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ABSTRACT

The Pampas of Argentina contain a broad
distribution of Pleistocene to Holocene loessic
sediments and eolian dune deposits. Models
describing the sediment provenance of this
eolian system have, at times, conflicted. We
address the provenance of these deposits
through U-Pb detrital-zircon geochronology.
QOur results indicate broad similarity in age
distributions between samples, with a domi-
nant Permian-Triassic mode, and widespread
but lesser Cenozoic, Devonian-Mississippian,
Ediacaran-Cambrian, and Mesoproterozoic
modes. These data are inconsistent with a
large contribution of detritus from Patago-
nia as previously suggested. These data are
consistent with very limited contribution of
first cycle volcanogenic zircon to the Pam-
pean eolian system, but abundances of older
Neogene zircon indicate proto-sources in the
Andes. The rios Desaguadero, Colorado, and
Negro contain populations that were likely
within the dust production pathways of most
of the loess, paleosol, and eolian dune depos-
its, but the derivation of the zircon ages in
these sediments cannot be explained solely
by these river systems. One statistical out-
lier, a loess sample from the Atlantic coast
of the Pampa region, indicates quantitative
similarity to the age spectra from the rios
Colorado and Negro, consistent with deri-
vation from these subparallel rivers systems
during subaerial exposure of the continental
shelf under high global ice-volume. Another
statistical outlier, a paleosol sample from
the Rio Parana delta region, has zircon ages
more closely associated with sediments in
the Parana region than in rivers south of the
Pampa region. Collectively, these data point
to the complexity of the Pampean eolian
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system and substantial spatial-temporal
variation in this Pleistocene—Holocene eolian
system.

INTRODUCTION

Dust plays a fundamental role in the Earth’s
climate by impacting nutrient cycling in the
oceans (Jickells et al., 2005, Mabher et al., 2010),
affecting the radiative forcing budget of the
planet (Sokolik et al., 2001; Huang et al., 2006;
Kumar et al., 2011; Miller et al., 2014; Scanza
et al., 2015), and perturbing snow-ice albedo
(Hansen and Nazarenko, 2004; Painter et al.,
2007). Dust lofted from southern South Amer-
ica is especially important for seawater chemis-
try in the South Atlantic and Southern Ocean’s
high-nutrient-low-chlorophyll regions with Fe-
limited productivity (e.g., Church et al., 2000;
Boyd and Law, 2001; Gaiero et al., 2003; John-
son et al., 2011; Moore et al., 2013; Paparazzo
et al., 2018). By modulating Fe-delivery and
bioproductivity in these regions throughout the
Pleistocene (e.g., Martinez-Garcia et al., 2011;
Anderson et al., 2014; Albani et al., 2016), dust
from southern South America likely affected
atmospheric CO, concentrations (Martin et al.,
1990; de Baar et al., 1995; Ridgwell and Watson,
2002; Bopp et al., 2003; Abelmann et al., 2006).

Understanding South American dust produc-
tion during the late Pleistocene is not as simple
as examining modern dust activity and extrapo-
lating into the geologic past. Dust fluxes during
late Pleistocene cold periods were at least four
times higher compared to interglacial periods
(Martinez-Garcia et al., 2011; Shoenfelt et al.,
2018), and were driven by different wind patterns
(e.g., Toggweiler and Russell, 2008; Anderson
et al., 2009; Boex et al., 2013). Bulk geochemi-
cal analysis of dust archived in the Antarctic Ice
Sheet has been largely tied to proto-sources in
Patagonia and the Altiplano-Puna Plateau (Gai-
ero, 2007; Gaiero et al., 2013; Gili et al., 2016)
with some contributions from Australian deserts
(Revel-Rolland et al., 2006). Although important
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for reconstructing original source areas, this bulk
geochemical approach largely ignores changes in
surficial conditions (precipitation, wind charac-
teristics, vegetation) when characterizing poten-
tial source areas of dust during the Pleistocene,
with some exceptions (e.g., Grousset et al., 1992;
Gili et al., 2017; Delmonte et al., 2017). In addi-
tion to growth of the Patagonian Ice Sheet, surfi-
cial conditions during glacial periods stimulated
large dust-generating provinces in the Pampean
and Chaco plains (Sayago et al., 2001; Zarate,
2003). Without comprehensive reconstructions
of dust production pathways (i.e., transfer from
proto-sources through intermediate sources to
its final deposition) the climate forcings of dust
production remain obscured.

Equatorward shifts in the mean positions of
synoptic-level winds in both hemispheres dur-
ing Pleistocene glacial periods (e.g., Toggweiler
and Russell, 2008; Vanneste et al., 2015; Abell
et al., 2021) implies a northward migration of
Southern Hemisphere westerly winds, as well as
secular variations in effective precipitation, veg-
etation, stream- and lake-levels, and ice-volumes
(Kohfeld et al., 2013; Berman et al., 2016; Mar-
tini et al., 2017). Such variations are known to
have changed eolian activity in South America,
which was suppressed during warmer periods
like the Holocene (e.g., Kemp et al., 2004; Zarate
et al., 2009; Forman et al., 2014; Tripaldi and
Forman, 2016).

Loess, predominantly composed of silt-sized
particles, exists in the natural continuum of
eolian entrainment, transport, and deposition
(Richthofen, 1882; Obrucheyv, 1911, 1945). Gla-
cial loess and desert loess models have been put
forth to describe the processes by which silt-sized
particles are produced from parent rock materi-
als (Tsoar and Pye, 1987; Smalley, 1995; Pye,
1995, Muhs, 2007). The former produces silt-
sized particles through mostly glacial grinding,
whereas desert loess models invoke a variety of
non-glacial processes (e.g., eolian abrasion and
impacts). Importantly, dust production pathways
can include fluvial comminution and transport



(e.g., Lyell, 1834). Genetic links between rivers
and loess deposits in subtropical to temperate
climates with close spatial proximity to river
systems have been well established (e.g., Mis-
sissippi River in North America: Russell, 1944;
Krinitzsky and Turnbull, 1967; Grimley, 2000;
Bettis et al., 2003; Crouvi et al., 2008; Smal-
ley et al., 2009; Stevens et al., 2013; Nie et al.,
2015); however, this thesis has been less widely
applied to the majority of loess sequences.

