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We introduce the concept of pattern graphs–directed acyclic graphs rep-
resenting how response patterns are associated. A pattern graph represents
an identifying restriction that is nonparametrically identified/saturated and is
often a missing not at random restriction. We introduce a selection model and
a pattern mixture model formulations using the pattern graphs and show that
they are equivalent. A pattern graph leads to an inverse probability weight-
ing estimator as well as an imputation-based estimator. We also study the
semiparametric efficiency theory and derive a multiply-robust estimator us-
ing pattern graphs.

1. Introduction. Missing data problems are prevalent in modern scientific research
(Little and Rubin (2002), Molenberghs et al. (2014)). Based on the intrinsic constraints of
missing/response patterns, these problems can be categorized into monotone and nonmono-
tone missing data problems. In the case of monotone missing data, the missingness of vari-
ables is ordered in such a way that if a variable is missing, all following variables are missing.
This occurs in a scenario in which individuals drop out of a study, which is common in lon-
gitudinal studies (Diggle et al. (2002)).

In the case of nonmonotone missing data, the missingness is not necessarily monotone,
and the missingness of one variable does not necessarily place constraints on the missing-
ness of any other variables. There have been several attempts to use the missing at random
(MAR) restriction/assumption in this case (Robins (1997), Robins and Gill (1997), Sun and
Tchetgen Tchetgen (2018)). However, the resulting inverse probability weighting (IPW) esti-
mator may not be stable (Sun and Tchetgen Tchetgen (2018)), and the MAR restriction is not
easy to interpret in nonmonotone cases (Robins and Gill (1997), Linero (2017)). Therefore,
several attempts have been made to use missing not at random (MNAR) restrictions which
are interpretable. For instance, Malinsky, Shpitser and Tchetgen (2019), Sadinle and Reiter
(2017), Shpitser (2016) proposed a non-self-censoring/itemwise conditionally independent
nonresponse restriction, Little (1993a) and Tchetgen Tchetgen, Wang and Sun (2018) con-
sidered a complete-case missing value (CCMV) restriction, and Linero (2017) introduced the
transformed-observed-data restriction. However, each study proposed only one MNAR re-
striction to handle data, and it remains unclear how to construct a general class of identifying
restrictions for nonmonotone missing data.

In this paper, we introduce a graphical approach to constructing identifying restrictions for
nonmonotone missing data problems. This graphical approach defines an identifying restric-
tion using a graph of response patterns; thus, the resulting graph is called a pattern graph.
Formally, a pattern graph is a directed graph where nodes are possible response patterns and
whose edges/arrows represent the relationship between the selection probability of patterns
(also known as the missing data mechanism in Little and Rubin (2002)). A pattern graph
represents an identifying restriction placing conditions on the unobserved part of data, and is
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FIG. 1. Regular pattern graphs in the case of three potentially missing variables. The binary vector indicates the
response patterns, for example, 101 signifies that the first and the third variables are observed while the second
variable is missing. The left and middle panels display examples of regular pattern graphs when all response
patterns are possible. The right panel shows a regular pattern graph where there are only six possible response
patterns (this occurs when P(R = 101) = P(R = 001) = 0).

always nonparametrically identified/saturated (Theorem 3; Robins, Rotnitzky and Scharfstein
(2000)); that is, it does not contradict the observed data. In general, the identifying restric-
tion of a pattern graph is an MNAR restriction. Figure 1 provides examples of pattern graphs
when three variables may be missing, and a response pattern is described by a binary vector
(e.g., 110 signifies that for a variable L = (L1,L2,L3), L1 and L2 are observed and L3 is
missing). Different pattern graphs correspond to different identifying restrictions, so pattern
graphs define a large class of identifying restrictions. It should be emphasized that a pattern
graph is not a conventional graphical model.

Main results. The main results of this paper can be summarized as follows:

1. We introduce the concept of pattern graphs (Section 2) and derive a graphical criterion
leading to an identifiable full-data distribution using selection odds model and pattern mixture
model formulations (Theorems 1 and 3).

2. We demonstrate that the selection odds model and the pattern mixture model are
equivalent (Theorem 4).

3. We introduce an IPW estimator and study its statistical properties (Theorem 5).
4. We propose a regression adjustment estimator and derive its asymptotic normality

(Theorem 6).
5. We study the semiparametric theory of the pattern graph (Theorem 7) and propose a

multiply robust estimator by augmenting the IPW estimator (Theorem 9).

Related work. The CCMV restriction (Little (1993a), Tchetgen Tchetgen, Wang and Sun
(2018)) can be represented by a pattern graph. In monotone missing data problems, the
available-case missing value restriction (Molenberghs et al. (1998)) and the neighboring-case
missing value restriction (Thijs et al. (2002)) and some donor-based identifying restrictions
(Chen and Sadinle (2019)) can also be represented by pattern graphs. There have been stud-
ies that utilize graphs to analyze missing data. Bhattacharya, Malinsky and Shpitser (2020),
Mohan and Pearl (2014), Mohan and Pearl (2021), Mohan, Pearl and Tian (2013), Nabi, Bhat-
tacharya and Shpitser (2020), Tian (2015) proposed methods to test missing data assumptions
under graphical model frameworks. Malinsky, Shpitser and Tchetgen (2019), Sadinle and Re-
iter (2017), Shpitser (2016), Shpitser, Mohan and Pearl (2015) proposed a non-self-censoring
graph that leads to an identifying restriction under the MNAR scenario. However, it should
again be emphasized that pattern graphs are different from graphical models; thus, our graph-
ical approach is very different from the above-mentioned studies.

Outline. In Section 2, we formally introduce the concept of (regular) pattern graphs and
describe how they represent an identifying restriction. We discuss strategies for constructing
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TABLE 1
Example of a hypothetical dataset with missing entries. Variable L = (L1, . . . ,L3) represents the study variable

and variable R ∈ {0,1}3 represents the response pattern. The star symbol (∗) indicates a missing entry

ID L1 L2 L3 R

001 5 1.3 * 110
002 6 * 1.1 101
003 * * 1.0 001
004 5 * * 100
005 2 2.1 0.8 111

...
...

...
...

