
Journal of Scientific Computing (2022) 90:39
https://doi.org/10.1007/s10915-021-01699-2

NPTC-net: Narrow-Band Parallel Transport Convolutional
Neural Networks on Point Clouds

Pengfei Jin1 · Tianhao Lai1 · Rongjie Lai2 · Bin Dong1,3,4

Received: 31 March 2021 / Revised: 20 August 2021 / Accepted: 27 September 2021 /
Published online: 8 December 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Convolution plays a crucial role in various applications in signal and image processing,
analysis, and recognition. It is also the main building block of convolution neural networks
(CNNs). Designing appropriate convolution neural networks on manifold-structured point
clouds can inherit and empower recent advances of CNNs to analyzing and processing point
cloud data. However, one of the major challenges is to define a proper way to “sweep”filters
through the point cloud as a natural generalization of the planar convolution and to reflect the
point cloud’s geometry at the same time. In this paper, we consider generalizing convolution
by adapting parallel transport on the point cloud. Inspired by a triangulated surface-based
method [46], we propose the Narrow-Band Parallel Transport Convolution (NPTC) using a
specifically defined connection on a voxel-based narrow-band approximation of point cloud
data. With that, we further propose a deep convolutional neural network based on NPTC
(called NPTC-net) for point cloud classification and segmentation. Comprehensive exper-
iments show that the proposed NPTC-net achieves similar or better results than current
state-of-the-art methods on point cloud classification and segmentation.

R. Lai’s work is supported in part by an NSF Career Award DMS-1752934. Bin Dong is supported in part by
Beijing Natural Science Foundation (Z180001), NSFC 12090022 and Beijing Academy of Artificial
Intelligence (BAAI).

B Rongjie Lai
lair@rpi.edu

B Bin Dong
dongbin@math.pku.edu.cn

Pengfei Jin
jinpf@pku.edu.cn

Tianhao Lai
howeverlth@pku.edu.cn

1 Beijing International Center for Mathematical Research, Peking University, Beijing, China

2 Department of Mathematics, Rensselaer Polytechnic Institute, Troy, NY, USA

3 Center for Data Science, Peking University, Beijing, China

4 Beijing Institute of Big Data Research, Beijing, China

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 2 of 20 Journal of Scientific Computing (2022) 90 :39

Keywords Geometric deep learning · Computer vision · Parallel transport · Point cloud ·
Geometric convolution

Mathematics Subject Classification 68U05 · 65D18 · 68T45

1 Introduction

Data that arises frommany applications in science and engineering is commonly represented
in non-Euclidean structures, such as meshes, point clouds, and graphs. Such data includes
3D shapes in computer graphics, scanned point clouds in remote sensing, social networks in
social science, functional networks in neuroscience [17,25,37,56], etc. These unstructured
data often need to be properly analyzed first before they can be effectively utilized in various
downstream tasks, such as classification, segmentation, registration, prediction, etc.

Recently, deep learning has enabled major breakthroughs in many fields in science and
engineering. This is largely due to the capability of deep neural networks in extracting fea-
tures, analyzes features, and make high-level decisions and predictions in an end-to-end
fashion. Among different types of deep neural networks, the convolutional neural networks
(CNNs) is particularly effective, especially for analyzing Euclidean data such as audios,
images, and videos [13,27]. Due to the success of CNNs in analyzing Euclidean data, much
effort has recently been made to extend CNNs to non-Euclidean data, which is one of the
main objectives in geometric deep learning [6,8,35,36]. However, generalizing CNNs to non-
Euclidean data is not straightforward. A typical CNN is a composition of simple operators
such as convolution operators, down-sampling/pooling operators, batch normalization, etc.
Notice that the convolution operator, which is the crucial operator in any CNNs, does not
admit a simple extension to non-Euclidean data.

This article focuses on generalizing the convolution operator on (manifold structured)
point clouds so that it inherits desirable properties of the planar convolution. This in turn
enables us to design CNNs on point clouds. In the remaining part of this introduction, we
shall first briefly review the applications of point cloud data, and provide a unified view on the
existing extensions of convolutions on non-Euclidean data and discuss their relations with
our proposed convolution, which is called the narrow-band parallel transport convolution.

1.1 Applications of Point Clouds Data

Point cloud data can be acquired by 3D laser scanners, such as Light Detection and Ranging
(LIDAR) and RGB-D cameras. It can also be obtained by 3D scene reconstruction from 2D
images, such as reconstructing the earth’s landscape through aerial photography. Furthermore,
one can obtain point clouds through the sampling of CAD models. Formally, a point cloud
P = {xi ∈ R

3 : i = 1, . . . , N } ⊂ R
3 consists of coordinates of points in a 3-dimensional

Euclidean space. Unlike meshes and graphs, point clouds have no connectivity information.
Point clouds provide a direct and convenient way of representing geometric data. For

example, in autonomous driving, accurate environment perception is needed to realize reli-
able navigation and decision in a complex dynamic environment [31]. Traditionally, image
data can provide 2D semantic and texture information with low cost and high efficiency.
However, image data lacks 3D geographic information. Therefore, dense and accurate point
cloud datawith 3Dgeographic information collected byLIDAR is commonly used bymodern
autonomous vehicles. In addition, LIDAR is insensitive to the change of lighting conditions

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Journal of Scientific Computing (2022) 90 :39 Page 3 of 20 39

and can work both in the daytime nighttime. Other than autonomous driving, many applica-
tions prefer to use point cloud data, such as face recognition in e-commerce, urban planning
and agricultural production, animation and virtual reality, etc. [32]. Due to the vast impor-
tance of point cloud data, we would like to extend the convolution operator and design CNNs
on point clouds.

1.2 RelatedWork of Convolutions on Non-euclidean Domains

Convolution is one of the most widely used operators in applied mathematics, computer
science, and engineering. It is also themost important building block of Convolutional Neural
Networks (CNNs), which are the main driven force in the recent success of deep learning.

In the Euclidean space R
n , the convolution of function f with a kernel (or filter) k is

defined as

(f ∗ k)(x) :=
∫
Rn

k(x − y) f (y)dy. (1)

This operation can be easily calculated in Euclidean spaces due to the shift-invariance of
the space so that the translates of the filter k, i.e., k(x − y) is naturally defined.

One of the main challenges of proposing geometric meaningful convolution on manifolds
and point clouds (a discrete form of manifolds) is to define an analogy of the Euclidean
translation x − y on the non-Euclidean domain. Multiple types of generalized convolutions
on manifolds, graphs, and point clouds have been proposed in recent years. We shall review
some of them and discuss the relation between existing definitions of convolutions and the
proposed narrow-band parallel transport convolution.

