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Research in the biological sciences is hampered by the Linnean shortfall, which
describes the number of hidden species that are suspected of existing without formal
species description. Using machine learning and species delimitation methods, we built
a predictive model that incorporates some 5.0 × 105 data points for 117 species traits,
3.3 × 106 occurrence records, and 9.1 × 105 gene sequences from 4,310 recognized
species of mammals. Delimitation results suggest that there are hundreds of unde-
scribed species in class Mammalia. Predictive modeling indicates that most of these hid-
den species will be found in small-bodied taxa with large ranges characterized by high
variability in temperature and precipitation. As demonstrated by a quantitative analysis
of the literature, such taxa have long been the focus of taxonomic research. This analysis
supports taxonomic hypotheses regarding where undescribed diversity is likely to be
found and highlights the need for investment in taxonomic research to overcome the
Linnean shortfall.

cryptic species j taxonomy j predictive modeling j species delimitation j class Mammalia

Species-level taxonomic designations are utilized by conservationists, legislators, ecolo-
gists, and evolutionary biologists to manage, conserve, and understand Earth’s biodiver-
sity (1). While over 1 million species have been described by taxonomists, this number
likely represents 1 to 10% of the actual number of extant species (e.g., refs. 2, 3).
Undescribed biodiversity has considerable implications for conservation management
and basic research questions in ecology and evolutionary theory (4). Advances in DNA
sequencing technology have inspired biologists to develop novel methods of species
delimitation that utilize genetic data (5). These methods have led to the discovery of
many morphologically cryptic species, defined as two or more distinct species that have
been misclassified as a single species due to a lack of diagnosable morphological traits
(6). These hidden species may be caused by evolutionary constraints within a clade that
inhibit obvious morphological divergence or due to differences in visual, audible, or
olfactory cues that humans are unable to detect (4). Whether morphologically cryptic
or characterized by unquantified divergent traits, hidden species appear to be present in
most metazoan families and biogeographic regions (6). These hidden species represent
a “biodiversity wildcard” because so much of what is believed to be known in biology
is derived from studies that rely on recognized (i.e., formally described) species as pri-
mary units of analysis (4).
Understanding the prevalence of hidden biodiversity over large spatial and taxo-

nomic scales is difficult even in well-studied groups like mammals. In contrast to
groups such as arthropods, where taxonomists suspect that the majority of species are
currently undescribed (3), most actual species of mammals are thought to be described
(7, 8). Even so, and while rates of species description vary across mammalian orders (SI
Appendix, Fig. S1), new species continue to be discovered (9, 10). It remains unclear
whether the observed variation in the magnitude of which species are described across
mammalian orders reflects biological reality, because species are more difficult to
discover in certain clades, or results from systematic bias in taxonomic practice. Regard-
less, there are potentially hundreds of actual mammal species that lack formal descrip-
tion, particularly in small-bodied clades such as bats, rodents, and eulipotyphans
(9, 11). Previous work (e.g., refs. 9, 10) suggest that hidden species are likely to be dis-
covered in areas of high endemism, with disproportionate numbers expected in insular
systems. That such regions are also likely to be a greater conservation risk highlights
the need for renewed taxonomic effort (3, 8).
Previous attempts to elucidate large-scale patterns of hidden diversity in mammals

have relied on qualitative arguments (e.g., ref. 10) or metaanalysis of the species litera-
ture (e.g., ref. 4) and produced conflicting accounts regarding both the extent of hid-
den diversity and the representation of this diversity across bioregions and mammalian
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orders (e.g., refs. 6, 7, 12). Since metaanalyses rely on the pub-
lished literature and as such are potentially subject to systematic
bias, we adopt data repurposing here (i.e., the reuse of data that
were originally collected for a different purpose) (13) to address
a dilemma central to modern taxonomy: Undescribed species
are suspected to be common, but understanding this phenome-
non is inhibited by a lack of information regarding the attrib-
utes that make a clade likely to contain hidden species. We
develop a predictive framework to identify the clades that are
likely to contain hidden species and identify specific trait com-
plexes that identify where this hidden diversity is likely to be
found (Fig. 1).
The results of our predictive analysis potentially have broad

