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ABSTRACT

The Pampas of Argentina contain a broad 
distribution of Pleistocene to Holocene loessic 
sediments and eolian dune deposits. Models 
describing the sediment provenance of this 
eolian system have, at times, conflicted. We 
address the provenance of these deposits 
through U-Pb detrital-zircon geochronology. 
Our results indicate broad similarity in age 
distributions between samples, with a domi-
nant Permian-Triassic mode, and widespread 
but lesser Cenozoic, Devonian-Mississippian, 
Ediacaran-Cambrian, and Mesoproterozoic 
modes. These data are inconsistent with a 
large contribution of detritus from Patago-
nia as previously suggested. These data are 
consistent with very limited contribution of 
first cycle volcanogenic zircon to the Pam-
pean eolian system, but abundances of older 
Neogene zircon indicate proto-sources in the 
Andes. The ríos Desaguadero, Colorado, and 
Negro contain populations that were likely 
within the dust production pathways of most 
of the loess, paleosol, and eolian dune depos-
its, but the derivation of the zircon ages in 
these sediments cannot be explained solely 
by these river systems. One statistical out-
lier, a loess sample from the Atlantic coast 
of the Pampa region, indicates quantitative 
similarity to the age spectra from the ríos 
Colorado and Negro, consistent with deri-
vation from these subparallel rivers systems 
during subaerial exposure of the continental 
shelf under high global ice-volume. Another 
statistical outlier, a paleosol sample from 
the Río Paraná delta region, has zircon ages 
more closely associated with sediments in 
the Paraná region than in rivers south of the 
Pampa region. Collectively, these data point 
to the complexity of the Pampean eolian 

system and substantial spatial-temporal 
variation in this Pleistocene–Holocene eolian 
system.

INTRODUCTION

Dust plays a fundamental role in the Earth’s 
climate by impacting nutrient cycling in the 
oceans (Jickells et al., 2005, Maher et al., 2010), 
affecting the radiative forcing budget of the 
planet (Sokolik et al., 2001; Huang et al., 2006; 
Kumar et al., 2011; Miller et al., 2014; Scanza 
et  al., 2015), and perturbing snow-ice albedo 
(Hansen and Nazarenko, 2004; Painter et  al., 
2007). Dust lofted from southern South Amer-
ica is especially important for seawater chemis-
try in the South Atlantic and Southern Ocean’s 
high-nutrient–low-chlorophyll regions with Fe-
limited productivity (e.g., Church et al., 2000; 
Boyd and Law, 2001; Gaiero et al., 2003; John-
son et al., 2011; Moore et al., 2013; Paparazzo 
et  al., 2018). By modulating Fe-delivery and 
bioproductivity in these regions throughout the 
Pleistocene (e.g., Martínez-Garcia et al., 2011; 
Anderson et al., 2014; Albani et al., 2016), dust 
from southern South America likely affected 
atmospheric CO2 concentrations (Martin et al., 
1990; de Baar et al., 1995; Ridgwell and Watson, 
2002; Bopp et al., 2003; Abelmann et al., 2006).

Understanding South American dust produc-
tion during the late Pleistocene is not as simple 
as examining modern dust activity and extrapo-
lating into the geologic past. Dust fluxes during 
late Pleistocene cold periods were at least four 
times higher compared to interglacial periods 
(Martínez-Garcia et al., 2011; Shoenfelt et al., 
2018), and were driven by different wind patterns 
(e.g., Toggweiler and Russell, 2008; Anderson 
et al., 2009; Boex et al., 2013). Bulk geochemi-
cal analysis of dust archived in the Antarctic Ice 
Sheet has been largely tied to proto-sources in 
Patagonia and the Altiplano-Puna Plateau (Gai-
ero, 2007; Gaiero et al., 2013; Gili et al., 2016) 
with some contributions from Australian deserts 
(Revel-Rolland et al., 2006). Although important 

for reconstructing original source areas, this bulk 
geochemical approach largely ignores changes in 
surficial conditions (precipitation, wind charac-
teristics, vegetation) when characterizing poten-
tial source areas of dust during the Pleistocene, 
with some exceptions (e.g., Grousset et al., 1992; 
Gili et al., 2017; Delmonte et al., 2017). In addi-
tion to growth of the Patagonian Ice Sheet, surfi-
cial conditions during glacial periods stimulated 
large dust-generating provinces in the Pampean 
and Chaco plains (Sayago et al., 2001; Zárate, 
2003). Without comprehensive reconstructions 
of dust production pathways (i.e., transfer from 
proto-sources through intermediate sources to 
its final deposition) the climate forcings of dust 
production remain obscured.

Equatorward shifts in the mean positions of 
synoptic-level winds in both hemispheres dur-
ing Pleistocene glacial periods (e.g., Toggweiler 
and Russell, 2008; Vanneste et al., 2015; Abell 
et al., 2021) implies a northward migration of 
Southern Hemisphere westerly winds, as well as 
secular variations in effective precipitation, veg-
etation, stream- and lake-levels, and ice-volumes 
(Kohfeld et al., 2013; Berman et al., 2016; Mar-
tini et al., 2017). Such variations are known to 
have changed eolian activity in South America, 
which was suppressed during warmer periods 
like the Holocene (e.g., Kemp et al., 2004; Zárate 
et al., 2009; Forman et al., 2014; Tripaldi and 
Forman, 2016).

Loess, predominantly composed of silt-sized 
particles, exists in the natural continuum of 
eolian entrainment, transport, and deposition 
(Richthofen, 1882; Obruchev, 1911, 1945). Gla-
cial loess and desert loess models have been put 
forth to describe the processes by which silt-sized 
particles are produced from parent rock materi-
als (Tsoar and Pye, 1987; Smalley, 1995; Pye, 
1995, Muhs, 2007). The former produces silt-
sized particles through mostly glacial grinding, 
whereas desert loess models invoke a variety of 
non-glacial processes (e.g., eolian abrasion and 
impacts). Importantly, dust production pathways 
can include fluvial comminution and transport 
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(e.g., Lyell, 1834). Genetic links between rivers 
and loess deposits in subtropical to temperate 
climates with close spatial proximity to river 
systems have been well established (e.g., Mis-
sissippi River in North America: Russell, 1944; 
Krinitzsky and Turnbull, 1967; Grimley, 2000; 
Bettis et al., 2003; Crouvi et al., 2008; Smal-
ley et al., 2009; Stevens et al., 2013; Nie et al., 
2015); however, this thesis has been less widely 
applied to the majority of loess sequences.

