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Computational path planning approaches can enable development of autonomous rehabilitation and
assistive exoskeletons. Using a human-like reference behavior for such wearable systems can ensure
safe, effective, and intuitive human-robot interaction. This is of significant importance since the quality
of interaction and ergonomic considerations have a substantial effect on technology usability and
acceptance by the users. This paper proposes a novel framework for generating human-like paths
for wearable exoskeletons in the shoulder-elbow level. The introduced method is a two-stage process
where a human-like reference path is planned in the configuration space of the human arm, followed
by an analytical transformation that directly maps the derived path to the configuration space of
the exoskeleton. The analytical mapping presented is a function of the kinematic parameters of the
system and can be adapted for other upper-limb exoskeletons. As a case study, the proposed method is
used for generating human-like reference motions for a six-degree-of-freedom exoskeleton supporting
scapulohumeral rhythm, glenohumeral rotations, and elbow flexion/extension. Firstly, it is shown that
reaching motions associated with activities of daily living can be predicted with high accuracy in the
human joint space. This is demonstrated by analyzing the experimental data collected from healthy
subjects. Subsequently, it is verified through kinematic analysis that the transformation of generated
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paths to the exoskeleton configuration space does not alter their spatial profile in the task space.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Upper-limb exoskeletons have proven to be a promising tech-
nology for assistive purposes, occupational applications, and re-
habilitation of motor impairments [1,2]. In all these applications,
achieving an intuitive and ergonomic interaction between the
exoskeleton and the user is a critical criterion for usability, accep-
tance, and potentially the effectiveness of the system [3-5]. A core
requirement for realizing such an interaction is the capability of
the system in producing natural and human-like movements [6].
This is especially important for therapeutic exoskeletons where
the robot has a more dominant role in controlling and correcting
the motions of the limb based on a prescribed reference behav-
ior [7,8]. Currently, therapists are responsible for devising the
training motions, however, the effectiveness and autonomy of a
robot-based therapy can be significantly improved by utilizing
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a human-like reference motion generation algorithm which can
be adjusted based on individual patients’ conditions (e.g. range
of motion, spasticity level, etc.). It can be argued that such a
feature can be very useful for assistive systems as well [9,10].
Human-like motion generation along with high-level intention
detection algorithms are essential for achieving autonomous as-
sistive technologies that can be integrated into the daily lives of
the disabled.

Various methods have been used in the literature for reference
motion generation of exoskeletons. Using the recorded motion of
the affected limb moved by a therapist is a common approach.
In this method, the motion of a healthy individual is recorded
by a motion capture system [11,12], or by an exoskeleton at-
tached to the patient and back-driven by the therapist [13]. In
a similar approach, mainly used in bilateral systems, the mo-
tion of the healthy side of the patient can be mirrored on the
affected side [14,15]. These methods necessitate the presence of
a therapist to move the patient’s arm to generate every motion
or require additional equipment such as bilateral exoskeletons,
motion capture systems, and a technician familiar with the equip-
ment. These restrictions limit the application of exoskeletons to


https://doi.org/10.1016/j.robot.2021.103843
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2021.103843&domain=pdf
mailto:rana.soltani@tamu.edu
https://doi.org/10.1016/j.robot.2021.103843

R. Soltani Zarrin, A. Zeiaee, R. Langari et al.

clinical settings rather than potential home-based options and
increase the cost and complexity of the systems. To address
the aforementioned limitations and to automate the path gen-
eration process, computational approaches could be used [16].
Computational models are grounded on theoretical studies on
motion generation principles of the human Central Nervous Sys-
tem (CNS). The majority of these computational models use an
optimization-based approach in accordance with the hypotheses
that CNS plans the upper limb motions such that a specific cost is
minimized. Motion jerk in task space [17-19], angular jerk [20],
squared change of the joint torques [21,22], work done by joint
torques [23], peak work [24], and energy [25] are examples of the
cost functions studied in the literature.

Among the diverse sets of computational models, Minimum
Jerk (M]) in task space has been widely adopted for motion plan-
ning of upper-limb exoskeletons [17,18,26]. This can be partially
attributed to the computational ease of planning motions in task
space without the need to consider the specific kinematic and
dynamic properties of the actual robot. However, due to the
redundant nature of human arm kinematics, utilizing a task-space
path planning strategy necessitates use of an additional algorithm
for resolving redundancies. Another model used in the literature
for exoskeleton motion planning is based on minimizing the
squared derivative of joint trajectories [27]. This choice of the cost
function results in minimum distance paths in the configuration
space (MDC) and is therefore computationally very efficient. It
should be noted that an MDC path in the configuration space (c-
space) of an exoskeleton is not necessarily equivalent to the MDC
path in the configuration space of the human arm model (except
for exoskeletons whose shoulder joint axes align with the biologic
axes of the human shoulder [28]). As a result, constructing a
straight line between the initial and final poses of the exoskeleton
does not always result in an MDC path for the human arm [11].
This issue prevents the direct use of computational models for-
mulated in the c-space of the human arm for motion generation
in exoskeletons.

