1dr 2
B 7 o (q+2 T ' fOOOL(’I“)T‘%dT
= (Ig41 —xx" )Vf(x)+h ( 5 )wa: Vix) OOOL(r)rgfldr

T T T
+ 5 (g1 — z2’) V(x) I L

where we use (c) of Lemma 21 in (i) and (ii), leverage the fact that >7_, b;b] = B, B =
Iy+1 — xzz? in (iii), plug in the expression (3) of cp4(L) in (iv), and take h — 0 with
arguments in Lemma 21 and Remark 22 to obtain (v). The o(h?)-term incorporates higher-
order error terms, while the O(h?)-term in (v) comes from the following arguments:

T e U0 L N PO N 0 ) P PSS
f02h72 L(r)yr:= (2 — h2r)s ldr f02h7 L(r)yr:=1(2 = h2r)2 ldr
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We now move on to the calculation of (IIT), which is more complicated.
2n~2 . v
Plug in (IIT) = cp 4( hq/ / Oy, £VVf( x)og e - el (r)r2 (2 — h2r)2 w1 (d€)dr

2h 2
e [T [ Dol TV @ane Bat ()5 (210 i

(43)
Notice that

/ og’gVVf(m)oz%g ~Twg-1(§)

Qg1

:7‘2h4/ ! VV f(x)x - @ w1 (dE)
Q

q—1

— 2@ — 1) / ETVV () Bat - w0y 1 (d€)

+ h?r(2 — h%r) / ¢'BIVV f(x) Byt - 2w, 1(d€)
Q

q—1

=01, 12T VV f(x)x - & + h*r(2 — h?r) /
Qg1

q
(Z bI'vv f(m)bj§i§j> x w,_1(dg)
ij=1
q

= r*h'@, 12" VY f(@)a - @+ hPr(2 — hPr) / (Z bz-TWf@)bif?) @ wy1(d€)

Qg-1 \j=1
Wg—1

q

=’ htw, 12T VV () - = + h2r(2 — hr) - [Af(x) — :BTVVf(:B):U] -z,

(44)
where we use (c) of Lemma 21 in the second, third, and fourth equations and the fact that

q

> b VVf(x)b; = tr

i=1

VVf(z Zb bT] = tr [VVf(a)(Ig11 — zx")]
= Af(z) — 2" VVf(x)z.

Here, Af(x) =] +11 ;—f(w) is the Laplace of function f. At the same time,

/ of (VY f(2)0rp ¢ - Bk g1 (dE)

q—1

_ 24 / 2T VV f(x)z - Byt we_1(d€)
Q

q—1

k3@ = 12 / 2TVV f (@) Byt - By wy_1(d€)

+ h%r(2 — h?r) / E'BIVV f(x)Bg€ - Bp€wy1(d€)

Q1
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Wq— ldE

A N o) / (Zmva - big?

7

q
+ B%r(2 — h?r) /Q (Z bIVVf(z ]glgj) <Z bk§k> wy—1(d€)
a—1 \q,j=1 1

q
— 20 /r2 = 1) - LS (@I VY (@)b,) b
=1

q

where we apply (c) of Lemma 21 in the last two equations. That is,

— q
/Q aL VVf()0g ¢ - Bo€wy1(d€) = —2rh®\/r(2 — h?r) o Z (2" VVf(z)b;) b;
=1

q—1 q
(45)
Plugging (44) and (45) back into (43), we proceed “Plug in (III)” as
L hq+4 2hR—2
Plug in (III) = Chg(L)RTT @12 VV ()T - cc/ rat2(2 — h2r) 3 L (r)dr
0
L)ho+? 2h7 g g
+ Ch’q(zc)]h @1 [Af(z) — 2" VV f ()] a:/ L'(r)rzt(2 — h?r)2dr
0
L q+2 2h—2
Chg (LA wg1 Y (#"VVf(x) )bi/ L'(r)yrzt(2 — h?r)2dr
q — 0
; 4 OOL/ 142 2—h2 g—1d
O ' VVf(x)w - - fooo (r)rqz 1( r); 1 -
2 Jo o L(r)yrz=1(2 — h?r)2"'dr
h? > L' (r)r3t(2 — h2r )2dr
+ — [Af(z )—:cTVVf(a:)x]w- fooo T3 5
2q [ L(r)ri=Y(2 — h2r)2~tdr
W& S L/ (r)rith(2 — h2r)Edr
q ; ( /(@) ) fooo L(r)r%_l(Q — hQT)%_ldr
ii) h? > L (r)r3tidr
w2 [Af(x) - wTVVf(a:)az] x fooo o
q fo L(r)yr2""dr
e & [ L ar
— vV 0 + o(h?),
; ( /(@) I L(r)yrz—tdr (h°)
where we plug in the expression (3) of ¢j4(L) in (i) and take h — 0 with arguments in

Lemma 21 and Remark 22 in (ii).
We argue that after plugging (IV)+o(h3) back into (41), it yields a o(h?) term.

Plug in (IV) + o(h®)
2h" 1 q“ o\ L ) 4y
=engom [ [ ( g)agg) (@) 2L ()7 2 = 120) o (a8
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2h—2 1 q+1 9 3
+Chq hq 1/ / 6 < Oémg)i' 6$1> f(m) BwE

< L'(r)r'T (2 — h2r) "2 w_y (d€)dr

+ chg(L) - o(RITY) / " / (m%: —~ h\/m&g) L(r)r's (2= h2r)"T w1 (d€)dr
0 Qq—
2h—2 q+1 3
= cng(L hq/ / é ( %,s)z"ai) f(@) | L' (r)r? (2 = 17r)2 wy1 (d€)dr

2h—2 qtl o 3
+ cp (L)~ 1/ / ( am,g)i.ag:,) f(z)| Bzt

(2 = h2r)"T wy_y (d€)dr

2h—2
+ cpq(L) 'o(hq"'?’)-waa:/ L’(r)rq+ (2 — h?r ) 3 dr
0

by (c) of Lemma 21 in the last equality. As cp 4(L) = h9\p 4(L) = O(h9) by (3) and (a) of
Lemma 21, we know that the third integral is of the order o(h3). Since Bz& = Y"1, &b
and ag ¢ = —rh%x + hy/r(2 — h?r)Bg€, we derive that

g+1 P 3
<Z<ax,g>i ~ a) (@)

=1

= Apy - B2 (2 h2r)2 Y bibsbbi e + Apa - W2 — 1) S bibjcit;
1,5,k 2,
+Ayps3- h5r%(2 — hzr)% Z b;& + Af,4h6r3

g+1 P 3
{(me@)i ~ a) (@)

and

B¢

=1

= Apy - BPr2(2— h2)2 Y bibibpbetiiente + Aga - B2 — h2r) Y bibibréi€ b
',ij 4,5,k
+ Aps BOr3(2— W) bibjgig; + ApahSr® Zb &,

7.7

where Ay;,7=1,...,4 and gﬁi’i =1,...,4 are some “constants” that depends on the partial
derivatives of f(x). Thus, by (c) of Lemma 21 (that is, any integration of a monomial of &
with an odd degree on €,_; will yield 0), we know that

g+1 P 3
/Q {(Z(aw,g)i : 8:@) f(il))] wy—1(d€) < *r%(2 — h2r) 4 o(h?),

i=1
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Bo&wy_1(d€) = h3r2(2— h2r)2 + horv/2 — h2r + o(h3),

=1

g+1 9 3
L {(Zm,g)i ) s

where “<” means an asymptotic equivalence. With condition (D2’) and our arguments of
(a) in Lemma 21 and Remark 22, we obtain that “Plug in (IV)+o(h?)” yields a o(h?) term.
Therefore,

] =8 e+ (152 e L
+ (Iyp1 — xzxl)V f(x) + h? <q;2> xx’ Vf(z)- fo{zwaf;ﬁff;
+ 1 [(Af@) - VY f(a)e] o “5‘?;2(() e
+ T Z: (@TVV f()b;) b; - j};iié:;:;jj: +O(h?) + o(h?),

which in turn shows that

E [grad fh(m)} ~E [Tang (vfh(az))} = (Iy11 — za))E [th(a:

)
= (14 —zz") Vf(x h—z fOOOL(T)
s =) V) o Loy

2
% ! T AW fooo L/(T)T%HdT 2 2
= ; (2"VVf(2)b;) b; = L ar + O(h?) 4 o(h?)
= (Iq+1 - zch) Vf(x)+ O(hZ)

(Ig41 — za”) Vf(z) -

as h — 0. Result 1 thus follows and the Riemannian gradient estimator is unbiased.
e Result 2 The covariance matrix of V fj,(x) has the following asymptotic rate as h — 0

and nh?t2 — oo:
1

~ 1
Cov [th(m)] = W . R(f, L) +o <7’th+2> 5
f(@) [ L (r)?*rEdr .
B0 (1 £ d )’

Derivation of Result 2. By (46), the covariance matrix of V f,(z) can be calculated as

where R(f,L) = (Ig41 — zxT).