The Pleistocene-Holocene dust production
system of southern South America remains
obscure, in terms of both the location of proto-
source areas and the transport pathways (Zarate,
2007). Without this knowledge, we have few
constraints for verifying paleoclimate models of
the region. Like the loess units, the provenance
of the eolian sand is also poorly constrained.
Together, the loess and eolian sand deposits in
central Argentina represent some of the largest
eolian deposits on the continent. To better under-
stand the continuum of eolian sediment produc-
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tion pathways of late Pleistocene-Holocene sedi-
ments exposed in central Argentina, we collected
N = 17 samples of river, eolian dune, loess, and
paleosol sediments reporting n = 3744 new
detrital zircon U-Pb ages.

GEOLOGICAL SETTING

The Pampa Plains, or simply Pampas, consists
of extensive plains with minimal topography
located in central Argentina (Fig. 1). Boundaries
between the Pampas and surrounding regions are
transitional and their definitions commonly dif-
fer between individuals (e.g., Clapperton, 1993;
Zarate and Tripaldi, 2012); however, the general
dimensions and characteristics of the region
are consistent. To the north, the Pampas grade
into the Chaco Plain of northern Argentina and
Bolivia, with the Rio Parand forming a north-
eastern boundary and the Sierras Pampeanas
forming a northwestern topographic margin.
To the west, the Pampas extend largely to the
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foothills of the Andes, although many place the
boundary at the Rio Desaguadero system and
refer to the land located west of this river and
east of the Andes as the Andean Piedmont. The
Rio Colorado represents the southern boundary
of the Pampas, south of which lies the Northern
Patagonian Plateau. All of these rivers include
tributaries that emanate from the Andes to the
west; however, there are discernable differences
in sedimentary petrography (Garzanti et al.,
2021a). The Pampas extend more or less con-
tinuously to the southern Atlantic Ocean in the
east (Fig. 1).

The modern climate of the Pampas is humid
to subhumid in the east, but becomes progres-
sively drier to the west and southwest; precipi-
tation levels decrease from >800 mm/yr in the
east to the <500 mm/yr in the west (Clapperton,
1993; Prieto, 1996; Garreaud et al., 2009; Iri-
ondo et al., 2009; Aliaga et al., 2017). This pat-
tern is largely a function of the South Atlantic
high-pressure system, which brings humid and

Figure 1. (A) Distribution of
samples and sample types
in southern central South
America. All samples contain
the prefix “19AR,” which are
referred to in text. (B) Simpli-
fied geologic map of the region,
with sample locations shown,
modified from the Gomez et al.
(2019b). Cenozoic sedimentary
rocks refer to units of Mio-
cene-age and older. ACftb—
Agrio-Chos Mal-Malargiie
fold-thrust belt.
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warm air across the region via northeasterly
winds (Aliaga et al., 2017). However, there is
ample evidence that the climatic conditions
observed today were different during past cold
periods. Most data suggests that during glacial
episodes, climatic belts in the high latitudes
of South America shifted northward, bringing
stronger westerly winds and drier conditions to
the Pampas (e.g., Iriondo, 1999; Rabassa et al.,
2005; Wainer et al., 2005; Berman et al., 2016).
Climate at the regional-scale also changed.
Unlike modern wind patterns, eolian landforms
from the Last Glacial Maximum record an
anticlockwise wind pattern in the Pampas and
central Argentina during this time (Iriondo and
Garcia, 1993). This, combined with katabatic
winds from icefields in Patagonia would have
produced strong ~southwesterly winds across
much of the Pampas (Iriondo, 1997). Although
the Pampas were drier, discharge increased for
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rivers emanating from the Andes, like the Rio
Desaguadero, due to higher precipitation and/or
glacially sourced flow (Iriondo, 1997).

The Pampas contain large volumes of wind-
blown sediment with both active and relict eolian
dunes as well as extensive loess and loessoid
deposits (Teruggi, 1957; Clapperton, 1993;
Zarate and Blasi, 1993; Zarate, 2003; Tripaldi
et al., 2011; Zérate and Tripaldi, 2012). The
core of the wind-blown deposits in the Pampas
is called the Pampa Sand Sea (Iriondo, 1997),
a ~3*10° km? region of vegetation-stabilized
eolian sand (Tripaldi et al., 2013). Dune mor-
phology varies, but blowout, parabolic, and
linear dunes represent the most common style
(Zarate and Tripaldi, 2012; Tripaldi et al., 2018).
Despite the aerial continuity of the Pampa Sand
Sea, recent investigations suggest the depos-
its themselves are heterogeneous in nature
and composition and often influenced by their
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proximity to sediment source areas, local and
regional topography, and regional wind patterns
(Zarate and Tripaldi, 2012). Loess deposits up
to 30 m thick ring the southern, eastern, and
northern border of the Pampa Sand Sea and are
composed of loess and pedogenically altered
loess horizons (Clapperton, 1993; Iriondo, 1997;
Zarate, 2003). The loess consists of clay, silt, and
very fine-grained sand composed of quartz, pla-
gioclase, pyroclastic material, and volcanic glass
(Teruggi, 1957; Gonzélez Bonorino, 1965; Clap-
perton, 1993; Imbellone and Teruggi, 1993).
Loess and eolian sand in central Argentina are
attributed to several possible sediment source
areas. During past glacial periods, river and
floodplain sediment are hypothesized to have
been entrained by south-southwesterly winds
and deposited in the Pampa Sand Sea and loess-
oid belt (Iriondo, 1990; Iriondo 1997; Krohling,
1999). South-southwesterly winds may have



also entrained sediment from the Rio Colorado
and Rio Negro, which flow along the southern
border of the Pampas (Zérate and Blasi, 1993).
This south-to-north hypothesis is supported by
detrital zircon ages from Holocene eolian sam-
ples in the westermost Pampas (Capaldi et al.,
2019). Rare earth element and Sm-Nd data from
the loess support this hypothesis, suggesting a
northern Patagonian sediment source with addi-
tional contributions from other regions (Smith
et al., 2003). The central Andes may have also
contributed to loess in the Pampas. This area has
generated recent dust plumes (Milana and Kr6h-
ling, 2017) and contains evidence of long-term
(m.y.) wind erosion (McMillan and Schoen-
bohm, 2020). Volcanic sediment has long been
recognized as a source for loess in central Argen-
tina (Teruggi, 1957), and certain areas contain
evidence of local sediment sources (Gonzilez
Bonorino, 1965).