Spectral methods avoid the direct definition of translation x − y by utilizing the con-
volution theorem [20]: given any two functions f and g, f̂ ∗ g = f̂ · ĝ. Therefore, we
have f ∗ g = (f̂ · ĝ)∨, where ∧ and ∨ represent generalized Fourier transform and inverse
Fourier transform provided through the associated Laplace-Beltrami (LB) eigensystem on
manifolds. To avoid computing convolution through full eigenvalue decomposition of the
LB operator, polynomial approximation has been proposed and yields convolution as the
action of polynomials of the LB operator [10,15]. Thus, convolutional neural networks can
be designed [7,9,28]. Spectral methods, however, suffer two major drawbacks. First, these
methods define convolution in the frequency domain. As a result, the learned filters are not
spatially localized. Second, spectral convolutions are domain-dependent as deformation of
the ground manifold will change the corresponding LB eigensystem. This obstructs the use
of learning networks from one training domain to a different testing domain [46].

Spatial mesh-based methods are more intuitive and similar to the Euclidean case, and
this is one of the reasons why most of the existing works fall into this category [5,35,46].
The philosophy behind these methods is that the tangent plane TxM of a 2-dimensional
manifold M is embedded to a 2-dimensional Euclidean domain where convolution can be
easily defined. In this paper, we make the first attempt to interpret some of the existing mesh-
basedmethods in a unified framework.We claim that most of the spatial mesh-basedmethods
can be formulated as

(f ∗ k)(x) :=
∫
Tx,εM

k(φ(x, v)) f (v)dv, x ∈ M. (2)

Here, k : R
2 → R is a convolution kernel and Tx,εM = {v ∈ TxM : 〈v, v〉gx ≤ ε2}

with ε > 0 being the size of the kernel. Given vector fields u j , j = 1, 2. The mapping

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 4 of 20 Journal of Scientific Computing (2022) 90 :39

φ(x, ·) : TxM → R
2 is defined as

φ(x, v) =
(〈
v,u1x

〉
gx

,
〈
v,u2x

〉
gx

)
, (3)

Most of the designs of the existing manifold convolutions focused on the designs of u j .
We remark that possible singularities will lead to no convolution operation at those points.
These are isolated points on a closed manifold and do not affect experiment results. More
discussions will be provided in Sect. 3.1.2.

For example, GCNN [35] and ACNN [5] construct a local geodesic polar coordinate
system on a manifold, formulating the convolution as

(f ∗ k)(x) =
∫

k ((φ ◦ ψ)(θ, r)) (Qx f)(r , θ)drdθ,

where Q is a local interpolation function with interpolation domain an isotropic disc for
GCNN and an anisotropic ellipse for ACNN. A local geodesic polar coordinate system on a
manifold can also be transformed to a 2-dimensional planar coordinate system on its tangent
plane. Such transformation is the mapping ψ , which is defined by the inverse exponential
map: v = exp−1(z(θ, r)) with z(θ, r) being a point in the local geodesic polar coordinate
system at x ∈ M with coordinates (θ, r). With this, we can easily interpret ACNN within
the framework of (2). Indeed, ACNN essentially chooses u j

x as the directions of the principal
curvature at point x . ForGCNN, on the other hand, it avoids choosing a specific vector field on
the manifold by taking max-pooling among all possible directions of u1x at each point. Such
definition of convolution, however, ignores the correspondence of the convolution kernels at
different locations.

The newly proposed PTC [46] defines convolution directly on the manifold while using
tangent planes to transport kernels by a properly chosen parallel transport. PTC can be
equivalently cast into the formof (2) using the inverse exponentialmap, and implementationof
the proposed parallel transported is realized through choosing specific vector fields {u j } j=1,2

guided by the Eikonal equation for transforming vectors along geodesic curves on manifolds.
Similarly, some definitions of convolution depend on particular frames. PFCNN [58] uses the
optimized frame as {u j } j=1,2. The objective function is based on the angles between adjacent
frames. CGCNN [59] uses two different data-driven local reference frames as {u j } j=1,2.

Spatial point-based methods have wider applications due to their weaker assumptions
on the data structure.

There are mainly two types of point-based convolution. The first type is to combine the
information of points directly. These methods can be formulated as

(f ∗ k)(xi) :=
∑

x j∈N (xi)

k(xi , x j) f (x j), (4)

where N (xi) ⊂ P is a neighborhood of xi and kernel k takes different forms in different
methods. PointNet [41] is an early attempt to extract features on point cloud. PointNet is
a network structure without convolution, or alternatively we can interpret the convolution
defined by PointNet has the simplest kernel k(xi , x j) = δ(xi , x j) where δ is the Kronecker-
Delta. Various later works attempt to improve PointNet by choosing different forms of the
kernel k. For example, PointNet++ [42] introduces a max pooling among local points, i.e.
choosing kernel k as an indicator function: k(xi , x j) = Ix j=argmaxz∈N (xi)

f (z). PointCNN

[30] chooses k(xi , ·) = β ′Axi where β ∈ R
K and Axi ∈ R

K×K are trainable variables
with K = |N (xi)|. DGCNN [54] proposes an “edge convolution”that can be viewed as

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Journal of Scientific Computing (2022) 90 :39 Page 5 of 20 39

Fig. 1 Narrow-band parallel
transport convolution on point
cloud: black and blue points are
sample points of the surface
(blue). Each kernel (colored dots)
is defined on the tangent plane
(yellow). The vectors on the
tangent planes that are of the
same color are defined by parallel
transport. (Color figure online)

fixing f (x j) ≡ 1 in (4) and k(xi , x j) =MLP(f (xi), f (xi) − f (x j)), where MLP means the
Multi-Layer Perceptron [40].

The second type of convolution is defined by first projecting the point cloud locally on a
Euclidean domain and then employ regular convolution. This type of methods can also be
formulate as (2). For example, Tangent convolutions [49] define kernels on the tangent plane,
and use 2 principal directions of a local PCA as ux . Pointconv [55] constructs local kernels
by interpolation in R

3, i.e. letting φ(x, v) = x − v which is essentially a local Euclidean
convolution. Similarly, [34,51,53] are also based on local Euclidean convolution. Their main
differences are various forms of k and interpolation methods.