Cov [th(w)}

Ch, (L)2 1-— .’BTX1
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_ ol [(m - Xy - X)L <1‘]"§'2TX1>2] L E[VA@)] E[Vi@)]

N W /Qq("” —y@ -y (1_,:20%)2 f(y) wq(dy) + O (i)

chq(L)? ) g-a 2 T 710,02 11 2. 11
= ’Thq Qg g0 ¢ L'(1)"f(T + Qag)r2™ (2 — h°r)2 " wy—1(d€)dr
0 Q1

oft)

where agz¢ = —rh*x + hy/r(2 — h?r)Bz€. By condition (D1), the first-order Taylor’s
expansion of f at x € ), is

f(@+agzg) = f(x) + O|lawgll2) = f(z) +O(h).
Thus,
Cov [V:fvh(w)}
_ B e g / N / e — b /r(2 = )@ (Ba)”
n 0 Qq—1
— rh3\/7(2 — h2r)(Bg€)a” + h*r(2 - h2r)B$£(Bw£)T} L'(r)?ri =12 — h?r) i wy 1 (d€)dr
1
o ()

@ ch,q(L) hqf( )wawq L /2h L,(’I”)Q’I”%—H(Q - hQT‘)%_ldT
2 q q
Chq hq 2f(x /2h / (Z ) (Z {zbiT> L’(r)Qr%(Z — h%r )g 1(d€)dr
i=1 =1

1
o\ anerz

(11) Ch, ( ) 2h~ q q
qn hif(x)zx’ o, 1/ L'(r)?r2 (2 — n?r)2ar
0

_2
Chq(L)wg 1 —2 /2h T\ 7/ g 2 14 1
— . L pe bb; | L'( 2—h d _
+ g f(x) ; E ra( r)zdr 4o nha+2

@) ha(l) po gt o L’(T)Qr%“@ — R2r)$ldr
= L2 f(x)zx” - —
n f02h ’ L(r)yrz=Y(2 — h2r)z 'dr
2h~2 4 1
L'(r)?r2(2 — h?r)2dr 1
1 enall) g 2f(@) (Igpr —za’) —5)= (?1 ( )q +0< q+2>
nq I L(r)yrz=Y2 — h2r)2tdr nh

1
= W'R(ﬁL)JrO(W),
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F(@) [ L/ (r)2rEdr .
2%72q-®q_1<f000 L(r)r%fldr>2
the tangent space of €, at . During the derivation, we use (c) of Lemma 21 in (i) and
(ii), plug in the expression (3) of ¢y, 4(L) in (iii), and take h — 0 with arguments in (a) of
Lemma 21 and Remark 22 in (iv). Result 2 thus follows.

By the central limit theorem,

T is a matrix whose columns lie in

where R(f,L) = (Ig41 — xx

SIS

Vin(z) —E [vfh(m)} = Cov [vjf”h(a:)]é - Cov [vfh(m)} B {v}z(m) ) [vfh(a;)} }

- [n};m “R(f,L) +o <nh}1+2>]% “ Zn(z)
i)

where Z(z) 5 Nys1(0, Ipi1).
The asymptotic rate for grad f, () —E [grad fh(w)} = Tang (vah(a:)) -E [Tang (Vﬁ(w))]
remains unchanged, since the dominating constant R(f, L) are within the tangent space of

Q, at .
In a nutshell, we conclude with bias (Result 1) and variance (Result 2) estimation that

gradfh(w) — grad f(x) = Tang (Vﬁ(iﬂ)) — Tang (Vf(x)) = O(hQ) + Op <\/nh1;>

for any fixed & € Q, as h — 0 and nh9+2 — oo.

Part B: Pointwise convergence rate of the Riemannian Hessian estimator Hﬁ(m)
As shown in Lemma 1, Hf,(z) = H fn(x) for any @ € Q, and we can establish the point-
wise convergence rate using either Riemannian Hessian estimator. Here, we stick to the
Riemannian Hessian estimator H fy,(x) in (38).

e Result 3. The expectation of the Riemannian Hessian estimator, E [’Hﬁl(m)], has the
following asymptotic behavior as h — 0:

E [Hﬁl(a:)] = (Iys1 —zz")E [.Aﬁl(ac)} (Ig41 — zx™)
= (Iyy1 —zz”) [VVf(z) — 2" Vf(z)] (I;+1 — zz”) + O(h?),

h n _ chq(L) - T (127X, ch,q(L) X7 ) 1 1—2T X,
where Afy,(x) = =47 > X; X' L i + =t Yt Xl - L T .
=1 =1

Deriwation of Result 3. We first compute the expectation of Aﬁ(w) and apply the left and
right multiplications of (IqH — a:a:T) to simplify our calculation. Notice that

— Ch’;llff) /Q yyl'L" (W) f(y) wy(dy)

q
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_ 2T
+(%zéL)/£ wTy-Lﬁq-L'(l > y>(f ) wq(dy)
Chq / / (12 +v/1- 2B, (1 +v/1- £B,g)
< I <1h2t> (ta:—l— m3$£> 1 —t2 iy g—1(d§)dt

L) [! —t
Pl ]t () e VTP (-
1o,

2h—2
= ch’q(L)hq_A‘/o /Qq_1 (x+ age) (x+ awﬁ)T L"(r)
X [ (@ + e) 12712 — B2r) 2w, (d€)dr
2h—2 . .
+ ch,q(L)hH/ / (L= h2r)gs1 - L'(r) f (@ + age) T2 (2 — hPr)2 Twy_1 (d€)dr
0
by r = 15t and age = —rh®x + hy/r(2 — h?r)By&. Since

(T + age) (@ +age) = (1—rh?)’zx” + h(1 —rh?)\/r(2 — h2r) [2(Bp€)" + (Byf)z"]

+h?r(2 = h?r) - (Ba€)(Ba€)",

the preceding calculation proceeds as
E | Afa(@)]

2h—2
= ¢pq(L)hT? /0 / w2l L (r) - (2 + age)r2 (1 — rh2)2(2 — h2r)3 w1 (d€)dr

2h—2
T epg(L)h /0 /Q [2(By£)" + (But)z"] L' (r)

X f (@4 pe) T (1—rh2) (2 — h2r)"T wy_y (d€)dr

2h 2 . v
+ Ch,q(L)hq_2 / / (Bmf)(Bm£>TL”(T) fe+age)r2(2— h%r)2 wq—1(d&)dr

2h~2
+cpq(L)RT 2/ / (1= h2r) 1 - L'(r)f (% + agg) ra-l(2 - h2r)%_1wq,1(d£)dr
I)

= (I) + (1) +(II
(47)

The above terms (I) and (II), after we apply the congruence operation
(Igt1 — @) E Vﬁ(ﬂ(qﬂ—wﬂd

yield zero. Hence, we will not continue to compute them. By condition (D1), the Taylor’s
expansion of f at x is

[T+ age)
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1 1 [ o\
= f(@) + of (Vf(x) + §@£,gvvf(m)am,g ts (Z(%;g)i ' 8:):-) f(@) + 0 (|lazells)
i=1 v
1 1 [ o\
i=1 v

where ||ag, £H2 = r2ht + h?r (2 h%r) = 2rh? by the orthogonality of z and columns of By,
and (g ¢); stands for the i'" entry of the vector ag¢. Note that plugging O(h*) into (III)
or (IV) in (47) both leads to a O(h?) after integration, since with condition (D2’) and our
arguments in (a) of Lemma 21 and Remark 22,

2h—2
O(h*) - cpo(L)RT™ 2/ / (r, &)L (r) wy_1(d€)dr < O(h?),

where ¢(r, &) is a square integrable function of (r,&) and “<” stands for the asymptotic
equivalence. It shows that carrying out the Taylor’s expansion of f at @ to the third order

is sufficient in our context.

q+1

3
More importantly, plugging the term & (ZZ 1 (o g)i - %) f(x) into (II) and (III) also

L

gives rise to a O(h?) term. Because Bz€ = > 7_, &b; and g ¢ = —rh?x+hy/r(2 — h2r) Byé,

q q T 1 (ot o 3
/Q <Z bz‘éi) (Z bz‘fz‘) 5 (Z(am,ﬁ)i‘ 8m> f(@)| wg-1(d€)
a—1 i=1 !