METHODS

We collected samples of loess, fluvial sand,
eolian sand, and paleosols from across the
Argentine Pampas and surrounding areas
(Fig. 1). Age constraints are not available for
all of the samples, but based on previous work
from similar or proximal sediments (Kemp et al.,
2006; Kruck et al., 2011; Tripaldi and Forman,
2016) the age of the samples range from mod-
ern to ca. 110 ka in age, with the majority being
<70kain age. One exception to this is the paleo-
sol sample 19AR08, whose age is unknown.
Detailed descriptions of the samples, their age
constraints and their sampling locations can be
found in the Supplemental Material'.

Detrital zircon crystals were separated from
~5 kg of sample. Indurated samples were disag-
gregated using a hand crusher, and all samples
were passed through 600 pm disposable nylon
sieve screen. To maximize zircon recovery from
clay-rich samples and to minimize grain-size age
biases from hydraulic sorting (e.g., Sldma and
Kosler, 2012; Ibafiez-Mejia et al., 2018), zircon
fractions were isolated using ultrasonic disrup-
tion following an approach modified from Hoke
et al. (2014)—the only two modifications were
stirring samples from above rather than below so
larger sample volumes could be separated and
using an ultrasonic tank for more evenly distrib-
uted ultrasonic wave energy and cavitation rather
than relying on an ultrasonic probe. After ultra-
sonic separation, zircon crystals were separated

ISupplemental Material. Table S1: U-Pb
geochronologic analyses. Please visit https:/
doi.org/10.1130/GSAB.S.19420217 to access
the supplemental material, and contact editing@
geosociety.org with any questions.
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in a heavy liquid and with a Frantz barrier field
isodynamic magnetic separator.

The detrital zircon crystals were dated using
an Element 2 single-collector inductively-
coupled plasma—mass spectrometer coupled
to a Photon Machines 193 nm excimer laser in
the Center for Elemental Mass Spectrometry
at the University of South Carolina, Columbia,
following the methodologies of Pullen et al.
(2018). Elemental- and mass-fractionation,
instrument drift, and down-pit fractionation
were corrected using a suite of reference mate-
rials mounted with the sample zircon in 2.5 cm
epoxy ring forms. Laser spot size used for anal-
yses was 25 micron. Corrections were made
using an in-house Excel based data program
(AgeCalc; Gehrels et al., 2006). The suite of
reference materials included Sri Lanka, FC-1,
and R33 (Paces and Miller, 1993; Black et al.,
2004; Gehrels et al., 2008; Mattinson, 2010).
This approach yielded the correct age of the
monitoring reference material within +2% or
less (at 10). Single-grain U-Pb ages were not
considered further if 2°°Pb/?*#U uncertainty was
>10% (1o), 2Pb/?7Pb uncertainty was >10%
(1o), if age discordance was >30%, or reverse
discordance was >5% for grains older than
600 Ma. The discordance on ages <600 Ma
was not considered because of the challenges of
accurately measuring 2°°Pb/2’Pb in young crys-
tals. Plots and interpretations use the 206Pb/?3U
age if the 20Pb/28U age is <1000 Ma, and
the 206Pb/27Pb age if the 29Pb/>38U age is
>1000 Ma.

RESULTS

In Figures 2 and 3, we present the U-Pb age
distributions of detrital zircons from N =17
sediment samples collected from fluvial, paleo-
sol, and eolian deposits of central Argentina.
With the exception of loessoid sample 19AR19
collected from a bluff of the lower Rio Parana
(Fig. 1), there are many similarities in the dis-
tribution of age populations between samples
(Figs. 2 and 3). When the samples are combined
into a single composite plot (bottom of Fig. 2),
eight prominent age populations emerge, with
peaks, from largest to smallest, at: [1] Permian-
Triassic (25% of all dated grains, ranging from
21% to 36% of grains of each sample, exclud-
ing 19AR19); [2] Devonian-Mississippian
(13%; range: 8%—28%); [3] Cenozoic (11%;
range: 3%-18%); [4] Ediacaran-Cambrian
(11%; range: 4%—16% but composing 43% of
19AR19); [5] late Mesoproterozoic (8%; range
3%—-18%); [6] Jurassic (8%; range: 4%—18%);
[7] Cretaceous (8%; range 2%—17%), and [8]
Ordovician (8%, range: 4%—12%). The remain-
ing zircons largely form small Neoproterozoic
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Figure 2. Detrital zircon U-Pb age distribu-
tions of fluvial and eolian units from central
Argentina. Kernel density estimates are
filled polygons constructed with a Epanech-
nikov kernel with a 15 m.y. bandwidth, are
color-coded to their depositional system
and area-normalized between samples.
Probability density plots are depicted by
red curves and are area-normalized except
where indicated by break-in-scale hash
marks for some Cenozoic populations. Plot
at bottom depicts the collective distribution
of zircon ages from all 17 samples, revealing
the prominent age modes that are present in
most samples, shown by gray polygons. Note
that 67 grains have ages older than 2 Ga
and, therefore, do not appear in the plot.
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and Paleoproterozoic populations, or occur
between significant age modes.

Of the largest populations, the Permian-
Triassic (present in all 17 samples, prominent
in all but 19AR19); Jurassic (present in all but
19AR19; prominent in eight samples); and Cre-
taceous (present in all but 19AR07; prominent
in four samples) modes are the most ubiqui-
tous (Figs. 2 and 3). Although less sizable, the
Devonian-Mississippian, Ordovician, and late
Mesoproterozoic populations are comparably
widespread across the suite of samples. Whereas
there are many Cenozoic zircon age populations,
the largest individual modes are Quaternary in
age (Fig. 3).