...

an estimator under a pattern graph in Section 3. We discuss potential future work in Section 4.
In the Supplementary Material (Chen (2022)), we present a sensitivity procedure in Ap-
pendix A, a study on the equivalence class in Appendix B, and an application to a real data in
Appendix C. Technical assumptions and proofs are provided in Appendix J and K. An R script
for finding the IPW estimator based on the pattern graph is in https://github.com/yenchic/PG.

2. Pattern graph and identification. Let L ∈ R
d be a vector of the study variables of

interest and R ∈ {0,1}d be a binary vector representing the response pattern. Variable Rj = 1
signifies that variable Lj is observed. Let 1d = (1,1, . . . ,1) be the pattern corresponding to
the completely observed case and r̄ = 1d − r be the reverse (flipping 0 and 1) of pattern r .
We use the notation Lr = (Lj : rj = 1). For example, suppose that L = (L1, . . . ,L4), then
L1010 = (L1,L3), L1100 = (L1,L2) and L1100 = L0011 = (L3,L4). Table 1 presents an ex-
ample of data with missing entries and the corresponding pattern indicator R. Both L and
R are random vectors from a joint distribution F(�, r) with a probability density function
(PDF) p(�, r), and we denote Sr as the support of random variable Lr . For a binary vector r ,
we use |r| = ∑

j rj to denote the number of nonzero elements.
Let R ⊂ {0,1}d be the collection of all possible response patterns, that is, P(R ∈ R) = 1.

A pattern graph is a directed graph G = (V ,E), where each vertex represents a response
pattern (vertex/node set V = R), and the directed edge represents associations of the dis-
tribution of (L,R) across different patterns. Figure 1 provides examples of pattern graphs.
Later we will give a precise definition of how a pattern graph factorizes the underlying distri-
bution. The joint distribution of (L,R) is called the full-data distribution and identifying the
full-data distribution is a key topic in missing data problems.

When we equip the pattern set R with a graph G, we can define the notion of parents
and children in the graph. For two patterns r1, r2 ∈ R, if there is an arrow r1 → r2, we say
that r1 is a parent of r2 and r2 is a child of r1. Let PAr = {s : s → r} denote the parents of
pattern/node r . A pattern/node is called a source if it has no parent.

For two patterns s, r ∈ R, we say that s > r if sj ≥ rj for all j and there is at least one
element k such that sk > rk . For instance, 110 > 100 and 110 > 010; however, 110 cannot be
compared with 011 or 001. An immediate result from the above ordering is that when s > r ,
the observed variables in pattern r are also observed in pattern s.

A pattern graph G is called a regular pattern graph if it satisfies the following conditions:

(G1) Pattern 1d = (1,1, . . . ,1) is the only source in G.
(G2) If there is an arrow from pattern s to r (i.e., s → r), then s > r .

Figure 1 presents three examples of regular pattern graphs when there are three variables
subject to missingness. The first two panels are regular pattern graphs when all eight response

https://github.com/yenchic/PG
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patterns are possible, and the last panel displays a regular pattern graph when only six patterns
are possible.

A regular pattern graph has several interesting properties. (G1) implies that the fully ob-
served pattern R = 1d is the only common ancestor of all patterns except for R = 1d . More-
over, if s is a parent of r , then observed variables in r must be observed in s (due to (G2)).
In a sense, this means that a parent pattern is more informative than its child. Condition (G2)
implies the following condition:

(DAG) G is a directed acyclic graph (DAG).

Namely, a regular pattern graph is a DAG. In Appendix B, we demonstrate that replacing
(G2) with (DAG) still leads to an identifiable full-data distribution.

2.1. Pattern graph and selection odds models. A common approach for the missing data
problems is the selection model (Little and Rubin (2002)), in which we factorize the full-data
density function as

p(�, r) = P(R = r|�)p(�),

and attempt to identify both quantities. Here, we focus on modeling the selection probability
P(R = r|�) due to its role in constructing an IPW estimator. To illustrate this, suppose that
we are interested in estimating a parameter of interest θ0 that is defined by a mean function,
that is, θ0 = E(θ(L)). Using simple algebra, it can be shown that

θ0 = E
(
θ(L)

) = E

(
θ(L)I (R = 1d)

P (R = 1d |L)

)
,

which suggests that we can construct an IPW estimator if we know the propensity score
π(�) = P(R = 1d |�).

To associate a pattern graph with the missing data mechanism, we consider the selection
odds (Robins, Rotnitzky and Scharfstein (2000)) between a pattern r against its parents PAr :
P(R=r|�)

P (R∈PAr |�) . Formally, the selection odds model of (L,R) factorizes with respect to pattern
graph G if

(1)
P(R = r|�)

P (R ∈ PAr |�) = P(R = r|�r)

P (R ∈ PAr |�r)
.

Namely, we assume that the (conditional) odds of a pattern r against its parents depend only
on the observed entries. Note that assumption (G2) in the regular pattern graph assumption
implies that for any parent nodes of r , variable Lr is observed. Thus, factorization in terms
of the selection odds implies that the selection odds are identifiable. From equation (1), it
can be seen that the corresponding restriction is an MNAR restriction in general. Equation
(1) is related to the MAR restriction in a more involved way (see Section 4 for a detailed
discussion).

Let Or(�r) = P(R=r|�r )
P (R∈PAr |�r )

be the odds based on the variable �r . Equation (1) can be written
as

(2) P(R = r|�) = P(R ∈ PAr |�) · Or(�r) = ∑
s∈PAr

P (R = s|�) · Or(�r).

Namely, the probability of observing pattern R = r is the summation of the probability of
observing any of its parents multiplied by the observable odds. Later in Proposition 2, we
provide another interpretation of equation (1) using the path selection. A useful property of
graph factorization is that the propensity score is identifiable, as described in the following
theorem.
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THEOREM 1. Assume that the selection odds model of (L,R) factorizes with respect to
a regular pattern graph G. Define

Qr(�) = P(R = r|L = �)

P (R = 1d |L = �)
,

for each r and Q1d
(�) = 1. Then π(�) ≡ P(R = 1d |�) is identifiable and has the following

recursive-form:

π(�) = 1∑
r Qr(�)

, Qr(�) = Or(�r)
∑

s∈PAr

Qs(�).