=1 i=1

/ DK + P (€31 + P (€ AR + P&, wy1(d€)  (an)

— oY) + / B3 P(€, 5) wy1(d€),

~~

=0
g+1 3
/ é(Z( s)£> f(@)| wy-1(d)
- / P&, 0 + P (&, DI + Po(€. 20 + Po(€, 9] wp1(d€)  (49)

— oY) + / WO P(€,3) wy1(d€),

=0
where P,.(§,n) is a polynomial of elements of & = (&1,...,§,) with only degree n terms,
whose coefficients may involve the variable r. The integral quil h3P,.(&,5) we—1(d§) =

fQ h3P,.(€,3) wy—1(d€) = 0 is due to (c) of Lemma 21 and the fact that the integrand is a

hnear combination of degree 5 or 3 monomials of elements of £&. With condition (D2’) and
our arguments in (a) of Lemma 21 and Remark 22, the final O(h?) terms in (48) and (49)
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both yield O(h?) terms after being plugged into (III) and (IV).
We now plug the Taylor’s expansion of f(x + az¢) back into (III) and obtain that

Plug in (III) in (47)

272 —
- Ch7q(L)hq/ wq(; (L1 — x2®) L"(")V (@) 2 -3t @2 — h2r)bdr  — 0
0

2h=2 q a T
+ cpq(L)h1 /0 /Q (Z bz’fi) (Z bifi) L"(r)
q—1 i—1 =1

(B2€) VYV f(2)(Bg€) - 5712 — h?r) 3+ w1 (d€)dr + O(h?),

N

X
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where we apply (c) of Lemma 21 and the fact that > ¢, b;b] = I,1 — zax?. We also
absorb the third integral in the second equality into O(h?) to obtain the third equality,
given condition (D2’) and our arguments in (a) of Lemma 21. The “0” term in the third
equality is due to the fact that

q q T
/ (Z bz§z> (Z bzfz) wTVVf(m)(Bms) wq—l(dg) = / Pr(£> 3) wq—l(dE) =0
Qq-1 \4=1 i=1 2a-1

by (c) of Lemma 21, where the notation P,(&,3) is defined in (49). Now, we consider the
inner integral inside the last integration.

q q T q T q
/Q (Z bi@) (Z b@) : <Z bl-fl-) VVf(x) (Z b@) wq-1(d§)
a-1 \j=1 i=1 i=1

i=1

q q
= /Q (Z bibl &7 + Zwﬁ%) (Z bV ()bl +> b Wﬂa:)bjagj) wa—1(dg)
q-1 i=1

i=1 i i

(%) & T 2 ! T 2
(*) /Qq_1 [(; bib” gl.) (; b’ VVf(w)bi§i>

+ [ Dobblag | [ Db V()b ] wq—1(d€)
i#] 1#£]

q
= /Q B [Z bib] - b VV f(2)bi&l + > bib] - b] VV ()b, ¢

i=1 i#£j

+23 bib! - b{VVf(m)@f?é?] wq—1(d€),
7]

where the cross product terms vanish after integration by Lemma 21 and the factor 2

in front of the last summation emerges because any fixed (i,7) term (i # j) in the first

factor of the second product in equality (%) can be matched up with both (¢, 7) and (j,7)

terms in the second factor to yield a summand. Using Lemma 21 and the facts that
7 bibl = 1,41 — xxT and

q

> b VVf(x)b; = tr

=1

= Af(x) — 2" VVf(z)x,

q
VVf(x)) bib]
=1

the preceding display continues as

q q T q T q
/Q (Z b@-) (Z m&) : (Z b@-) VVf() (Z b@) wq—1(d€)
q—1 =1 =1

i=1 =1

a(a+2) \ =

30— 1 @
— q(qj—;) (gbibﬁbfvw(m)bi> + a1 (Zbibf-b]f’VVf(a;)bj)
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2%1 T 3T
Ha 12 (be -bIVVf(z)b )

i#]

)
q+2 [;bl ; ( bTVVf(a:)bj)]

q
2“"1 ! { bi (b] VV f(x)b;) b] + > b, (b,.TVVf(:c)bj)bjT]

q(q +2) —
i= i
= L - r)—& )T
= a1 g U —zw') [Af(e) — 2" VY f(@)e]
2(1)(1_1
T ala+2) (Ig+1 —2a”) VVf(@) (I — za’) .

Plugging this result back into (50) and conduct some integration by parts, we obtain that
Plug in (III) in (47)

2h2 -
= cpq(L)h172 / pad (Ig+1 —zx”) f(x)L"(r) - r3(2 — h*r)3 dr
0 q

%2 -
- Ch,q(L)hq/ wqq_l (Iys1 — zaT) V(@) 2L (r) - 73742 — h%r)3 dr
0

_ h 2
+ chg(L)h? - Ll) /2 (Igt1 —z2”) [Af(z) — 2" VVf(z)z] L' (r)r3t1(2 = B?r)3tdr
0

2q(q+2
g, W1 2 " 141 2, \341
+cpq(L)h .q(q+2) (Iq+1— )VVf( )( ¢+l — TT )L (r)yr27(2 — h*r)2 " dr
+ O(h?)

q[2h72

= Ch7q(L)hQ—2 . wqqfl (Iq+1 _ ZE:CT) L/(T‘)f( ) %(2 _ h2 )

0

2 Wg-1 2h= T ’ a_q 9 9 9
— chq(L)hI / (Ig41 —xx") f(x)L/(r) [rQ (2= h2r)% — B2r3(2 — h2r)3 Y dr
0

2
g, Y1 T T 71 +1 RIS
— cpqg(L)hT - . (Ig41 — 22 ) Vf(x) @L/(r) - r2"1(2 — h?r)2 ;
2h72 —

2 h?
X [(q—;) r%(2 — hZT)% _ 4 rst (2 — h2r )1} dr

2h—2

+ Ch7q(L)hq : (Dql) (Iq+1 - $$T) [Af(w) — mTVVf(m)m} L/(T)T%+1(2 _ hQT)%-‘rl‘O

Dg_1 2h
— chg(L)hT - == /0 (Igs1 — z2?) [Af(z) — 2" VV f(x)z] L'(r)

x [ $(2 - n2r)i+ fh%%“(th%)%] dr
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- —2
Wg—1 h

q q 2
. m (Iq—H - CCCCT) VVf(ZB) (Iq+1 _ wa) L/(T)T§+1 (2 _ h2r)2+1 0

2h—2
/0 (I‘”l - wa) VVf(x) (Iq+1 — wacT) L'(r)

X [r%(2 - h27")%Jrl - h2r%+1(2 - hQT)%] dr

+ Chyq (L)h?

. o‘_jqil
’ 2q

Wg—1 2h2 T T / 2 2, \L41
—cpq(L)hT - / (Iq+1 —xx ) [Af(a:) —x VVf(sc)w] L(r)r2(2 —h%r)2"dr
0

_ 2h—2
— chq(L)RT - e / (Ig41 —zx") VV f(x) (Ig41 — z2”) L'(r)r2(2 — h2r)2tdr
0
+0(h?),

where we use the fact that
2h~2 .
chyq(L)hq‘ﬂ/ L'(r)yr? (2 - h2r)kdr = O(h2) (51)
0

for any k,j > 0 via Remark 22. With extra integration by parts on the third and fifth term
in the preceding display, we obtain that

Plug in (III) in (47)

2h—2
= —cng(L)hI 20,y / (Iys1 — zx) f(z) L (r)r2 =22 — h%r) 371 (1 — h2r)dr
0

Wq—1
2

2h~2
+cpq(L)h? - / (Ig41 — iBiCT) V() 'zl (r)rs(2 — h*r)2dr
0

— cpq(L)h? - (Iq+1 — a:a:T) Vf(a:)Ta:L(r)r%*l@ — hzr)%dr

+ Ch7q(L)hq .