1.3 The Proposed Convolution: NPTC

We propose a Narrow-Band Parallel Transport Convolution (NPTC) in this paper. It is a
geometric convolution based on point cloud discretization of a manifold parallel transport
defined in a specific way. As we discussed in the previous section, convolutions in many
methods can be written in the form of (2) and (3), while the differences mostly lie in the
choices of the vector field {u j } j . As observed by [46] that choosing the vector field properly,
the associated convolution can be interpreted as transporting the kernels using the parallel
transport associated with the prescribed vector field.

We attempt to define geometric convolutions that can be viewed as translating kernels on
the point cloud in a parallel fashion. One naive approach to extend mesh-based methods to
point cloud is to generate a triangulated surface based on the point cloud. However, this is not
as convenient as working directly with the point cloud since in practice not every point cloud
corresponds to a legitimate parameterized surface, and pooling is not as easy to implement
on triangulated surfaces as on point clouds. In addition, it is time-consuming to construct
meshes on point clouds. When applied in practice, mesh construction time may be much
longer than the inference time of some methods directly applied on the point cloud. To avoid
mesh construction and to handle point clouds data directly, we propose to define convolution
on point clouds by combining voxelization and geometric convolution.

Now, we describe how NPTC is computed on point clouds. Firstly, point clouds are
approximated by voxel-based narrow-band with appropriate resolution. For a manifold M
or point cloud P , its narrow-band is defined as the region with distance from M (or P) less
than ε: NB(M) := {x ∈ R

3|dist(x,M) < ε}, where dist represents a distance function.
For calculation efficiency and robustness to noise, we choose the voxel-based narrow-band
approximation. It should be noted that the result of the traditional voxelization method [56] is
a solid 3-d structure, and the voxel-based narrow-band can be understood as the “shell" with

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 6 of 20 Journal of Scientific Computing (2022) 90 :39

a certain thickness of the former (if the point cloud is sampled from the surface of the object).
It is very efficient to calculate the distance function in voxel approximation with appropriate
resolution. The vector field {ux }x∈M is defined as the projections of the gradient field of a
narrow-band-based distance function on the approximated tangent plane of the point cloud.
Such definition of the vector field is robust to noise, since if the distortion of the coordinates
of the points by noise does not exceed the width of the narrow-band, the computed gradient
field of the distance function in the narrow-band remains unchanged. After the vector field
{ux }x∈M, we use local PCA to estimate normal vectors on the point cloud following [57].
Finally, the convolution kernel can be constructed on the tangent plane, and the corresponding
f (v) can be obtained by interpolating the value f (x) on the point cloud.
Note thatweprefer to use geometric convolution inNPTCbecause comparedwithmethods

that translate kernels in the ambient space of the manifold, NPTC translates kernels on the
tangent planes, which effectively avoids having convolution kernels defined away from the
underlying manifold of the point cloud. In other words, NPTC can well reflect point cloud
geometry and is a natural generalization of planar convolution in the sense that when the
point cloud reduces to planar grids, the NPTC reduces to the planar convolution.

1.4 Contributions

– We introduce a new point cloud convolution, NPTC, based on parallel transport defined
by a narrow-band approximation of the point cloud. The proposed NPTC is a natural
generalization of planar convolution.

– The proposed NPTC combines voxelization and geometric convolution. Voxelization
with appropriate resolution brings robustness and geometric convolution can better reflect
the point cloud’s geometry.

– Based on NPTC, we designed convolutional neural networks, called NPTC-net, for point
clouds classification and segmentation with state-of-the-art performance.

The rest of this paper is organized as follows. In Sect. 2, we will discuss the mathematical
background of parallel transports on manifolds and the Eikonal equation for computing
distance functions. In Sect. 3, we propose the narrow-banded parallel transport convolution,
and it is associated with convolutional neural networks on point cloud represented manifolds.
After that, we report our intensive numerical experiments of point clouds classification and
segmentation on benchmark data sets in Sect. 4. We conclude the paper in Sect.5.

2 Background

2.1 Manifold and Parallel Transport

Let M be a two-dimensional differential manifold embedded in R
3. We write TxM as the

two-dimensional tangent plane at point x ∈ M. The disjoint union of the tangent planes at
each point on the manifold defines the tangent bundle T M. A vector field V is a smooth
assignment:M → T M such that vx ∈ TxM,∀x ∈ M. The collection of all smooth vector
fields is denoted as �(T M).

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Journal of Scientific Computing (2022) 90 :39 Page 7 of 20 39

An affine connection is a bilinear mapping ∇: �(T M) × �(T M) → �(T M), such that
for all smooth functions f and g in C∞(M) and all vector fields U , V and W on M :⎧⎨

⎩
∇ f U+gV W = f ∇UW + g∇VW ,

∇U (aV + bW) = a∇UV + b∇UW , a, b ∈ R,

∇U (f V) = d f (U)V + f ∇UV .

(5)

A vector field U is called parallel along a curve γ : I → M if ∇γ̇U = 0. Given an
vector e ∈ Tx0M at x0 = γ (0) ∈ M, the parallel transport of e along γ is the extension of
e to a parallel section U on γ . More precisely, U is the unique section of �(T M) along γ

satisfying the ordinary differential equation ∇γ̇ (t)U (t) = 0 with the initial value U (0) = e.
In differential geometry, a geodesic on a smooth manifold M with an affine connection

∇ is a curve γ (t) such that parallel transport along the curve preserves the tangent vector
to the curve. It is a generalization of the notion of a “straight line”. Formally, a geodesic is
γ : [0, l] → M if ∇γ̇ (t)γ̇ (t) = 0. For any two points x0 and x1 on a closed manifold M,
there will be a geodesic connecting x0 and x1. More details on aforementioned concepts can
be referred in [24].

Alternatively, an affine connection can be defined by an assignment
 as a family of linear
transformations on tangent spaces along any smooth curve onM. Consider γ

y
x a smooth arc

joining two, not necessarily distinct, points from x to y, define
(γ
y
x) : TxM → TyM. If

(γ
y
x) satisfies the following properties:

1)
(γ
y
x) is non-singular,

2) limy→x
(γ
y
x) = I d ,

3)
(γ z
x) =
(γ z

y)
(γ
y
x),

4)
 is Frechét differentiable in terms of γ , x and y.

Then, the vector vy is obtained by parallel displacement of vx along γ
y
x is provided as vy =

(γ
y
x)vx . Consider a tangent vector field V along γ , the associated infinitesimal connection

∇γ̇ V = limh→0
1
h (
(γ

γ (0)
γ (h))Vγ (h)−Vγ (0)) can be induced from
 [23]. Thus, defining linear

transformations on any arc satisfying specific properties is equivalent to defining connection
and parallel transport.