The Pleistocene-Holocene dust production 
system of southern South America remains 
obscure, in terms of both the location of proto-
source areas and the transport pathways (Zárate, 
2007). Without this knowledge, we have few 
constraints for verifying paleoclimate models of 
the region. Like the loess units, the provenance 
of the eolian sand is also poorly constrained. 
Together, the loess and eolian sand deposits in 
central Argentina represent some of the largest 
eolian deposits on the continent. To better under-
stand the continuum of eolian sediment produc-

tion pathways of late Pleistocene-Holocene sedi-
ments exposed in central Argentina, we collected 
N = 17 samples of river, eolian dune, loess, and 
paleosol sediments reporting n = 3744 new 
detrital zircon U-Pb ages.

GEOLOGICAL SETTING

The Pampa Plains, or simply Pampas, consists 
of extensive plains with minimal topography 
located in central Argentina (Fig. 1). Boundaries 
between the Pampas and surrounding regions are 
transitional and their definitions commonly dif-
fer between individuals (e.g., Clapperton, 1993; 
Zárate and Tripaldi, 2012); however, the general 
dimensions and characteristics of the region 
are consistent. To the north, the Pampas grade 
into the Chaco Plain of northern Argentina and 
Bolivia, with the Río Paraná forming a north-
eastern boundary and the Sierras Pampeanas 
forming a northwestern topographic margin. 
To the west, the Pampas extend largely to the 

foothills of the Andes, although many place the 
boundary at the Río Desaguadero system and 
refer to the land located west of this river and 
east of the Andes as the Andean Piedmont. The 
Río Colorado represents the southern boundary 
of the Pampas, south of which lies the Northern 
Patagonian Plateau. All of these rivers include 
tributaries that emanate from the Andes to the 
west; however, there are discernable differences 
in sedimentary petrography (Garzanti et  al., 
2021a). The Pampas extend more or less con-
tinuously to the southern Atlantic Ocean in the 
east (Fig. 1).

The modern climate of the Pampas is humid 
to subhumid in the east, but becomes progres-
sively drier to the west and southwest; precipi-
tation levels decrease from >800 mm/yr in the 
east to the <500 mm/yr in the west (Clapperton, 
1993; Prieto, 1996; Garreaud et al., 2009; Iri-
ondo et al., 2009; Aliaga et al., 2017). This pat-
tern is largely a function of the South Atlantic 
high-pressure system, which brings humid and 

Figure 1. (A) Distribution of 
samples and sample types 
in southern central South 
America. All samples contain 
the prefix “19AR,” which are 
referred to in text. (B) Simpli-
fied geologic map of the region, 
with sample locations shown, 
modified from the Gómez et al. 
(2019b). Cenozoic sedimentary 
rocks refer to units of Mio-
cene-age and older. ACftb—
Agrio-Chos Mal-Malargüe 
fold-thrust belt.
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warm air across the region via northeasterly 
winds (Aliaga et al., 2017). However, there is 
ample evidence that the climatic conditions 
observed today were different during past cold 
periods. Most data suggests that during glacial 
episodes, climatic belts in the high latitudes 
of South America shifted northward, bringing 
stronger westerly winds and drier conditions to 
the Pampas (e.g., Iriondo, 1999; Rabassa et al., 
2005; Wainer et al., 2005; Berman et al., 2016). 
Climate at the regional-scale also changed. 
Unlike modern wind patterns, eolian landforms 
from the Last Glacial Maximum record an 
anticlockwise wind pattern in the Pampas and 
central Argentina during this time (Iriondo and 
García, 1993). This, combined with katabatic 
winds from icefields in Patagonia would have 
produced strong ∼southwesterly winds across 
much of the Pampas (Iriondo, 1997). Although 
the Pampas were drier, discharge increased for 

rivers emanating from the Andes, like the Río 
Desaguadero, due to higher precipitation and/or 
glacially sourced flow (Iriondo, 1997).

The Pampas contain large volumes of wind-
blown sediment with both active and relict eolian 
dunes as well as extensive loess and loessoid 
deposits (Teruggi, 1957; Clapperton, 1993; 
Zárate and Blasi, 1993; Zárate, 2003; Tripaldi 
et  al., 2011; Zárate and Tripaldi, 2012). The 
core of the wind-blown deposits in the Pampas 
is called the Pampa Sand Sea (Iriondo, 1997), 
a ∼3*105 km2 region of vegetation-stabilized 
eolian sand (Tripaldi et al., 2013). Dune mor-
phology varies, but blowout, parabolic, and 
linear dunes represent the most common style 
(Zárate and Tripaldi, 2012; Tripaldi et al., 2018). 
Despite the aerial continuity of the Pampa Sand 
Sea, recent investigations suggest the depos-
its themselves are heterogeneous in nature 
and composition and often influenced by their 

proximity to sediment source areas, local and 
regional topography, and regional wind patterns 
(Zárate and Tripaldi, 2012). Loess deposits up 
to 30 m thick ring the southern, eastern, and 
northern border of the Pampa Sand Sea and are 
composed of loess and pedogenically altered 
loess horizons (Clapperton, 1993; Iriondo, 1997; 
Zárate, 2003). The loess consists of clay, silt, and 
very fine-grained sand composed of quartz, pla-
gioclase, pyroclastic material, and volcanic glass 
(Teruggi, 1957; González Bonorino, 1965; Clap-
perton, 1993; Imbellone and Teruggi, 1993).

Loess and eolian sand in central Argentina are 
attributed to several possible sediment source 
areas. During past glacial periods, river and 
floodplain sediment are hypothesized to have 
been entrained by south-southwesterly winds 
and deposited in the Pampa Sand Sea and loess-
oid belt (Iriondo, 1990; Iriondo 1997; Kröhling, 
1999). South-southwesterly winds may have 

B

Figure 1. (Continued)



Bruner et al.

4	 Geological Society of America Bulletin, v. 130, no. XX/XX

also entrained sediment from the Río Colorado 
and Río Negro, which flow along the southern 
border of the Pampas (Zárate and Blasi, 1993). 
This south-to-north hypothesis is supported by 
detrital zircon ages from Holocene eolian sam-
ples in the westermost Pampas (Capaldi et al., 
2019). Rare earth element and Sm-Nd data from 
the loess support this hypothesis, suggesting a 
northern Patagonian sediment source with addi-
tional contributions from other regions (Smith 
et al., 2003). The central Andes may have also 
contributed to loess in the Pampas. This area has 
generated recent dust plumes (Milana and Kröh-
ling, 2017) and contains evidence of long-term 
(m.y.) wind erosion (McMillan and Schoen-
bohm, 2020). Volcanic sediment has long been 
recognized as a source for loess in central Argen-
tina (Teruggi, 1957), and certain areas contain 
evidence of local sediment sources (González 
Bonorino, 1965).