J
Wg—1 2h=2 T T , q o i1
— cpq(L)RT - /0 (Igr1 —zz") [Af(z) — 2" VV f(z)x] L'(r)r2(2 — h*r)2 T dr
/ (Igt1 — 2a”) VVf(@) (I — za”) Lr)r2 = (2 = h2r) 2 dr
0

+ O(h?).
(52)
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We now plug the Taylor’s expansion of f(x + az¢) at @ back into (IV) in (47) and deduce
that

Plug in (IV) in (47)
2h—2 ) q
::Chﬂ(L)hq2Wq—1j/ Iy f(x)L(r) -r27 (1 — h?r)(2 — h%r)2 " dr
0

q

2h—2
+ cpg(L)RT2 /O /Q I V@)  agel (r) - 12711 = B2r)(2 — h?r) 2w, 1 (d€)dr

2h—2
1
+ Ch,q(L)hq—Z/ / Iy - §a£7£VVf(m)am’£r%—1(1 (2 - hQT)%_l oy 1 (dE)dr
0 Q1
+ O(h?)
2h—2 ) q
::Chﬂ(L)hq_zaq—I]/ I f(2)L (r) - r27 1 (1 — B?r)(2 — h2r)2 " tdr
0
2h—2 ) q
_qwa»mwrl/‘ I V() el (r)r2 (1 — h?r)(2 — h*r)2'dr
0

2h—2
T eng(L)hi! /0 /Q Tosr - V(@) (Bo)r' (2 — h2) 5 (1 — h2r) w1 (dE) dr

=0
2h—2
T g (L) / / Ior - S(Bal) VYV (2)(Bob) L/ (r)rd (1 — W2r)(2 — )

+ O(h?)

q

-t / L f @) = K@ — k) ar

— Chq(L)hi0q— 1/ q+1Vf x) el (r)r %(1—h2 )(2 —hQT)%*ldr

Wq—1
2q

2h—2
+ cpg(L)h - /0 Ips1 [Af(z) — 2TV ()] L'(r)ri(1 — h2r)(2 — h*r)2dr

+O(h?),
(53)

where we expand ag ¢ = —rh*x + h\/r(2 — h?r)Bg€, absorb O(h?) terms via (51), make
use of (¢) in Lemma 21, and leverage our argument in (44). Combining (47), (52), and (53),
we conclude that

E [Hfh(a,-)]
= (Ig11 — zx ) [.Afh( )} (Ig41 — a:a:T)
= (Igt1 — zx ) () - (T4 — wa) + (Ig41 — zx ) V) - (Ig41 — wa)

2h—2
— en (D)% / (L1 — 2™ (@)L ()3 (2 — W2r)51(1 — hr)dr
0
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D1 2h—2 4
+cpq(L)h? - q2 / (Iq+1 — :cmT) Vf(a:)T:L'L'( )rz(2— h2r )2d7“
0
Wg—1 2h~? q
— cpq(L)RT - ‘12 / (Iq+1 — a:a:T) Vi) xL(r)r2=4(2 — h?r )2dr
0
w, 2h=? q
~ eng(D)h? - 4 / (g1 — 2a”) [Af () — 2T YV f(@)a] L' (r)r (2 — h*r) 3+ tdr
0
~ 2n~2
+ cpq(L)h? wzl / (Iyt1 — zaT) VV f(x) (I11 — z2T) Lr)ri~t (2 — h?r)i+ldr
0

q

2h 2
+ cng(L)hI72 - U_fq—I/O (Iyp1 — za) f(x)L'(r) - 73711 — B2r)(2 — h?r) 3~ Ldr

2h—2
= Chg(L)R - ©g-1 / (Igs1 — za”) Vf(2) oL/ (r)r2 (1 — h?r)(2 — h*r)2dr
0

D1 2h~2
+ cng(L)h - = /0 (Tg41 — mar;T) [Af(x) — acTVVf(ac)az]

x L'(r)r2 (1 — h?r)(2 — h?r)2dr

() D T T
=" 0+ cpq(L)R?- 5 / (Ig41 —za’ ) Vf(z) =
0

x L'(r)r2(2 — h?r)2 42 — h?r — 2+ 2rh?)dr

_ Wg—1 2h=2 a_
— Anq(L) 1 (Iq+1 — mwT) Vf(ac)Tac . (12 / L(r)rz (2 — h?r )er
0

Feng(LT St (I — w2 [Af (@) - 2"V f(@)a]

2h~2
x/ L'(r)r2 (2 — h2r)2(2 — 2h%r — 2 + Kr)dr
0

Wg—1
4

2h 2
+ Ang(L) /0 (Igr1 — za") VV f () (Ig41 — zaT)
X L(r)r%_l(Z - h2r)%+1dr
+O(h?)

"2 002) ~ (Iy1 —aa") V(@) “ (L) / Liryrd—12%dr + O(h?)
0

+2(L)7F L (L — 22”) V(@) (L1 — 22”) / L(r)ri~'25 " dr + O(1?)
0

=~ (Ips1 —z2") V(@) z + (I41 — z2") VVF(2) (111 — z2”) + O(h?),
where the first term matches up with the sixth term, the second term with the seventh
term, the fourth term with the eighth term, and (3) is applied to the rest terms when A — 0

in (xx). In addition, we leverage the asymptotic rates (51) and (42) as well as recall that
N(L) = 2%71@1_1 I L(r)r2~dr from (a) of Lemma 21 in (sxx). Result 3 thus follows. It
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implies that the bias E [’Hfh(w)} —Hf(x) is of the rate O(h?) and the Riemannian Hessian

estimator is asymptotically unbiased.
Now, we proceed to bound

’Hfh(a:) —E [’Hfh(a:)} = (IqH - azmT) [.Afh(m) —E (Aﬁ(w))] (IqH - a:a:T) .

e Result 4. The covariance matrix Cov [vec <7—lfh(:n)ﬂ has the following asymptotic rate

as h — 0 and nh?t* — oo:

Cov [vec (Hfh(zc))} —0 (nhlm) :

where we define the matrix vec operator, which converts a matrix into a vector by stacking
the columns. That is, given a matrix A € R™*" vec(A) is a vector of length mn.

Derivation of Result 4. We first calculate the covariance matrix of vec (A]?h(a:)) as

Cov [vec (.Aﬁ(a:))]
2
chyq(L)* T T\T 1-z'X;
= 7th8 ‘E |vec(X1 X7 ) -vec(X1 X7 )'L" 0
2¢h,4(L)? T T T 1 - 2T X; 1 - 2" X,
+#-E vec(X; X/]) - vec(x! X11,41)' L — I e
C L § 1-— .’BTXi 2
+ h’;}(ﬁ) ‘E |vec(x X1I,41) - vec(x? X11,41)" L (hz) ]
1 ~ —~ T
- ‘E {vec (Afh(a:)>] E {Vec (.Afh(a:))}
2
_ Cth(L)2/ Ty . o (1-x"y
s o, vec(yy” ) -vec(yy ) L7 | —5— | f(y)wy(dy)
2¢p,q(L)° / T T ron(l-2"y\ ,(1-2"y
Tha 2] : L)L (=2 Y L
+ v o, vec(yy' ) - vec(a” yly41) 2 72 f(y) wq(dy)
C L 2 1— iI}T 2
+ h’;,(ﬁ) /Q vec(aylo) - vec(z  ylyp) L <hgy> F(y) wq(dy)
q

— % ‘E [vec (Aﬁz(a:))] E [vec <Aﬁz(m))}T
_ W /0% /Qq_l vec [(@ + g,e) (@ + 0 e)] vec [(@ + g (@ + age) ]
x L'(1)2f (@ + age) 7“%71(2 - hQT)%’l wq—1(d€)dr

%n.o(L)2hT 2072
+ Chq()/ / vec [(z + ape)(x + aw{)T] vec [Ig41(1 — th)]T
0 Q

nhb
q—1

X L' (P L (r) f (2 + age) - 731 (2 — h2r)2 L w, y (d€)dr
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L th 2h—2
Ch’qéhi/o /Q vec [Igi1(1 — rh?)] vec [Igi1(1 — th)]T
q—1

X L'(r)2f(x + age) -3 12— h2r) 2w, (d€)dr
— % ‘B {vec (Aﬁ(a:))] E {Vec (.Aﬁl(a:))}T,

where oz ¢ = —rh®z + hy/r(2 — h2r)Bz€¢. Note that by condition (D1), the first-order
Taylor’s expansion of f at ® € € is

f(@+azg) = f(®) + Ollazgll2) = f(x) + O(h).

In addition,

(T + age) (@ + age)’ = (1—rh?)2zz” + h(1 —12h)/1(2 — h2r) [2(BL€)" + (Bg)z' ]
+ (2 = hr)(Be) (Bet)"

Moreover, when the congruence operation (Iq+1 — wa) A]?h(a:) (Iq+1 — :L':I:T) is introduced,
it will be applied inside the vec operation. Thus, after applying the congruence operation,

vec [(Ig4+1 — macT) (T + age)(T+age)” (Ig1 — ar;acT)]

"= o

x vec [(Ig41 — 22" (T + aze) (@ + age)’ (Ig41 — zx?)]
and

vec [(Igp1 — 2x7) (T + age) (@ + age)” (L1 — zz?)]
x vec [(Ig41 — ac:cT) (1- rh2)]T = O(h?).

Together with condition (D2’), (3), (51), and the bias bound E [vec (Hﬁ(m))} =Hf(x)+
O(h?), we conclude that

Cov [vec (#Fs(@))] = 0 s )

Result 4 is thus proved. Finally, by the central limit theorem,
vec {Hﬁb(ac) —-E [”Hﬁl(a})} }
= Cov [vec (Hﬁ(m))] : Cov [vec (”Hfh(m))}

=0 (ﬁ) - Zn(x)
o)

N|=

vec {”Hfh(a:) —-E [”Hfh(m)} }
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where Zn(a:) LA Ng11)2 (O,I(qul)z). In total, we conclude with our bias and stochastic
variation bounds that

Hfilw) - Hf(@) = O(*) + Op (\/ nhﬂ)

for any fixed & € Q, as h — 0 and nh?** — oo, where

Hf(z) = (Iys1 — z2") VVf(z) (1)1 — z2’) — Vf(z)' 2 (Ig41 — zx’).