In applications, we only need to transport kernels from fixed x0 to any x instead of
transformations along all arcs. In PTC [46], for any point x , let γ x

x0 be the geodesic curve

connecting x and x0. Define a linear transformation
(γ x
x0) satisfying u

j
x =
(γ x

x0)u
j
x0 , j =

1, 2, where u1x is the geodesic curve’s tangent vector at x and u2x = u1x × nx . Then vx =

(γ x

x0)vx0 representing the parallel transport of vx0 from x0 to x along γ x
x0 .

It is easy to check that φ(x, vx) = φ(x0, vx0), where φ(x, v) is defined in (3). For
convenience, instead of transporting the kernel on the manifold, the parallel transported
kernels can be locally constructed at every point x by formulating k as k(φ(x, ·)).

2.2 Solving Eikonal Equation on Point Clouds

As mentioned before, the proposed NPTC relies on the computation of a distance function
on a voxel-based narrow-band approximation of the given point cloud. Therefore, we briefly
review what a narrow-band approximation is and how the distance function is calculated.

Geometric attributes calculation of large unstructured point-based data sets is a challenging
task. Hence, the most common way of dealing with unstructured point-based data is to re-
sample to a structured grid [12]. A large variety of well-known methods like isosurface
extraction [33], region-growingmethods [18], and level-setmethods [38,39] can be applied to

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 8 of 20 Journal of Scientific Computing (2022) 90 :39

gridded data. The original idea of level sets is to implicitly represent a surface as the solution
of an equation concerning an underlying scalar field. To improve computation efficiency
of level-set methods, local level-set method was introduced [2] which essentially suggests
conduct computations only within a narrow-band of the zero level set.

Different methods are proposed to obtain narrow-band representation of shapes in 2D
[4,19] or 3D [44,45]. In this work, the narrow-band of a point cloud P is defined as the
region with distance from P less than ε: NB(P) := {x ∈ R

3|dist(x,P) < ε}, where dist
represents the standard Euclidean distance function.

We follow the idea of narrow-band representation and construct the voxel-based narrow-
band. Consider the point cloud with N points in the unit cube and divide the unit cube into
M3 small cubes. The side length of each small cube is 1

M . The set of all small cubes whose
distance from the point cloud is less than ε forms the voxel-based narrow-band approximation
of the point cloud. The number of grid points in traditional voxelization is M3, while the
number of grid points in the voxel-based narrow-band for a smooth surface is O(KNBM2),
where KNB = �2εM� depends on the thickness of the narrow-band.

Distance functions can be easily computed by solving the Eikonal equation [11]. The
Eikonal equation is a non-linear partial differential equation describing wave propagation:

|∇ρ| = 1/h(x), x ∈ �, ρ|
 = 0, (6)

where
 ⊂ � ⊂ R
n and h(x) is a strictly positive function. The solution ρ(x) of (6) can be

viewed as the shortest time needed to travel from x to
 with h(x) being the speed of the
wave at x . For the special case when h = 1, the solution ρ(x) represents the distance from x
to
 limited in the �. The Eikonal equation can be solved by the fast marching method [47]
or the fast sweeping method [62]. Both methods have an optimal computation complexity
of O(L) with L being the number of the grid points. Naturally, when N � M2, solving
the equation in the voxel-based narrow-band will be faster than calculating directly on the
point cloud or the classical voxelization. In fact, in practical applications, such as LiDAR
data, the number of points in a point cloud is often far greater than the resolution required to
adequately represent the shape of interest.

3 Narrow-band Parallel Transport Convolution (NPTC) and Network
Design

Generalization of convolution defined by parallel transport on triangulated surfaces has
already been proposed in [46]. In this section, we discuss how to transport kernels on point
clouds in a similar fashion.

3.1 Narrow-band Parallel Transport Convolution (NPTC)

For a given function f : P → R, the NPTC of f with kernel k takes the same form as
(2). Under such formulation, the key to designing a convolution is to design vector fields
{u j } j=1,2. In this subsection, we discuss the general idea of NPTC and the interpretation of
it in terms of parallel transport.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Journal of Scientific Computing (2022) 90 :39 Page 9 of 20 39

Fig. 2 Illustration of a point cloud P sampled from the unit sphere. a shows the narrow-band approximation
(blue boxes) of part ofP (in red). b is a cross section of (a). c, d show the distance function ρ and vector field
{u1x } ({∇Pρ(x)}) on the point cloud. We can see that distance propagates from the bottom center to the top
center reflecting the geometry of the sphere. (Color figure online)

3.1.1 General Idea of NPTC

To select a suitable vector field, we first recall the choice of the vector fields of PTC, which
defines convolution on triangulated surfaces via parallel transport with respect to the Levi-
Civita connection [46]. The geodesic curve represents the shortest path between two points
on a Riemannian manifold. Given a geodesic connecting two points x and y, the tangential
direction at x corresponds to the ascent direction of geodesic distance from y. PTC chooses
such direction as u1x and defines u

2
x = u1x × nx where nx is the normal vector at x .

To construct a vector field on a point cloud,we also consider using the gradient of a distance
function on the point cloud.However, unlike triangulated surfaces, the distance function is not
easily defined on point clouds due to the lack of connectivity. It is then natural to approximate
the point cloud with another data structure with connectivity, so that the distance function can
be easily calculated. For convenience and efficiency, we use voxelization [56] to approximate
the point cloud in a narrow-band in R

3 covering the point cloud. We denote such distance
function as ρ : R

3 → R
+. We will elaborate on how ρ can be calculated in later parts of this

subsection.
Note that if the point cloud is sampled from a plane, the narrow-band is flat as well. Then,

by a proper choice of the distance function, the vector fields {u j } j=1,2, can be reduced to
the global coordinate {e j }, j = 1, 2 on the plane. This means that NPTC is reduced to the
traditional planar convolution.

Once the distance function ρ is computed, we choose u1x = ∇Pρ(x), where ∇Pρ(x) is
a projection of ∇ρ(x) on an approximated tangent plane at x . Then, u2x can be calculated
by the outer product u2x = u1x × nx with nx the normal vector at x . The value f (v) is
computed by nearest-neighbor interpolation [14], i.e., f (v) = f (z) where z ∈ P is the
closest point to v. Note that one may use a more sophisticated method to compute f (v)

rather than using nearest-neighbor interpolation. We choose nearest-neighbor interpolation
because of its simplicity.