The identifiability follows from the induction. Q1d
= 1 is clearly identifiable, and we re-

cursively deduce the identifiability of Qr from |r| = d − 1, d − 2, d − 3, . . . ,0. Assumption
(G2) guarantees that this recursive procedure is possible. Note that with an identifiable π(�),
we can identify P(R = r|�) = Qr(�)π(�) and p(�) = p(�,R=1d )

P (R=1d |�) = p(�,R=1d )
π(�)

. Thus, the full-
data density p(�, r) = P(R = r|�)p(�) is identifiable.

EXAMPLE 1 (Conditional MAR). Consider the scenario in which we have a longitudinal
variable Y with three time points, that is, Y = (Y1, Y2, Y3). In addition, we have another
study variable Z that is observed once at the baseline. The total study variable L = (Z,Y ) =
(Z,Y1, Y2, Y3). Variable Y is subject to monotone missingness (dropout), and variable Z may
also be missing. There are a total of six possible patterns in this case, as illustrated in the left
panel of Figure 2. We use the variable T = R2 + R3 + R4 to denote the dropout time and
Rz = R1 to denote the response indicator of variable Z. Suppose that we use the regular
pattern graph as in the left panel of Figure 2. This graph implies the following assumptions
on T and Rz (see Appendix D in Chen (2022) for the derivation):

P(T = t |Rz = 1,L) = P(T = t |Rz = 1,Z,Y1, . . . , Yt ), t = 1,2,3,

P (T = t |Rz = 0,L) = P(T = t |Rz = 0, Y1, . . . , Yt ), t = 1,2,3,

P (Rz = 0|T = 3,L) = P(Rz = 1|T = 3,L) · P(Rz = 0|T = 3, Y1, Y2, Y3)

P (Rz = 1|T = 3, Y1, Y2, Y3)

The first two equations present the conditional MAR restriction, that is, we have MAR of Y

given Rz and the observed Z. The third equation describes how the missing data mechanism
of Z occurs. The graph provides a simple way to jointly model the dropout time and the
missingness of variable Z.

Selection odds factorization provides an alternative interpretation of the missing data
mechanism using the concept of path selection. A (directed) path � = {r0, . . . , rm}, is the

FIG. 2. Example of regular pattern graphs. Left: The regular pattern graph used in Example 1, where we have
a longitudinal variable with three time points Y = (Y1, Y2, Y3) and a regular variable Z where both are subject
to missingness. The missingness of Y is monotone. Note that this pattern graph leads to conditional missing at
random of Y given Z being observed or not. See Example 1 for further discussion. Right: The regular pattern
graph used in Example 2.
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collection of ordered patterns

r0 > r1 > r2 · · · > rm

such that there is an arrow from ri to ri+1 in the graph. A path from s to r refers to a path
where initial node r0 = s and the end node rm = r . Let

�r = {all paths from 1d to r},� = ⋃
r

�r,

and operationally define �1d
= {11 → 11}. If there exists a path from s to r , we call s an

ancestor (pattern) of r . With the above notation, we have the following decomposition.

PROPOSITION 2. Assume that the selection odds model of (L,R) factorizes with respect
to a regular pattern graph G. Then

(3)

1 = ∑
�∈�

π(L)
∏
s∈�

Os(Ls),

P (R = r|L) = ∑
�∈�r

π(L)
∏
s∈�

Os(Ls).

Proposition 2 implies

(4) π(L) = 1∑
�∈�

∏
s∈� Os(Ls)

,

which is a closed form of the propensity score π(L).
Proposition 2 presents an interesting interpretation of the selection odds model. Define

κ(�|L) = π(L)
∏

s∈� Os(Ls) to be a path-specific score. It can be seen that κ(�|L) ≥ 0 and∑
�∈� κ(�|L) = 1 by the first equality in Proposition 2. Thus, κ(�|L) can be interpreted as

the probability of selecting path � from �. The second equality can be written as

P(R = r|L) = ∑
�∈�r

π(L)
∏
s∈�

Os(Ls) = ∑
�∈�r

κ(�|L),

which implies that the probability of observing pattern r is the summation of all path-specific
probabilities corresponding to paths ending at r .

Because every path starts from 1d , a path can be interpreted as a scenario in which the miss-
ingness occurs (from a fully observed case). A path � is randomly selected with a probability
of κ(�|L), and missingness occurs sequentially as the elements in �. So the last element in
� is the observed pattern. Therefore, the probability of observing a particular pattern r is the
summation of the probabilities of all possible paths that end at r . The choice of a graph is a
means of incorporating our scientific knowledge of the underlying missing data mechanism;
in Section C, we provide a data example to illustrate this concept.

EXAMPLE 2. Consider the pattern graph in the right panel of Figure 2, where it is gen-
erated by two variables and four patterns 11, 10, 01, 00 and has four arrows 11 → 10 → 00,
11 → 00 and 11 → 10. There are five paths (including 11 → 11):

11 → 11, 11 → 10, 11 → 01, 11 → 00, 11 → 10 → 00

and each corresponds to probability

κ(11 → 11|L) = π(L),

κ(11 → 10|L) = π(L)O10(L10),

κ(11 → 01|L) = π(L)O01(L01),

κ(11 → 00|L) = π(L)O00(L00),

κ(11 → 10 → 00|L) = π(L)O10(L10)O00(L00).
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Each path represents a possible scenario that generates the response pattern. Since the prob-
ability must sum to 1, we obtain

π(L) = 1

1 + O10(L10) + O01(L01) + O00(L00) + O10(L10)O00(L00)
,

which agrees with Theorem 1. The probability of observing patterns 10 and 01 are
P(R = 10|L) = κ(11 → 10|L) = π(L)O10(L10) and P(R = 01|L) = κ(11 → 01|L) =
π(L)O01(L01), respectively. Pattern 00 occurs with a probability of

P(R = 00|L) = κ(11 → 00|L) + κ(11 → 10 → 00|L)

= π(L)O00(L00) + π(L)O10(L10)O00(L00).

The first component π(L)O00(L00) represents scenario 11 → 00, that is, the individual di-
rectly drops both variables. The other component π(L)O10(L10)O00(L00) corresponds to
scenario 11 → 10 → 00, that is, variable L2 is missing first, and then variable L1 is missing.
Therefore, the paths in the pattern graph represent possible hidden scenarios that generate a
response pattern.