This paper introduces a framework for solving the problem of
human-like motion generation in upper-limb exoskeletons. The
proposed framework is a two-stage process where a human-like
reference path is generated in the configuration space of the hu-
man arm first. Supporting Scapulohumeral Rhythm (SR) and spa-
tial similarity of the generated motions to the healthy motion pat-
terns (in task space as well as human joint space) are the human-
like qualities considered. To this end, first a computational model
is developed by integrating inner shoulder models into the min-
imum kinetic energy path-generation algorithm in Riemannian
space. The second stage involves transforming the generated
path using an exoskeleton-specific transformation developed for
mapping the c-space of the human arm to the exoskeleton’s
c-space. This mapping between the two spaces is derived us-
ing analytical geometry and is named Geometric Equivalence
for Anthropomorphic Arms (GEAA). The proposed path genera-
tion approach is applied to a six degrees-of-freedom upper-limb
exoskeleton (CLEVERarm [29]) which supports scapulohumeral
rhythm, humeral rotations and elbow flexion/extension. To val-
idate the effectiveness of the proposed GEAA transformation, it is
shown that kinematic characterizations of the transformed trajec-
tory and the outputs of the underlying computational model are
equivalent. Additionally, through an experimental approach, it is
shown that the outputs of the proposed framework bear a strong
resemblance to the natural motions of the arm. It is important
to note that the proposed method can be adapted for use on
other upper-limb exoskeleton with different kinematic structure
and supports the use of different computational models. This
paper is organized as follows: Section 2 presents the terminology
used and outlines the two-stage path generation algorithm in
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Table 1
Nomenclature of the proposed framework.
Symbol Description
Xy Wrist (hand) position
XCH Glenohumeral joint center position
qy Human arm configuration
q. Exoskeleton configuration
Qy Human arm configuration space
Q. Exoskeleton configuration space
e, Direction of the upper arm
I Forward kinematics function
f! Inverse kinematics function
h Inner shoulder model
T Transformation between configuration spaces
0 Elevation of the arm
A Path parametrization variable
y Swivel angle
B Geometric parameters of the exoskeleton
Table 2
List of acronyms.
Acronym Full word
CNS Central Nervous System
GH joint Glenohumeral joint
SR Scapulohumeral Rhythm
MDC Minimum Distance path in C-space
GEO Geodesic Curves
ADL Activities of Daily Living
HPDI Hand Path Deviation Index
RMSE Root Mean Square Error

a conceptual level, Section 3 presents the motion planning in
human configuration space, Section 4 demonstrates construction
of the GEAA mapping for a six degree of freedom exoskeleton. The
data collection procedure, simulation and experimental results,
and quantitative analysis of the acquired data are presented in
Section 5. Finally, Section 6 concludes the paper by reviewing the
main contributions and findings of the paper.

2. The proposed framework

The motion generation problem considered here focuses on
the elbow-shoulder coordination. Additionally, the problem is
formulated for the general case of upper-limb exoskeletons which
do not necessarily have biologically matching shoulder axes and
can include the inner shoulder motions as well. The nomenclature
required for introducing the framework are presented in Table 1,
where the bold-face font denotes vector quantities. Additionally,
Table 2 presents a summary of the acronyms used throughout the
paper.

Based on the introduced nomenclature, it is evident that the
forward and inverse kinematics functions for the human arm
model, f}, and fh’l, satisfy the following equations:

X, =fn(qy)
qy =f!71(xw)

Additionally, the inner shoulder model, h, is a vector function
which relates the elevation of the arm to the position of the
Glenohumeral (GH) joint center:

xcu = h(0) (2)

(1)

Phase I — Generate a human-like motion profile

A computational model outputs a sequence of poses for the
human arm model, which can be parametrized with a (unit-
less) scalar variable A € [0, 1]. Output motion profile of the
computational model is defined as:

Sap 2 {@h(A) € QI 4(0) = G, Fr(@x(1)) = %7 (3)
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where X; and q, are the final position of the hand and the initial
configuration of the arm, respectively.

Phase Il — Transform the motion profile to the configuration space
of the exoskeleton

The objective sought is development of a transformation,
T(B, h) : Q4 — Q., which can be used to construct a task-space
equivalent of Xg, in Q:

Zo & {qe(k) € Qe| VA 1 q(A) =T(qu(A) € EQh)} (4)
such that
Vi fu(gn(d) € Xq,) =Fe(q.(1) € Xq,) (5)

The fundamental idea for the development of this transforma-
tion is that both systems (human arm model and exoskeleton),
represent the same kinematic entity, i.e. directions of the upper
arm and forearm, with different representations:

e.(q,) = eq(q,) (6)

Thus, the two configuration spaces can be related to each
other through a transformation. The GEAA method proposed in
this paper employs the Denavit-Hartenberg (DH) convention to
construct this mapping. In this method, the equivalence of up-
per arm and forearm directions when expressed in the same
coordinate frame, along with the knowledge on the geometry
of the exoskeleton is used to identify the loci of rotation axes
for the exoskeleton joints. The rotation axes are then used to
construct the DH coordinate frames and the configuration of the
exoskeleton.