D.3 Proof of Theorem 4

Theorem 4 Assume (D1), (D2’), and (K1). The uniform convergence rate of fn is given
by

sup |Fu(@) — f(z)] = O(h?) + Op ( 'bgh’)

xefly nhd

nh?
[log A

Furthermore, the uniform convergence rate of grad fh(af;) on Qg is

_ 2 | log h|

= O(1) + Oy ( HW) ,

— 0. Finally, the uniform convergence rate of Hﬁl(m) on Qg is
_ 2 | log h|

=O(h*) +Op ( nhQ+4) ,

1s the elementwise mazimum norm for a vector in

as h — 0 and

— 00.

sup ngadfh(m) — grad f(ar;)‘

ze), max

nhat2

as h — 0 and Mog ]

sup || (@) — #f (@)

xeQ)y

max

hat4

as h — 0 and {7 — 00, where [|]]

RI*TY or q matriz in R@TD*(a+1)

max

Proof Note that with the directional KDE form (15), we have that

T -~ o Ch,q(L) n ij - XTj / 1 - .’ETXZ
D fu@) = =5= 3 h L o)

i=1

L Tr. —Xr, Tr —Xr 1— TXi >
Ch;;fz)Z?zl( ]h ]>< kh k)LN< a;lz ) Jj#k,
X,

DUl fy () = " )
ChT,th(f/) Z?:l (1‘7]' - j) " (1—2§X1) + Chﬁqh(ZL) Z?:l I (1—%71;)(1) ] _ k‘,

[P =] < [[e [p74] = pPg]]_+ (] - DA
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for [[7]] = 0,1,2. The first term in the preceding display is of order O(h?) inside the
tangent space by Theorem 2 and the differentiability of f under condition (D1). The

proof of HD[T}fh —E [D[T]fh} H =Op ( lliﬂ_gz]f‘ ) follows directly from the argument of

Theorem 2.3 in Giné and Guillou (2002) and the following calculations:

()] ) v
:/_11/quL2<1h_2t)-f(tm+ = 2Ba€) (1 - )4 g1 (d€)dt

2h—2
:hq/o /Q @+ ang) - Lt @ = K E wy (dg)dt

x—X

E
h

o0
<hq||f]|oowq_123_1/ L2(r)ré—Ldr,
0

(=)
(2=
L, / (1_};;3,) 1% (ﬂ”f”)Qﬂymww
[ L () ()

2h—2
B 2hq/o /Q Fla+awe) [/ ()] r2(2 = hPr)2 w, y (d€)dr
q—1

x—X
h

¢ (5)
o

2

1
2

2

2
f(tac+ 1—t2Bm£>(1—t2)% wq1(d€)dt

o0
< 20| fllsi a2 [ L0,
0

L// 1
2

and

x|t 1 x|2\°
SE T — L/I - T —
h 9 2 h 9
1—xTy 2 1—xzTy 2
:4/Qq <h2 > L’ (h2 ) f(y) we(dy)

2

f (ta: +V1- t2Bw£> 1 — 123 L,y (de)dt

1-1¢
L//< h2 >

[, ()
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2h—2
—ait [T [ flatang) LGP - K0 (d)dr
0 Q1

o
§4hq]f\]oowq_123_l/ r%+1L”(r)2dr
0

for i =1,...,q + 1, where we apply (a) in Lemma 21, the change of variable r = %, and
az ¢ = —rh?T + h\/r(2 — h?r) By in the preceding three displays. [

D.4 Proof of Theorem 6

Theorem 6 Assume (D1), (D2’°), (K1), and (M1-2). For any ¢ € (0,1), when h is suffi-
ciently small and n is sufficiently large,

(a) there must be at least one estimated local mode my, within Sy = my @ p. for every
my € M, and
(b) the collection of estimated modes satisfies M\n C M @ p. and there is a unique esti-

mated local mode ™y, within Sy = my, @ ps

with probability at least 1 — §. In total, when h is sufficiently small and n is sufficiently
large, there exist some constants Az, Bs > 0 such that

P (f{n ] K) < Bge~Asnh™

(¢) The Hausdorff distance between the collection of local modes and its estimator satisfies

— 1
Haus (M,Mn> = O(h*) + Op (\/E) )

as h — 0 and nh?t2 — co.

Proof The proof is partially adopted from the proof of Theorem 1 in Chen et al. (2016).

Statement (a). Without loss of generality, we consider the local mode my, and the set
Sp={x € Qq : ||z — my|| < p.}. With condition (D1), we can apply the Taylor’s expansion
on the exponential map Exp,, : De C T, (€2y) — Q¢ with Exp,,, (0) = my, where D is

2
a disk of radius € in Tpy,, (€2,) with center in the origin and e > arccos( — %") Here,

arccos (1 — %) is the geodesic distance from the center my to 0S5y on €, where 95 =
{zx € Qg : ||lx — mygl||2 = pi} is the boundary of Si. With (M1) and the fact that the third

order partial derivatives of f are upper bounded by Cs,

sup f(z) < sup !f(mk)+[gradf(mk)]TEXPInlk(w)

€ISy €ISk
L 1T -1 O3 =1 () (|3 (54)
+ 5ExP, (€)° (Hm, f) Exppy, (@) + ~~[[Exppy, ()2
A (30\2 0 Cs /301 9gA3
< - = == = -
< flme) =3 (203> % (2@3) flms) 8C2’
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where recall that Expjnlk () € T, (£g) is in the direction from my, to x with the length
equal to the great-circle (or geodesic) distance on €2,. (We indeed apply the Cauchy-Schwarz
inequality implicitly to obtain the first inequality in (54) ) Then, by the uniform consistency

of fh (Theorem 4), when h is sufficiently small and |10ng is large enough,

|71 < (55)

1602
with probability at least 1 — ¢ for any 0 < d < 1. We thus conclude that there must
be at least one estimated local mode 7, within Sk. (If, on the contrary, there exists no
my, € M within Sk, then the maximum of fh on Sy is attained at the boundary 08}, that

is, maxgeg, fh( ) = Maxgeos), fh( ). However, maxzecas, fh( ) < maxgepgs, f(x)+ 1%)‘52 <

flmy) — 196’};2 < fh(mk) by (54), contradiction.) Note that this argument can be general-

ized to each k: =1,...K.

Statement (b). With (M2), we know that whenever

= sup HTang (V]?h(:c)) — Tang (Vf(w))H < 0y,

max xeQy max

sup ‘ ‘grad fu(x) — grad f (:v))

<6

max

sup || fa(@) — ()|

xelly

(56)

for some ©9 > 0, the followings hold simultaneously:

(i) lgrad f (k)| pax = ||grad f () — grad fu (i) <O,
=0 max
(i) supges, M (Hfh(:c)) <0and )\ <’Hfh(ﬁz\k)> < —2 — (g+1)©; by choosing O, > 0
properly,
(iii) and
M (HF0)) < A (FFuT0) ) + Agor (FF () — HFo (7))

As A
<-5 —@+1)02+(¢+1)02 =~

by Weyl’s theorem (Theorem 4.3.1 in Horn and Johnson 2012) and the fact that

N1 (Hf g) = 1 )| < sup [|[#(0) — W] of|
[[v]]p=1

< Vg + 1) x (g + 1) | [P @) - ()|
S(Q‘¥1)@2.

max

See Section 3.3 in Genovese et al. (2014) for detailed relations between different types
of matrix norms.
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Notice that (ii) is true because Aj(my) < A by (M1) and the difference between Hf, and
Hf will be minute given a small ©,. By (i) and (iii), we conclude that M, C M@ p,.
By (ii) and Lemma 3.2 in Banyaga and Hurtubise (2004), there is only one estimated local
mode my, within Si. They both hold with probability at least 1 — § for any § € (0, 1).