REMARK 3. Robins and Gill (1997) proposed a randomized monotone missing (RMM)
process to construct a class of MAR assumptions for the nonmonotone missing data problems
that also admits a graph representation on how the missingness of one variable is associated
with others. This method may look similar to ours; however, the two ideas (RMM and pattern
graphs) are very different. First, RMM constructs a MAR assumption, whereas pattern graphs
are generally MNAR (generalizations of RMM to MNAR can be found in Robins (1997)
and Robins, Rotnitzky and Scharfstein (2000)). Second, each node in the RMM graph is
a variable, whereas each node in a pattern graph is a response pattern. Third, in the next
section, we demonstrate that the selection odds model in a pattern graph has an equivalent
pattern mixture model representation; however, it is unclear whether the RMM process has a
desirable pattern mixture model representation or not.

2.2. Pattern graph and pattern mixture models. Another common strategy for handling
missing data is pattern mixture models (Little (1993b)), which factorize

p(�, r) = p(�|R = r)P (R = r) = p(�r̄ |�r,R = r)p(�r |R = r)P (R = r).

The above factorization provides a clear separation between observed and unobserved quanti-
ties. The first part, p(�r̄ |�r,R = r), is called the extrapolation density (Little (1993b)), which
corresponds to the distribution of unobserved entries given the observed entries. This part
cannot be inferred from the data without making additional assumptions. The latter part,
p(�r |R = r)P (R = r), is called the observed-data distribution, which characterizes the dis-
tribution of the observed entries and can be estimated from the data without any identifying
assumptions.

An interesting insight is that different response patterns provide information on different
variables. Thus, we can associate an extrapolation density to the observed parts of another
pattern. This motivates us to consider a graphical approach to factorize the distribution using
pattern mixture models.

Formally, the pattern mixture model of (L,R) factorizes with respect to a pattern graph G

if

(5) p(xr̄ |xr,R = r) = p(xr̄ |xr,R ∈ PAr ).

Equation (5) states that the extrapolation density of pattern r can be identified by its parent(s).
Namely, we model the unobserved part of pattern r using the information from its parents.
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This is a reasonable choice because condition (G2) implies that a parent pattern is more
informative than its child pattern. Pattern mixture model factorization leads to the following
identifiability property.

THEOREM 3. Assume that the pattern mixture model of (L,R) factorizes with respect to
a regular pattern graph G, then p(�, r) is nonparametrically identifiable/saturated.

Theorem 3 states that graph factorization using pattern mixture models implies a non-
parametrically identifiable full-data distribution. Namely, the implied observed distribution
of F(�, r) coincides with the observed-data distribution that generates our data for patterns
r such that P(R = r) > 0. Thus, the identifying restriction derived from the graph never
contradicts the observed data (Robins, Rotnitzky and Scharfstein (2000)). Nonparametric
identification is also known as nonparametric saturation or just-identification in Daniels and
Hogan (2008), Hoonhout and Ridder (2019), Robins (1997), Vansteelandt et al. (2006).

Thus far, we have discussed two different methods of associating a pattern graph to a full-
data distributions. The following theorem states that they are equivalent under the positivity
condition (p(�r, r) > 0 for all �r ∈ Sr and r ∈ R).

THEOREM 4. If G is a regular pattern graph and p(�r, r) > 0 for all �r ∈ Sr and r ∈ R,
then the following two statements are equivalent:

• The selection odds model of (L,R) factorizes with respect to G.
• The pattern mixture model of (L,R) factorizes with respect to G.

With Theorem 4, we can interpret the graph factorization using either the selection odds
model or the pattern mixture model, both of which lead to the same full-data distribution. Be-
cause of Theorem 4, when we say (L,R) factorizes with respect to G, this factorization may
be interpreted using the selection odds model or pattern mixture model. Note that this equiva-
lence is not surprising, as Robins, Rotnitzky and Scharfstein (2000) demonstrated that certain
classes of selection odds models and pattern mixture models are equivalent. Theorem 4 shows
that the identifying restrictions from pattern graphs form another class of restrictions with this
elegant property.

EXAMPLE 4 (Complete-case missing value restriction). The CCMV restriction (Little
(1993a)) is an assumption in pattern mixture models. It requires that

(6) p(�r̄ |�r,R = r) = p(�r̄ |�r,R = 1d)

for all pattern r ∈ R. The corresponding pattern graph is a graph where every node (except
the node of 1d ) has only one parent: the completely-observed case; namely, PAr = 1d for all
r �= 1d . The left panel in Figure 3 presents an example of the pattern graph of CCMV. Using
Theorem 4 and the selection odds model, equation (6) is equivalent to

(7)
P(R = r|L = �)

P (R = 1d |L = �)
= P(R = r|L = �r)

P (R = 1d |L = �r)
,

FIG. 3. Examples of regular pattern graphs of three variables with only 5 possible patterns
R = {111,110,100,011,001}. Left: The left panel shows the pattern graph that CCMV restriction corresponds.
Right: The right panel shows a pattern graph that is related to the transform-observed-data restriction in Linero
(2017).
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which is the key formulation in Tchetgen Tchetgen, Wang and Sun (2018) that establishes a
multiply-robust estimator.

REMARK 5 (Transform-observed-data restriction). Linero (2017) proposed a transform-
observed-data restriction that is related to a particular pattern graph under a special
case. Consider a three-variable scenario in which only five patterns are available 111,
110, 100, 011, 001, and there are two paths of arrows: 111 → 110 → 100 and 111 →
011 → 001. The right panel of Figure 3 displays this graph. The first path implies
p(x3|x1, x2,110) = p(x3|x1, x2,111) and p(x2, x3|x1,100) = p(x2, x3|x1,110), which fur-
ther implies p(x2|x1,100) = p(x2|x1,110), which is a requirement of the transform-
observed-data restriction in this case. Similarly, the other path implies p(x2|x3,001) =
p(x2|x3,011), which is another requirement of the transform-observed-data restriction.

REMARK 6 (Monotone missing data problem). Suppose that the missingness is mono-
tone; then, the pattern graph reduces to special cases of the interior family (Thijs et al. (2002))
and donor-based identifying restriction (Chen and Sadinle (2019)). In particular, the parent
set PAr is the donor set of the dropout time t = |r|. The available-case missing value restric-
tion (Molenberghs et al. (1998)) corresponds to the pattern graph with PAr = {s : |s| > |r|},
that is, the graph with all possible arrows/edges. The neighboring-case missing value restric-
tion (Thijs et al. (2002)) is the pattern graph with PAr = {s : |s| = |r| + 1}.