3.1.2 Computing Distance Function on Point Clouds

Apoint cloud is entirely discretewithout inherent connectivity. Therefore, it is not straightfor-
ward to compute the distance function on point clouds, although the local mesh method [26]
can be applied to solve the Eikonal equation. For simplicity, we use voxels to approximate
point clouds and to compute distance functions on the voxels using the well-known fast

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 10 of 20 Journal of Scientific Computing (2022) 90 :39

marching method based on the regular grid provided by the voxelization [47]. Note that
using voxels to compute distance functions is fast and robust to noise and local deformations.

The solution ρ(x) of the Eikonal equation |∇ρ(x)| = 1 presents the distance form
 to
x limited inside the narrow-band. Here
 is chosen as a certain point on the point cloud. We
note that the starting point will become a singularity, but on non-parallelizable manifolds
such as the sphere, it is not possible to construct a smooth vector field [16]. So that the
vector field must have at least one a singularity. Although generating multiple vector fields
by selecting different starting points and using pooling is helpful to eliminate singularities
[46], experiments show that directly selecting one point already provides satisfactory results.
Also, the ensemble result of several vector fields has almost no improvement compared with
each of a single vector field.

Finally, we interpolate the distance function from the voxels to the point cloud.

3.1.3 Computing the Vector Fields on Point Clouds

We first compute the tangent plane on each point. Tangent planes are important features
of manifolds and have been well-studied in the literature [26]. In this paper, we use local
principal component analysis (LPCA) to estimate the tangent plane. We estimate the local
linear structure near x ∈ P using the covariance matrix

∑
xi∈N (x)

(xi − c)�(xi − c), c = 1

|N (x)|
∑

xi∈N (x)

xi ,

where N (x) is the set of neighboring points of x . The eigenvectors of the covariance matrix
form an orthogonal basis. If the point cloud is sampled from a two dimensional manifold, and
the local sampling is dense enough to resolve local features, the eigenvectors corresponding
to the largest two eigenvalues provide the two orthogonal directions of the tangent plane, and
the remaining vector represents the normal direction at x ∈ P . Here, we denote the space
spanned by the two eigenvectors of the covariance matrix at x as TxP ⊂ R

3.
With the computed distance function ρ(x), it is nature to define the vector field by pro-

jecting∇ρ on the approximated tangent planes of the point cloud. Given a point xi ∈ P close
enough to x ∈ P , we have

〈∇ρ, xi − x〉 ≈ ρ(xi) − ρ(x),

where ρ(xi) and ρ(x) are known. If we consider K -nearest neighbors of x , we have K − 1
equations with 3 unknowns that are the three components of ∇ρ. We can use least squares
to find ∇ρ. We then project the vector ∇ρ(x) onto the tangent plane at x . We denote the
projected vector ∇Pρ, which is the vector we eventually need to define NPTC as described
in Sect. 3.1.1. Denote the calculated vector field as {u j } j=1,2, and the starting point of the
distance function as x0. For any point x , let γ x

x0 be the integral curve of ∇ρ connecting

x and x0. Define a linear transformation
(γ x
x0) satisfying u j

x =
(γ x
x0)u

j
x0 , j = 1, 2.

As mentioned in the Sect. 2, defining linear transformations on any arc satisfying specific
properties means defining connection and parallel transport. In applications, we do not need
linear transformations along all arcs. NPTC is defining linear transformations on integral
curves of ∇ρ (as approximated geodesic curves).

However, the quality of vector fields is affected by the quality of the estimated normal
directions. One natural concern is how such estimation is affected by noise. We remark that
LPCA is in fact quite robust to noise. In the section of experiments, we will observe that our
method can still achieve satisfactory results on the real-world scanned dataset with noise.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Journal of Scientific Computing (2022) 90 :39 Page 11 of 20 39

Fig. 3 Architecture of NPTC-net. The network for segmentation tasks is at the top right with encoding and
the network for classification tasks is at the bottom right with encoding.

3.2 NPTC-net: Architecture Design for Classification and Segmentation

This section, we present how to use NPTC to design convolutional neural networks on point
clouds for classification and segmentation tasks. For that, other than the NPTC, we need to
define some other operations that are frequently used in neural networks.

Down-sampling Given the input point cloud P , we use farthest point sampling [11] to
generate a sequence {P(i)},whereP(0) = P andP(i) ⊂ P(i−1) represents the i-th hierarchical
structure of P . The down-sampled set of P(i) is P(i+1) and up-sampled set is P(i−1) during
convolution layer. In i-th layer, feature maps is denoted as F (i) ∈ R

N (i)×c(i)
, where N (i) is

the number of the points and c(i) is the number of channels at layer i .
Multi-Layer Perceptron(MLP) Given the feature maps F , MLP(F) is defined as

σ(...σ (FW (1))W (2)...)W (L)), where σ is a non-linear function and W (i) is a matrix.
Concatenate Given the feature maps F1 ∈ R

N×c1 and F2 ∈ R
N×c1 , concatenate of F1

and F2 is defined as F3 = [F1;F2] ∈ R
N×(c1+c2).

Global max pooling Given the feature maps F ∈ R
N×c, f̂ ∈ R

c is the global max
pooling of F satisfying f̂ j = max

i
Fi j .

NPTC layer Our i-th NPTC layer takes points P(i) ∈ R
N (i)×3 and their corresponding

feature maps F (i) ∈ R
N (i)×c(i)

as input. The corresponding output is F (i+1) ∈ R
N (i+1)×c(i+1)

living on the points P(i+1) ∈ R
N (i+1)×3. The NPTC-net have encoding and decoding stages.

Normally, N (i+1) ≤ N (i) during encoding and N (i+1) ≥ N (i) during decoding. Convolution
at the i-th layer during encoding is only performed on the point set P(i+1), which resembles
convolution with stride ≥ 1 for planar convolutions.

Residual block One residual block takes the feature maps F ∈ R
N×c on the point set

P ∈ R
N×3 as input and the same number of points and the same number of channels of

features as output. One residual layer consists of three components: MLP from c channels
to c

2 channels, convolution layer from c
2 channels to c

2 channels, MLP from c
2 channels to

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 12 of 20 Journal of Scientific Computing (2022) 90 :39

c channels plus the feature maps from the bypass connection. A residual block consists of
several residual layers.

NPTC-net consists of the aforementioned operations and its architecture is given by Fig.
3. The left half of the NPTC-net is the encoder part of the network for feature extraction. For
classification, features at the bottom of the network are directly attached to a classification
network; while for segmentation, features are decoded using the right half of the NPTC-net
(decoder part of the network) to output the segmentation map. Each rectangle represents
a feature map, the height of the rectangle represents the number of points, and the width
represents the number of channels.