In total, a sufficient condition for the number of true local modes and estimated local
modes being the same is a combination of the inequalities in (55) and (56). That is,

111l < 562
HTang (Vﬁ) — Tang (Vf)’ —_ <6 (57)
[7r =] e SO

By bias bounds in Theorem 2 or Theorem 4, as h is sufficiently small, we have

HE [fh] fH 3202’ oo HE [gradfh(m)} _gradf(m)‘ max = %’
and sup HIE [HFu()] - Hf(:c)‘ < %.
Therefore, (57) holds whenever
|- [A]|l. < e
sup [lszaa o) & [sreafo] |, < 58)
up o2 e <

xefly

and h is sufficiently small. Now applying Talagrand’s inequality Talagrand (1996); Giné
and Guillou (2002), there exist constants Ag, A1, A2 > 0 and By, B, By > 0 such that when
n is large enough,

E | fn
P (;élgg)q ngad fh(w) —-E [grad ﬁL( )} ‘ . > e) < B —A1e2nhat2? )
g (ﬂcsélfll) H/Hfh(a:) —E [Hﬁb(m)} ‘ max 2 6) < Bye A2¢ nhatt

Combining (58) and (59), we conclude that there exist some constants Ag, Bz > 0 such that

IP’((E)?) holds) > 1 — ByeAsnh™!
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when h is sufficiently small. Since the condition (57) implies K,=K , we conclude that
P (R ) < ™

for some constants Az, B3 > 0 as h is sufficiently small. This proves the so-called modal
consistency.

Statement (c). To establish the convergence rate of the Hausdorff distance between M,
and M, we assume that (57) holds so that K = K,, and each local mode is approximating
by an unique estimated local mode. Notice that ||mj — my||, is upper bounded by the
great-circle distance between these two points. Then,

grad f(my)
= Tang (V f(my)) — Tang (Vf(my,))
=0
= VTang (V/(my)) - Expy, (75) + o (| [Exp, ()|

= [(Igr1 = mum{)VV f(mi) — mfV f(my) I — miV f(mg)"] - Exp),,. () o
+ o (| [Expm, (@),
= [Hf (m) Expy, (k) + 0 (|[Expid (72 ] ],)
because V f(my) = ||V f(my)||, - my when my, is a local mode and Exp;,) (M) € Trm, is

orthogonal to my. Under (M1), the matrices H fmy, are nonsingular for all my € M inside
the tangent space T}y, , respectively. As the chord distance between two points on €, is
bounded by their great-circle distance, we multiply [ f(m4)] ™" on both sides of (60) and
obtain that

|k — ml], < ||Exp,,. (M)||, = [Hf(my)] "' grad f(mg) + o (HEXP;nlk(mk)HQ) ;

where the matrix inverse, strictly speaking, is taken with respect to the local coordinate

system near my. Note that H[Hf(mk)]_l ‘ is bounded within Ty, for all m; € M

under the assumption (57). Moreover, by Theorem 2,

grad f(my) = grad f(my) — grad fu(my,)
=0

_o00) 4 0n ( /hl) |

Now applying this rate of convergence to each local mode and using the fact that

Haus (Mn,M) = max ||my — my||2,

=1,...,

we obtain the final conclusion. [ |
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D.5 Proofs of Theorem 8, Lemma 10, and Theorem 11

Theorem 8 (Ascending Property) If kernel L : [0,00) — [0,00) is monotonically de-
o0

creasing, differentiable, and convex with L(0) < oo, then the sequence ﬁl(@\s)} s mono-

tonically increasing and thus converges.

Proof Obviously, the sequence {ﬁ(ﬂs)} is bounded if the kernel function L is
S

=U,1,...

monotonically decreasing with L(0) < co. Hence, it suffices to show that it is monotonically
increasing. The convexity and differentiability of kernel L imply that

L(xg) — L(l’l) 2 L/(arl) . ($2 — .’Bl) (61)

for all x1,z9 € [0,00), 21 # x2. Using the fact that (rearrangement from Algorithm 1)

ZXL’( ySXZ>:—::j5+1 ZXiL’(l i’QX>

=1

2

we have that

. ~ c & -yl X -yl X
fh(ys—I—l) - fh(ys) = h»fil(L)Z [L (1122“> - L <1$X>]

i=1
Ch,Q(L) g s (11— ngi T
> W;L T '(ys_ys-i-l) Xi
_ cng(L) : X, (62)
YR (Ys+1 — Typa - R —
2
ch,q(L)

ZX L’( — Y XZ)

2
o9nh2 l|Yst1 — ySHQ )

2
>0,
where we use the fact that 2(ysi1 — Ys) Yst1 = 2 — 2y  ysi1 = ||yss1 — y8|\§ between the
third and fourth lines, given that ||ys||y = ||Ys+1]ly = 1. [ ]

Lemma 10 Assume conditions (D1) and (D2’°). For any fized x € Q,, we have

n?Rad (Vfilw)) = h* - V(@) = 2f(2)Crq +0(1) + Op ( n;)

Jo L’(r)r%fld'r’
fooo L(T)rgfldr
kernel L and dimension q and “<” stands for an asymptotic equivalence.

as nh? — oo and h — 0, where Cr 4 = — > 0 s a constant depending only on
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Proof The proof follows the same logic as the one for Theorem 2. Note that
V@) =E |[V]i(@)| + V]i(@) ~ E[V]u()| . (63)

Recall that V f,(x) = — b q Z X, L (1 z X ) The expectation of V f,(z) is

E [Vj?h(m)} = Ch’;‘;gL) /Q (—y)L' (1_,132"Ty> f(y) wy(dy)

:Chq // —tx — 1—t2B§)L’(1h_2t>

x [ (—tw = V1= 2Bag) (1 - )8 L,y (d€)t (64)
2h~2
— e g(L)hT2 / / (2 — age) - L'(r)
0 Q1
X [+ age) - r371(2 = h2r)3 w1 (d€)dr
by (a) in Lemma 21 and a change of variable r = %, where ag ¢ = —rh?@+h\/r(2 — h2r)Bg€.

By condition (D1), the first-order Taylor’s expansion of f at & € € is

f(w + O‘m,ﬁ) = f(:I:) + O (||aw,£||2) ;

where Haw’gHg = 2rh? by the orthogonality of & and columns of B,. Now we plug it back
into (64) respectively to compute the dominating term of E [Vﬁ(az)}

E [th(w)}
~ e [ [ Eort e ey g
2h—2
— eng (DR () /0 /Q aelrt L2 = B2y 4, (d€)dr
2h—2 . .

+ O(h) - ch (L) /0 / (=@ — ag.e) I (r)r3 1 (2 = h2) 3w,y (d€)dr
. 2h—2
O —cth(L)hq_2mf(az) 'wq_l/o L'(r) - ra L2 — n¥r )7_1 dr

2h—2 v
gDl (@) w [ L) @i ar
— ng(L)RTf / " / Byt L'(r)r' (2 — h*r) T wy_1 (d€)dr + O(h™Y),

.o 2h 2
@ —cng(DRI 2z f(x) - Wyt / L) -ri 2= n%r):tdr+ 0(1) + 0+ 0(h ™)
0
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+o(h7?)

i) @f(x) fo L'(r)ridr
h? fooo L(r)r%_ldr
=L, xf(x)h %+ o(h™?),

where we use (b) of Lemma 21 and the fact that Bg& = > 7 &b, in (ii), and apply
condition (D2’) and (3) to argue that

2h—2
eng(L)h0 /0 /Q L/(r) - 6(r,€) w1 (d€)dr = O(1) (65)

in both (i) and (ii). We also use the asymptotic relation (3) in (iii) and denote Cp, =
_Joo L (r)r “Lar

q
2
q
2

1= Ly 51 in the last equality. Thus,
0 T)r T

E [Rad (th(m))] = zx’'E [th(w)} =CpLg-xf(x)h 2+ o(h™?).

Based on the asymptotic rate of E [Vﬁ(az)] , we calculate the covariance matrix of V fj, (x)
as

Cov [Vﬁl(a:)} = ChZ}(LS)Z - Cov {Xl L <1_Z;X1>}

B ch’q(L)2 E 1—2TX,
~ nht h?

ch.o(L)2 —2Ty\?
= h;,q;ﬁ) /quyTL’ (1,:2”/) f(y)wq(dy)JrO(nlM)

L 2 2h—2
= Chﬂ()hq_4/ / (z + aae) (@ + age) L' (r)?
0 qul

n

X X7 1/ ( )] - E[VA@|E Vi)

q_ q_ 1
X f(x+ age)rz (2 — h?r)2 w1 (d€)dr + O <nh4> )

With condition (D1), we carry out the first-order Taylor’s expansion of f at x € , as
f(@+azg) = f(2) + O (llazgll,) = f(z) + O(h).
Therefore,

q

N Ch (L)2 4 T 2h7 2 1 2721 1
Cov [th(:c)} _ :thq— - f(m)wa/o L'(r)*rz=' (2= h*r)2""dr + o (nhQ+4>

B xx! f(x) fooo L’(r)Qrgfldr o ( 1 >
- +4 2 +41 )
nhd wq712g_1 (f(]oo L(?“)’r'%_ld’l“> nhd
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where we use (b) of Lemma 21, asymptotic rate (3), and (65) to absorb some higher order
terms into o (W) The dominating term of Cov [th(ac) is in the radial direction, so

by the central limit theorem,
Rad (vfh(a,-)) _E [Rad (Vﬁ(m))}
= Vful(@) ~E V()]

= Cov {th(w)}% - Cov [Vﬁl(w)} -3 {Vﬁl(iﬂ) —-E [Vj?h(w)

ol ——

xx’ f(x) I L'(r)2ri—'dr

1 N
v 2 v
nhi wq_12%_1 <f0°° L(r)r%_ldr> nhi

1
:OP<\/nhq+4>’

where Z,(z) 4 Ng+1(0,1,41). In total, we conclude with (63) that

Rad (WY () = W2V () = 2 (@)Crq +0(1) + Op (w/nlhq>

for any fixed = € €y, as h — 0 and nh? — oc. |

Before we prove Theorem 11, we first note the following useful result.