3. Estimation with pattern graphs. In this section, we present several strategies for
estimating the parameter of interest using the pattern graph. Here, we consider the parameter
of interest that can be written in the form θ0 = E(θ(L)), where θ(L) is a known function.
Note that all analyses can be applied to the case of estimating equations.

With a slight abuse of notation, the observed data are written as i.i.d. random elements

(L1,R1,R1), . . . , (Ln,Rn,Rn),

where R1, . . . ,Rn ∈R denote the response pattern of each observation and Li,Ri
denotes the

observed variables of the ith individual and Li ∈ R
d denotes the vector of study variables of

the ith individual. Note that not every entry of Li is observed; we only observe Li,Ri
, while

Li,R̄i
is missing.

3.1. Inverse probability weighting. The parameter of interest can be written as

θ0 = E
(
θ(L)

) = E

(
θ(L)I (R = 1d)

P (R = 1d |L)

)
= E

(
θ(L)I (R = 1d)

π(L)

)
.

This formulation implies that as long as we can estimate π(�), we can construct a consistent
estimator of θ via the concept of IPW.

From Theorem 1, the propensity score can be expressed as

π(�) = 1∑
r Qr(�)

, Q1d
(�) = 1, Qr(�) = Or(�r)

∑
s∈PAr

Qs(�).

By the above recursive property, an estimator of Or(�r) leads to an estimator of Qr(�) and
π(�). The odds

Or(�r) = P(R = r|�r)

P (R ∈ PAr |�r)

can be estimated by comparing the distribution of patterns R = r with patterns R ∈ PAr . This
can be achieved by constructing a generative binary classifier (Friedman, Hastie and Tibshi-
rani (2001)) such that label 1 refers to R = r and label 0 refers to R ∈ PAr or by a regression
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function with the same binary outcome and the feature/covariate is �r . In Example 10 of
Appendix J, we describe a logistic regression approach to estimate Or(�r).

Suppose that we have an estimator π̂(�) of the propensity score. Then, we can estimate θ

using the IPW approach as follows:

θ̂IPW = 1

n

n∑
i=1

θ(Li)I (Ri = 1d)

π̂(Li)
.

As an example, suppose that we estimate π(�) by placing parametric models over the odds,
that is,

Ôr(�r) = Or(�r; η̂r ),

where η̂r ∈ 	r is the estimated parameter of the selection odds P(R=r|�r )
P (R∈PAr |�r )

. We can esti-
mate the selection odds using a maximum likelihood approach or moment-based approach.
With the estimated selection odds, we estimate the propensity score π̂(�) = π(�; η̂) using the
recursive relation. Let η̂ = (η̂r : r ∈ R) be the set of the estimated parameters.

THEOREM 5. Assume (L1-4) in Appendix J and that the selection odds model of (L,R)

factorizes with respect to a regular pattern graph G. Then θ̂IPW is a consistent estimator and
satisfies

√
n(θ̂IPW − θ0)

D→ N
(
0, σ 2

IPW
)
,

for some σ 2
IPW > 0.

Theorem 5 shows the asymptotic normality of the IPW estimator and can be used to con-
struct a confidence interval. A traditional approach is to obtain a sandwich estimator of σ 2

IPW
and use it with the normal score to construct a confidence interval. However, the actual form
of σ 2

IPW is complex because patterns are correlated based on the graph structure and there
is no simple way to disentangle them. Thus, we recommend using the bootstrap approach
(Efron (1979), Efron and Tibshirani (1994)) to construct a confidence interval. This can be
achieved without knowing the form of σ 2

IPW. Note that the bootstrap method often requires
a third moment condition of the score (Hall (2013)); for smooth parametric models such as
logistic regression with a bounded covariates, this condition holds.

We can rewrite the IPW estimator as

θ̂IPW = 1

n

n∑
i=1

θ(Li)I (Ri = 1d)
∑
r

Qr(Li; η̂).

So the quantity Qr(Li; η̂) behaves like a score from pattern r on observation Li .

3.1.1. Recursive computation. Although the IPW estimator has desirable properties, the
propensity score does not have a simple closed form; therefore, the computation of equation
(3) is not easy. To resolve this problem, we provide a computationally friendly approach to
evaluate π(�) (or its estimator π̂(�)) using the recursive relation in Theorem 1.

From Theorem 1, π(�) = 1∑
r Qr (�)

; thus, it is only necessary to compute Qr(�). The recur-
sive form in Theorem 1,

Q1d
(�) = 1, Qr(�) = Or(�r)

∑
s∈PAr

Qs(�),

demonstrates that we can compute Qr(L) recursively.
Algorithm 1 summarizes the procedure for computing π̂(L). We first compute cases where

|r| = d − 1. Having computed {Qr(L) : |r| = d − 1}, we can easily compute {Qr(L) : |r| =
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Algorithm 1 Recursive computation of the propensity score

1. Input: Q̂1d
(�) = 1 and a given fully-observed vector L and estimators Ôr(�r) for each

r ∈ R.
2. Starting from j = 1, . . . , d − 1, do the following:
2-1. For each r ∈ {s ∈ R : |s| = d − j}, do the following:
2-1-1. Compute Ôr(Lr). In the case of logistic regression, Ôr(Lr) = exp(β̂T

r L̃r ).
2-1-2. Compute Q̂r(L) = Ôr(Lr)

∑
s∈PAr

Q̂s(L).
3. Return: π̂(L) = 1∑

r Q̂r (L)
.

d − 2} because {Qr(L) : |r| = d − 2} only depend on {Qr(L) : |r| = d, d − 1} and each
Or(L). Thus, by sequentially computing (noting that Q1d

(L) = 1){
Qr(L) : |r| = d − 1

}
,

{
Qr(L) : |r| = d − 2

}
, . . . ,

{
Qr(L) : |r| = 1

}
,

we obtain every Qr(L), which then leads to π(L) = 1∑
r Qr (L)

.
Suppose that evaluating Or(Lr) takes �(1) units of operations; then, total cost of evalu-

ating π(L) using Algorithm 1 is �(
∑

r |PAr |) units, where |PAr | is the number of parents of
node r . However, if we use equation (3), the total cost is �(

∑
r

∑
�∈�r

|�|), where |�| is
the number of vertices in the path. It can be seen that |PAr | ≤ ∑

�∈�r
|�| and the number of

parents can be much smaller than the total number of paths. Therefore, Algorithm 1 is much
more efficient than directly using equation (3).