METHODS

We collected samples of loess, fluvial sand, 
eolian sand, and paleosols from across the 
Argentine Pampas and surrounding areas 
(Fig.  1). Age constraints are not available for 
all of the samples, but based on previous work 
from similar or proximal sediments (Kemp et al., 
2006; Kruck et al., 2011; Tripaldi and Forman, 
2016) the age of the samples range from mod-
ern to ca. 110 ka in age, with the majority being 
<70 ka in age. One exception to this is the paleo-
sol sample 19AR08, whose age is unknown. 
Detailed descriptions of the samples, their age 
constraints and their sampling locations can be 
found in the Supplemental Material1.

Detrital zircon crystals were separated from 
∼5 kg of sample. Indurated samples were disag-
gregated using a hand crusher, and all samples 
were passed through 600 μm disposable nylon 
sieve screen. To maximize zircon recovery from 
clay-rich samples and to minimize grain-size age 
biases from hydraulic sorting (e.g., Sláma and 
Košler, 2012; Ibañez-Mejia et al., 2018), zircon 
fractions were isolated using ultrasonic disrup-
tion following an approach modified from Hoke 
et al. (2014)—the only two modifications were 
stirring samples from above rather than below so 
larger sample volumes could be separated and 
using an ultrasonic tank for more evenly distrib-
uted ultrasonic wave energy and cavitation rather 
than relying on an ultrasonic probe. After ultra-
sonic separation, zircon crystals were separated 

in a heavy liquid and with a Frantz barrier field 
isodynamic magnetic separator.

The detrital zircon crystals were dated using 
an Element 2 single-collector inductively-
coupled plasma–mass spectrometer coupled 
to a Photon Machines 193 nm excimer laser in 
the Center for Elemental Mass Spectrometry 
at the University of South Carolina, Columbia, 
following the methodologies of Pullen et  al. 
(2018). Elemental- and mass-fractionation, 
instrument drift, and down-pit fractionation 
were corrected using a suite of reference mate-
rials mounted with the sample zircon in 2.5 cm 
epoxy ring forms. Laser spot size used for anal-
yses was 25 micron. Corrections were made 
using an in-house Excel based data program 
(AgeCalc; Gehrels et al., 2006). The suite of 
reference materials included Sri Lanka, FC-1, 
and R33 (Paces and Miller, 1993; Black et al., 
2004; Gehrels et al., 2008; Mattinson, 2010). 
This approach yielded the correct age of the 
monitoring reference material within ±2% or 
less (at 1σ). Single-grain U-Pb ages were not 
considered further if 206Pb/238U uncertainty was 
>10% (1σ), 206Pb/207Pb uncertainty was >10% 
(1σ), if age discordance was >30%, or reverse 
discordance was >5% for grains older than 
600 Ma. The discordance on ages <600 Ma 
was not considered because of the challenges of 
accurately measuring 206Pb/207Pb in young crys-
tals. Plots and interpretations use the 206Pb/238U 
age if the 206Pb/238U age is <1000 Ma, and 
the 206Pb/207Pb age if the 206Pb/238U age is 
≥1000 Ma.

RESULTS

In Figures 2 and 3, we present the U-Pb age 
distributions of detrital zircons from N = 17 
sediment samples collected from fluvial, paleo-
sol, and eolian deposits of central Argentina. 
With the exception of loessoid sample 19AR19 
collected from a bluff of the lower Río Paraná 
(Fig. 1), there are many similarities in the dis-
tribution of age populations between samples 
(Figs. 2 and 3). When the samples are combined 
into a single composite plot (bottom of Fig. 2), 
eight prominent age populations emerge, with 
peaks, from largest to smallest, at: [1] Permian-
Triassic (25% of all dated grains, ranging from 
21% to 36% of grains of each sample, exclud-
ing 19AR19); [2] Devonian-Mississippian 
(13%; range: 8%–28%); [3] Cenozoic (11%; 
range: 3%–18%); [4] Ediacaran-Cambrian 
(11%; range: 4%–16% but composing 43% of 
19AR19); [5] late Mesoproterozoic (8%; range 
3%–18%); [6] Jurassic (8%; range: 4%–18%); 
[7] Cretaceous (8%; range 2%–17%), and [8] 
Ordovician (8%, range: 4%–12%). The remain-
ing zircons largely form small Neoproterozoic 

and Paleoproterozoic populations, or occur 
between significant age modes.

Of the largest populations, the Permian-
Triassic (present in all 17 samples, prominent 
in all but 19AR19); Jurassic (present in all but 
19AR19; prominent in eight samples); and Cre-
taceous (present in all but 19AR07; prominent 
in four samples) modes are the most ubiqui-
tous (Figs. 2 and 3). Although less sizable, the 
Devonian-Mississippian, Ordovician, and late 
Mesoproterozoic populations are comparably 
widespread across the suite of samples. Whereas 
there are many Cenozoic zircon age populations, 
the largest individual modes are Quaternary in 
age (Fig. 3).

Despite great similarities of zircon age distri-
butions between our samples, some aspects of 
our results warrant particular mention. We note 
that with the exception of 19AR19 and 19AR17, 
all eolian (loess, loessoid, and dune sand) sam-
ples have reasonably similar presence-absence 
and population abundance relationships. Both 
19AR19 and 19AR17 differ from other eolian 
samples in their scarcity of Neogene zircons. 
Sample 19AR19 differs from other samples in 
the dominance of the Ediacaran-Cambrian age 
mode and the absence or minor abundances of 
most other age modes that are otherwise present 
throughout our samples. Sample 19AR17 dif-
fers from other samples by its dominance of the 
Cretaceous age mode. Finally, we note the rela-
tive paucity of Neogene age zircons in all of our 
fluvial and paleosol samples in contrast to the 
loess, loessoid, and dune samples, excluding the 
aforementioned 19AR19 and 19AR17.

PROVENANCE OF ZIRCON AGE 
MODES

Zircon crystals in our samples with ages of 
0–65 Ma are interpreted as originally derived 

1Supplemental Material. Table S1: U-Pb 
geochronologic analyses. Please visit https://
doi.org/10.1130/GSAB.S.19420217 to access 
the supplemental material, and contact editing@
geosociety.org with any questions.