4 Experiments

In order to evaluate our new NPTC-nets, we conduct experiments on three widely used 3D
datasets, ModelNet [56], ShapeNet Part [60], S3DIS [3]. ModelNet40 and ShapeNet Part
contain point clouds generated from CAD models, S3DIS is a real-world scanned dataset.
ModelNet40 is for 3D shape classification, andShapeNet Part andS3DIS are for segmentation
(or partition) of 3D shapes.

4.1 Implementation Details

We implement the model with Tensorflow [1]. The neural network is denoted as fθ , where θ

corresponds to the trainable parameters of the network.Given labeled data pair {Pi , yi }, where
Pi corresponds to the point cloud data (i.e. the collection of 3D points of a given geometric
object) and yi is its associated label, the learning tasks is formulated as the optimization
problem min

θ

∑
i L(fθ (Pi), yi) for some loss function L . For classification, L is the cross-

entropy loss: L(fi , yi) = −∑c
j=1 yi j log(fi j), where yi j corresponds to the j-th element of

one-hot encoded label of yi and fi j denotes the j-th element of fi . Segmentation task can
be viewed as point-wise classification task with cross-entropy loss.

We using SGD optimizer [43] with an initial learning rate 0.1 forModelNet40 and ADAM
optimizer [21] with an initial learning rate 0.002 for ShapeNet Part and S3DIS on a GTX
TITAN Xp GPU.

To avoid over-fitting, data augmentation [48] is used during training. Data augmentation
is to generate more data pairs {A j (Pi), yi }, where A j corresponds to some transformation
without changing the label. For the classification task, the data is augmented by random rota-
tion, scaling, and Gaussian perturbation on the coordinates of the points. For segmentation,
the data is augmented by scaling and Gaussian perturbation on the coordinates of the points.

We do inferences on the augmented data during testing and aggregate the results by voting
following [42]. Let ŷi j = fθ (A j (Pi)) denote the prediction on A j (Pi). The aggregated
inference result of Pi is ŷi = 1

na

∑na
j=1 ŷi j .

Following [30], the data of S3DIS is firstly split by room, and then the rooms are sliced
into 1.5m by 1.5m blocks, with 0.3m padding on each side. The points in the padding areas
serve as context of the internal points, and themselves are not linked to loss in the training
phase, nor used for prediction in the testing phase. Each block will be viewed as a point cloud
during training and testing.

blueIn the following experiments, we choose the neighborhood |N (x)| = 20 when using
LPCA and least squares to calculate the gradient of the distance function. The narrow-

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Journal of Scientific Computing (2022) 90 :39 Page 13 of 20 39

Fig. 4 Three different types of
convolutional kernels: 3 × 3
rectangular kernel, single-ring
hexagonal kernel, and
double-ring hexagonal kernel.

Table 1 Comparisons of overall
accuracy (OA) and mean
per-class accuracy (mA) on
ModelNet40 as well as
comparisons in instance average
IoU (mIoU) and class average
IoU (mcIoU) on ShapeNet Part.

ModelNet40 ShapeNet part

Method OA(%) mA(%) mIoU mcIoU

kd-net [22] 91.8 88.5 82.3 77.4

PointNet [41] 89.2 86.2 83.7 80.4

SO-net [29] 90.9 87.3 84.9 81.0

PointNet++ [42] 90.7 – 85.1 81.9

SpecGCN [52] 92.1 – 85.4 –

SpiderCNN [57] 92.4 – 85.3 81.7

PointCNN [30] 92.2 88.1 86.1 84.6

Ours 92.7 90.2 85.8 83.3

Models ranking first is in bold italic and second is in bold.

band is constructed with the resolution of voxelization M = 100 and the number of voxels
corresponds to the thickness KNB = �2εM� = 2.

In our experiments, we have tried three shapes of convolutional kernels with different
supports in the experiments shown in the following figure, where r0 is a hyper-parameter.
Taking the experiments on ModelNet40 classification as an example, the accuracy using
the second shape of kernels is 0.6% higher than that using the first shape on average. The
classification using the second and third shapes of kernels have very similar accuracy, while
the third one is more computationally intensive. Therefore, we select the second shape of the
convolution kernel for all experiments.

4.2 3D Shape Classification and Segmentation

We test the NPTC-net on ModelNet40 for classification tasks. ModelNet40 contains 12,311
CAD models from 40 categories with 9,842 samples for training and 2,468 samples for
testing. For comparison, we use the data provided by [41] sampling 2,048 points uniformly
and computing the normal vectors from the mesh. As shown on Table 1, our networks
outperform other state-of-art methods. (If a compared method has results on both 2048 (or
1024) and 5000 points, we only compare with the former.)

We also evaluate the NPTC-net on ShapeNet Part for segmentation tasks. It contains
16,680 models from 16 shape categories with 14,006 for training and 2,874 for testing, each
annotated with 2 to 6 parts, and there are 50 different parts in total. We follow the experiment
setup of previous works, putting object categories into networks as known information. We
use point intersection-over-union (IoU) to evaluate our NPTC-net. Table 1 shows that our
model ranks second on this dataset and is fairly close to the best-known result.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 14 of 20 Journal of Scientific Computing (2022) 90 :39

Table 2 Comparisons of overall accuracy (OA) and mean per-class IoU (mIoU) on S3DIS.

Convolution Type Method OA(%) mIoU(%)

No convolution PointNet [41] 78.8 41.3

3-d convolution SegCloud [50] – 48.9

Eff3DConv[61] 69.3 51.8

ParamConv[53] – 58.3

Geometric convolution TangentConv [57] 82.5 52.8

Ours 83.7 54.0

Models ranking first is in bold italic and second is in bold.

4.3 3D Scene Semantics Segmentation

As pointed out earlier, using voxelization can bring robustness to the definition of geometric
convolution. In order to show the robustness of our model for real data, we tested scene
semantics segmentation on the “Stanford Large-Scale 3D Indoor Spaces Dataset” (S3DIS).
S3DIS covers six large-scale indoor areas from 3 different buildings for a total of 273 million
points annotated with 13 classes. This is a real-world scanned dataset without normal and
with noise. Following [50], we advocate the use of Area-5 as test scene to better measure the
generalization ability of our method. Table 2 shows that geometric convolution methods are
close to the methods which do not need normal estimation. NPTC-net outperforms the best
known geometric convolution method TangentConv[57].