3.2. Regression adjustments. We can rewrite the parameter of interest as

θ0 = E
(
θ(L)

) =
∫

m(�r, r)P (d�r, dr), m(�r, r) = E
(
θ(L)|Lr = �r,R = r

)
.

Thus, if we have an estimator m̂(�r , r) for every r , we can estimate E(θ(L)) using the regres-
sion adjustment approach

θ̂RA = 1

n

n∑
i=1

m̂(Li,Ri
,Ri).

In Appendix F.2, we demonstrate that a Monte Carlo approximation of this estimator is the
imputation-based estimator (Little and Rubin (2002), Rubin (2004), Tsiatis (2007)).

Regression adjustment is feasible because the regression function m(�r, r) = E(θ(L)|Lr =
�r,R = r) is identifiable. To see this, using the PMM factorization in equation (5),

m(�r, r) = E
(
θ(L)|Lr = �r,R = r

)

=
∫

θ(�r̄ , �r)p(�r̄ |�r,R = r) d�r̄

=
∫

θ(�r̄ , �r)p(�r̄ |�r,R ∈ PAr ) d�r̄

= E
(
θ(L)|Lr = �r,R ∈ PAr

)
,

and p(�r̄ |�r,R ∈ PAr ) is identifiable due to Theorem 3.
In practice, we first estimate p̂(�r |R = r) using a parametric model for every r . With this,

we then estimate p(�r̄ |�r,R ∈ PAr ). Note that we can use a nonparametric density estimator
as well, but it often suffers from the curse of dimensionality.

For pattern r , let λr ∈ �r be the parameter of the model Lr |R = r . Namely,

p(�r |R = r) = p(�r |R = r;λr).



140 Y.-C. CHEN

We can estimate λr via the maximum likelihood estimator (MLE). Let λ̂r be the MLE. We
model it in this way to avoid model conflicts; see Appendix F.1 in the Supplementary Material
(Chen (2022)) for more details. Let λ = (λr : r ∈ R) be the collection of all parameters in the
model, let � be the corresponding parameter space, and let λ̂ be the MLE. The regression
function is then estimated by

m̂(�r , r) = m(�r, r; λ̂)

=
∫

θ(�r̄ , �r)p(�r̄ |�r,R ∈ PAr; λ̂) d�r̄ .

Note that in the above expression, the expression of the estimator depends on the entire set of
parameters λ̂ = (λ̂r : r ∈ R), but m̂(�r , r) actually only depends on the parameter belonging
to its ancestor. We express it using λ̂ to simplify the notation.

THEOREM 6. Assume (R1-3) in Appendix J and that the pattern mixture model of (L,R)

factorizes with respect to a regular pattern graph G. Then θ̂RA is a consistent estimator and
satisfies

√
n(θ̂RA − θ0)

D→ N
(
0, σ 2

RA
)

for some σ 2
RA > 0.

Theorem 6 shows that if the density estimators are consistent, the resulting regression
adjustment estimator is asymptotically normal. Similar to the IPW estimator, this provides a
way to construct a confidence interval using the bootstrap. In Appendix F.2, we describe a
Monte Carlo approach to compute θ̂RA. In addition, we show that when the pattern graph is a
tree graph, there may be a closed form of the regression adjustment estimator; thus,o we do
not need a numerical procedure (Appendix I).

3.3. Semiparametric estimators. We now study the semiparametric theory of the pattern
graph and propose an efficient estimator. We start with a derivation of the efficient influence
function (EIF) of E(θ(L)). For any pattern r ∈ G, recall that �r denotes all paths from 1d to
r and � = ⋃

r �r is the collection of all paths.
By Theorem 1 and equation (4), the inverse of the propensity score can be written as

1

π(L)
= ∑

r

Qr(L) = 1 + ∑
r �=1d

∑
�∈�r

∏
s∈�

Os(Ls).

Thus, the IPW formulation can be decomposed as

(8)

θ = E
(
θ(L)

)

= E

(
θ(L)I (R = 1d)

π(L)

)

= E
(
θ(L)I (R = 1d)

) + ∑
r �=1d

∑
�∈�r

E

(
θ(L)I (R = 1d)

∏
s∈�

Os(Ls)

)

= θ1d
+ ∑

r �=1d

∑
�∈�r

θ�.

For a path � ∈ � and an element s ∈ �, we define

(9)

EIF�,s(Ls,R)

= μ�,s(Ls)
(
I (R = s) − Os(Ls)I (R ∈ PAs)

) ∏
w∈�,w<s

Ow(Lw),
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where

μ�,s(Ls) = m�,s(Ls)

P (R ∈ PAs |Ls)
,(10)

m�,s(Ls) = E

(
θ(L)I (R = 1d)

∏
τ∈�,τ>s

Oτ (Lτ )|Ls

)
.(11)

The following proposition demonstrates that
∑

s∈� EIF�,s(Ls,R) is the EIF of θ�; therefore,
we obtain a closed form of the EIF of θ .

THEOREM 7 (Efficient influence function). Suppose that the selection odds model of
(L,R) factorizes with respect to a regular pattern graph G and p(�r, r) > 0. The EIF of θ�

is EIF�(L,R) − θ�, where

EIF�(L,R) = ∑
s∈�

EIF�,s(Ls,R).

Thus, the EIF of θ is EIF(L,R) − θ with

EIF(L,R) = ∑
r �=1d

∑
�∈�r

EIF�(L,R).

Theorem 7 provides an analytical form of the EIF of both θ and a pathwise version of
it. Theorem 7 also illustrates how a pattern graph informs the construction of the EIF. In
Appendix H, we derive the expression of the EIF of Example 2. A key element in the EIF is
the function μ�,s(Ls) defined in equation (10). In what follows, we describe how μ�,s(Ls)

is associated with the regression adjustment estimator in Section 3.2.