Proposition 23 Assume (C1) and the conditions on the kernel L in Theorem 8. Then for
any mode my, € M, satisfying (C2), we have that i}V fy(my) > 0.

Proof Suppose, on the contrary, that ?n\;‘gVﬁl(Tn\k) < 0. By the definition of a local mode

my, of fi, on Qg, we know that ‘grad ﬁl(mk)HQ = HTang (Vﬁ(ﬁ@) ‘2 = 0. Then
Vﬁ(ﬁz\k) S
iy

i,

and by (C1), there exist a 7 € (0, 2] such that Tang (Vﬁ(y)) # 0 and fh(y) < fh(fn\k) for
2

any y € {z €Qy: zT'my, >1— %} \{mi} = {z€Qq:||]z—myll, <7} \ {mi}. That

is, My, is the unique mode inside its neighborhood {z €  : ||z — my||, < 7%}. Since the

sum of convex functions is convex, fj is indeed convex and we deduce that when y €

{z € Qq:[lz—myll, <73} \ {m},

N 7 c - -m; X; —
frn(my) — fa(y) < hnq;EQL) > L (17;kX> X! (y —my)
i=1
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= ||V um0)||, - (0" ([ — )
= ||\VA@)||, - @iy -1
<0

contradicting to the fact that 7y, is the unique local mode in {z € Q : ||z — My, < 7}
The result follows. u

Theorem 11 Assume (C1) and (C2) and the conditions on kernel L in Theorem 8. We
further assume that L is continuously differentiable. Then, for each local mode Ty, € M\n,
there exists a Ty, > 0 such that the sequence {ys}22, converges to my, whenever the initial
point Yo € Qq satisfies ||go — my||ly < 7. Moreover, under conditions (D1) and (D2’),
there exists a fized constant r* > 0 such that P(ty, > r*) = 1 as h — 0 and nh? — oc.

Proof By the definition of a local mode m, of fh on €,

|

Hence, with condition (C2) imposed on my, and Proposition 23,

V fu(mr)
[,

s = [rne (0] =1

V()

= ’I/n\k and mk M= _— 1 = 1.
o]

It indicates that our one-step fixed-point iteration of Algorithm 1 on the local mode my
will yield my, itself. (This is the so-called consistency of fixed-point iterations.) Moreover,
there exists a 7, > 0 such that my, is the only point in {y € Q, : ||y —my||2 < 7} satisfying
HTang (V In(y >H = 0. See Figure 4 for a graphical illustration.

In addition, given that L is continuously differentiable, we may shrink 7 > 0 if necessary
so that

S/ 1¢) B S ( H "
TR Al e iy [V -

for all y € {z € Q : ||z — M|, < Tk} and some constant Cj, > 0. The first inequality in
(66) ensures that the sequence {ys}5°, yielded by our fixed-point iteration will not jump
outside of the set {y € Q : ||y — my||, < 7%} as long as the initial point gy is in the set.
It also guarantees the correctness of the second inequality in (66) for the iterative sequence
{¥s}.2 - By (62) in the proof of Theorem 8, we know that

ZX L/ < ys Xl)
- eng(D) - Cn

> PG - Gl

~ ~ Ch,q(L) .
Tn(Yst1) — fn(Ys) = 2qh2 Gsr1 — Tsll5 -

2
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o~ (o]
where we used (66) in the last strict inequality. Since { fh(:ijs)} , converges by Theorem
s—=
8 as s — 00, we conclude that
lim [[gs11 — Ys||3 =0 or equivalently, lim g2, 9, = 1. (67)
5—00 $§—00

Now with the expression (25),

Tang (VF (@) || = ||VA@) - 87V @) @]
[rang (VFu(3) |, :

= vfh(i/\s)

= vﬁ(ﬁs)

2
‘2 . H:;/\erl - :i/\g—i-l:{/\s : :i/\sH;

2
‘2 : [1 - (ysTHys)Q} :

~ 2
where we plug in (23) in the second equality. As the function u — HV fh(u)H2 is continu-

ous on a compact set €1, it is upper bounded on ©,. As s — oo, HTang (Vﬁb(ﬂs)ﬂ‘z —
0 by (67). Given that my is the unique point in {z € Q,: ||z — my||, < T)} satisfy-
ing this HTang (Vj?h(y))H2 = 0, we conclude that ys — My as s — oo and Yy €
{z€Qy: ||z —mull, <7k} ~ .

Now with Lemma 10, we know that m} V fx(my) > 0 for any my, € M,, with probability
tending to 1 as h — 0 and nh? — oco. Therefore, as h is small enough and n is sufficiently

large, there exists a fixed constant r* > 0 such that r* < miny 7, with high probability.
The results follow. |

D.6 Proof of Theorem 12

Before proving Theorem 12, we introduce the following two useful results. As pointed out
in Zhang and Sra (2016), a main hurdle in analyzing non-asymptotic convergence of first-
order methods on smooth manifolds is that the Euclidean law of cosines does not hold.
Fortunately, there is a trigonometric distance bound stated below for Alexandrov space
(Burago et al., 1992) with curvature bounded below.

Lemma 24 (Lemma 5 in Zhang and Sra 2016; see also Bonnabel 2013) Ifa,b,c are
the sides (that is, side lengths) of a geodesic triangle in an Alezandrov space with sectional
curvature (see Appendix B) lower bounded by k, and A is the angle between sides b and c,
then
2 |Kle 2 2
< —————b*+ ¢ —2bccos(A). 68
tanh(/|k|c) ) (68)
The sketching proof of Lemma 24 can be founded in Lemma 5 of Zhang and Sra (2016).
Note that k = 1 on ;. We inherit the notation in Zhang and Sra (2016) and denote
|k|c

tanh(mc)

show by differentiating ((k, ¢) with respect to ¢ that ((k, c) is strictly increasing and greater

by ((k,c) for the curvature dependent quantity from inequality (68). One can
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than 1 for any ¢ > 0 and fixed k # 0. With Lemma 24 in hand, we are able to state a
straightforward corollary indicating an important relation between two consecutive updates
of a gradient ascent algorithm on €2,.

Corollary 25 For any point x,ys in a convex set on Qy, the update in (30) satisfies

2n(grad f(ys), Exp,. (x)) < d*(ys, @) — d*(ysr1,®) + (1, d(ys, ) - n°[|grad f(ys)|[3,

recalling that d(z,y) = \/(Exp;(y), Exp, 1 (y)) = |[Exp,* (y)]|, on Q4.
The proof is similar to Corollary 8 in Zhang and Sra (2016) and thus omitted.

Theorem 12 Assume (D1) and (M1).

(a) Linear convergence of gradient ascent with f: Given a convergence radius ro

with 0 < rg < 4/2—2cos [3)‘*5], the iterative sequence {ys}o, defined by the
2(q+1)2C73

population-level gradient ascent algorithm (30) satisfies

d(ys,my) < Y°-d(yo, my) with Y= m

whenever n < min {%, m} and the initial point yo € {z € Qg : ||z — myl|, < ro}

for some my, € M. We recall from Section 4.5 that C5 is an upper bound for the
derivatives of the directional density f up to the third order, A\x > 0 is defined in
(M1), and M is the set of local modes of the directional density f.

We further assume (D2’) and (K1) in the sequel.

(b) Linear convergence of gradient ascent with fh Let the sample-based gradient

ascent update on gy be Ysi1 = Exp,,_ (77 . gradﬁ(fy})). With the same choice of the

convergence radius ro > 0 and T = \/@ as in (a), if h — 0 and ﬁg;j — 00,
then for any 6 € (0,1),

~ s ~ log h
d (g5, my,) < T°-d(go, my) + O(h?) + Op ( ’nhq+2‘>

with probability at least 1 — §, whenever n < min {/\%, m

point Yo € {z € Qq : ||z — my|, <o} for some my, € M.