Figure 2. Detrital zircon U-Pb age distribu-
tions of fluvial and eolian units from central 
Argentina. Kernel density estimates are 
filled polygons constructed with a Epanech-
nikov kernel with a 15 m.y. bandwidth, are 
color-coded to their depositional system 
and area-normalized between samples. 
Probability density plots are depicted by 
red curves and are area-normalized except 
where indicated by break-in-scale hash 
marks for some Cenozoic populations. Plot 
at bottom depicts the collective distribution 
of zircon ages from all 17 samples, revealing 
the prominent age modes that are present in 
most samples, shown by gray polygons. Note 
that 67 grains have ages older than 2 Ga 
and, therefore, do not appear in the plot.

https://doi.org/10.1130/GSAB.S.19420217
https://doi.org/10.1130/GSAB.S.19420217
https://doi.org/10.1130/GSAB.S.19420217
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from subduction-related magmatic arc rocks 
in the Andes, which are well-exposed through-
out the Andean Cordillera (e.g., Balgord, 2017; 
Capaldi et al., 2017; Gomez et al., 2019). We 
interpret the 65–145 Ma zircons that are sig-
nificant in many of our samples as also largely 
being derived from the Andean magmatic arc, 
likely from more southern latitudes of the study 
area where older batholithic rocks are exposed; 
Cretaceous magmatic arc rocks are restricted to 
the west side of the continental divide north of 
∼42°S (Gomez et al., 2019). Alternatively, some 
Cretaceous zircons may have been derived from 
igneous rocks in the Paraná Basin (Fig.  1) to 
the east of the study area, although most of the 
appropriately aged units have basaltic litholo-
gies that are unlikely to be zircon-fertile. We 
interpret the 150–200 Ma age mode (i.e., Juras-
sic) prominent in many of our eolian samples 
as being derived from the Chon Aike silicic 
Large Igneous Province associated with the 
breakup of Gondwana (Pankhurst et al., 1998). 
Whereas these rocks are more widely exposed 
in Patagonia, there are significant exposures at 
the latitudes of the study area in the forearc of 
the Andes, but these outcrops are west of the 
present continental divide (Gomez et al., 2019). 
Therefore, it is likely that Jurassic zircons in our 
sample were originally derived from the North 
Patagonian Massif to the south of the study 
area. Notably, there is a prominent Jurassic age 
mode in all of the reported modern samples 
from the greater Río Colorado and Río Negro 
systems (average 15%, range 5%–22%, N = 8: 
our samples 19AR11 and 19AR12 and Pepper 
et  al., 2016), and Chubut River (32%, N = 1: 
Pepper et al., 2016) in the southern part of the 
study area, yet there are no Jurassic zircons from 
samples of the Río Bermejo or Río Pilcomayo of 
the greater Paraná watershed to the north (N = 4: 
Pepper et al., 2016). The likely immediate source 
of these zircons is Jurassic and younger strata 
originally deposited in the Nuequén Basin and 
later exhumed in thrust sheets within the Agrio-
Chos Mal fold-thrust belt (Fig. 1B; e.g., Ramos 
et al., 2004).

We interpret the large 240–280 Ma detrital-
zircon age mode in all but one of our samples 
as being originally derived from the Permo-
Triassic Choiyoi magmatic province that devel-
oped across a wide swath of south-central South 
America between northern Chile and northern 
Patagonia (Sato et al., 2015; Bastías-Mercado 
et al., 2020). Today, Choiyoi plutonic and vol-
canic rocks are widely exposed just west of the 
study area in the Andean Cordillera and in the 
North Patagonian Massif immediately south of 
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the study area (e.g., Luppo et al., 2018; Gomez 
et  al., 2019). Contemporaneous volcanic and 
volcaniclastic strata likely derived from the 
Choiyoi province outcrop broadly in the Paraná 
Basin east of the study area (Rocha-Campos 
et al., 2011). This age mode is also dominant 
in sedimentary rocks of the Nuequén Basin 

(e.g., Naipauer et  al., 2015) and in low-grade 
early Mesozoic metasedimentary complexes 
exposed in the southern Chilean Andes (Hervé 
et  al., 2003, Barbeau et  al., 2009), although 
these rocks are primarily exposed west of the 
continental divide. Whereas this dominant and 
all but ubiquitous age mode indicates sediment 

derivation from south-central South America, 
the widespread nature of these source rocks pre-
cludes the use of the 240–280 Ma age mode as 
a diagnostic provenance tool at these latitudes. 
However, this age mode is the dominant compo-
nent of modern fluvial deposits in the Río Colo-
rado and Río Negro systems of the southern part 
of the study area, composing 28% of zircons 
sampled therein (range 15%–36%, N = 8: our 
samples 19AR11 and 19AR12 and Pepper et al., 
2016). In contrast, this age mode is noticeably 
minor (1%–4%, N = 4) in samples collected 
from the Río Pilcomayo and Río Bermejo (Pep-
per et al., 2016) of the greater Paraná watershed 
in the northern and western part of the study area 
(Fig. 4).

We interpret the 280–360 Ma detrital zir-
con mode as being originally derived from a 
Carboniferous arc, which formed along the 
Gondwana margin (Mpodozis and Kay, 1992; 
Sato et  al., 2015; Naipauer et  al., 2015), and 
the 440–500 Ma detrital zircon population as 
derived from the Famatinian arc (Ramos, 2009). 
Ordovician batholithic plutons of the Famatin-
ian arc are widely exposed in the central-western 
Sierras Pampeanas (e.g., Otamendi et al., 2020). 
Carboniferous plutons occur in the northwestern 
Sierras de Pampeanas and in the Sierras de Cór-
doba of the eastern Sierras Pampeanas (Morosini 
et al., 2017), and are interpreted to have intruded 
the Famatinian back-arc region following colli-
sion of the exotic Cuyania terrane, detachment 
of the subducted slab, and/or orogenic collapse 
(Otamendi et al., 2020).