implications. For example, a finding that hidden species are not
predictable across taxonomic groups would imply that taxono-
mists lack the requisite information to recognize and describe
hidden species. Alternatively, if hidden species can be predicted,
the information needed to recognize hidden species is either
available or potentially obtainable, which would aid taxonomic
efforts. Furthermore, the results of the predictive analysis may
help to identify characteristics of taxa that contain hidden
diversity, which would greatly improve the efficiency of taxo-
nomic description. To address this question, we analyze genetic
data using species-delimitation methods (14, 15) before apply-
ing random forest classification (16) to develop a predictive
model. This framework (Fig. 1) uses data from geographic,
environmental, morphological, sampling effort, and life history
traits as predictor variables to classify taxa as either containing
hidden species or not containing hidden species. The use of
this categorical response variable allows us to identify predictor
variables that indicate where hidden species can be found.

Results

Dataset. We compiled a global dataset of mammalian barcoding
gene sequences, occurrence records, and species traits (Fig. 2). A
total of 90,759 DNA sequences from the cytochrome oxidase sub-
unit I (COI) and cytochrome b (cytb) genes were obtained from
4,310 recognized mammal species available in the National Center
for Biotechnology Information genetic sequence database, Gen-
Bank. To ensure consistency, we updated the taxonomy associated

with all data to reflect that of the Mammal Diversity Database
published by the American Society of Mammalogists (Datasets
S1 and S2) (17). For all recognized mammal species, we com-
piled a database of 117 variables, each potentially predictive of
hidden species, generated from geographic, environmental, life
history, and taxonomic information available on public
databases (Dataset S3). We also collected ∼3.3 million global
positioning system coordinates from recorded geographic
occurrences in order to obtain environmental, climatic, and
geographic data for all recognized mammalian species.

Species Delimitation. To identify recognized species that poten-
tially contain hidden diversity, we generated DNA sequence
alignments for each family in class Mammalia, determined the
optimal model of sequence evolution for each alignment, and
performed two methods of automated species delimitation, one
based on genetic distance (automated barcode gap discovery
[ABGD]) (14) and the other based on an evolutionary model
(generalized mixed Yule coalescent [GMYC]) (15). Using a con-
servative consensus across genes and delimitation methods, our
analysis suggests that as many as one-third of the species
included in the consensus analysis contain undescribed species
(SI Appendix, Fig. S2). While preliminary species assignments
support previous claims (7) that global mammal diversity
remains substantially underdescribed despite a lengthy history of
taxonomic effort, a global view of where these hidden species
can be found revealed no obvious geographic patterns apart from
the observation that regions with high species richness contain a
greater number of potentially hidden species (Fig. 3 and SI
Appendix, Fig. S3 and Table S1). However, our finding that the
majority of hidden species are likely to be found in three orders
(Chiroptera, Rodentia, and Eulipotyphla) is consistent with
recent species descriptions in class Mammalia (17) (SI Appendix,
Fig. S1) as well as earlier predictions as to which clades were
most expected to contain large numbers of undescribed species
(e.g., refs. 9–11) (see Dataset S5 for sequence divergence results).
While the number of hidden species predicted by our delimita-
tion analyses are congruent with the magnitude of earlier esti-
mates of the number of undescribed mammal species (e.g., refs.
9–11), our delimitation analysis represents the most comprehen-
sive exploration of this question to date.

IDENTIFY PREDICTORS 
OF HIDDEN DIVERSITY

1
SPECIES

1
SPECIES

>1
SPECIES

>1
SPECIES

Fig. 1. Predictive modeling workflow. The framework proposed for identifying named mammal species that are likely to contain hidden diversity utilizes
barcoding gene sequences and machine learning models built from environmental, geographic, climatic, taxonomic, and life history variables.
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Predictors of Hidden Diversity in Mammals. The uneven dis-
tribution of hidden diversity indicated by our delimitation
results implies that it may be possible to predict which clades
harbor hidden species. To accomplish this goal, random forest
classification was utilized to develop a predictive model using
the geographic, environmental, morphological, taxonomic, and
life history traits as predictive variables. For each random forest
analysis, we used 80% of our data to train the model and
reserved the remaining 20% as a test set to evaluate prediction
accuracy of the resulting model. The random forest analysis
based on this consensus estimate was able to predict hidden spe-
cies of mammals with >80% accuracy (SI Appendix, Table S2B),
a relatively high value for an analysis of this type (18).
The accuracy of the random forest prediction implies that