3. Human-like motion generation in human arm configura-
tion space

Supporting the scapulohumeral rhythm and spatial similarity
of the generated motions to the healthy motion patterns (in task
space as well as human joint space) during three-dimensional
large arm movements, such as Activities of Daily Living (ADL), are
the desired human-like attributes considered in this work. Most
upper-limb motions during the activities of daily living involve
large ranges of movements and require elevation of the arm.
Elevation of the arm results in the movement of the center of the
Glenohumeral (GH) joint through the SR. Neglecting this motion
in path generation and assuming the shoulder center to be fixed
can result in joint misalignment between the exoskeleton and
the human body, making the physical interaction uncomfortable
for the user. To support the SR, the coupling between the inner
shoulder motions and arm elevation needs to be integrated into
the formulation of the computational model generating the arm
motions. In this paper, a model relating the movements of the
GH center and the arm elevation is developed and employed.
The details of the model will be discussed at the end of this
section. The underlying computational model used in this work
is Geodesics in Riemannian space [25,30]. This approach is based
on minimizing the kinetic energy of motion and therefore, incor-
porates inertial properties of the arm, believed to be important
in path generation [30,31], within the planning algorithm. In this
formulation, the kinetic energy of the motion is linked to the path
length, making kinetic energy minimization equivalent to find-
ing the minimum-length paths. Experimental studies involving
healthy subjects have shown the success of geodesics compared
to other models, such as minimum torque and minimum jerk, in
modeling point-to-point reaching motions [25,32,33].

Fig. 1 illustrates the model of a human arm used in the
formulation of the problem, where q = (6,1, ¢, ¢) denotes
the configuration of the arm, and 9, 7, ¢, ¢ represent elevation,
azimuth, torsion angle of the shoulder, and flexion of the elbow,
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Fig. 1. Human arm model with inner shoulder.

respectively. In this model, azimuth () is defined as the angle
of the projection of the arm on the x-y plane measured from
the positive y axis. Moreover, x,,, X, and X, represent the wrist,
elbow, and shoulder positions, respectively; whereas I, and I
are the upper-arm and forearm lengths. The DH parameters used
to derive f;, and inverse kinematics mapping, fh_l, for this arm
model are included in Appendix A. For a Riemannian manifold Q
with the metric M (mass-inertia tensor of the arm model), the
geodesic path can be found by solving the following two-point
boundary value problem, also known as the geodesic equation:

d*q, dq, . dq,
M(q,) == + C(q,, —2)—2= =
@)z 6@ ) )

,(0) = o, qu(1) = ;' (x,))

where M and C denote the mas-inertia and Coriolis matrices.
Definitions of these matrices and the derivation of the geodesic
equation are discussed in Appendix B of the paper.

As (7) shows, solution of the geodesic equation depends on the
final configuration of the arm. However, using inverse kinemat-
ics to determine q;(1) is not straightforward and a redundancy
resolution algorithm is needed due to the redundancy of the arm.
Parametrization of all the inverse solutions using the swivel angle
y, as shown in Fig. 1, is a common approach to structure the
problem [25]. Each y value determines an elbow position, and
therefore a unique inverse kinematics solution. Finally, solving
the geodesic equation for each feasible y value (i.e. final pose of
arm), yields a family of geodesics. The redundancy resolution ap-
proach used is the minimization of the curve kinetic energy [25]:

-l 1
minj = 3 / s ) MO, )0 s 7 ) (8)
0

Considering the scapulohumeral rhythm in arm motions adds
another layer of complexity to the inverse kinematics problem.
The increased complexity is due to the fact that the final config-
uration of the arm found through the inverse kinematics deter-
mines the position of the shoulder center, and the shoulder center
position affects the solution of the inverse kinematics problem.
Therefore, solving inverse kinematics problem requires finding
the fixed-point of this interdependent relationship, given the
range of motion constraints specific to each subject. To address
this issue, this paper proposes an optimization-based approach
where for each y, inverse kinematics is solved as a constrained
optimization problem formulated as follows:

{miﬂ J = llgy(1) — £~ (& — h(gy(D)))
qn(1)
s.t. qh(l) € theasible

where [ is the set of feasible configurations for the arm
model, determined based on the achievable range of motion of

(9)
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Table 3
Biologic joint limits.
0 n ¢ %
Max b4 —7'[/6 ;ext(e’ 77) T
Min 0 —5m /4 Sine(0, 1) 0
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400 [ -

¢ (degree)
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100
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Fig. 2. Biological joint limits for internal and external rotations of the shoulder.

human upper extremity. The average feasible range of motion for
healthy subjects are summarized in Table 3. It is important to
note that biological limits for the internal and external rotations
of the shoulder depend on the elevation and azimuth angles [34],
and are demonstrated by two surfaces in Fig. 2.