We interpret zircons with ages between 500 
and 700 Ma, which dominate sample 19AR19 
and form minor components of our other sam-
ples, as being originally derived from plutonic 
rocks formed during the Brasiliano and Pam-
pean orogenies as part of the large Pan-African 
tectonic event. Collectively, igneous rocks of 
this age surround the Río de la Plata craton 
that forms the basement to the Pampas and are 
today exposed in the eastern Sierras Pampeanas 
(e.g., Sierra Cordoba; Schwartz et al., 2008). In 
addition, metasedimentary units exposed in the 
eastern Sierras Pampeanas also contain zircons 
with ages of 500–700 Ma (Rapela et al., 2016). 
Widely exposed Ordovician sedimentary strata 
in the northern Argentine Precordillera contain 
a significant 500–700 Ma age mode (DeCelles 
et al., 2007; Augustsson et al., 2011; Enkelmann 
et al., 2014; Ramos et al., 2014; Thomas et al., 
2015; Amidon et al., 2016) presumably derived 
from the underlying Pampean and Brasiliano 
plutons, and may have provided more direct 
sources of 550–700 Ma zircons to our other 
samples. This population is the dominant mode 
in modern samples from the Río Bermejo and 
Río Pilcomayo draining the Central Andes, 

Figure 3. Age distribution of individual samples from central Argentina plotted using area-
normalized Kernel density estimates with age segments of different Epanechnikov kernel 
bandwidths (“bw”) and horizontal scales to best depict the true zircon age distribution of 
our individual samples. Note that 67 grains have ages older than 2 Ga and, therefore, do not 
appear in the plot.



Detrital zircon provenance and transport pathways of Pleistocene-Holocene eolian sediment in the Pampean Plains, Argentina

	 Geological Society of America Bulletin, v. 130, no. XX/XX	 7

composing between 31% and 47% of zircons in 
those samples (N = 4, Pepper et al., 2016). This 
age mode is considerably smaller in modern 
samples from the greater Río Colorado and Río 
Negro systems (average 6%, range 1%–11%, 
N = 8, our samples 19AR11 and 19AR12 and 
Pepper et  al., 2016), and Río Chubut (1%, 
N = 1: Pepper et al., 2016) in the southern part 
of the study area (Fig. 4).

We interpret the 900–1200 Ma zircon age 
mode that forms a small but consistent popu-
lation in all of our samples as being originally 
derived from rocks associated with the Sunsas 
Orogeny (Bahlburg et al., 2009), which is equiv-
alent in age to the Grenville Orogeny of North 
America (Tollo et  al., 2004). The Laurentian 
Cuyania terrane in the western part of the study 
area contains Sunsas-age zircons (Ramos, 2009). 
These rocks are dominant components of the Pie 
de Palo and Valle Fértil ranges of the western 
Sierras Pampeanas, but this age mode is also the 
dominant component of the detrital zircons in 
Ordovician siliciclastic rocks in the Argentine 
Precordillera (Thomas et al., 2015). This Sun-
sas-age mode forms a significant component of 
modern samples from the Río Bermejo and Río 

Pilcomayo (Fig. 4), constituting between 15% 
and 18% of zircons in those samples (N = 4, 
Pepper et al., 2016). This age mode is consider-
ably smaller in modern samples from the greater 
Río Colorado and Río Negro systems (aver-
age 6%, range 2%–10%, N = 8: our samples 
19AR11 and 19AR12 and Pepper et al., 2016), 
and Chubut River (4%, N = 1: Pepper et  al., 
2016) in the southern part of the study area.

DISCUSSION

Input from First Cycle Volcanogenic 
Sources

Our U-Pb detrital zircon data suggest the pos-
sibility of first cycle volcanogenic zircon crys-
tals within the loess, paleosol, and eolian dune 
samples. However, the number of possible first 
cycle zircons is limited. This is ostensibly at odds 
with long-held assertions of ash fall as an impor-
tant source of detritus for the loessic sediments 
(e.g., Teruggi, 1957). The depositional age (i.e., 
most recent activity) of the eolian dune samples 
is taken to be less than 100 ka (see Supplemental 
Material for depositional ages); most recent activ-

ity is more likely 4–22 ka (Tripaldi and Forman, 
2007, 2016). Using a depositional age of <100 
ka for the eolian dunes and comparing this to the 
U-Pb ages of the detrital zircons, the percentage 
of ages ≤100 ka ranges from 0.0%–1.0% for the 
eolian dune samples reported here. Depositional 
ages have been determined for some, but not all 
of the loess and paleosol samples (see Supple-
mental Material; e.g., Kruck et al., 2011). Of the 
loess samples, detrital zircon crystals ≤100 ka 
were not identified in N = 3 samples. This could 
point to a “true” absence of <100 ka crystals in 
those samples or undersampling such that a low 
probability age mode was not identified. Where 
grains with ages ≤100 ka were identified, the 
populations were in the range of 0.33%–0.96% 
(when uncertainties on the age were considered). 
Zircon crystals ≤100 ka were not identified in 
either of the paleosol samples. Collectively, these 
statistical observations are interpreted to mean 
that the contribution of first cycle volcanogenic 
zircon crystals to loess, paleosol, and eolian dune 
samples was minimal. This does not preclude the 
input of recycled volcanic material, which is sug-
gested by altered volcanic glass present in some 
loess deposits (Teruggi, 1957).

A
CB

Figure 4. Existing detrital-zircon data from modern rivers in the Central and Southern Andes. (A) Digital elevation model image of south-
ern South America with rivers, eolian deposits, and sample locations. (B and C) Detrital zircon data from modern rivers. (B) Zircon age 
distribution of samples for grains with ages between 0 and 3200 Ma. Kernel density estimates (KDE) and histogram are shown. (C) KDE 
results of detrital zircons with ages <200 Ma. Sources for data: 1–4 and 7–12 Pepper et al. (2016; original samples: CA01, CA02, CA03, 
CA04, SA06, SA07, SA08, SA09, SA11, and SA12 combined, SA15); 5 Rino et al. (2008; original samples: Para); 6 Capaldi et al. (2017; 
original combined samples RBMJ01 and RSJN03).
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The absence of first cycle volcanigenic zircon 
crystals in eolian dune, loess, and paleosols sam-
ples from central Argentina is surprising given 
the proximity to the Andean volcanic arc; how-
ever, it is consistent with the regional geological 
history. As with other cordilleran-style orogens, 
magmatism and volcanism in the Andes is tied to 
the nature of subduction along the western mar-
gin of the continent (e.g., Ramos and Folguera, 
2009). Flat slab subduction in the latitudes of 
central Argentina, notably in the Pampean and 
Payenian slabs, have resulted in diminished mag-
matism and volcanism, thus reducing the poten-
tial source of syndepositional volcanic zircons 
(Ramos 2009; Capaldi et al., 2021). Moreover, 
the recent (<1 Ma) volcanism that has occurred 
in these latitudes has been mafic in composition 
(Ramos and Folguera, 2011), and serve as zir-
con-poor source rocks. Thus the apparent incon-
gruity between the Andean volcanic arc and the 
lack of first cycle volcanic zircons in the eolian 
deposits of the Pampas is reasonable and even 
predictable given the subduction and volcanic 
histories in this portion of the Andes.