PROPOSITION 8 (Relation to regression adjustment). Let Ansr denote the ancestors of r

including r itself. For s ∈ Ansr , let ϒs,r be the collection of all paths from s to r . Then:

1. Function μ�,s(Ls) is identifiable from {p(�r |R = r) : r ∈ Anss};
2.

∑
�∈�s

μ�,s(�s) = m(�s, s), where m(�s, s) is the regression function defined in Sec-
tion 3.2;

3. The EIF of pattern r , EIFr = ∑
�∈�r

EIF, can be written as

EIFr (L,R) = ∑
s∈Ansr

m(Ls, s)
(
I (R = s) − Os(Ls)I (R ∈ PAs)

) ∑
ζ∈ϒs,r

∏
w∈ζ,w<s

Ow(Lw)

︸ ︷︷ ︸
=EIFs,r (L,R)

.

Suppose that we have a collection of models {p(�τ |R = τ ;λτ ) : τ ∈ R}, where λτ is the
underlying parameters. By Proposition 8, we can identify μ�,r(Lr) using these models, lead-
ing to μ�,r(Lr;λ) without any knowledge of the selection odds. This insight leads to the
construction of a semiparametric estimator in the next section.

In addition, Theorem 7 and Proposition 8 provide two equivalent expressions of the EIF.
The first one is a path expression:

EIF(L,R) = ∑
r �=1d

∑
�∈�r

∑
s∈�

EIF�,s(L,R),

while the second is an ancestor expression:

EIF(L,R) = ∑
r �=1d

∑
s∈Ansr

EIFs,r (L,R),
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Algorithm 2 Monte Carlo approximation of the semiparametric estimator

Input models: {p(�r |R = r; λ̂r ),Or(Lr; η̂r ) : r ∈ R}.
1. Apply the multiple imputation method (Algorithm 4 in the appendix) to obtain an ap-
proximation m̃(�r , r; λ̂) for each r .
2. For each r and an ancestor s ∈ Ansr , compute

˜EIFs,r (L,R)

= m̃(Ls, s; λ̂)(I (R = s) − Os(Ls; η̂s)I (R ∈ PAs))
∑

ζ∈ϒs,r

∏
w∈ζ,w<s

Ow(Lw; η̂w)

3. Compute the EIF as ˜EIF(L,R) = ∑
r �=1d

∑
s∈Ansr

˜EIFs,r (L,R).
4. Compute the propensity score π(L; η̂) by Algorithm 1.
5. Return: θ̃semi as

θ̃semi = 1

n

n∑
i=1

θ(Li)I (Ri = 1d)

π(Li; η̂)
+ ˜EIF(Li,Ri).

where EIFs,r (L,R) is defined in Proposition 8. The path expression provides insight into how
each path’s information contributes to the efficiency of a node, whereas the ancestor expres-
sion demonstrates how an ancestor improves the efficiency of its descendent. Moreover, the
path expression provides a clear picture of the multiple robustness property (Section 3.3.2)
while the ancestor expression leads to a simpler numerical procedure (Algorithm 2), which
is a mild modification of the regression adjustment.

3.3.1. Construction of semiparametric estimators. With the EIF, we can derive a semi-
parametric estimator. Since our derivation of EIF is based on the IPW approach, the linear
form of the semiparametric estimator is the IPW added to the augmentation from the EIF,
that is,

Lsemi(L,R) = θ(L)I (R = 1d)

π(L)
+ EIF(L,R)

= θ(L)I (R = 1d)

π(L)
+ ∑

r �=1d

∑
�∈�r

∑
s∈�

EIF�,s(L,R)

= θ(L)I (R = 1d)

π(L)
+ ∑

r �=1d

∑
s∈Ansr

EIFs,r (L,R).

It can be seen that E[Lsemi(L,R)] = θ . We use the path expression in the following deriva-
tion, as it leads to an elegant multiple robustness property (see next section).

Let Or(Lr; η̂r ) be the estimated selection odds and let p(�r |R = r; λ̂r ) be the estimated
density used in the regression adjustment method. By Proposition 8, the collection {p(�r |R =
r; λ̂r ) : r ∈ R} implies the collection {μ�,s(�s, r; λ̂) : s ∈ �,� ∈ �r, r �= 1d}, where λ̂ =
(λ̂r : r ∈ R). In addition, let Or(Lr; η̂s) be the estimated selection odds of pattern r .

With these estimators, we estimate the EIF by

EIF�,s(Ls,R; λ̂, η̂)

= μ�,s(Ls; λ̂)
[
I (R = s) − Os(Ls; η̂s)I (R ∈ PAs)

] ∏
w∈�,w<s

Ow(Lw; η̂w)
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and construct the semiparametric estimator

(12)

θ̂semi = 1

n

n∑
i=1

Lsemi(Li,Ri; λ̂, η̂)

= 1

n

n∑
i=1

θ(Li)I (Ri = 1d)

π(Li; η̂)︸ ︷︷ ︸
IPW

+ ∑
r �=1d

∑
�∈�r

=EIF�(Li,Ri ;λ̂,η̂)︷ ︸︸ ︷∑
s∈�

EIF�,s(Li,Ri; λ̂, η̂)

︸ ︷︷ ︸
augmentation

.

The semiparametric estimator contains an IPW component and an augmentation component,
so it is an augmented IPW estimator (see Appendix G for more details). Semiparametric the-
ory ensures that this estimator is the most efficient estimator when both the selection odds
{Or(Lr;ηr) : r ∈ R} and the regression functions {μ�,s(Lr;λr) : r ∈ R} are correctly spec-
ified. Algorithm 2 provides a Monte Carlo procedure to compute the semiparametric esti-
mator, which is a combination of the recursive algorithm in Algorithm 1 and the multiple
imputation in Algorithm 4 in the Supplementary Material. The key is to use the ancestor ex-
pression, which leads to a simpler form of the semiparametric estimator. Note that similar to
the regression adjustment estimator, if the pattern graph is a tree graph, we can avoid using
Algorithm 2 to compute the estimator; see Appendix I.

REMARK 7. In the pattern graph of the CCMV restriction, arrows are in the form 1d → r

for each r �= 1d . In this case, �r = {r} and � = r , so

μ�,r(�r) = E(θ(L)I (R = 1d)|Lr = �r)

P (R = 1d |�r)
= E

(
θ(L)|R = 1d,Lr = �r

)
.

Thus, the semiparametric estimator in equation (12) is the same as the semiparametric esti-
mator in Tchetgen Tchetgen, Wang and Sun (2018).

