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Abstract—Gesture recognition has the potential to become a
part of contactless interactions with devices to improve accessibil-
ity and ease with applications. As the presence of portable devices
remains standard, WiFi will continue to constantly connect
these devices. Leveraging this availability, instead of relying on
installing special sensors, ubiquitous WiFi sensing devices can
decipher motion, thus mitigating additional costs. We develop
a low-cost hand gesture recognition system utilizing Channel
State Information (CSI) from a few subcarriers in prevalent
WiFi signals. This information is sent through a lightweight sig-
nal segmentation algorithm and Convolutional Neural Network
(CNN) that learns the gestures and successfully distinguishes
them. Computationally demanding feature extraction is avoided
as it increases processing time and does not scale well with
additional gestures. Our model obtains an 96% accuracy rate
across three different gestures on average.

I. INTRODUCTION

The ever-growing advancement of mobile technology has
enabled new human-computing interfaces. We envision a
future with more contactless interactions with devices. This
technology can increase convenience and accessibility to home
and mobile applications. For example, a gesture command can
function like a voice command, thus extending technology
assistance to the deaf community.

Wearable and portable devices have enabled the advance-
ment of gesture recognition [1]-[4]. They have used built-in
sensors to identify body movements and gestures. However,
these sensor-based approaches are potentially intrusive and
have explicit and implicit installation costs. Vision-based tech-
niques [5]-[9] can accomplish gesture recognition, but with
limitations. This technology requires the gesture to be in the
line of sight (LOS) of a dedicated camera.

Recently, researchers have utilized the prevalent WiFi sig-
nals to perform non-intrusive activity recognition [10]-[15].
Fine-grained channel state information (CSI) of WiFi signals
have been exploited to perform fine-grained sensing in various
applications, including daily activity tracking, human count-
ing, and gesture recognition. However, these works usually
adopt traditional machine learning methods with a feature ex-
traction procedure, which do not generalize well and are time-
consuming. These methods are not practical for deploying on
hardware limited mobile devices.

In this work, we implement a practical non-intrusive gesture
recognition system using low-cost WiFi signals. We utilize CSI
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from commodity WiFi devices (e.g., laptops and smartphones)
to enable fine-grained gesture recognition. The insight is that
hand gestures change the propagation paths of WiFi signals,
which are captured in CSI. To extract gesture-related informa-
tion from CSI and use it for gesture recognition in practice,
we face two major challenges: First, we need to accurately
determine CSI data for gesture recognition. Since CSI could
be affected by any body movement, it is not efficient or robust
to track and examine all CSI changes for gesture recognition.
Second, it is known that CSI is susceptible to environmental
noises and interference, which may impact the CSI signatures.

To address these challenges, we first process the CSI
with denoising techniques. Next, we propose a preamble
gesture that generates unique CSI patterns to help accurately
determine the starting and ending of a given gesture. We
implement a low-cost segmentation method using the short
time energy (STE) of CSI moving variance and Dynamic
Time Warping (DTW) [16] to accurately determine the data
segment containing the target gesture. The power of a neural
network helps us to distinguish patterns in the CSI works to
reliably identify a gesture. We develop a lightweight CNN to
ensure high accuracy and robustness of our gesture recognition
system in practical environments with noises and interference.
As opposed to creating profiles and matching patterns to
known gestures, deep learning has greater potential to include
a broader range of gestures in future work. We list our
contributions in this paper as follows:

o We design a unique preamble gestures to help achieve
accurate and robust gesture recognition performance.

o Our system deploys a low-cost data segmentation method
using Dynamic Time Warping (DTW) and Short Time
Energy (STE) on the moving variance of WiFi signals.

o Our robust hand gesture classifier differentiates hand ges-
tures in practical environments without feature extraction,
leveraging lightweight deep learning technology.

« We conduct extensive experiments with three hand ges-
tures that can be used for simple commands. Results show
that our system can achieve over 96% accuracy.

o Our null gesture detection system distinguishes pretrained
gestures from others with 84% accuracy.

The rest of paper is organized as follows. Section II begins
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Fig. 1: CSI phase collected when performing a designated preamble gesture.
A significant and repeatable pattern is seen in subcarriers 2, 29 and 43.

with an extensive review of related work in gesture recognition
and considers the uniqueness and advantage of our system
that can bring into this research field. Section III describes
feasibility studies which are used as the basis for our system.
Section IV introduces an overview of the design and process
flow of our system. Section V introduces our data segmen-
tation approach and deep learning model design. Section VI
presents our experimental methodology and results of evaluat-
ing this system. Section VII discusses various aspects in this
system and our future work plans. Section VIII concludes this
work with a discussion.