To account for the shoulder center movement in the path
planning problem, in this work an inner shoulder model is de-
veloped based on the recorded kinematic data of shoulder girdle
movement during humeral elevation. This model describes the
position of the GH joint center in spherical coordinates as follows:

dsg €os (@eq) oS (@pr)
h(0) = | —dsg cos (@eq) sin (¢pr) (10)
dsc Sin (@eq)

where the parameters used in this model are shown in Fig. 1. In
this model, similar to [35], the elevation/depression inclination,
@ed, 1S the angle between the projection of dsg on the frontal
plane during movement relative to its projection on the frontal
plane in the reference position. Reference position is when the
arm with relaxed shoulders is fully extended downwards by the
side of the body and the palm is facing the body. Similarly,
the protraction/retraction inclination, ¢, is the relative incli-
nation of the projection of dsc on the horizontal plane. Fig. 3
shows the captured data from 10 healthy subjects performing
unilateral humeral elevation in the humeral reachable workspace
on the frontal and sagittal planes and the two anterior planes
located in 45° with respect to them. Vicon motion capture system
and its reflective markers were used for tracking the motion of
anatomical land-marks. Details of experimental protocol used for
data collection are provided in Section 5. Following an empirical
modeling approach, the function describing the inner shoulder
motion is calculated as follows:

%S—OG =93 x10780% —2.36 x 107°6% — 4.21 x 10746 +- 1

Ped = 4.34 x 107°6% — 3.21 x 107°0% + 0.10 — 0.06

@pr = —5.28 x 10770% +7 x 107°6% — 3.92 x 10739

+0.046 + 0.13

(11)
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where dg is the value of dsc when 6 = 0. This parameter needs
to be updated based on the body measurements of individual
subjects.

4. Transformation of the generated motion to the exoskeleton
c-space

This section outlines the derivation of GEAA for a six degree of
freedom exoskeleton (CLEVERarm [29]) which supports scapulo-
humeral rhythms, humeral rotations and elbow flexion/extension
through actuated joints. The GEAA method at a conceptual level
along with the DH coordinate frames needed to construct GEAA
are shown in Fig. 4. With a known configuration of the arm,
q,, forward kinematic equations can be used to determine the
direction of the upper-arm, e,. Considering that the directions of
upper-arm and forearm are the same between the two systems,
analytical geometry techniques can be used to reconstruct the
configuration of the exoskeleton.

Inner shoulder configuration is determined independently
based on the inner shoulder model, h(6), and elevation of the arm
(6 in qy). For the CLEVERarm, the rotation of the revolute joint 1
and translation of the prismatic joint 2 can be directly calculated
from (11), i.e, geq and dsc. For other exoskeletons with different
inner shoulder design, inner shoulder configuration can be found
by solving the inverse problem for the shoulder center data.

To construct the transformation for the shoulder degrees of
freedom, upper-arm direction (e;) needs to be determined. Using
forward kinematic equations, f}, the direction of upper-arm in
the base coordinate system can be expressed as:

e, = [sinnsin6, cos nsinf, — cos O] (12)

With a known inner shoulder configuration, the axis of rota-
tion of the first shoulder joint (z;) can be found as:

z,=R.[0 0 1] (13)

where R denotes the rotation matrix between base frame and
frame 2. The locus of the rotation axis of the third shoulder
joint (z4) is a cone resulting from the rotation of z4 around
the upper-arm direction vector (e,), as shown with a red cone
in Fig. 5. Let B denote the angle between the consecutive axes
of rotation for shoulder mechanism. Using this parameter, the
locus of the rotation axis of the third shoulder joint (z4) can be
mathematically represented as an inner-product equation:

(24, €q) = cos(B(1)) (14)

Based on the DH coordinate assignment, z4 is co-located on
a plane formed by the axis of rotation of elbow, zs, and e,. This
plane is denoted by P; in Fig. 5, and can be defined by its normal
vector, n, which can be determined as follows:

n=e; X2zs (15)

The rotation axis of the elbow, zs, used in the above equation
can be directly determined by the internal/external rotation of
the shoulder, ¢. The intersection of the conic locus of z4 with the
P; plane determines the rotation axis of z4. Thus, z4 can be found
by solving the following second-order algebraic equations:

(z4,m) =0
(24, €) = cos(B(1)) (16)
llz4ll = 1

With known z; and z, axes, z; can be determined by inter-
secting the two conic loci formed by rotation of z5 around z, and
z4. Fig. 6 shows these loci where the blue cone is created by the
rotation of z3 around z, axis, and the green cone is formed by
rotation of z3 around the z, axis. The procedure of identifying
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Fig. 3. Model describing the motion of shoulder girdle (a) elevation/depression, (b) protraction/retraction, (c) length change by humerus elevation..
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Fig. 4. Configuration spaces of the exoskeleton and human arm..

Fig. 5. Locus of 3rd shoulder joint.

z3 is mathematically equivalent to solving the following set of
equations:

(22,23) = cos(B(2))
(24, 23) = cos(B(3))
lz3ll =1

(17)

As mentioned earlier, the 8 parameters in Egs. (16) and (17)
represent the angle between the consecutive axes of rotation
for shoulder mechanism. The generality of this set of equation
therefore enables adopting the proposed approach for other ex-
oskeletons with different shoulder design. For CLEVERarm, the
vector of geometric parameters S is:

B=[125 70 100] (18)

Bs= 100

Fig. 6. Geometric representation of loci of 2nd shoulder joint.