4.4 Visualization of Segmentation

To better demonstrate the advantages of our model, we visualize the segmentation results of
the test data in the ShapeNet Part.We compare NPTC-net with the popular model PointNet++
[42] and select several representative examples. In Figs. 5, 6, three columns from left to right
represent the ground truth, the prediction by PointNet++, and the prediction by NPTC-
net. Each blue box of Fig. 5 contains objects within the same class (handgun, chair, and
skateboard). In each blue box, the first row contains objects with standard structures, while
the second row contains objects with certain unusual structures, which is highlighted by red
boxes. In each blue box of Fig. 6, the first row contains the overviews of the objects while
the second row contains the corresponding zoom-in views.

As shown in Fig. 5, we found that both models can make good predictions on objects
with standard structures. However, if the object contains some unusual structures, such as
abnormal shape, tilt, or asymmetry, NPTC-net is able to generate smoother results that respect
geometric information.

4.5 Running Statistics

As shown in Table 3, we summarize our running statistics based on themodel forModelNet40
with batch size 16. In comparison with several other methods, although we use ResNet
structure, the fewer channels, smaller kernels, and simpler interpolation (nearest neighboring)
make NPTC use similar parameters and even fewer FLOPs.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Journal of Scientific Computing (2022) 90 :39 Page 15 of 20 39

Fig. 5 Comparison of segmentation results of unusual structures: three columns from left to right represent
the label, the prediction of PointNet++, and the prediction of NPTC-net.

Table 3 Comparisons of number
of parameters and FLOPs for
classification.

method Parameters FLOPs(Inference)

PointNet [41] 3.48M 14.70B

PointNet++ [42] 1.48M 26.94B

PointCNN [30] 0.6M 25.30B

Ours 1.29M 11.7B

Modelswith the least amount of parameters or the least FLOPs are bolded

Total pre-processing time mainly depends on the grid’s density. For most cases, the res-
olution of 1003 is enough to describe the shape of the point cloud, which is what we chose
for our experiments. We also remark that the whole computation cost of constructing convo-
lution depends linearly on the resolution of the voxel and the size of the data. On a PC with
Core i7-7700 CPU, the pre-processing takes about 0.5 seconds per point cloud with Matlab,
and the whole dataset of ModelNet40 (12,311 shapes with 10,000 points each) takes only

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 16 of 20 Journal of Scientific Computing (2022) 90 :39

Fig. 6 Comparison of segmentation results of small structures: three columns from left to right represent the
label, the prediction of PointNet++, and the prediction of NPTC-net.

Table 4 Comparisons of training time of networks on ModelNet40

Method Settings Accuracy and Training (+Pre-processing) time

PointNet++ [42] adam, 1024 points 90.7%, 6 hours

adam, 5000 points 91.9%, 20 hours

Ours adam, 2048 points 92.4%, 6h (+1.5h)

SGD, 2048 points 92.7%, 12h (+1.5h)

about 1.5 hours. It is negligible compared to the training of the deep neural networks and
acceptable to make inferences in practice.

4.6 Feature Visualization

To visualize the effects of the proposed NPTC in the NPTC-net, we trained the network on
ShapeNet Part and visualized learned features by coloring the points according to their level
of activation. In Fig. 7, filters from the first Convolution layer in the first Residual block

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Journal of Scientific Computing (2022) 90 :39 Page 17 of 20 39

Fig. 7 Feature Visualization: each feature from low (a) or high (b) level is displayed on 2 point clouds from
different categories. High-level activations are in yellow and low-level activations are in blue. (Color figure
online)

and the final Convolution layer in the second Residual block are chosen. In order to easily
compare the features at different levels, we interpolate them on the input point cloud. Observe
that low-level features mostly represent simple structures like edges (top of (A)) and planes
(bottom of (A)) with low variation in their magnitudes. In deeper layers, features are richer
and more distinct from each other, like bottleneck (upper left of (B)), “big-head”(upper right
of (B)), plane base (lower left of (B)), bulge (lower right of (B)).

5 Conclusion

This paper proposed a new way of defining convolution on point clouds, called the narrow-
band parallel transport convolution (NPTC), based on a point cloud discretization of a
manifold parallel transport. The parallel transport was defined specifically by a vector field
generated by the gradient field of a distance function on a narrow-band approximation of
the point cloud. The NPTC was used to design a convolutional neural network (NPTC-net)
for point cloud classification and segmentation. Comparisons with state-of-the-art methods
indicated that the proposed NPTC-net is competitive with the best existing methods.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J.,
Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467 (2016)

2. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys.
118(2), 269–277 (1995)

3. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3d seman-
tic parsing of large-scale indoor spaces. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1534–1543. IEEE Computer Society, Los Alamitos, CA, USA
(2016).10.1109/CVPR.2016.170. https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.170

4. Bindu, V., Nair, K.R.: A fast narrow band level set formulation for shape extraction. In: The Fifth Interna-
tional Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014),
pp. 137–142. IEEE (2014)

5. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic
convolutional neural networks. In: D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Gar-
nett (eds.) Advances in Neural Information Processing Systems 29, pp. 3189–3197. Curran Asso-

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 18 of 20 Journal of Scientific Computing (2022) 90 :39

ciates, Inc. (2016). http://papers.nips.cc/paper/6045-learning-shape-correspondence-with-anisotropic-
convolutional-neural-networks.pdf

6. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going
beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017). https://doi.org/10.1109/MSP.
2017.2693418

7. Bruna, J., Zaremba,W., Szlam,A., Lecun,Y.: Spectral networks and locally connected networks on graphs.
In: International Conference on Learning Representations (ICLR2014), CBLS, April 2014 (2014)

8. Cao, W., Yan, Z., He, Z., He, Z.: A comprehensive survey on geometric deep learning. IEEE Access 8,
35929–35949 (2020)

9. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with
fast localized spectral filtering. In: D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Gar-
nett (eds.) Advances in Neural Information Processing Systems 29, pp. 3844–3852. Curran Asso-
ciates, Inc. (2016). http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-
fast-localized-spectral-filtering.pdf

10. Dong, B.: Sparse representation on graphs by tight wavelet frames and applications. Appl. Comput.
Harmonic Anal. 42(3), 452–479 (2017)

11. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image
sampling. IEEE Trans. on Image Process. 6(9), 1305–1315 (1997)

12. Franke, R., Nielson, G.M.: Scattered data interpolation and applications: a tutorial and survey. Geomet.
Model. pp. 131–160 (1991)

13. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
14. Grevera, G.J., Udupa, J.K.: An objective comparison of 3-d image interpolation methods. IEEE Trans.