II. RELATED WORK

Current techniques for gesture recognition can be roughly
categorized into three categories: body sensor-based, vision-
based, and RF-based recognition.

Body Sensor-Based. The customized wrist-worn sensing
platforms are designed to capture hand gestures. For instance,
Risq [1] leverages the inertial sensors on a wristband for
monitoring smoking habits. Geng et al. [2] adopt the surface
electromyography (SEMG) sensor worn on the user forearm
to recognize finger gestures using deep learning models. Zhao
et al. [4] explore the feasibility of using both photoplethys-
mography and motion sensors in wearables to improve the
sign language gesture recognition accuracy when there are
limited body movements. However, these solutions need extra
hardware support, which are not commonly compatible with
existing wearable devices.

Vision-Based. Many vision-based approaches have been
developed to recognize hand/body gestures with the help of
cameras. For example, Leap motion and kinect sensors have
been used in previous work [5] to track hand motions for Vir-
tual Reality applications. Lei et al. [7] leverage visual sensors
for recognition of kitchen activities for kitchen assistance. Ad-
ditionally, Yu et al. [9] use LED and photo detectors to detect
simple hand motions such as pushing and circles. All these
systems achieve robust results while accomplishing touchless
Human Computer interactions. However, those vision-based
system still require the user to use an additional device and
operate within the LOS of the sensor.

RF-Based. Radio Frequency based approaches have be-
come increasingly important due to the prevalent wireless
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Fig. 2: Overview of the proposed WiFi-based gesture recognition system.

environments. Macks et al. [17] introduce three different RF
sensors, including a 77 GHz FMCW radar, for recognizing
sign language from both native and imitation ASL speakers.
WiGest [10] leverages the Received Signal Strength of Wifi
to recognize the hand gestures. WiFinger [13] examines the
unique patterns exhibited in CSI of WiFi to identifies fine-
grained movements of finger gestures. However, these Radio
Frequency based approaches either require dedicated devices
or can be easily affected by environmental changes such as
people walking by.

This paper presents a low-cost, contactless human-computer
interaction system using CSI. Leveraging existing commodity
WiFi, our system requires no dedicated intrusive devices.
Additionally, our system enables preamble gestures to accom-
plish accurate data segmentation in practice. Without relying
on feature extraction, we develop a lightweight CNN that
achieves robust gesture recognition using CSI of only several
subcarriers. Compared to existing work, our system is more
feasible to deploy on resource-limited mobile devices.

III. FEASIBILITY STUDY

In this section, we discuss the background of fine-grained
CSI from WiFi signals, our design intuitions, and feasibility
study.

A. Contactless Sensing Using CSI

Commodity WiFi is largely accessible and is continu-
ally connecting devices. We look to take advantage of the
prevalence of WiFi and use it for contactless sensing and
recognition. Traditional 802.11n WiFi uses Orthogonal Fre-
quency Division Multiplexing (OFDM) transmission, which
splits the information of a single packet into 56 subcarriers
that measure fluctuations in the surrounding environment. The
amplitude and phase of the CSI on each subcarrier provide
rich information per packet about the environment where the
signal traveled.

As the various WiFi signal frequencies, or subcarriers,
propagate through the air, obstacles alter the signal phase and
amplitude through reflection and refraction. Some approaches
use the sum of the subcarriers, known as the Received Signal
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Fig. 3: Illustration of segmenting the CSI data of a Circle Y gesture between
two preamble gestures using STE.

Strength (RSSI), as a coarse-grained method for determining
gestures. In comparison, CSI has 56 subcarrier signals to inter-
pret rather than a single signal strength to support more fine-
grained sensing applications. Previous leveraging of WiFi [18]
indicates that specific activities can make specific signatures
on the CSI.

B. Feasibility Study

We conduct experiments asking a participant to make a
wave motion between a pair of WiFi transmitter and receiver
using Atheros Card QCA9590 at 1000 packets/sec. We extract
CSI from 56 subcarriers using Atheros-CSI-Tool [19]. We
find that among the subcarriers, some are more sensitive to
gestures, having more significant variances in the amplitude
and phase than other subcarriers. Figure 1 shows that hand
waving motions (i.e., our designated preamble gesture) can
generate recognizable patterns in the phase of subcarriers
2, 29, and 43, which encourage us to develop a system to
recognize gestures using few subcarriers.