Most of the loess and eolian dune samples 
yielded a higher relative proportion of <30 Ma 
crystals than the fluvial samples. The percent-
age of Neogene ages in the fluvial samples were 
in the range of <3.2%–5.6%. The percentage of 
those ages for the eolian dune samples were in the 
range of 9.9%–19.1%, whereas the loess samples 
yielded percentages of 0.0% (19AR19), 2.6% 
(19AR17), 12.4% (19AR10), 12.7% (19AR13), 
14.2% (19AR09), and 15.0% (19AR16). Rec-
ognizing that 19AR19 and 19AR17 are outliers 
for reasons discussed below, the other three loess 
samples have Neogene age populations similar 
to the range observed in the eolian dune samples. 
These observations are interpreted to mean that 
the Miocene and younger volcanic rocks in the 
Andean Cordillera made a notable contribu-
tion of detritus to the eolian sediments of the 
Pampas, specifically the eolian dunes and loess 
deposits reported here (Fig. 4). Additionally, we 
interpret the likely statistically significant dif-
ference between the fluvial samples and loess 
and dune deposits suggests that wind deflation 
of the floodplains of these river systems alone 
could not be used to explain the detrital zircon 
ages spectra of the loess and eolian dune units.

Rivers as Sediment Delivery Systems

Our river samples show both similarities and 
dissimilarities to previous published data from 
river, bedrock, and sediment samples (Fig. 5), 
noting that some differences may be an artifact 
of sampling localities. Additionally, fractionation 
of sediment during transport (e.g., Ibañez-Mejia 
et  al., 2018, undersampling of detrital zircon 

ages from samples (e.g., Pullen et al., 2014), and/
or the addition of sediment between the sample 
localities of the respective rivers could explain 
the observed differences. Not surprisingly, our 
Río Negro sample (19AR12) sampled near the 
confluence of the Río Limay and Río Neuquén 
plot in proximity to one another in multidimen-
sional scaling (MDS) space (Fig. 5B).

The provenance of windblown material in 
the Pampas is ultimately tied to the rocks of the 
Andean orogen (Zárate and Blasi, 1993; Morrás, 
1997). However, two important questions arise: 
(1) from where in the Andes, specifically, is the 
sediment generated? and (2) what was the trans-
port pathway of eolian sediments deposited in the 
Pampas? By transport “pathway” we mean the 
route and mechanism (e.g., eolian) by which sed-
iments are transported from source area to depo-
sitional basin. Existing hypotheses of sediment 

provenance include the southern Puna Plateau, 
the Andes of Central Argentina, the northernmost 
Patagonian Andes and local sources, whereas 
mechanisms of transport are largely attributed to 
either a combination of fluvial and eolian trans-
port or purely eolian transport (Teruggi, 1957; 
Gonzales-Bonorino, 1965; Iriondo, 1990, 1997; 
Kröhling, 1999; Zárate and Blasi, 1993; Smith 
et al., 2003; Milana and Kröhling, 2017).

Floodplain deflation is a common process 
for supplying dust for loessic sediments in 
temperate climates or glacier-fringing environ-
ments (e.g., Muhs, 2007, 2013; Smalley et al., 
2009). However, recently, in part through the 
advantage of U-Pb detrital zircon dating as a 
provenance discrimination tool, desert fringing 
loess provenances have, in some instances, been 
shown to have genetic relationships with rivers 
through floodplain deflation (Muhs, 2013; Nie 

Figure 5. Three-dimensional 
multidimensional scaling (3-D 
MDS) plots of detrital-zircon 
age data. (A) Samples reported 
in this study of central Argen-
tina. (B) Samples reported in 
this study plotted with com-
parison data from the Sierras 
Pampeanas (Sierra-P; Adams 
et  al., 2011; Fosdick et  al., 
2015, 2017; Capaldi et  al., 
2017; Reat and Fosdick, 2018); 
southern Puna Plateau (Zhou 
et al., 2016, 2017); central Puna 
Plateau (included in “Puna 
All”; Siks and Horton, 2011; 
DeCelles et  al., 2007; Streit 
et  al., 2017; Henríquez et  al., 
2019, 2020); Chaco Plain (Mc-
Glue et al., 2016; Pepper et al., 
2016); southern South Ameri-
can rivers (Pepper et al., 2016); 
N. Patagonia Andes (Encinas 
et  al., 2014); S. Patagonia An-
des (Leonard et al., 2020); and 
Neuquén Basin (Neuquén B.; 
Balgord, 2017). Compilation 
of rivers (Comp. River1: ríos 
Colorado, Negro, Limay, Sal-
ado; Comp. River2: ríos Colo-
rado, Negro, Chubut). River S. 
La Pampa: includes all rivers 
south of La Pampa region from 
Pepper et al. (2016).

A

B
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et al., 2015). This concept applies to the Negev 
Desert loess with the Nile River and delta, and 
the Chinese Loess Plateau with the upper Yel-
low River (e.g., Enzel et al., 2008; Amit et al., 
2011; Bird et  al., 2015). Similarities between 
the fluvial samples reported here and the eolian 
samples suggest floodplain deflation may have 
provided an important portion of the detritus to 
the eolian system.

The detrital zircon age populations for most 
of the eolian samples reported here—exclud-
ing 19AR17 and 19AR19 which will be dis-
cussed in more detail below—plot in proximity 
to the Río Desaguadero sample (19AR01) in 
MDS space (Fig. 5B), and close to our sam-
ples from the Río Colorado (19AR12) and Río 
Negro (19AR11) in central Argentina. As noted 
above, deflation of the rivers’ floodplains can-
not alone explain most of the age spectra from 
the eolian samples because of the dearth of 
Neogene zircons in the fluvial samples which 
were observed compared to the higher rela-
tive proportion in most of the eolian samples 
(Fig. 3). We tentatively interpret these data to 
indicate that a large portion of silt and larger 
detritus of the Pampean Sand Sea and loessic 
sediments the central Pampa plain was deflated 
from the Río Desaguadero floodplain. A con-
tribution from the Río Colorado and Río Negro 
cannot be excluded based on the data presented 
here. A comparison between the data for our 
eolian samples with extra-Andean Patagonia 
rivers and Patagonian bedrock samples does not 
support the notion that the Patagonian region 
supplied much sediment (of silt-size and larger) 
to the eolian system of the Pampa region.