The direction of each joint’s axes of rotation, i.e. z;, can be
used for reconstructing the DH chain, i.e. ¥; and y; for individual
frames. The x axes for the second and third shoulder joints as
well as for the elbow can be found based on the DH coordinate
convention which requires every x; to be perpendicular to z;_;
and z;, i.e.,

X3 =2Z) X Z3
Xy =23 X 2Z4
X5 = 2Z5 X 24

(19)

Additionally, x, can also be calculated directly using the rota-
tion matrix R as follows:

x=RJ.[1 0 0] (20)

Configuration of the exoskeleton, i.e. q,, can be found based
on the angle between the x axes of consecutive DH frames.
Additionally, the direction of rotation (i.e. sign of rotation angles),
can be determined by direct substitution, i.e., a rotation of g;
degrees about z; axis should transform x;_; to x;.

(Xi_1, X;)
2 Il 112l
Finally, the transformation for the elbow joint between the
two spaces is trivial as shown in Fig. 4:
b4

QGZE_W

il = (21)

(22)
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Table 4
Marker names and locations on body.

Symbol Marker location

SIN Sternum Jugular Notch

cv7 Cervical Spine Vertebra 7

RCAJ Right Clavicle-Acromion Joint

RHGT Right Humerus Greater Tubercle
RHLT Right Humerus Lesser Tubercle
RHLE Right Lateral Epicondyle of Humerus
RHME Right Medial Epicondyle of Humerus
RRSP Right Radius-Styloid Process

RUSP Right Ulna-Styloid Process

The computational cost of the proposed transformation is
equivalent to solving two quadratic equations, i.e. (16) and (17).
The alternative approach for constructing an angular path in the
c-space of the exoskeleton which is equivalent to the output
of the computational model, involves solving inverse kinematics
problem. However, the method proposed in this paper is more
efficient and less complex than the standard approaches for nu-
merically solving the set of coupled nonlinear equations arising
in inverse kinematics problem. It is noteworthy that GEAA can
in fact be used as a stand-alone algorithm for solving inverse
kinematics problem for upper-limb exoskeletons [36].

5. Simulation and experimental results

To develop the inner shoulder model, shoulder girdle kine-
matic data of healthy subjects performing unilateral arm motions
were recorded using a motion capture system. Additionally, to
evaluate the effectiveness of the proposed motion generation
method, motions of healthy subjects performing a class of ADL
motions were captured with the same system and compared with
the algorithm outputs. The motion capture system used consisted
of three 2.2 Megapixel Vicon optical camera (330 frames per sec-
ond at full frame) and reflective markers. For solving the Geodesic
equations MATLAB’s (The MathWorks Inc.) built-in solver for
boundary value problems (4th order method) was employed.
Similar to any other boundary value problem, the choice of initial
conditions has an immense impact on the convergence of the
numerical solver. A multi-start approach was used in this work
to minimize the effect of initial guess on the simulation results
as much as possible.

5.1. Experimental protocol

Ten right-handed healthy subjects (2 female and 8 male) with
an average age of 31 years (standard deviation of 5 years) with
no history of upper-limb impairments voluntarily took part in
the experiments. The experimental protocol was reviewed and
approved by the Texas A&M IRB board (IRB 2016-0387D) prior
to the experiments. Informed consent was received from every
subject. For each subject, weight, height, upper-body dimen-
sions including the clavicle length, and limb dimensions were
measured. Before each experiment, the movements needed to
be performed by the participants, initial and final points for
each movement, and the general guidelines such as no trunk
movement were explained. Using two-sided adhesives, nine re-
flective markers were attached to the subjects’ skin according to
a standard marker placement method (Visual3D™ Modeling) as
shown in Fig. 7 and Table 4, with SJN showing the origin of the
reference coordinate system. Shoulder center was determined as
the centroid of the 3 markers on the shoulder.

Subjects were asked to perform 4 types of ADL motions:
reaching (to points located at two different heights), reaching
to the mouth (drinking/eating), reaching to the head (combing),

Robotics and Autonomous Systems 145 (2021) 103843

RCAJ .CV7 RCAJ
2 SIN 3
. 8, .
RHLT \ RHGT
RUA
L]
RHLE oRHLE
L] L]
RHME RHME
RRSP RRSP
o .RUSP RUSPq| 1@

Fig. 7. Marker placement (red marker is used for calibration). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. ADL motions performed by a subject. Left most figure on the top shows
the starting point of the movements, marked by a green label. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

and reaching to the opposite side of the body (washing body).
The starting point and wrist orientation for the motions were
fixed for all the subjects, and the initial and final points for each
movement were marked by colored labels. Final points, except for
the reaching motions, were slightly different due to the individual
body height and size differences and natural variations of human
motions. Subjects were asked to repeat each motion 30 times, so
a total of 1200 trials were performed. Fig. 8 shows one of the
subjects performing the motions.