IV. CHALLENGES & SYSTEM DESIGN
A. Challenges

Developing a gesture recognition system with WiFi signals
poses environmental obstacles. As we collect data on the
third floor of a University building, we encounter noise and
interference from the surrounding environment. This interfer-
ence can arise from other 802.11n devices and environmental
changes, such as a person walking around. A noisy signal
may result in a coarse gesture that the neural network cannot
discern. Moreover, the gestures are influenced by individual
diversity, hand size, tempo, posture and gesture inconsistency.
To mitigate these challenges, we test with a preamble that
is unique and robust to noise for segmentation and apply
denoising techniques to highlight gesture patterns.

B. System Overview

The basic idea of our system utilizes the patterns in the
phase shifts of the CSI after a gesture is made between a
transmitter and receiver. As outlined in Figure 2, we take the
raw data and in our Data Pre-Processing step and prepare
it for analysis. Because human activity does not occur at
higher frequencies, the values of the phase are low-pass filtered
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Fig. 4: Our CNN takes signal input through two convolutional layers, two max
pooling layers, and one final dense layer and outputs the gesture it recognizes.

to remove any high frequency noise. Next, we implement
a Gesture Data Segmentation step. We use the STE on the
moving variance of certain subcarriers’ phase signatures to
threshold when our preamble occurs. If the STE on the moving
variance is above a predetermined threshold, we apply DTW
to ensure a preamble gesture. Once ensured, the gesture in
between our preambles is fed to our Gesture Identification
step. Within this step, we train and test a CNN to determine
which gesture is performed. The model outputs probabilities
for each gesture, and if none of them are above a threshold
of certainty, then the gesture is defined as a null gesture.
Otherwise, the application performs some function based on
the predicted gesture.

V. GESTURE CLASSIFICATION
A. Gesture Design

The system is built with the intention of being implemented
on mobile devices. Processing a neural network is costly, so
to make the system lightweight enough for usage on a mobile
device, we utilize a preamble gesture to minimize use of the
neural network. The preamble is a unique starting and ending
gesture that is used to notify the system to interpret the next
gesture as a command. We choose the gesture of a wave as
the preamble, because of its distinct peak in amplitude and
phase, as seen in Figure 1. In designing the two other gestures,
we work to develop easy-to-implement movements that can
be assigned meaning in a mobile application: Circle X and
Circle Y. In our proof of concept trials, we observed the unique
signatures that these gestures leave on the CSI.

B. Data Pre-processing

High frequency noise is prevalent in the raw WiFi signal.
To combat this we apply a second order Butterworth low pass
filter to remove the aberrant noise above 20H z. Additionally,
we normalize the data in preparation for segmentation.

C. Data Segmentation Using Moving Variance and Short-time
Energy

We design a segmentation scheme to effectively segment all
gesture-related CSI signals using STE on the moving variance
of the phase. Our scheme uses a sliding window with the
typical length of the gestures to traverse and calculate the
moving variance of the signal with a certain step size. After
calculating the moving variance, we adopt the same length
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of window and step size to traverse the calculated moving
variance to get its short-time energy, which further amplifies
the fluctuation for better segmentation. At last, we adopt a
threshold-based method to find the starting and ending points
of a gesture. Particularly, we find the intersections between
the threshold and the short-time energy waveform. These
intersection timestamps are later used for segmentation. An
example of a gesture segmented using our method is outlined
in Figure 3.

In this work, we use a preamble gesture to generate
unique CSI pattern with significantly large fluctuations for
accurate segmentation. The intuition is that the target gesture
being recognized occasionally may not have sufficiently large
fluctuations, however, the preamble always does. During our
experiments, the user is required to perform the preambles
before and after each target gesture. Since our segmentation
scheme can locate both target gestures and preambles, we
adopt the DTW to differentiate a preamble gesture from other
CSI fluctuations. With adding certain guarding samples (e.g,
0.3 secs) between two adjacent preambles, we can always
get the segments containing the target gestures in between
from the previously found STE timestamps, which solves the
issue of segmenting target gestures with insignificant CSI
fluctuations.

Based on our experiments from three different gestures,
we determine the length of the sliding window as 1000 and
the step size 50 to ensure the accuracy and efficiency of our
segmentation scheme. Note that the threshold is user-specific
and needs to be dynamically determined by the maximum STE
when there is no gesture detected. Figure 3 illustrates the STE
corresponding to the Circle Y gesture between two preambles.
We can clearly see that the intersections between the STE
waveform and the threshold covers the entire gestures in CSI
raw data, showing our algorithm segments the gestures in CSI
signal accurately.