} and the initial

Proof (a) Linear convergence of gradient ascent with f: The proof of the linear con-
vergence of the population-level gradient ascent algorithm (30) is similar to some standard
results in optimization theory, except that we are under the manifold context now. Recall
from (30) that the iterative formula reads ys1 = Exp,, (1 -grad f(ys)) for s =0,1,.... We
begin by deriving the following three facts.
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e Fact 1: Given (M1), f is geodesically strongly concave around some small neighborhoods

of M. In particular, when 0 < rg < \/2 — 92¢os [2(3)\*3} ’

f(y) — f(my) — (grad f(my), Exp,,, (y)) < —% ||Exp ()] (69)

for any y € {z € Q : ||z — my||, < 7o} and any my € M.
e Fact 2. Given (D1) and (M1), we know that ||grad f(x)||, = ||[Tang (V f(x))||, > 0 and

flmy) — f (EXPm (W_ll)cggrad f(az))) >0

for all ® € {z € Q4 : ||z — my||y, <1} \ {Mm} and any m; € M.
e Fact 3. Given (D1), the directional density f is (¢ + 1)Cs-smooth.

As for Fact 1, it follows from the differentiability of f guaranteed by (D1) and the
eigenvalue condition (M1). By Taylor’s expansion on manifolds (Pennec, 2006) and (M1),

fy) — f(my)

= (grad f(mi), Expy, (9)) + 5 - Exprn, ()" [ () Expy, () + o (| [Exprr, (9) [}
A 2C
< (grad f(mi). Exppt () — o |Expk |2+ T gt )]

(70)

for any y € {z € Q : ||z —mqgl|l, < 1o} and my, € M. Since ||y — myl||, < 7o, the

geodesic distance between y and my, satisfies dy(y, my) = | ‘Exp;nlk (y)| ‘2 = arccos(y’my,) <
— 3\ Plugging this result back into (70) yields that
2(g+1)2C3

fy) = f(my) < (grad f(my), Exp,,, () — HEX e @)]5-

For our purpose, it suffices to only prove (69) as above. One can shrink the upper bound
of the convergence radius rg > 0 so that the geodesically strong concavity is valid for any
pair of points within {z € Q : ||z — my]||, < 70}. Indeed, the local strong concavity of f
is a natural consequence of Morse Lemma (Lemma 3.11 in Banyaga and Hurtubise (2004))
given (M1).

Fact 2 is an obvious result under the eigenvalue condition (M1) and differentiable con-
dition (D1). This is because my is an unique local mode of f within the neighborhood
{z € Qg : ||z —myl[, < ro} and the geodesic distance between x and one-step gradient

ascent iteration from x with the step size @ +1) o satisfies
(o2 (1 g eraa @) @) = (s llersa f (@)l
X ra ) = Ta
SANCERe (4+1C5 ’
S S rad f(x) — IS, (grad f(my))
- (q+ 1)03 g my g k

=0 2
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1 _
< e M@l [Exez! ()
< e ma) |, = dy o ).

where we use the fact that [|[Hf(z)||, < (¢+1) [|Hf(2)|] hax < (¢+1)C3 to deduce the last in-

equality. This shows that the one-step gradient ascent iteration Exp,, (m -grad f (w))

on €, will stay within the neighborhood {z € Qg : ||z — my]||, < 70} whenever x € {z €

Qg ||z —mygll, < 7o} \ {my}. Therefore, f(my) — f (Expm (m - grad f(m))) > 0.
As for Fact 8, note that ||H f(x)|] . < C3 for all & € Q4. Thus,

max —

||grad f(z) — Ty (grad f(y))||, = [|(Hf(x)) Expg ' (z")]],
< [|Hf ()]l - ||Expz" (¥)]],
< (¢+1)Cs ||Exp, ' (v)]

27

where * € {z € Qg : ||z — ||, < |ly — x||5}, and we use the fact that ||A||2 < /mn||A||max
for any A € R™*™. See Section 3.3 in Genovese et al. (2014) or Section 5.6 in Horn and
Johnson (2012) for detailed relations between different types of matrix norms.

With Fact 1 and Fact 3, we have that

I lppt ()| [2 < )~ ) — (grad f(m), Bxpy (u),
(71)

F(y) — Fm) - <gradf<mk>,Exp;3k<y>> < =2 | [Bxp ][} < 0

for any y € {z € Q : ||z — my||, < 1o} and my € M.
Hence, given a point y € {z € Qg : ||z — my||, < 79} and using Fact 2,

F9) ~ fm)
< 1tu) — T + 1) — 1 (850, (e i) )

S [f (Expy <(q+11)03 -gradf(y)>> - f(y)]

1 (¢+1)C3 _ 1 2
- [(grad f(y), @10 1)C3grad Fy) ———5— Exp,, ' ((q+ 1Cs -grad f(y)> 2]
= —71 ra 2

where we apply the first inequality in (71) to obtain the fourth line. Thus, for any x €
{z € Qq: [z —myl, <o},

lgrad f(2)ll; < 2(q +1)Cs [f (my,) — f ()] (72)

With yo € {z € Q4 : ||z — my]|, < ro} and Corollary 25, we deduce that
d*(Yss1,my) < d*(ys, ) — 2n{grad f(ys), Exp, ! (ma)) + (1, d(ys, mu)) - n* [lgrad f(ys) |13
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@) X
< B lyma) 20 | )~ Flm) - % )

+¢(L,r0) - n* - 2(q + 1)Cs [f(my) — f(ys)]

_ (1 _ ”2) @2 (e, mi) — 201 — (L, ro)(g + 1)Can] - [F(mi) — F(y)

< (1 — 772)\*> d*(ys, my,)

~~

>0

whenever n < min{%, m}, where we use the second inequality of (71), the

monotonicity of {(1, ¢) with respect to ¢, and (72) to obtain (i). By telescoping, we conclude

that when n < min )\%, 0 L

Grcsair | 2nd yo € {z € Qg : [|z — my[ly <o},

s

ity rms) = [Bxpy )], < (1= 5) " dtwnma) = (175 ) lmapy(ma) .

The result follows.

(b) Linear convergence of gradient ascent with fh: The proof here is partially adopted
from the proof of Theorem 2 in Balakrishnan et al. (2017). By Theorem 4 and the continuity

nhat2

Togh] is sufficiently large, we have that

of exponential map, when h is sufficiently small and
for any 0 € (0,1),

@ (Exp, (1 grad (@), Exp, (1 - grad f(@))) <nCi - sup ||grad fi (@) — grad f(w)|

we, max

=enh

1w (1 1)
(73)

with probability at least 1 — §, where Cy is some constant independent of x € €, and

| =o)+0p (M)

2
We now claim that d(ys, my) < arccos (1 — %0) and

€nh =101 - SUDgeq, ngad fn(@) — grad f(x)

d(@\s—i-la mk) < T- d(:am mk) + €n,h (74)

for any fixed s = 0,1,2,... with probability at least 1 — §. We will prove this claim by
induction on the iteration number. Recall that

Ys+1 = Expy, (77 -grad fh(??s)) :
Then with s = 1, we have that

d(glv mk)
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=d (Engo (77 - grad fh(ﬁo)) 7mk)
< d (Expg, (n - grad /(§o)) ,mx) + d (Expg, (n- grad fu(@o) ) , Expg, (n- grad f(0)))

Y - d(go, my) +nCy - sug ngadfh(:c) — grad f(:c)‘
xclly

IN

max
=T -d(yo, my) + €np,

where the first inequality follows by the triangle inequality, the second one is from our
result in (a), whereas the third equality is by (73). The triangle inequality is valid in
this context because a geodesic measures the minimal distance between two points on €2,.
In addition, the bound in (73) and our initialization yy € {z € Qg : ||z — my]|, < 1o} en-

2
sure that d(yi,my) < arccos (1 - %0) In the induction from s — s + 1, suppose that

d(ys, my) < arccos ( - é) and the claim (74) holds at step s. With the fact proved in
(a) that

d (Expg, (n- grad f(¥s)), mu) < T - d(Fs, mu),
the same argument implies that the claim (74) holds for step s + 1 and d(Yst1,my) <
arccos (1 - —) The claim (74) is thus proved.
As a result, y, always lies within {z € Q, : ||z — my]||, < 7o} for all s =0,1,.... Now, with

this claim and T = 4/1 "’\* < 1, we iterate it to show that

- d(Ys—1, M) + €np
Y- d(Ys—2, mp) + €np] + €nn

T - d(yo, my) {Z Tk}

€n,h

1-7

d(:i/\mmk) < T
<7T

IN

<Ts. d(yo,mk) +

s im | log |
< Y*-d(go, my,) + O(h*) + Op <nhq+2 )
where the fourth inequality follows by summing the geometric series, and the last one fol-

lows from our notation that €, , = O(h?) 4+ Op ( ‘anf ﬂ) It completes the proof. [ |
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