Despite great similarities of zircon age distri-
butions between our samples, some aspects of
our results warrant particular mention. We note
that with the exception of 19AR19 and 19AR17,
all eolian (loess, loessoid, and dune sand) sam-
ples have reasonably similar presence-absence
and population abundance relationships. Both
19AR19 and 19AR17 differ from other eolian
samples in their scarcity of Neogene zircons.
Sample 19AR19 differs from other samples in
the dominance of the Ediacaran-Cambrian age
mode and the absence or minor abundances of
most other age modes that are otherwise present
throughout our samples. Sample 19AR17 dif-
fers from other samples by its dominance of the
Cretaceous age mode. Finally, we note the rela-
tive paucity of Neogene age zircons in all of our
fluvial and paleosol samples in contrast to the
loess, loessoid, and dune samples, excluding the
aforementioned 19AR19 and 19AR17.

PROVENANCE OF ZIRCON AGE
MODES

Zircon crystals in our samples with ages of
0-65 Ma are interpreted as originally derived
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from subduction-related magmatic arc rocks
in the Andes, which are well-exposed through-
out the Andean Cordillera (e.g., Balgord, 2017;
Capaldi et al., 2017; Gomez et al., 2019). We
interpret the 65-145 Ma zircons that are sig-
nificant in many of our samples as also largely
being derived from the Andean magmatic arc,
likely from more southern latitudes of the study
area where older batholithic rocks are exposed;
Cretaceous magmatic arc rocks are restricted to
the west side of the continental divide north of
~42°S (Gomez et al., 2019). Alternatively, some
Cretaceous zircons may have been derived from
igneous rocks in the Parand Basin (Fig. 1) to
the east of the study area, although most of the
appropriately aged units have basaltic litholo-
gies that are unlikely to be zircon-fertile. We
interpret the 150-200 Ma age mode (i.e., Juras-
sic) prominent in many of our eolian samples
as being derived from the Chon Aike silicic
Large Igneous Province associated with the
breakup of Gondwana (Pankhurst et al., 1998).
Whereas these rocks are more widely exposed
in Patagonia, there are significant exposures at
the latitudes of the study area in the forearc of
the Andes, but these outcrops are west of the
present continental divide (Gomez et al., 2019).
Therefore, it is likely that Jurassic zircons in our
sample were originally derived from the North
Patagonian Massif to the south of the study
area. Notably, there is a prominent Jurassic age
mode in all of the reported modern samples
from the greater Rio Colorado and Rio Negro
systems (average 15%, range 5%-22%, N = 8:
our samples 19AR11 and 19AR12 and Pepper
et al., 2016), and Chubut River (32%, N = 1:
Pepper et al., 2016) in the southern part of the
study area, yet there are no Jurassic zircons from
samples of the Rio Bermejo or Rio Pilcomayo of
the greater Parand watershed to the north (N = 4:
Pepper et al., 2016). The likely immediate source
of these zircons is Jurassic and younger strata
originally deposited in the Nuequén Basin and
later exhumed in thrust sheets within the Agrio-
Chos Mal fold-thrust belt (Fig. 1B; e.g., Ramos
et al., 2004).

We interpret the large 240-280 Ma detrital-
zircon age mode in all but one of our samples
as being originally derived from the Permo-
Triassic Choiyoi magmatic province that devel-
oped across a wide swath of south-central South
America between northern Chile and northern
Patagonia (Sato et al., 2015; Bastias-Mercado
et al., 2020). Today, Choiyoi plutonic and vol-
canic rocks are widely exposed just west of the
study area in the Andean Cordillera and in the
North Patagonian Massif immediately south of
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Figure 3. Age distribution of individual samples from central Argentina plotted using area-

normalized Kernel density estimates with age

segments of different Epanechnikov kernel

bandwidths (“bw”’) and horizontal scales to best depict the true zircon age distribution of
our individual samples. Note that 67 grains have ages older than 2 Ga and, therefore, do not

appear in the plot.

the study area (e.g., Luppo et al., 2018; Gomez
et al., 2019). Contemporaneous volcanic and
volcaniclastic strata likely derived from the
Choiyoi province outcrop broadly in the Parand
Basin east of the study area (Rocha-Campos
et al., 2011). This age mode is also dominant
in sedimentary rocks of the Nuequén Basin

(e.g., Naipauer et al., 2015) and in low-grade
early Mesozoic metasedimentary complexes
exposed in the southern Chilean Andes (Hervé
et al., 2003, Barbeau et al., 2009), although
these rocks are primarily exposed west of the
continental divide. Whereas this dominant and
all but ubiquitous age mode indicates sediment
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derivation from south-central South America,
the widespread nature of these source rocks pre-
cludes the use of the 240-280 Ma age mode as
a diagnostic provenance tool at these latitudes.
However, this age mode is the dominant compo-
nent of modern fluvial deposits in the Rio Colo-
rado and Rio Negro systems of the southern part
of the study area, composing 28% of zircons
sampled therein (range 15%-36%, N = 8: our
samples 19AR11 and 19AR12 and Pepper et al.,
2016). In contrast, this age mode is noticeably
minor (1%—4%, N = 4) in samples collected
from the Rio Pilcomayo and Rio Bermejo (Pep-
per et al., 2016) of the greater Parana watershed
in the northern and western part of the study area
(Fig. 4).

We interpret the 280-360 Ma detrital zir-
con mode as being originally derived from a
Carboniferous arc, which formed along the
Gondwana margin (Mpodozis and Kay, 1992;
Sato et al., 2015; Naipauer et al., 2015), and
the 440-500 Ma detrital zircon population as
derived from the Famatinian arc (Ramos, 2009).
Ordovician batholithic plutons of the Famatin-
ian arc are widely exposed in the central-western
Sierras Pampeanas (e.g., Otamendi et al., 2020).
Carboniferous plutons occur in the northwestern
Sierras de Pampeanas and in the Sierras de Cér-
doba of the eastern Sierras Pampeanas (Morosini
etal.,2017), and are interpreted to have intruded
the Famatinian back-arc region following colli-
sion of the exotic Cuyania terrane, detachment
of the subducted slab, and/or orogenic collapse
(Otamendi et al., 2020).