D. Light-Weight Gesture Recognition

Recent years have witnessed the success of Deep Neural
Networks (DNNs) on Time Series Classification (TSC). Pre-
vious work [20] in identifying gestures from sensor readings
inspire a DNN technique for WiFi gesture recognition. This
work especially adopts a light-weight CNN with gesture-
related CSI segments as the input for the CSI-based gesture

648

Circle X

True label
True label

Wave Circle X Circle Y
Predicted label

Wave Circle X Circle Y
Predicted label

(a) Person 1 (b) Person 2

Fig. 6: Confusion Matrix for recognition of hand gestures across 3 separate
gestures.

recognition. Our model avoids the feature extraction process,
which does not generalize well for various gestures and is time
consuming, especially when the model is deployed on mobile
or IoT devices with limited resources.

Particularly, we design a CNN consisting of five layers
including two convolutional layers, two max pooling layers,
and one final dense layer. The convolutional layers have 15
and 10 filters respectfully with kernel sizes of 50 x 2 and
we use a ReLU activation function. Figure 4 shows that after
each convolution, the data is downsized using a max pooling
function over a window of 2 x 1 units. We add a dense layer
with 3 neurons after the last convolution layer. In the end, we
use a softmax layer to output the prediction probability results.
It worth noting that we test different kernel size (e.g., 20 x 1,
35 x 2, 50 x 6) and different filter numbers (e.g., 10, 15, 20,
30). And we find the 50 x 2 kernel size and 15 & 10 filter
numbers provide the best result in terms of the performance.

To train our CNN model, for each user we feed the CNN
model with a user’s segmented CSI data of N samples
{(CSI;,y;)}, where CSI; and y; represent the segmented
gesture-related CSI input data (i.e. the phase of subcarriers
2, 12, 22, 32, 42, and 52) and the corresponding label with
respect to one specific gesture (i.e., y; = k represents that
y; is from the gesture k,k = 1,---,K). The specified
subcarriers were chosen with the intention of getting a wide
array of varying patterns among the 56 subcarriers, while also
downsampling for computational efficiency Particularly, we
randomly select the specified number of the training data from
the input data set of the current user and use the rest of the
user’s data as the testing data. In our implementation, we adopt
64 as the batch size and 15 as epoch.

It is possible that a gesture is made that is not one of the
three predefined gestures. We call these undefined motions
null gestures. In order to distinguish a null gesture from the
others, we define a threshold value. If the CNN’s maximum
probability value across the three gestures are not above the
threshold, it is deemed a null gesture, and is thus not passed
onto the application for further interpretation.

VI. EXPERIMENT AND EVALUATION

We run experiments with two people to test out the variances
between persons of the gesture shape and speed.
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A. Experimental Methodology

In a university office, we set up a receiver and a transmitter
four feet apart. Using Atheros-CSI-Tool [19] with the Atheros
QCA9590 chip, we extract the Channel State Information.
The receiver has three antennas, but only one is used for
data collection. Person 1 and person 2 perform the gestures
about 6 inches from the receiver on the LOS. Each gesture
is completed at least 40 times by each person to generate a
training and a testing data set.

B. Data Collection.

We recruit 2 participants including 1 male and 1 female to
perform hand gestures for evaluation. We focus on the typical
hand gestures involving three movements of hand as shown in
Figure 5. The participants are asked to respectively perform
the three hand-level gestures for 50 repetitions each. In total,
we collect 40 CSI segments for the experimental evaluation
for each gesture. For null gesture identification testing, we
recruited one participant to perform four common household
movements for ten repetitions each: walking, sitting up/down,
eating, and drinking. Unless mentioned otherwise, our results
are derived using 66% of our data set for training and rest for
testing. The data is processed by our system implemented by
MATLAB and Python, which is run on an Inspiron 7573.

C. Evaluation Metrics

Precision. Given IV, segments of a gesture type g, precision
of recognizing the gesture type g is defined as Precisiong =
NI /(NI 4+ M[), where NI is the number of gesture seg-
ments correctly recognized as the gesture g, and M gF is the
number of gesture segments corresponding to other gestures
which are mistakenly recognized as the gesture type g.

Recall. Recall of the gesture type g is defined as the
percentage of the segments that are correctly recognized as
the gesture type g among all segments of the gesture type g,
which is defined as Recally = N /N,.