Southern Pampean Loess and the Atlantic 
Continental Shelf

Changes in sea-level have dramatically 
affected sedimentation on the 170–475-km-wide 
continental shelf south and east of Buenos Aires 
Province, Argentina (Violante et al., 2014). Dur-
ing periods of high global ice volume in the Pleis-
tocene, subaerial exposure of the continental shelf 
made the area a potential eolian sediment source 
(Zárate and Blasi, 1993). Sample 19AR17, a 
loess sample from near the city of Mar del Plata 
on the Argentine Atlantic coast, shows quantita-
tive difference with the loess samples from the 
central Pampa region. In addition, in 3-D MDS 
space, it plots near the Río Colorado and Río 
Negro samples of Pepper et al. (2016) and our 
Río Negro sample (19AR11). The dissimilarities 
are different from 19AR16, also from the Atlantic 
margin near Mar del Plata, which plots closer to 
the central Pampa samples (e.g., 19AR09).

Falling sea-level implies a large marine regres-
sion on the Atlantic continental shelf and slope 

such that Río Colorado and Río Negro would 
flow across the shelf due south of the Pampa 
region during a low-stand (e.g., approximately 
Last Glacial Maximum) rather than terminate 
near their current deltas. Following the hypoth-
esis of Zárate and Blasi (1993), sample 19AR17 
is consistent with derivation from sediments 
supplied from the Río Colorado and Río Negro 
due south of the Pampa region during marine 
regression. If valid, this hypothesis would sug-
gest that these sediments were largely carried by 
southerly to southwesterly winds. Interestingly, 
19AR16 probably would not fit the same sce-
nario. In the absences of depositional age con-
trol on 19AR16 and 19AR17, we speculate that 
they have different depositional ages; 19AR17 
from a period with relatively low sea-level and 
19AR16 with a period of higher sea-level when 
more of the shelf was submerged. That scenario 
would suggest that during periods of higher sea-
level, dust delivered to the Mar del Plata region 
had more in common with the central Pampa 
loess and the Pampa Sand Sea. Such a course of 
events may indicate a change in the orientations 
of the winds or surficial changes allowing or 
suppressing dust generation at different times.

Alternatively, recent sediment provenance 
data demonstrate significant northward-directed 
longshore sediment transport occurs along the 
Argentine Atlantic coast. Today, the “Colorado 
littoral cell” transports sediment >700 km 
from the deltas of the ríos Colorado and Negro 
northward along the eastern coast of Argentina 
(Garzanti et al., 2021b). Similarities between the 
detrital zircon populations of the coastal loess 
sample 19AR17 and those of the ríos Colorado 
and Negro can be interpreted to reflect this long-
shore transport and subsequent reworking in 
eolian conditions, rather than entrainment from 
the exposed coastal shelf during sea-level low-
stands (e.g., Zárate and Blasi, 1993). These two 
hypotheses are not mutually exclusive, and it is 
possible that both longshore transport and shelf 
deflation during lowstands are important sources 
of wind-blown sediment along coastal Argentina 
(eastern Pampas). Further sampling and a combi-
nation of additional detrital zircon and sedimen-
tary provenance data will be required before this 
sediment distribution system can be completely 
delineated. Additional research is needed to bet-
ter understand why some coastal loess deposits 
are more similar to the ríos Colorado and Negro 
(e.g., 19AR17) and others more similar to loess 
from the central Pampas (e.g., 19AR16).

Loess and the Río Paraná

Of the sediments collected and analyzed as 
part of this study, sample 19AR19 is a clear out-
lier (Figs. 2 and 4), containing zircon popula-

tions that differ from all other samples. Sample 
19AR19 was collected from an exposure of loess 
near the town of Baradero, Argentina, located 
∼135 km northwest of Buenos Aires along the 
southern bank of the Río Paraná (Fig. 1). Col-
lected from ∼1 m below the cliff-forming sur-
face, the sample has a depositional age between 
14.4 ka and 27.8 ka (Kemp et al., 2006), which 
overlaps with deposition of sediment across 
much of the Pampa Sand Sea (Kruck et  al., 
2011). Unlike all other samples we collected, 
19AR19 is characterized by a dominant popula-
tion of zircons with Pan-African ages between 
ca. 500 and 700 Ma and relatively few grains 
with ages <500 Ma (Figs. 2 and 3). This is true 
even when compared to sample 19AR18, which 
was collected only 50 km to the south.

The unique detrital zircon signature of sam-
ple19AR19 is interpreted as a function of its 
proximity to the Río Paraná (Fig. 1). We do not 
want to overstate the importance of a single sam-
ple; however, it can be informative for under-
standing the provenance of loessoid deposits in 
other parts of South America, notably northeast-
ern Argentina and Uruguay (Zárate 2003). The 
Río Paraná extends for nearly 5000 km and has a 
drainage basin of 2.5*105 km2 that includes both 
southern Brazil and the Eastern Cordillera of the 
Central Andes. Bedrock in the basin is highly 
variable but basement rocks consist primarily of 
Pan-African age units (Rino et al., 2008). Mod-
ern river sediments reflect this with dominant 
detrital zircon populations of Pan-African age 
(Fig. 3; Rino et al., 2008). Although the data are 
associated with a relatively small n (25), roughly 
75% of detrital zircons in the Río Paraná have 
ages between 500 and 700 Ma. This population 
overlaps that found in the 19AR19 sample. At 
this point it is impossible to pinpoint the exact 
source of Pan-African age detrital zircons in 
the Río Paraná drainage basin; however we do 
note that this population is present in rocks in 
the Sierra Pampeanas (Rapela et al., 2016) and 
in rivers exiting the Andes in Bolivia and north-
western Argentina (Fig. 4; Pepper et al., 2016), 
which serve as tributaries to the Río Paraná. Sed-
imentary units exposed in the drainage basins 
of these rivers, which would serve as sediment 
sources, contain populations of Pan-African age 
detrital zircons (DeCelles et al., 2007; Amidon 
et al., 2016; Enkelmann et al., 2014).

The similarity between detrital zircon popula-
tions in 19AR19 and the Río Paraná as well as 
their spatial proximity suggests a genetic rela-
tionship. We posit that the Río Paraná represents 
the principal component of the sediment transport 
pathway responsible for depositing the loessoid 
units associated with the 19AR19 sample. In 
addition to transporting sediment down river, the 
Río Paraná deposits sediment along its length 



Bruner et al.

10	 Geological Society of America Bulletin, v. 130, no. XX/XX

in floodplain environments (e.g., Amsler et al., 
2007). We interpret the loessoid unit associated 
with sample 19AR19 as having been reworked 
sediment originally deposited in the Río Paraná 
floodplain. These loessoid deposits appear to 
faithfully record the preponderance of Pan-Afri-
can detrital zircons in the riverine sediments.