5.2. Results and discussions

Figs. 9 and 10 present a comparison between the randomly
selected experimental data captured from different subjects and
the corresponding outputs of the proposed framework in task
and joint levels. Solid blue lines represent the experimental data,
while the green dashed graphs show the geodesic model outputs.
Task-level comparisons are expressed in the human arm base
coordinate system, while joint level comparisons are in the c-
space of the human arm (Phase I outputs of the algorithm). To
illustrate the importance of the underlying computational model
in generating human-like motions, in addition to using geodesics
in phase I, the proposed framework was also simulated with MDC
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Fig. 9. Typical examples showing the comparison between randomly selected experimental data (- blue) and computational outputs (- - green for geodesics, and -.
red for MDC models) for (a) eating and (b) reaching motions. For each motion, upper row shows the task level data, while the lower row presents the arm pose

comparison (Phase I outputs).

Table 5
Task space quantitative measures: mean (+ standard deviation).
RMSE HPDI
Eatin GEO 0.0801 (£0.0185) 0.1085 (+0.0238)
J MDC 0.0961 (+£0.0168) 0.1397 (+0.0228)
Reachin GEO 0.0153 (£0.0021) 0.0215 (£0.0034)
J MDC 0.1922 (+0.0171) 0.2671 (£0.0250)
Combin GEO 0.1291 (+0.0197) 0.1779 (£0.0270)
J MDC 0.1942 (£0.0117) 0.2745 (£0.0158)
Washin GEO 0.1225 (+0.0215) 0.1866 (+0.0341)
J MDC 0.1445 (+0.0337) 0.1965 (£0.0466)
computational model. Paths generated by the MDC model are follows:
presented by red dash-dotted graphs in Figs. 9 and 10. [ Zexo (1) — Zeomp(A]
A .. . exp comp 2
To quantify the similarity between the generated paths and HPDI = max L (23)

the experimental data, in addition to root mean square of the
error (normalized by the motion length), the coefficient of deter-
mination (r%), and the Hand Path Deviation Index (HPDI) values
were calculated. HPDI is a non-negative index, with higher values
showing less resemblance, which is defined as the absolute value
of the maximum task-space error normalized by the distance be-
tween the initial and final hand positions, L, [25]. Let Xey,(2) and
Ycomp(2) denote the experimental and computational task-space
motion profiles where A denotes the path parametrization index.
To quantify the similarity of two paths, HPDI can be defined as

For the 4 classes of motions for all the subjects, Table 5
presents the quantitative comparison between the 3D experimen-
tal hand paths and the corresponding paths generated by the
proposed framework using geodesics and MDC as the underlying
computational models. Table 6 shows the similarity of the same
paths when projected on the transverse, sagittal, and frontal
planes of the body. Similarly, Table 7 summarizes the quantita-
tive comparison between the experimental and computationally
generated joint space paths, whereas Fig. 11 evaluates the overall
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Fig. 10. Typical examples showing the comparison between randomly selected experimental data (- blue) and computational outputs (- - green for geodesics, and -.
red for MDC models) for (a) combing and (b) washing motions. For each motion, upper row shows the task level data, while the lower row presents the arm pose

comparison (Phase I outputs).

similarity of the computationally generated angular paths to the
experimental data across different subjects and tasks using a
scatter plot and the coefficient of determination associated with
it.

As the results show, our proposed method using geodesics
can in general generate motions with higher similarity to human
actual arm motions compared with other common methods like
MDC. The superiority of geodesics over MDC is more notable in
outward motions (i.e. reaching) as opposed to inward motions
(i.e. eating, washing and combing). However, when task-space
similarity indices are studied for 2D projections of the paths on
anatomical planes, the advantages of geodesics are less obvious.
While geodesics have a higher resemblance to the experimental
data when considered on transverse plane, they fall behind MDC
on sagittal plane for inward motions. Similarly in the configu-
ration space, ¢ has the smallest similarity index as shown in
Table 7, which is consistent with observations in [25]. These types
of prediction errors could be due to the numerical complexity of
solving boundary value problems describing geodesic paths, nat-
ural variations in scapulohumeral rhythm across different people,
modeling challenges associated with accurate determination of
the human arm inertial properties and range of motion, or the
unwitting change of subject’s wrist orientation which transpires
in complex motions involving large and interconnected motions

of shoulder and elbow. Further investigations on these obser-
vations, as well as path planning considering the orientation of
the hand to account for object grasping, which is particularly
important in activities of daily living, are parts of our future work.
The observed discrepancies could also indicate that complex arm
motions generated by the CNS might not be solely governed by
minimum energy or minimum length path principles. This con-
clusion is inspired by our observation that the minimum energy
paths are not necessarily the paths closest to the actual move-
ment, although there is correlation between the path energy and
its similarity to the experimental data. Fig. 12 is an example illus-
trating an eating motion trial in our study. The gray paths are the
family of geodesic curves computed for different swivel angles.
As shown in this example plot, the orange paths have the highest
similarity to the blue experimental data, but are different from
the minimum energy paths shown in green. This observation
suggests the possibility that in performing complex arm motions,
CNS selects paths based on a combination of different criteria,
one of which is the energy minimization. The aforementioned
numerical and experimental inaccuracies are the other potential
explanation. Further studies are needed for understanding these
observations better.