there may be specific trait complexes that identify recognized
taxa that potentially contain hidden species. Important predic-
tors include adult body mass, range size, and climatic variables
representing the temporal and spatial range of precipitation
across the species range (Fig. 4 and Dataset S6). Species identi-
fied as potentially containing hidden diversity have, on average,
smaller adult body mass (45 g to 135 g). Taxa identified as
potentially containing hidden species also tended to have larger
geographic ranges (trait “range area”; 1,270,799 km2 to
378,072 km2). Two climatic variables were important: Precipi-
tation range of the warmest quarter and isothermality. On

average, species identified as containing hidden diversity inhabit
regions that have more precipitation in the warmest quarter of
the year than do species that do not contain hidden diversity.
The other variable, the range of isothermality, which quantifies
the extent of day-to-night temperature oscillation relative to the
annual summer-to-winter oscillations, is also larger for species
identified as potentially containing hidden diversity. Intrigu-
ingly, two variables that partially quantify sampling effort, the
geographic dispersion of species occurrence records and the
number of recent publications that reference the species epithet,
both for the named species that is predicted to contain hidden
species, were also identified as important (Fig. 4).

Discussion

Predictors of Hidden Species in Mammals. As products of nat-
ural selection acting over thousands of generations, organismal
traits are vitally important to taxonomic classification. How-
ever, we found that such traits are generally not predictive of
hidden diversity in mammals. The notable exception is body
mass, as hidden species are significantly more likely to be found
in smaller-bodied taxa than larger-bodied taxa (Kruskal–Wallis
test; χ2 = 49.18; P = 2.3 × 10�12). It seems possible that this
trait is predictive because subtle morphological differences
among congeners are more difficult to quantify in smaller
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Fig. 2. Scope of the dataset. Genetic sequences for ∼70% of currently recognized mammalian species were obtained. All mammalian orders are repre-
sented, with 23 orders containing sequences from both COI and cytb and 4 having only sequences from cytb. (A) Circle plots reflect species representation
for the COI and cytb genes in each order. Dark bars represent the species present in the dataset and light bars represent species for which no genetic data
are available. (B) Blue bars represent the proportion of the sequence database represented by each order, and gray bars represent the proportion of recog-
nized species in each order. (C) A total of 3,205,630 geographic occurrence records were obtained for species present in the genetic database.
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mammals than they would be in larger species. The variable
“range area,” which is taken from the PanTHERIA database
(19) and measures the estimated size of the geographic range of
each species on the basis of species descriptions in the taxo-
nomic literature, is nearly as predictive as body size (Fig. 4).
Hidden species are more likely to be found in recognized taxa
with large ranges than those with small ranges (Kruskal–Wallis
test; χ2 = 98.35; P < 2.2 × 10�16). Other predictors include
climatic variables such as the range of isothermality, which
describes the oscillations in daily and annual temperature, and
precipitation during the warmest quarter. Hidden species are
more likely to be found in taxa whose geographic range
includes high isothermality and high precipitation range in the
warmest quarter of the year (SI Appendix, Table S7). These cli-
matic variables potentially are predictive because together they
identify recognized taxa with geographic ranges expected to
contain high variance in local habitat conditions, which may
lead to the formation of genetic structure, either via habitat
instability or local adaptation. However, since they are also
characteristic of portions of the wet tropics, it is possible that
the latitudinal gradient in mammalian species richness contrib-
utes to the identification of these variables as predictive. While
this positive relationship (i.e., species richness and the number
of hidden species) is expected since any hidden species as
defined here exists within some named species, further analysis
demonstrates that Southeast Asia contains the greatest propor-
tion of hidden species relative to its species richness (SI
Appendix, Fig. S5).
In addition to the organismal trait and climatic variables,

two variables associated with sampling effort have high predic-
tive value. Hidden species are predicted to exist in taxa with a
high number of occurrence records in genera who have been

more represented in recent publications in the taxonomic litera-
ture. To a large extent, both variables reflect sampling effort.
Our finding that these sampling effort variables (i.e., “recent
publications” and “occurrence area”) have predictive value
implies that the very taxa that have been the focus of previous
research are more likely to contain hidden species. We interpret
this as evidence that taxonomists working in mammal systems
are generally aware of our finding that small-bodied mammals
with large geographic ranges are likely to contain hidden spe-
cies. Most species descriptions in mammals since 1992 have
occurred in systems matching the general characteristics (i.e.,
small body size, large ranges, high isothermality) identified by
our predictive model (9). Although our results are consistent
with earlier efforts (e.g., refs. 11, 17), they provide quantitative
evidence that taxonomists are actively researching the clades
where undescribed species are likely to be found.