We interpret zircons with ages between 500
and 700 Ma, which dominate sample 19AR19
and form minor components of our other sam-
ples, as being originally derived from plutonic
rocks formed during the Brasiliano and Pam-
pean orogenies as part of the large Pan-African
tectonic event. Collectively, igneous rocks of
this age surround the Rio de la Plata craton
that forms the basement to the Pampas and are
today exposed in the eastern Sierras Pampeanas
(e.g., Sierra Cordoba; Schwartz et al., 2008). In
addition, metasedimentary units exposed in the
eastern Sierras Pampeanas also contain zircons
with ages of 500-700 Ma (Rapela et al., 2016).
Widely exposed Ordovician sedimentary strata
in the northern Argentine Precordillera contain
a significant 500-700 Ma age mode (DeCelles
etal., 2007; Augustsson et al., 2011; Enkelmann
et al., 2014; Ramos et al., 2014; Thomas et al.,
2015; Amidon et al., 2016) presumably derived
from the underlying Pampean and Brasiliano
plutons, and may have provided more direct
sources of 550-700 Ma zircons to our other
samples. This population is the dominant mode
in modern samples from the Rio Bermejo and
Rio Pilcomayo draining the Central Andes,
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Figure 4. Existing detrital-zircon data from modern rivers in the Central and Southern Andes. (A) Digital elevation model image of south-
ern South America with rivers, eolian deposits, and sample locations. (B and C) Detrital zircon data from modern rivers. (B) Zircon age
distribution of samples for grains with ages between 0 and 3200 Ma. Kernel density estimates (KDE) and histogram are shown. (C) KDE
results of detrital zircons with ages <200 Ma. Sources for data: 1-4 and 7-12 Pepper et al. (2016; original samples: CA01, CA02, CA03,
CA04, SA06, SA07, SA08, SA09, SA11, and SA12 combined, SA15); 5 Rino et al. (2008; original samples: Para); 6 Capaldi et al. (2017;
original combined samples RBMJ01 and RSJN03).

composing between 31% and 47% of zircons in
those samples (N = 4, Pepper et al., 2016). This
age mode is considerably smaller in modern
samples from the greater Rio Colorado and Rio
Negro systems (average 6%, range 1%—11%,
N =8, our samples 19AR11 and 19AR12 and
Pepper et al., 2016), and Rio Chubut (1%,
N = 1: Pepper et al., 2016) in the southern part
of the study area (Fig. 4).

We interpret the 900-1200 Ma zircon age
mode that forms a small but consistent popu-
lation in all of our samples as being originally
derived from rocks associated with the Sunsas
Orogeny (Bahlburg et al., 2009), which is equiv-
alent in age to the Grenville Orogeny of North
America (Tollo et al., 2004). The Laurentian
Cuyania terrane in the western part of the study
area contains Sunsas-age zircons (Ramos, 2009).
These rocks are dominant components of the Pie
de Palo and Valle Fértil ranges of the western
Sierras Pampeanas, but this age mode is also the
dominant component of the detrital zircons in
Ordovician siliciclastic rocks in the Argentine
Precordillera (Thomas et al., 2015). This Sun-
sas-age mode forms a significant component of
modern samples from the Rio Bermejo and Rio

Pilcomayo (Fig. 4), constituting between 15%
and 18% of zircons in those samples (N = 4,
Pepper et al., 2016). This age mode is consider-
ably smaller in modern samples from the greater
Rio Colorado and Rio Negro systems (aver-
age 6%, range 2%—-10%, N = 8: our samples
19AR11 and 19AR12 and Pepper et al., 2016),
and Chubut River (4%, N = 1: Pepper et al.,
2016) in the southern part of the study area.

DISCUSSION

Input from First Cycle Volcanogenic
Sources

Our U-Pb detrital zircon data suggest the pos-
sibility of first cycle volcanogenic zircon crys-
tals within the loess, paleosol, and eolian dune
samples. However, the number of possible first
cycle zircons is limited. This is ostensibly at odds
with long-held assertions of ash fall as an impor-
tant source of detritus for the loessic sediments
(e.g., Teruggi, 1957). The depositional age (i.e.,
most recent activity) of the eolian dune samples
is taken to be less than 100 ka (see Supplemental
Material for depositional ages); most recent activ-

Geological Society of America Bulletin

ity is more likely 4-22 ka (Tripaldi and Forman,
2007, 2016). Using a depositional age of <100
ka for the eolian dunes and comparing this to the
U-Pb ages of the detrital zircons, the percentage
of ages <100 ka ranges from 0.0%—1.0% for the
eolian dune samples reported here. Depositional
ages have been determined for some, but not all
of the loess and paleosol samples (see Supple-
mental Material; e.g., Kruck et al., 2011). Of the
loess samples, detrital zircon crystals <100 ka
were not identified in N = 3 samples. This could
point to a “true” absence of <100 ka crystals in
those samples or undersampling such that a low
probability age mode was not identified. Where
grains with ages <100 ka were identified, the
populations were in the range of 0.33%—0.96%
(when uncertainties on the age were considered).
Zircon crystals <100 ka were not identified in
either of the paleosol samples. Collectively, these
statistical observations are interpreted to mean
that the contribution of first cycle volcanogenic
zircon crystals to loess, paleosol, and eolian dune
samples was minimal. This does not preclude the
input of recycled volcanic material, which is sug-
gested by altered volcanic glass present in some
loess deposits (Teruggi, 1957).