Med. Imaging 17(4), 642–652 (1998)
15. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl.

Comput. Harmonic Anal. 30(2), 129–150 (2011)
16. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, vol. 80. Academic press (1979)
17. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint

arXiv:1506.05163 (2015)
18. Hojjatoleslami, S., Kittler, J.: Region growing: a new approach. IEEE Trans. Image process. 7(7), 1079–

1084 (1998)
19. Jiang, M., Zhong, Y., Wang, X., Huang, X., Guo, R.: Improve the nonparametric image segmentation

with narrowband levelset and fast gauss transformation (2012)
20. Katznelson, Y.: An introduction to harmonic analysis. Cambridge University Press (2004)
21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Y. Bengio, Y. LeCun (eds.) 3rd

International Conference on Learning Representations, ICLR 2015, SanDiego, CA, USA,May 7-9, 2015,
Conference Track Proceedings (2015). arXiv:1412.6980

22. Klokov, R., Lempitsky, V.: Escape from cells: Deep kd-networks for the recognition of 3d point cloud
models. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 863–872. IEEE Com-
puter Society, Los Alamitos, CA, USA (2017). 10.1109/ICCV.2017.99. https://doi.ieeecomputersociety.
org/10.1109/ICCV.2017.99

23. Knebelman, M.: Spaces of relative parallelism. Ann. Math. pp. 387–399 (1951)
24. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. 2. Interscience publishers New

York (1969)
25. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer

42(8), 30–37 (2009)
26. Lai, R., Liang, J., Zhao, H.: A local mesh method for solving pdes on point clouds. Inverse Prob. Imaging

7(3), 737–755 (2013)
27. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436 (2015)
28. Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: Cayleynets: Graph convolutional neural networks

with complex rational spectral filters. IEEE Trans. Sig. Process. 67(1), 97–109 (2019). https://doi.org/10.
1109/TSP.2018.2879624

29. Li, J., Chen, B.M., Hee Lee, G.: So-net: Self-organizing network for point cloud analysis. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

30. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-transformed points. In: S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (eds.) Advances in Neural
Information Processing Systems 31, pp. 820–830. Curran Associates, Inc. (2018). http://papers.nips.cc/
paper/7362-pointcnn-convolution-on-x-transformed-points.pdf

31. Li, Y., Ma, L., Zhong, Z., Liu, F., Chapman, M.A., Cao, D., Li, J.: Deep learning for lidar point clouds in
autonomous driving: a review. IEEE Transactions on Neural Networks and Learning Systems (2020)

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Journal of Scientific Computing (2022) 90 :39 Page 19 of 20 39

32. Liu, W., Sun, J., Li, W., Hu, T., Wang, P.: Deep learning on point clouds and its application: A survey.
Sensors 19(19), 4188 (2019)

33. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM
siggraph computer graphics 21(4), 163–169 (1987)

34. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3d point cloud understanding. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 1578–1587 (2019)

35. Masci, J., Boscaini, D., Bronstein, M.M., Vandergheynst, P.: Geodesic convolutional neural networks on
riemannian manifolds. In: The IEEE International Conference on Computer Vision (ICCV) Workshops
(2015)

36. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning
on graphs and manifolds using mixture model cnns. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017)

37. Morgan, H.L.: The generation of a unique machine description for chemical structures-a technique devel-
oped at chemical abstracts service. J. Chem. Document. 5(2), 107–113 (1965)

38. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, vol. 153. Springer Science &
Business Media (2006)

39. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on
hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

40. Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, classifiaction (1992)
41. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and

segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
42. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a

metric space. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett
(eds.) Advances in Neural Information Processing Systems 30, pp. 5099–5108. Curran Associates, Inc.
(2017). http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-
a-metric-space.pdf

43. Robbins, H., Monro, S.: A stochastic approximation method. The annals of mathematical statistics pp.
400–407 (1951)

44. Rosenthal, P., Linsen, L.: Smooth surface extraction from unstructured point-based volume data using
pdes. IEEE Trans. Visual. Comput. Graph. 14(6), 1531–1546 (2008)

45. Rosenthal, P., Molchanov, V., Linsen, L.: A narrow band level set method for surface extraction from
unstructured point-based volume data

46. Schonsheck, S.C., Dong, B., Lai, R.: Parallel transport convolution: A new tool for convolutional neural
networks on manifolds. CoRR abs/1805.07857 (2018). arXiv:1805.07857

47. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proceed. Natl. Acad.
Sci. 93(4), 1591–1595 (1996)

48. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data
6(1), 1–48 (2019)

49. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3d. In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

50. Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S.: Segcloud: Semantic segmentation of
3d point clouds. In: 2017 International Conference on 3D Vision (3DV), pp. 537–547 (2017).
10.1109/3DV.2017.00067

51. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: Flexible and
deformable convolution for point clouds. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 6411–6420 (2019)

52. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: The
European Conference on Computer Vision (ECCV) (2018)

53. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2589–2597 (2018)

54. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for
learning on point clouds. CoRR abs/1801.07829 (2018). arXiv:1801.07829

55. Wu,W., Qi, Z., Li, F.: Pointconv: Deep convolutional networks on 3d point clouds. CoRR abs/1811.07246
(2018). arXiv:1811.07246

56. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep representation
for volumetric shapes. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015)

57. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In: The European Conference on Computer Vision (ECCV) (2018)

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39 Page 20 of 20 Journal of Scientific Computing (2022) 90 :39

58. Yang, Y., Liu, S., Pan, H., Liu, Y., Tong, X.: Pfcnn: convolutional neural networks on 3d surfaces using par-
allel frames. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13578–13587 (2020)

59. Yang, Z., Litany, O., Birdal, T., Sridhar, S., Guibas, L.: Continuous geodesic convolutions for learning
on 3d shapes. In: Proceedings of the IEEE/CVFWinter Conference on Applications of Computer Vision,
pp. 134–144 (2021)

60. Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A., Guibas, L.:
A scalable active framework for region annotation in 3d shape collections. ACM Trans. Graph. 35(6),
210:1–210:12 (2016). 10.1145/2980179.2980238. http://doi.acm.org/10.1145/2980179.2980238

61. Zhang, C., Luo, W., Urtasun, R.: Efficient convolutions for real-time semantic segmentation of 3d point
clouds. In: 2018 International Conference on 3D Vision (3DV), pp. 399–408. IEEE (2018)

62. Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74(250), 603–627 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