3.3.2. Multiple robustness. In many scenarios, a semiparametric estimator often exhibits
a double robustness or multiple robustness property (Robins, Rotnitzky and Scharfstein
(2000), Tsiatis (2007), Seaman and Vansteelandt (2018)). We demonstrate that our semi-
parametric estimator in equation (12) also enjoys a multiple robustness property. Here, we

assume that the parameters λ̂
P→ λ∗ and η̂

P→ η∗. Note that equation (12) can be factorized as

Lsemi
(
L,R;λ∗, η∗) = θ(L)I (R = 1d) + ∑

r �=1d

∑
�∈�r

Lsemi,�
(
L,R;λ∗, η∗)

,

Lsemi,�
(
L,R;λ∗, η∗) = θ(L)I (R = 1d)

∏
s∈�

Os

(
Ls;η∗) + EIF�

(
L,R;λ∗, η∗)

.

We demonstrate the multiple robustness properties of each component Lsemi,�(L,R;λ∗, η∗).
Note that we let Os(Ls) and μ�,s(Ls) denote the correct selection odds and regression func-
tion for each s ∈ � and each path �, respectively.

THEOREM 9 (Multiple robustness). Suppose that the selection odds model of (L,R)

factorizes with respect to a regular pattern graph G and p(�r, r) > 0. Let r ∈ R be a response
pattern. For a path � ∈ �r , if either Os(Ls;η∗) = Os(Ls) or μ�,s(Ls;λ∗) = μ�,s(Ls) for
each s ∈ �, then

E
(
Lsemi,�

(
L,R;λ∗, η∗)) = θ�.
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Using the fact that θ = θ1d
+ ∑

r �=1d

∑
�∈�r

θ�, it is evident that if we can consistently
estimate θ� for each �, we can estimate θ consistently.

Let MO
s = {Os(·;η∗) = Os(·)} be the case where the selection odds of pattern s is cor-

rectly specified. For � ∈ �r , r �= 1d and s ∈ �, let Mμ
�,s = {μ�,s(·;λ∗) = μ�,s(·)} be the

case where μ�,s is correctly specified. Theorem 9 shows that under the intersection of models

M� = ⋂
s∈�

(
MO

s ∪Mμ
�,s

)
,

the quantity Lsemi,�(L,R;λ∗, η∗) leads to a consistent estimator of θ�, that is,

θ̂� = 1

n

n∑
i=1

Lsemi,�(Li,Ri; λ̂, η̂)
P→ θ�.

Thus, to estimate θ = ∑
r θr , we must select a model in

(13) M = ⋂
r �=1d

⋂
�∈�r

⋂
s∈�

(
MO

s ∪Mμ
�,s

)
.

If our model falls within M, we have θ̂semi
P→ θ . This describes the multiple robustness

property of the semiparametric estimator in equation (12).
Similar to a conventional multiply robust estimator (Tchetgen Tchetgen, Wang and Sun

(2018)), θ̂semi is a
√

n-rate efficient normal estimator of θ if for any path �,

∑
s∈�

∥∥μ�,s(·; λ̂) − μ�,s(·)
∥∥
L2(P )

∥∥Os(·; η̂s) − Os(·)
∥∥
L2(P ) = oP

(
1√
n

)
,

where ‖f ‖L2(P ) = (
∫ |f (�)|2 dP (�))1/2 is the L2(P ) norm of a function f . This occurs when

all (L1-L4) and (R1-R3) conditions in Appendix J hold.

4. Discussion. In this paper, we, introduce the concept of pattern graphs and use it to rep-
resent an identifying restriction for missing data problems. Pattern graphs provide a new way
to construct identifying restrictions. We demonstrate that pattern graphs can be interpreted
using a selection odds model or pattern mixture model. In addition, we propose various esti-
mators using different modeling strategies and study statistical and computational properties
with a pattern graph. The theories developed in Section 3.3 demonstrate the elegant associa-
tion between the semiparametric theory and pattern graphs. We believe that the pattern graph
approach can provide a new direction in missing data research. Below, we discuss possible
future directions that are worth pursuing.

• Choice of pattern graph. In this paper, we mainly focus on the theoretical analysis of pat-
tern graphs and assume that a pattern graph is given. In practice, determining how to select
a pattern graph is an open problem. Since a pattern graph leads to an identifying restriction,
it should be chosen based on background knowledge of how missingness occurs. In Ap-
pendix C, we provide a data analysis example and attempt to choose a pattern graph based
on prior knowledge of the data generating process. In this particular example, we use the
path selection interpretation of pattern graphs (Proposition 2 and related discussion) to se-
lect a plausible pattern graph. Although this approach is reasonable for this particular data,
it may not apply to other problems. We plan to develop a general principle for selecting a
pattern graph in future work.

• Inference with multiple restrictions. Although a pattern graph may be derived from scien-
tific knowledge, sometimes there may be uncertainties regarding the graph to be used. As
a result, there may be a set of possible graphs {G1, . . . ,Gk} that are reasonable. In this sce-
nario, determining how to perform statistical inference is an open question. One possible
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solution is to derive a nonparametric bound (Manski (1990), Horowitz and Manski (2000))
or an uncertainty interval (Vansteelandt et al. (2006)) in which we compute an estimator
of each graph and use the range of these estimators as an interval estimate. Alternatively,
one can consider a Bayesian approach that assigns a prior distribution over possible graphs
and derives the posterior distribution of the parameter of interest. The posterior mean be-
haves like a Bayesian model averaging estimator (Hoeting et al. (1999)), and the posterior
distribution includes uncertainties from both estimation and graphs.

• MAR and conditional independence. The MAR restriction can be written as a pattern graph
with PAr = R\{r}. It is not a regular pattern graph; however, it still leads to a uniquely
identified full-data distribution (Gill, van der Laan and Robins (1997)). This implies that
pattern graphs that are not DAGs may still lead to an identifying restriction. Pattern graph
factorization implies the following conditional independence:

(14) I (R = r) ⊥ Lr̄ |Lr, R ∈ Er, Er = {r} ∪ PAr

for each r . When Er = R, this is equivalent to the MAR restriction. The choice of Er

is equivalent to the choice of the parents, which may provide a way to study identifying
restrictions beyond acyclic pattern graphs. Thus, studying the conditions on Er that lead
to an identifiable full-data distribution is a future direction that is worth pursuing.
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21-AOS2094SUPP; .pdf). This document contains all proofs to the theorems and lemmas in
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