The absence of first cycle volcanigenic zircon
crystals in eolian dune, loess, and paleosols sam-
ples from central Argentina is surprising given
the proximity to the Andean volcanic arc; how-
ever, it is consistent with the regional geological
history. As with other cordilleran-style orogens,
magmatism and volcanism in the Andes is tied to
the nature of subduction along the western mar-
gin of the continent (e.g., Ramos and Folguera,
2009). Flat slab subduction in the latitudes of
central Argentina, notably in the Pampean and
Payenian slabs, have resulted in diminished mag-
matism and volcanism, thus reducing the poten-
tial source of syndepositional volcanic zircons
(Ramos 2009; Capaldi et al., 2021). Moreover,
the recent (<1 Ma) volcanism that has occurred
in these latitudes has been mafic in composition
(Ramos and Folguera, 2011), and serve as zir-
con-poor source rocks. Thus the apparent incon-
gruity between the Andean volcanic arc and the
lack of first cycle volcanic zircons in the eolian
deposits of the Pampas is reasonable and even
predictable given the subduction and volcanic
histories in this portion of the Andes.

Most of the loess and eolian dune samples
yielded a higher relative proportion of <30 Ma
crystals than the fluvial samples. The percent-
age of Neogene ages in the fluvial samples were
in the range of <3.2%-5.6%. The percentage of
those ages for the eolian dune samples were in the
range of 9.9%-19.1%, whereas the loess samples
yielded percentages of 0.0% (19AR19), 2.6%
(19AR17), 12.4% (19AR10), 12.7% (19AR13),
14.2% (19AR09), and 15.0% (19AR16). Rec-
ognizing that 19AR19 and 19AR17 are outliers
for reasons discussed below, the other three loess
samples have Neogene age populations similar
to the range observed in the eolian dune samples.
These observations are interpreted to mean that
the Miocene and younger volcanic rocks in the
Andean Cordillera made a notable contribu-
tion of detritus to the eolian sediments of the
Pampas, specifically the eolian dunes and loess
deposits reported here (Fig. 4). Additionally, we
interpret the likely statistically significant dif-
ference between the fluvial samples and loess
and dune deposits suggests that wind deflation
of the floodplains of these river systems alone
could not be used to explain the detrital zircon
ages spectra of the loess and eolian dune units.

Rivers as Sediment Delivery Systems

Our river samples show both similarities and
dissimilarities to previous published data from
river, bedrock, and sediment samples (Fig. 5),
noting that some differences may be an artifact
of sampling localities. Additionally, fractionation
of sediment during transport (e.g., Ibafiez-Mejia
et al., 2018, undersampling of detrital zircon
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ages from samples (e.g., Pullen et al., 2014), and/
or the addition of sediment between the sample
localities of the respective rivers could explain
the observed differences. Not surprisingly, our
Rio Negro sample (19AR12) sampled near the
confluence of the Rio Limay and Rio Neuquén
plot in proximity to one another in multidimen-
sional scaling (MDS) space (Fig. 5B).

The provenance of windblown material in
the Pampas is ultimately tied to the rocks of the
Andean orogen (Zarate and Blasi, 1993; Morris,
1997). However, two important questions arise:
(1) from where in the Andes, specifically, is the
sediment generated? and (2) what was the trans-
port pathway of eolian sediments deposited in the
Pampas? By transport “pathway” we mean the
route and mechanism (e.g., eolian) by which sed-
iments are transported from source area to depo-
sitional basin. Existing hypotheses of sediment

provenance include the southern Puna Plateau,
the Andes of Central Argentina, the northernmost
Patagonian Andes and local sources, whereas
mechanisms of transport are largely attributed to
either a combination of fluvial and eolian trans-
port or purely eolian transport (Teruggi, 1957;
Gonzales-Bonorino, 1965; Iriondo, 1990, 1997;
Krohling, 1999; Zirate and Blasi, 1993; Smith
et al., 2003; Milana and Krohling, 2017).
Floodplain deflation is a common process
for supplying dust for loessic sediments in
temperate climates or glacier-fringing environ-
ments (e.g., Muhs, 2007, 2013; Smalley et al.,
2009). However, recently, in part through the
advantage of U-Pb detrital zircon dating as a
provenance discrimination tool, desert fringing
loess provenances have, in some instances, been
shown to have genetic relationships with rivers
through floodplain deflation (Muhs, 2013; Nie
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et al., 2015). This concept applies to the Negev
Desert loess with the Nile River and delta, and
the Chinese Loess Plateau with the upper Yel-
low River (e.g., Enzel et al., 2008; Amit et al.,
2011; Bird et al., 2015). Similarities between
the fluvial samples reported here and the eolian
samples suggest floodplain deflation may have
provided an important portion of the detritus to
the eolian system.

The detrital zircon age populations for most
of the eolian samples reported here—exclud-
ing 19AR17 and 19AR19 which will be dis-
cussed in more detail below—plot in proximity
to the Rio Desaguadero sample (19AR01) in
MDS space (Fig. 5B), and close to our sam-
ples from the Rio Colorado (19AR12) and Rio
Negro (19AR11) in central Argentina. As noted
above, deflation of the rivers’ floodplains can-
not alone explain most of the age spectra from
the eolian samples because of the dearth of
Neogene zircons in the fluvial samples which
were observed compared to the higher rela-
tive proportion in most of the eolian samples
(Fig. 3). We tentatively interpret these data to
indicate that a large portion of silt and larger
detritus of the Pampean Sand Sea and loessic
sediments the central Pampa plain was deflated
from the Rio Desaguadero floodplain. A con-
tribution from the Rio Colorado and Rio Negro
cannot be excluded based on the data presented
here. A comparison between the data for our
eolian samples with extra-Andean Patagonia
rivers and Patagonian bedrock samples does not
support the notion that the Patagonian region
supplied much sediment (of silt-size and larger)
to the eolian system of the Pampa region.

Southern Pampean Loess and the Atlantic
Continental Shelf

Changes in sea-level have dramatically
affected sedimentation on the 170-475-km-wide
continental shelf south and east of Buenos Aires
Province, Argentina (Violante et al., 2014). Dur-
ing periods of high global ice volume in the Pleis-
tocene, subaerial exposure of the continental shelf
made the area a potential eolian sediment source
(Zarate and Blasi, 1993). Sample 19AR17, a
loess sample from near the city of Mar del Plata
on the Argentine Atlantic coast, shows quantita-
tive difference with the loess samples from the
central Pampa region. In addition, in 3-D MDS
space, it plots near the Rio Colorado and Rio
Negro samples of Pepper et al. (2016) and our
Rio Negro sample (19AR11). The dissimilarities
are different from 19AR16, also from the Atlantic
margin near Mar del Plata, which plots closer to
the central Pampa samples (e.g., 19AR09).