D. Gesture Recognition Performance

Figure 6 depicts the confusion matrix for the recognition of
the three hand gestures across both participants. The diagonal
entries show the average accuracy of recognizing each ges-
ture, respectively. Specifically, the average precision is 95.8%
among all three gestures. We observe that all participants have
high accuracy on recognizing these hand gestures. Specifically,
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the average precision and recall of the participants are 96.6%
and 97.0%. Overall, the results confirm that it is promising to
use our lightweight CNN system with the CSI of commodity
WiFi. With just phase information from 11% of the available
subcarriers, we can accurately train and test our CNN to
perform hand gesture recognition, while also being robust
across different users.

Furthermore, to test our null gesture detection system, we
gathered CSI data on household activities such as walking,
sitting down, eating, and drinking. Our Null Gesture Detection
Rate is the ratio of a gesture detected as the null gesture to all
the gestures of a type (e.g., a target gesture) being detected.
We were able to correctly distinguish null gestures 84% of the
time with a threshold of 80%. Since this method requires no
additional training for our model, it is promising for real life
implementation.

E. Various Impacts on the System

Impact of Different Users. Figure 7 presents the average
precision and recall of recognizing three hand gesture across
different participants. We observe that all participants have
high accuracy on recognizing these hand gestures. Specifically,
the average precision and recall of the participants are 96.6%
and 97.0%. The results show the robustness and scalability of
our proposed system across different users, and demonstrate
the robustness that will be integral for implementation in
mobile devices.

Impact of Sampling Rate. The sampling rate of sensing
hardware is one of the critical impact factors on affecting
the power consumption. In this study, we collect the CSI
readings with sampling rates of 20Hz, 50H 2, 100H z, and
200H z to evaluate the system. Figure 8 (a) shows the average
precision and recall of the gesture recognition under different
sampling rates. We find that the precision/recall maintain
as high as 93% even under the lowest sampling rate (i.e.,
20H z). As the results imply, our system can operate normally
on lightweight hardware because lower sampling rates have
negligible impacts on performance.

Impact of Training Data Size. We change the percentage
of data used for training to study the performance of our
system under different training data size as shown in Figure 8
(b). In particular, we choose 5, 10, 20, and 30 gesture segments
with respect to each gesture for training, and use the rest of
our data for testing. We observe that our system can achieve an



average precision and recall of 90.76% and 91.3% respectfully
for recognizing three hand gestures using only 20 segments of
each gesture for training. These results indicate our system
can achieve good recognition performance with a limited set
of training data, which ensures great convenience for practical
usage.

VII. DISCUSSION AND FUTURE WORK

Recognizable Gestures. The CSI has the potential to recog-
nize the arm-level, hand-level, and even finger-level gestures.
We look to expand to more gestures (e.g., volumes up or
down, searching, and even spelling in ASL) in the experiments.
In the future, we hope to implement a model like ours into
an application that can recognize these gestures and provide
convenience analogous to voice assistance.

Scalability To More Users. Our current system requires
training a dedicated model for each user due to a little
difference among users while performing the same gesture.
However, there are still a lot of similarities among different
users that have not been leveraged. So, we look to implement
a transfer learning technique to expand the system to more
users with a low training cost in the future.

Implementation Programming Language. The data pre-
possessing and gesture data segmentation modules in our
system are currently implemented using MATLAB. The
lightweight CNN model in the gesture identification module is
implemented using the Keras library in Python. In our future
work, we will migrate all MATLAB processing code to Python
for improving the actual deploy-ability. Moreover, we will
manage to leverage edge-based hardware (e.g., an NVIDIA
eGPU) to accelerate this application.

Targeted Hardware Platform. Our current system is col-
lecting the CSI data from the Wifi card in the personal
computer. In our future work, we will leverage the CSI data
from the Wifi card in the commodity smartphone to achieve
better convenience and wider usability.

VIII. CONCLUSION AND FUTURE WORK

In this paper we discuss gesture recognition using the CSI of
WiFi signals and a lightweight CNN. Utilizing the CSI, we get
a fine-grained gesture pattern that our deep learning model can
recognize with a significantly low sampling rate and without
costly feature extraction. We select unique gestures that can
be interpreted by a computer to ultimately execute a command
in response. We achieve an average of 96% accuracy, which
is promising, especially considering a lightweight CNN is a
computationally efficient enough model to work on mobile
devices. In the future, we look to recognize more gestures and
implement a transfer learning technique to lower the training
effort on new user.
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