Broader Implications. The identification of sampling effort
variables as predictive has broad implications beyond class
Mammalia. An accurate implementation of the random forest
algorithm for machine learning requires that observations are
balanced across the response variables (i.e., here that there is a
substantial proportion of recognized taxa that contain and do
not contain hidden species). Since mammals are a well-studied
clade, there exist sufficient data in public databases to conduct
this analysis and to build a predictive model with high accu-
racy. However, we know of no reason to think that the taxono-
mists working in class Mammalia are outliers in terms of their
abilities to identify and describe species. Rather, we suspect that
there have been more taxonomists working in mammals in pro-
portion to the actual species diversity in the clade than in
hyperdiverse clades such as beetles or mites.

PREDICTED SPECIES RECOGNIZED SPECIES

Fig. 3. Consensus results of species delimitation analyses. Phylogenetic distribution of hidden diversity estimated from strict consensus of delimitation
results (SI Appendix, Table S1). Each silhouette represents a mammalian order with its shadow reflecting the ratio of predicted species to recognized species.
Striped silhouettes represent orders with conflicting delimitation results that were not included in the predictive analysis. Phylogeny was adapted from ref. 31.
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While the popular conception of species discovery consists of
scientific expeditions to remote regions, specimens from many
undescribed species are already present in natural history collec-
tions (20). Our results support earlier conclusions (4, 7, 9) that
taxonomic work is far from complete even in well-studied
clades such as class Mammalia. By extrapolation, our predictive
model supports calls for a substantial investment in taxonomy
across the tree of life (e.g., ref. 21). A broad-scale analysis of
available sequence data from barcoding genes can provide
researchers predictions about the clades that are likely to con-
tain undescribed species, and these results broadly justify the
allocation of resources to conduct additional taxonomic work
(22, 23). For example, the >6.0 × 106 sequences from barcod-
ing genes in >2.0 × 105 recognized insect species suggest that a
study similar to ours could be conducted in class Insecta.
The delimitation methods used here rely on genetic species

concepts that are based either on genetic distance among puta-
tive species (14) or on a coalescent model (15). Such methods
are similar in spirit to earlier proposals that identified hidden
species by calculating sequence divergence in mitochondrial
genes, for example our results are broadly congruent with the
range of ∼3 to 7% suggested by one previous study (11). How-
ever, mitochondrial data are most appropriate for initial surveys
(e.g., ref. 24) and should not form the sole basis for species
description in mammals, despite the routine use of similar con-
cepts in other clades (25). Single-locus methods for species
delimitation are practical in analyses with hundreds of species
and thousands of sequences (24) and thus represent an impor-
tant part of the species discovery pipeline (5) even if analyses
based on single-locus genetic markers can fail to recognize cryp-
tic species under certain conditions (26, 27). The widespread
availability of barcoding gene data makes them particularly
cost effective for a large-scale assessment of hidden biodiversity
that can supplement taxonomic description (5). The predictive

modeling approach developed here is not intended to replace tra-
ditional species description, which requires considerable expertise,
but to aid in such efforts by identifying clades where such work is
most needed.