Falling sea-level implies a large marine regres-
sion on the Atlantic continental shelf and slope

such that Rio Colorado and Rio Negro would
flow across the shelf due south of the Pampa
region during a low-stand (e.g., approximately
Last Glacial Maximum) rather than terminate
near their current deltas. Following the hypoth-
esis of Zdrate and Blasi (1993), sample 19AR17
is consistent with derivation from sediments
supplied from the Rio Colorado and Rio Negro
due south of the Pampa region during marine
regression. If valid, this hypothesis would sug-
gest that these sediments were largely carried by
southerly to southwesterly winds. Interestingly,
19AR16 probably would not fit the same sce-
nario. In the absences of depositional age con-
trol on 19AR16 and 19AR17, we speculate that
they have different depositional ages; 19AR17
from a period with relatively low sea-level and
19AR16 with a period of higher sea-level when
more of the shelf was submerged. That scenario
would suggest that during periods of higher sea-
level, dust delivered to the Mar del Plata region
had more in common with the central Pampa
loess and the Pampa Sand Sea. Such a course of
events may indicate a change in the orientations
of the winds or surficial changes allowing or
suppressing dust generation at different times.

Alternatively, recent sediment provenance
data demonstrate significant northward-directed
longshore sediment transport occurs along the
Argentine Atlantic coast. Today, the “Colorado
littoral cell” transports sediment >700 km
from the deltas of the rios Colorado and Negro
northward along the eastern coast of Argentina
(Garzanti et al., 2021b). Similarities between the
detrital zircon populations of the coastal loess
sample 19AR17 and those of the rios Colorado
and Negro can be interpreted to reflect this long-
shore transport and subsequent reworking in
eolian conditions, rather than entrainment from
the exposed coastal shelf during sea-level low-
stands (e.g., Zdrate and Blasi, 1993). These two
hypotheses are not mutually exclusive, and it is
possible that both longshore transport and shelf
deflation during lowstands are important sources
of wind-blown sediment along coastal Argentina
(eastern Pampas). Further sampling and a combi-
nation of additional detrital zircon and sedimen-
tary provenance data will be required before this
sediment distribution system can be completely
delineated. Additional research is needed to bet-
ter understand why some coastal loess deposits
are more similar to the rios Colorado and Negro
(e.g., 19AR17) and others more similar to loess
from the central Pampas (e.g., 19AR16).

Loess and the Rio Parana
Of the sediments collected and analyzed as

part of this study, sample 19AR19 is a clear out-
lier (Figs. 2 and 4), containing zircon popula-
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tions that differ from all other samples. Sample
19AR19 was collected from an exposure of loess
near the town of Baradero, Argentina, located
~135 km northwest of Buenos Aires along the
southern bank of the Rio Parana (Fig. 1). Col-
lected from ~1 m below the cliff-forming sur-
face, the sample has a depositional age between
14.4 ka and 27.8 ka (Kemp et al., 2006), which
overlaps with deposition of sediment across
much of the Pampa Sand Sea (Kruck et al.,
2011). Unlike all other samples we collected,
19AR19 is characterized by a dominant popula-
tion of zircons with Pan-African ages between
ca. 500 and 700 Ma and relatively few grains
with ages <500 Ma (Figs. 2 and 3). This is true
even when compared to sample 19AR18, which
was collected only 50 km to the south.

The unique detrital zircon signature of sam-
ple19ARI19 is interpreted as a function of its
proximity to the Rio Parand (Fig. 1). We do not
want to overstate the importance of a single sam-
ple; however, it can be informative for under-
standing the provenance of loessoid deposits in
other parts of South America, notably northeast-
ern Argentina and Uruguay (Zarate 2003). The
Rio Parand extends for nearly 5000 km and has a
drainage basin of 2.5%10° km? that includes both
southern Brazil and the Eastern Cordillera of the
Central Andes. Bedrock in the basin is highly
variable but basement rocks consist primarily of
Pan-African age units (Rino et al., 2008). Mod-
ern river sediments reflect this with dominant
detrital zircon populations of Pan-African age
(Fig. 3; Rino et al., 2008). Although the data are
associated with a relatively small  (25), roughly
75% of detrital zircons in the Rio Parand have
ages between 500 and 700 Ma. This population
overlaps that found in the 19AR19 sample. At
this point it is impossible to pinpoint the exact
source of Pan-African age detrital zircons in
the Rio Parand drainage basin; however we do
note that this population is present in rocks in
the Sierra Pampeanas (Rapela et al., 2016) and
in rivers exiting the Andes in Bolivia and north-
western Argentina (Fig. 4; Pepper et al., 2016),
which serve as tributaries to the Rio Parand. Sed-
imentary units exposed in the drainage basins
of these rivers, which would serve as sediment
sources, contain populations of Pan-African age
detrital zircons (DeCelles et al., 2007; Amidon
et al., 2016; Enkelmann et al., 2014).

The similarity between detrital zircon popula-
tions in 19AR19 and the Rio Parand as well as
their spatial proximity suggests a genetic rela-
tionship. We posit that the Rio Parana represents
the principal component of the sediment transport
pathway responsible for depositing the loessoid
units associated with the 19AR19 sample. In
addition to transporting sediment down river, the
Rio Parand deposits sediment along its length