As another contribution of this paper, the effect of incorpo-
rating scapulohumeral rhythm in the motion planning algorithm
is presented in Fig. 13. The plot illustrates the distribution of



R. Soltani Zarrin, A. Zeiaee, R. Langari et al.

Quantitative comparison of task-space paths on transverse, sagittal, and frontal planes: HPDI mean (+ standard

Sagittal plane

Frontal plane

0.1004 (40.0213)
0.0584 (+0.0213)

0.1051 (£0.0229)
0.1342 (£+0.0225)

0.0206 (4-0.0042)
0.0897 (40.0092)

0.0194 (4-0.0065)
0.2613 (40.0248)

0.0600 (4-0.0067)

0.1644 (4+0.0387)
0.2686 (+0.0159)

0.1437 (40.0494)

0.1284 (+0.0435)
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0.0900 (4-0.0257)

(
(
(
(
0.1618 (£0.0375)
(
(
(

0.1274 (40.0320)

n

¢

4

0.9898(+0.0087
3.5220(41.6044

8.5952(£1.7709

0.9553(£0.013)
8.8765(£3.5743)
0.9617(-£0.0040)
19.6788(4+2.9644)

0.9889(+0.0048
4.5932(£1.1619
0.9880(=0.0021
3.9236(+0.7046

0.9951(=£0.0039
3.3882(+1.1592
0.9602(£0.0188)
12.4364(+1.6798)

( )
( )
0.9853(:0.0042)
( )
( )
( )

0.9915(-£0.0062)
6.4681(£3.6797)
0.9633(£0.0224)
23.6307(+£3.2256)

0.9945(-0.002)
2.9158(£0.4129)
0.8538(-£0.0800)
16.4067(4+4.1101)

0.9387(£0.0171)
9.8451(£2.9553)
0.9108(£0.0213)
25.2989(£1.8284)

0.9056(-£0.0629)
11.8601(+4.6898)
0.9303(=£0.0066)
11.6682(+1.3493)

0.9307(0.0168)

10.8771(£2.1398)
0.9840(-0.0036)

3.6770(£0.4306

0.9925(-:0.0056)
3.2676(£1.5024)

0.9013(-£0.0841)
13.2444(£5.7077)
0.9174(-£0.0922)

0.9863(£0.0089

0.9663(+£0.0022

(
0.9810(-£0.0084)
5.1431(£1.3139)

( )
( )
3.5632(£1.1844)
( )
( )

14.7174(+4.8001) 3.8732(%+1.6078

Table 6
deviation).
Transverse plane
Eatin GEO 0.0522 (£0.0152)
J MDC 0.1323 (+0.0182)
Reachin GEO 0.0170 (£0.0013)
3 MDC 0.2619 (£0.0269)
Combin GEO 0.0820 (+0.0184)
s MDC 0.2716 (£0.0163)
. GEO 0.0910 (£0.0162)
Washing MDC 0.1158 (+0.0278)
Table 7
Joint space quantitative measures: mean (+ standard deviation).
9
GEO r? 0.9913(0.0064)
Eatin RMSE 5.8392(+2.6970)
& MDC r2 0.9536(-0.0132)
RMSE 28.0471(42.9024)
CEO r? 0.9921(=0.0085)
Reachin RMSE 3.5756(2.4005)
s MDC r2 0.9352(+0.0181)
RMSE 21.0414(£3.2232)
CEO r? 0.9903(0.0103)
Combin RMSE 5.3974(£1.7354)
s MDC r2 0.9827(-0.0039)
RMSE 9.4531(£1.7727)
GEO r? 0.9635(+0.0334)
Washin RMSE 9.7326(4.1496)
8 MDC r2 0.9690(0.0934)
RMSE 9.4665(=3.3309)
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Fig. 11. Scatter plots comparing experimental data and geodesic model outputs
in configuration space of the arm. Angles are in degree.

maximum misalignment in each trial across all the trials per-
formed by all the subjects for each task. As shown in this bar-plot,
incorporating inner shoulder model into the path planning al-
gorithm reduces the misalignment between the predicted and
actual shoulder center by %55.53 in average. This improvement
is especially significant in motions involving larger elevations of
the arm such as combing and washing. Reduced misalignment

80
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7(°)

140 140

120
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Fig. 12. Family of geodesic paths associated with different final configurations
of the arm (i.e. different swivel angles). Minimum energy paths (green) do not
necessarily correspond to the paths with highest similarity (orange) to the actual
movements (blue). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

in motion generation can certainly improve the ergonomics of
exoskeletons.

Finally, as mentioned before, derivation of the GEAA transfor-
mation is based on the equivalence of the actual and transformed
motion profiles in the task space. This claimed task-space equiv-
alence of the two paths is investigated by comparing the forward
kinematic outputs of both systems when fed with their associated
motion profiles. Fig. 14 shows the output of the computational
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Fig. 13. Improvement in the shoulder center alignment through the inclusion of
inner shoulder movements in the path planning algorithm using the proposed
computational model.
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Fig. 14. Comparison between the configuration data in the c-space of the
human arm and the equivalent configurations in the exoskeleton after GEAA
transformation.

model for an eating motion in top left, while the equivalent
transformed motion to the exoskeleton joint space using GEAA
is depicted in top right. Calculating the upper-arm directions
based on the resultant configuration space data verifies that both
models represent the same upper-arm direction throughout the
motion, as shown in the lower left sub-figure in Fig. 14. The
very small differences observed are the result of the numerical
errors in solving the algebraic equations in the transformation.
Additionally, as presented in the lower right sub-figure, both
motion profiles result in the same hand path, verifying that the
transformation does not alter the spatial profile of the motion in
the task space.