Conclusions. Our work supports published syntheses, which
suggest that many mammal species are undescribed (9–11) and
demonstrates that an accurate prediction can be made regarding
where hidden species are likely to be found. This finding is
attributable to the analytical framework developed here. While
our results contradict previous research, which argued that hid-
den species were idiosyncratic in their characteristics (6), it is
broadly congruent with suggestions that species-rich regions at
low latitudes contain the bulk of the hidden diversity in class
Mammalia (e.g., ref. 7) (SI Appendix, Figs. S4 and S5). Previ-
ous syntheses on this topic relied on metaanalysis, which is
appropriate for literature synthesis (28) but of limited utility for
prediction. Automated data repurposing, where existing data are
reanalyzed with the goal of fostering new insight (12), can lever-
age the massive amount of information present across hundreds
of databases in the biological sciences. Predictive analyses comple-
ment investigations that are conducted on a localized scale (29).
Our results indicate that traditional taxonomic research is effec-
tive, as taxonomists have long suspected that hidden species in
mammals are likely to be found in small-bodied species with large
geographic ranges (e.g., refs. 9, 17). Our finding that two varia-
bles, which quantify sampling effort are among the most predic-
tive in our analysis (Fig. 4), suggest that the Linnean shortfall in
mammals can be overcome with a greater investment in taxo-
nomic research. If one is willing to accept that class Mammalia
has historically received a disproportionate amount of taxonomic
effort relative to the actual number of species as compared to
groups such as arthropods, then more broadly our results indicate
that the Linnean shortfall can be addressed across the tree of life
with concerted effort and increased funding. Our study reinforces
existing calls for a greater investment in taxonomic research (21,
30), particularly in understudied and undescribed taxa facing
quiet extinction (31). It suggests that hidden species exist in pre-
dictable places, waiting for formal description.

Materials and Methods

Genetic Data Acquisition and Record Processing. We downloaded all
available mammalian DNA sequences for the mitochondrial genes cytochrome-c
oxidase I (COI) and cytochrome-b (cytb) from the NIH genetic sequence data-
base, GenBank, after which we followed the basic genetic preprocessing pipeline
outlined by Upham et al. (32). For each gene, we grouped sequences by species
and then manually checked all species records for errors (e.g., subspecies, dupli-
cates, extinct species, etc.; see SI Appendix, Fig. S4 for initial data processing
pipeline). To ensure standardization across groups, we updated all sequence tax-
onomy to reflect that of the Mammal Diversity Database (MDD) published by the
American Society of Mammologists (17) (Dataset S1 for MDD taxonomy and
Datasets S2 and S3 for list of taxonomic updates).

Multiple Sequence Alignment and Sequence Evolution Models. Follow-
ing taxonomic standardization, we grouped sequence records for each gene by
family and generated multiple sequence alignments for COI and cytb indepen-
dently using MUSCLE v3.5 (33). We then visually inspected each family-level
alignment for gaps and removed problematic sequences causing severe gaps or
misalignment that could not be resolved through reverse complement or man-
ual correction. In order to maximize downstream computational efficiency, we
trimmed sequence ends that contained no variation and split alignments con-
taining over 2,000 sequences into subgroups of related taxa using high-level
taxonomy (i.e., subfamily, tribe, genus; see SI Appendix, Table S3 for final group-
ings). Finally, we determined best-fit models of nucleotide substitution for each
alignment using jModelTest2 (34).
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Fig. 4. Important predictors of hidden species in mammals. (A) From Top
to Bottom, the 50 most important predictive variables (judged by MDA), for
the consensus random forest classification model. In both plots, variables
are color coded by life history, geographic, climatic, taxonomic, and envi-
ronmental. (B) Boxplots representing values of the top predictive variables
for species included in the consensus model. Values from species identified
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PNAS 2022 Vol. 119 No. 14 e2103400119 https://doi.org/10.1073/pnas.2103400119 5 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

K
ay

 M
cL

au
gh

lin
 o

n 
A

pr
il 

12
, 2

02
2 

fr
om

 IP
 a

dd
re

ss
 1

44
.1

71
.2

20
.2

53
.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103400119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103400119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103400119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103400119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103400119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103400119/-/DCSupplemental