The detrital zircon signature in 19AR19 
has two important ramifications for loess and 
loessoid deposits in Argentina and elsewhere 
in southern South America. The unique detrital 
zircon populations underscore previous investi-
gators’ findings that suggest the areally extensive 
loessoid deposits in central Argentina are not 
homogenous. Through various methods, previ-
ous researchers have noted that despite their sim-
ilar appearance, not all central Argentine loess 
deposits are the same (e.g., Zárate and Tripaldi, 
2012). Our results support this hypothesis, and 
suggest that, in the future, detrital zircon geo-
chronology will be an effective method for dis-
cerning individual depocenters across the region.

The second implication pertains to the prove-
nance of loess deposits elsewhere in South Amer-
ica. We attribute the spatially limited provenance 
signature of 19AR19 to regional wind patterns 
during deposition, most notably, the influence 
of southwesterly winds (e.g., Iriondo, 1997). 
Past conditions that were dominated by south-
westerly winds means that windblown sediment 
deposited in the Pampas would have had south-
western sources. Sediment from the Río Paraná 
would not have contributed to deposits located 
upwind (southwest), except in areas immediately 

adjacent to the river, like the location of 19AR19. 
But how unique is the detrital zircon signature 
of 19AR19? For much of the windblown sedi-
ment in the Pampas, it appears to be relatively 
rare, but in other loessoid units we predict it is 
very common. The same southwesterly winds 
that controlled sediment delivery to the Pampas 
would have also entrained sediment along the 
Río Paraná and deposited it downwind (north-
east). Other loessoid deposits in South America 
include those in Uruguay, Paraguay, and south-
ernmost Brazil (Panario and Gutiérrez, 1999; Iri-
ondo and Kröhling, 2007). Given southwesterly 
winds, these areas would be located downwind of 
the Río Paraná and are therefore the most likely 
depocenters for windblown sediment from the 
Río Paraná system. We speculate that loessoid 
deposits in these regions are dominated by detri-
tal zircons with ages similar to those observed in 
the Río Paraná and distinct from loess and loess-
oid deposits in the Pampas.

SUMMARY

The data presented here provide new insight 
into the origin and transport pathways of wind-
blown sediment in central Argentina and can be 
used to formulate new hypotheses which will 
require further testing. Below we note three 
insights gleaned from our new data which may 
provide guidance to better understand the Pam-
pean eolian system in the future.

(1) The number of zircons <100 ka observed 
in Pampean eolian samples are low. This indi-

cates a dearth of first cycle volcanogenic zircons 
and points to minimal contribution of direct ash-
fall detritus to the Pampean eolian system rela-
tive to the total volume of sediment. Although 
initially surprising, these results are consistent 
with the regional volcanic history. The propor-
tions of <23 Ma in the eolian samples are gener-
ally greater than the N = 3 fluvial samples. That 
indicates: (i) a notable contribution from the 
Andean Cordillera, specifically volcanic rocks 
therein, and also suggests (ii) if the majority of 
detritus in the late Pleistocene Pampean eolian 
system was deflated from the ríos Desaguadero, 
Colorado, and/or Negro floodplains an addi-
tional source of Neogene zircons was probably 
involved. This could indicate direct eolian con-
tribution of detritus from late Cenozoic volcanic 
rocks of the Cordillera as generally supported 
by the petrology of those sediments and sedi-
mentary rocks (Fig. 6). More precisely locating 
the source area of these Neogene zircon crys-
tals with the Cordillera may (a) clarify the sedi-
ment transport pathway taken by this portion of 
sediment to the Pampean eolian system, and (b) 
inform on synoptic winds during transport.

(2) Loessic sediments exposed along the 
Atlantic coast of the Pampa region (near Mar 
del Plata) indicate at least two distinct prov-
enance signatures; one provenance signature 
is more closely associated with the lower Río 
Colorado and Río Negro lacking Neogene detri-
tal zircons (19AR17), whereas the other shows 
similarity to the detrital zircon age signature of 
loess and eolian dune samples from the central 

Figure 6. Summary of prov-
enance interpretations based 
on U-Pb detrital zircon data 
presented herein and previ-
ously published fluvial and 
bedrock samples from south-
ern South America. Simpli-
fied Last Glacial Maximum 
(LGM) shoreline from Guil-
derson et  al. (2000). Magenta 
arrows: Andean Cordilleran 
source of detrital zircons, in-
cluding Miocene and younger 
detrital zircons. Green arrows: 
deflation of Río Desaguadero 
floodplain (and possibly Río 
Colorado and Río Negro). Or-
ange arrows: deflation of the 
subaerially exposed continen-
tal shelf during marine low 
stand and longshore transport. 
Red arrows: possible pathway 
of eolian sediments deflated 
from the subaerially exposed 

Río Paraná delta. Filled dots represent sample locations and simplified provenance scenarios—colors associated with arrows.
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and northwestern Pampa (19AR16). Knowing 
the depositional age of these units will be impor-
tant for differentiating between hypotheses. 
We speculate that one unit was largely derived 
through deflation of the lower Río Colorado 
and Río Negro floodplains during a low-stand 
in sea-level (e.g., Zárate and Blasi, 1993) or per-
haps through longshore transport (e.g., Garzanti 
et al., 2021b), whereas the other unit was derived 
through a sediment transport pathway similar to 
samples in central Pampa (Fig. 6).

(3) A loess sampled from near the Argentine 
Río Paraná delta plain yielded a provenance sig-
nature much different than other samples within 
the Pampean eolian system. This sample yielded 
a provenance signature more closely associated 
with the Río Paraná rather than the ríos Desegua-
dero, Colorado, and/or Negro like most of the 
Pampean samples. From this we infer that these 
sediments were derived from greater expo-
sure of the Río Paraná delta on the continental 
shelf during a low-stand in sea-level implying 
approximately northwestward eolian transport. 
That scenario fits with the known range in depo-
sitional age for the sample (i.e., 14.4–27.8 ka). 
Alternatively, the sediment may have been even 
more locally derived from the portion of the 
proximal delta plain that is currently exposed 
subaerially. The former scenario would hint at 
some consistency of lower-level winds which 
indicate an anticlockwise rotation through the 
Pampa during late Pleistocene to early Holo-
cene from the surface expression of widespread 
linear erosional features impounded by shallow 
lakes (Fig.  6; Fucks et  al., 2012). Identifying 
additional provenance variations for loessic sedi-
ments—especially across time, in this area like 
those now recognized for the Mar del Plata area 
coupled with depositional ages—would be infor-
mative in the understanding of the complexities 
of the Pampean eolian system under changing 
regional (and global) climate conditions.
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