in floodplain environments (e.g., Amsler et al.,
2007). We interpret the loessoid unit associated
with sample 19AR19 as having been reworked
sediment originally deposited in the Rio Parand
floodplain. These loessoid deposits appear to
faithfully record the preponderance of Pan-Afri-
can detrital zircons in the riverine sediments.
The detrital zircon signature in 19AR19
has two important ramifications for loess and
loessoid deposits in Argentina and elsewhere
in southern South America. The unique detrital
zircon populations underscore previous investi-
gators’ findings that suggest the areally extensive
loessoid deposits in central Argentina are not
homogenous. Through various methods, previ-
ous researchers have noted that despite their sim-
ilar appearance, not all central Argentine loess
deposits are the same (e.g., Zarate and Tripaldi,
2012). Our results support this hypothesis, and
suggest that, in the future, detrital zircon geo-
chronology will be an effective method for dis-
cerning individual depocenters across the region.
The second implication pertains to the prove-
nance of loess deposits elsewhere in South Amer-
ica. We attribute the spatially limited provenance
signature of 19AR19 to regional wind patterns
during deposition, most notably, the influence
of southwesterly winds (e.g., Iriondo, 1997).
Past conditions that were dominated by south-
westerly winds means that windblown sediment
deposited in the Pampas would have had south-
western sources. Sediment from the Rio Parand
would not have contributed to deposits located
upwind (southwest), except in areas immediately
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adjacent to the river, like the location of 19AR19.
But how unique is the detrital zircon signature
of 19AR19? For much of the windblown sedi-
ment in the Pampas, it appears to be relatively
rare, but in other loessoid units we predict it is
very common. The same southwesterly winds
that controlled sediment delivery to the Pampas
would have also entrained sediment along the
Rio Parana and deposited it downwind (north-
east). Other loessoid deposits in South America
include those in Uruguay, Paraguay, and south-
ernmost Brazil (Panario and Gutiérrez, 1999; Iri-
ondo and Krohling, 2007). Given southwesterly
winds, these areas would be located downwind of
the Rio Parana and are therefore the most likely
depocenters for windblown sediment from the
Rio Parand system. We speculate that loessoid
deposits in these regions are dominated by detri-
tal zircons with ages similar to those observed in
the Rio Parand and distinct from loess and loess-
oid deposits in the Pampas.

SUMMARY

The data presented here provide new insight
into the origin and transport pathways of wind-
blown sediment in central Argentina and can be
used to formulate new hypotheses which will
require further testing. Below we note three
insights gleaned from our new data which may
provide guidance to better understand the Pam-
pean eolian system in the future.

(1) The number of zircons <100 ka observed
in Pampean eolian samples are low. This indi-
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cates a dearth of first cycle volcanogenic zircons
and points to minimal contribution of direct ash-
fall detritus to the Pampean eolian system rela-
tive to the total volume of sediment. Although
initially surprising, these results are consistent
with the regional volcanic history. The propor-
tions of <23 Ma in the eolian samples are gener-
ally greater than the N = 3 fluvial samples. That
indicates: (i) a notable contribution from the
Andean Cordillera, specifically volcanic rocks
therein, and also suggests (ii) if the majority of
detritus in the late Pleistocene Pampean eolian
system was deflated from the rios Desaguadero,
Colorado, and/or Negro floodplains an addi-
tional source of Neogene zircons was probably
involved. This could indicate direct eolian con-
tribution of detritus from late Cenozoic volcanic
rocks of the Cordillera as generally supported
by the petrology of those sediments and sedi-
mentary rocks (Fig. 6). More precisely locating
the source area of these Neogene zircon crys-
tals with the Cordillera may (a) clarify the sedi-
ment transport pathway taken by this portion of
sediment to the Pampean eolian system, and (b)
inform on synoptic winds during transport.

(2) Loessic sediments exposed along the
Atlantic coast of the Pampa region (near Mar
del Plata) indicate at least two distinct prov-
enance signatures; one provenance signature
is more closely associated with the lower Rio
Colorado and Rio Negro lacking Neogene detri-
tal zircons (19AR17), whereas the other shows
similarity to the detrital zircon age signature of
loess and eolian dune samples from the central

Figure 6. Summary of prov-
enance interpretations based
on U-Pb detrital zircon data
presented herein and previ-
ously published fluvial and
bedrock samples from south-
ern South America. Simpli-
fied Last Glacial Maximum
(LGM) shoreline from Guil-
derson et al. (2000). Magenta
arrows: Andean Cordilleran
source of detrital zircons, in-
cluding Miocene and younger
detrital zircons. Green arrows:
deflation of Rio Desaguadero
floodplain (and possibly Rio
Colorado and Rio Negro). Or-
ange arrows: deflation of the
subaerially exposed continen-
tal shelf during marine low
stand and longshore transport.
Red arrows: possible pathway
of eolian sediments deflated
from the subaerially exposed

Rio Parana delta. Filled dots represent sample locations and simplified provenance scenarios—colors associated with arrows.
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and northwestern Pampa (19AR16). Knowing
the depositional age of these units will be impor-
tant for differentiating between hypotheses.
We speculate that one unit was largely derived
through deflation of the lower Rio Colorado
and Rio Negro floodplains during a low-stand
in sea-level (e.g., Zérate and Blasi, 1993) or per-
haps through longshore transport (e.g., Garzanti
et al., 2021b), whereas the other unit was derived
through a sediment transport pathway similar to
samples in central Pampa (Fig. 6).

(3) A loess sampled from near the Argentine
Rio Parand delta plain yielded a provenance sig-
nature much different than other samples within
the Pampean eolian system. This sample yielded
a provenance signature more closely associated
with the Rio Parana rather than the rios Desegua-
dero, Colorado, and/or Negro like most of the
Pampean samples. From this we infer that these
sediments were derived from greater expo-
sure of the Rio Parand delta on the continental
shelf during a low-stand in sea-level implying
approximately northwestward eolian transport.
That scenario fits with the known range in depo-
sitional age for the sample (i.e., 14.4-27.8 ka).
Alternatively, the sediment may have been even
more locally derived from the portion of the
proximal delta plain that is currently exposed
subaerially. The former scenario would hint at
some consistency of lower-level winds which
indicate an anticlockwise rotation through the
Pampa during late Pleistocene to early Holo-
cene from the surface expression of widespread
linear erosional features impounded by shallow
lakes (Fig. 6; Fucks et al., 2012). Identifying
additional provenance variations for loessic sedi-
ments—especially across time, in this area like
those now recognized for the Mar del Plata area
coupled with depositional ages—would be infor-
mative in the understanding of the complexities
of the Pampean eolian system under changing
regional (and global) climate conditions.
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