Species Delimitation and Hidden Species Estimation. We used two differ-
ent methods of species delimitation to estimate levels of hidden diversity within
groups of phylogenetically related mammals. Species delimitation was first done
using a likelihood-based method under the GMYC (15). We generated maxi-
mum clade credibility trees for each alignment using BEASTv2.5.0 (35). We then
used the resulting trees as input for the GMYC model from the “splits” R pack-
age (36) implemented in R v3.6.3 (37). Species delimitation was then repeated
using the distance-based delimitation method, ABGD (14). Pairwise genetic dis-
tance matrices used as input for ABGD were calculated for each alignment under
the previously determined best-fit model of sequence evolution (38) using
PAUP* (39). We used the delimitation results generated from both GMYC and
ABGD analysis of the genes COI and cytb to estimate the number of hidden spe-
cies suggested by the genetic data. To measure general agreement between
delimitation methods and genes while accounting for variation in the underlying
analyses and sequence availability, we generated a conservative estimate of
mammalian hidden diversity using a consensus of delimitation results for species
in which results from all analyses agreed. Additional information regarding con-
sensus model and species delimitation methods can be found in SI Appendix.
Predictor variables. For each recognized species, we explored a large number
of geographic, environmental, morphological, sampling effort, and life history
variables to determine whether any of these traits could be used to predict the
presence of hidden diversity in mammals. We first downloaded all geographic
coordinates for class Mammalia from the Global Biodiversity Information Facility
(GBIF) (see Dataset S6 for a list of GBIF DOIs) and used these to extract data
from several geographic information system (GIS) layers, including elevation
(40), the 19 BIOCLIM layers at 1-km resolution pertaining to temperature and
precipitation available from the WorldClim database (41), population density
(42), gross domestic product (43), light pollution (44), protected areas (45),
anthropogenic biomes (46), and GlobCover by the European Space Agency (47).
We used the following R packages to extract information from these layers on a
species-by-species basis: “geosphere” (48), “raster” (49), “rgdal” (50), and “plyr”
(51). In addition to data generated from occurrence records and GIS layers, we
included several morphological, geographic, and life history traits gathered from
the PanTHERIA database (51), including adult body mass (in grams), diet
breadth, habitat breadth, terrestriality, trophic level, litter size, actual evapotrans-
piration, potential evapotranspiration, geographic range area (in square
kilometers), maximum latitude of range, minimum latitude of range, midrange
latitude of range, maximum longitude of range, minimum longitude of range,
midrange longitude of range, mean population density (number per square
kilometer), population density minimum (number per square kilometer), and
population density (change). Finally, we generated a set of variables from the
taxonomic species description literature to act as a proxy for sampling effort by
performing a literature search using the R package “wosr” (52) to query Web of
Science and estimate various publication-related metrics on a species-by-species
basis. The dataset building process is described in full detail in SI Appendix.

Predictive Modeling and Variable Importance. Machine learning was used
to identify traits that predict the presence of hidden lineages within currently

recognized species. We used random forest analysis, an approach that utilizes
multiple decision trees to predict the response (presence or absence of hidden
diversity) based on many potential predictor variables (16, 18). In order to
avoid bias induced by correlation among predictor variables, each individ-
ual decision tree consists of a subset of the data and a random ordering of
variables at the nodes. The importance of each variable is determined by
either measuring the quality of the prediction after the removal of each vari-
able in the predictive function (measured by mean decrease in accuracy
[MDA]) or by summing over the number of splits that include each variable
across all trees, weighted by the number of samples being split (measured
by Gini importance [Gini]). We used the R package “caret” (53) to build a
random forest classification model for each of our four delimitation results
(ABGD COI, ABGD cytb, GMYC COI, and GMYC cytb) as well as our strict con-
sensus model. We explored each random forest model using a series of the
independent variables mentioned above (see Dataset S3 for a list of varia-
bles used in final machine learning models). For each analysis we gener-
ated 1,000 decision trees, using 80% of our data as a training set and
reserving the remaining 20% as a test set to evaluate prediction accuracy of
the resulting model. Within each model, we used 10-fold cross-validation
with five repeats to tune the parameter mtry, the number of variables ran-
domly sampled as candidates at each split, by optimizing model specificity,
sensitivity, and area under the receiver operating characteristic curve. The
optimal mtry value was then used to generate the final model, from which
variable importance measurements (MDA and Gini) were extracted (Dataset
S6). We then applied this model to the remaining test set data to evaluate
model accuracy, positive predictive value, negative predictive value, and
model error.

Data Availability. Genetic and geographic data have been deposited in Dryad
(https://doi.org/10.5061/dryad.b2rbnzshp). Code related to this manuscript,
including DNA sequence alignments, analysis files, trait data, and machine
learning input files have been deposited in GitHub (https://github.com/
parsons463/HiddenDiversity). All other data are available in the manuscript and/
or supporting information.
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