The proposed transformation has significant importance for
computational models formulated in the configuration space of
the arm. This is especially important for upper-limb exoskeletons
with non-biological shoulder axes, since direct employment of
human-arm-based c-space computational models is not possible
as explained in Section 1. To demonstrate this limitation, MDC
computational model is used to generate motions in the human
arm and exoskeleton c-spaces for a horizontal abduction arm
motion. The resulted minimum distance path in Q is compared
with the minimum distance path between equivalent initial and

10
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final configurations in Q,. The sub-figures on the top in Fig. 15
show the two MDC paths. To evaluate whether the two joint-
space paths are task-space equivalent, the upper arm directions
generated by the two paths are compared in the bottom left sub-
figure. Additionally, hand paths generated by the two MDCs are
presented in the bottom right sub-figure where the blue line and
the black dashed line show the hand paths generated from the
forward-kinematic analysis of the MDC in the human arm and
exoskeleton configuration spaces respectively. As the two bottom
sub-figures show, the two MDC trajectories are not equivalent
in the task space. In other words, this result demonstrates that
constructing a straight line between the initial and final poses of
the exoskeleton does not result in a minimum-distance path for
the human arm [11] and vice versa. As a result, planning paths in
the c-space of the exoskeleton using methods developed based
on the studies of human arm motions (such as the commonly
used minimum angular jerk method), does not result in human-
like motions for exoskeletons with non-biologic axes of rotation
in shoulder.

6. Conclusion

This paper introduced a novel method for human-like path
planing in upper-limb exoskeletons which support inner shoulder
motions as well. This is achieved by incorporating empirical
models describing scapulohumeral rhythm into the human arm
path planning problem and transforming the resultant path to
the configuration space of the exoskeleton using an analytical
transformation. The application of the proposed framework on
a six-degree-of-freedom robot is thoroughly discussed in this
paper. The proposed method is capable of successfully generating
upper-limb motions that have high resemblance to the actual
arm motions. Since the developed transformation does not alter
the spatial profile of the input motion in task space, any differ-
ences between the generated and actual motions originate from
the underlying computational model (phase I of the proposed
method). This observation highlights the importance of using
accurate computational models in phase I to enhance the human-
like nature of the generated motions. Choosing geodesics over
other common computational approaches such as minimum-
distance paths in c-space is a step in this direction. The proposed
framework in this work enables using any computational model
that can accurately predict the motion profile of the human arm
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Fig. 16. DH coordinate assignment for the human arm model.

for motion planning of the exoskeletons. Similarly, the analytical
transformation used in phase II of the algorithm can be adapted
to other exoskeletons with different kinematic designs. Finally,
the developed framework is computationally efficient compared
with methods relying on numerical solution of inverse kinematics
problem.
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Appendix A

By assigning the DH coordinate systems for the human arm
model as depicted in Fig. 16, DH parameters for deriving the
forward kinematics function, f, are presented in Table 8. The
inverse kinematics function, f;", of the human arm model can
be found as:

z
0 = cos™'(==2)

Ly
n = atan2(—xe, ye)
¢ = atan2(ly(Xeyw — XwYe), Ye(YeZw — YuwZe)
— Xe(ZeXu) — ZuXe))
Xty +z k-1

2Ly

where atan2(., .) denotes the four quadrant inverse tangent func-
tion.

(24)

¢ = cos™(
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Table 8
DH parameters of the arm model.
a o d 0
Shoulder Azimuth 0 —-90 0 n+ 90
Shoulder Elevation 0 —90 0 —0
Humeral Rotation 0 90 I —
Elbow Flexion Iy 0 0 90 — ¢

Appendix B

For a Riemannian manifold Q with the metric tensor g, a
geodesic is the solution of the following 2nd order ordinary
differential equation, also known as the geodesic equation:

d*q),

dqidqf
8i g2

drdx
where q;, denotes the vector of the generalized coordinates repre-
senting a point in the Riemannian space, gj; is the ith row and jth
column elements of the metric tensor g, dq is the displacement
element in the configuration space, and A is the path parametriza-
tion variable. Additionally, cj denotes the Christoffel symbols
defined as:

=+ Cijk =0 (25)

ogik 08y %
aq,  9qy ) dx ’
By choosing the inertia matrix of the arm as the Riemannian

metric, i.e., g(q,) = M(q,), the nonlinear ordinary differential
equation of (25) can be rewritten as (7), in which

_ k(@ qy)
0a,0d,
where k denotes the kinetic energy of the arm.

1(98
2\ aq}

Cijk = ., n (26)

Mi(qy) (27)
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