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     Abstract — Cybercrime was estimated to cost the global 
economy $945 billion in 2020. Increasingly, law enforcement 
agencies are using social network analysis (SNA) to identify 
key hackers from Dark Web hacker forums for targeted 
investigations. However, past approaches have primarily 
focused on analyzing key hackers at a single point in time and 
use a hacker’s structural features only. In this study, we 
propose a novel Hacker Evolution Identification Framework 
to identify how hackers evolve within hacker forums. The 
proposed framework has two novelties in its design. First, the 
framework captures features such as user statistics, node-level 
metrics, lexical measures, and post style, when representing 
each hacker with unsupervised graph embedding methods. 
Second, the framework incorporates mechanisms to align 
embedding spaces across multiple time-spells of data to 
facilitate analysis of how hackers evolve over time. Two 
experiments were conducted to assess the performance of 
prevailing graph embedding algorithms and nodal feature 
variations in the task of graph reconstruction in five time-
spells. Results of our experiments indicate that Text-
Associated Deep-Walk (TADW) with all of the proposed nodal 
features outperforms methods without nodal features in terms 
of Mean Average Precision in each time-spell. We illustrate 
the potential practical utility of the proposed framework with 
a case study on an English forum with 51,612 posts. The 
results produced by the framework in this case study 
identified key hackers posting piracy assets.  
Keywords – Hacker forums, social network analysis, 
unsupervised graph embedding, hacker evolution 

I.  INTRODUCTION 

The incidence of cybercrime has increased substantially 
from a $600 billion annual cost to the global economy in 
2018 to an estimated $945 billion annual loss in 2020 [1]. 
Dark Web hacker forums have emerged as a valuable data 
source for law enforcement and researchers to monitor 
hackers engaging in cyber-criminal activities. Dark Web 
hacker forums provide hackers and cyber-criminals with 
mechanisms to share malicious tools, exploits, content, and 
knowledge. Overall, hundreds of hacker forums exist that 
contain millions of members who post tens of thousands of 
malicious tools and source code exploits [2]. We present an 
example of a hacker forum post containing a remote exploit 
in Figure 1.  

 
Fig. 1. Example of a Hacker Forum Post. Each forum post has a (1) 
thread title, (2) user information such as username, member type, join 
date, (3) a post date, (4) post content, and (5) source code.  

Increasingly, law enforcement agencies are using social 
network analysis (SNA) to identify key hackers within 
hacker forums for targeted investigations. However, past 
approaches have primarily focused on analyzing key 
hackers at a single point in time [2, 3, 4, 5]. How hackers 
evolve (e.g., transition from novice to expert) in hacker 
forums remains unknown. Additionally, past studies have 
analyzed hackers using their structural features (i.e., 
relationships to other hackers) only. Including features for 
each hacker (i.e., nodal features) can more 
comprehensively represent a hacker and their behaviors 
than structural features alone. Graph embedding techniques 
can produce fixed length vectors (i.e., embeddings) for 
each hacker based on their structural and nodal features [6]. 
However, how to capture the shift of hacker embeddings 
that encompass nodal and structural features across time-
spells requires further investigation.  

In this study, we propose the Hacker Evolution 
Identification Framework to identify how hackers evolve 
within Dark Web hacker forums. The proposed framework 
has two novelties in its design. First, the framework 
captures a rich set of nodal features (e.g., user statistics, 
lexical measures, and post style) when representing each 
hacker with unsupervised graph embedding methods. 
Second, the framework incorporates mechanisms to align 
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embedding spaces across multiple time-spells of data to 
facilitate analysis of how hackers evolve over time.  

The remainder of this paper is organized as follows. 
First, we review literature on modeling hackers in hacker 
forums, unsupervised graph embedding methods, and 
embedding alignment mechanisms. Second, we present our 
research gaps and questions. Third, we propose our 
research framework. Fourth, we present our results and 
discussion. Finally, we conclude this research and point to 
promising directions for future research.  

II. LITERATURE REVIEW 
We reviewed three areas of literature to guide this 

research. First, we review prevailing methods for modeling 
hackers in hacker forums to understand methods for 
analyzing hackers sharing exploit content. Second, we 
review unsupervised graph embedding methods to identify 
what algorithms can be leveraged to represent hackers as 
embeddings in low dimensional space. Third, we review 
embedding alignment methods to identify mechanisms that 
can map hacker embeddings across multiple time-spells to 
facilitate an analysis of how they evolve.  
A. Modeling Hackers in Hacker Forums  

SNA is the prevailing approach to model hackers in 
social media [2, 3, 4, 5]. Graphs are commonly denoted as 
G = (N, E) where G is the entire graph, N is the node set 
that represents forum users, and E is the edge set that 
denotes the interactions between forum users. SNA allows 
scholars to calculate metrics to understand overall graph 
properties (e.g., density) and centrality measures (e.g., 
degree, betweenness, eigenvector) to identify key 
members. To date, SNA has been leveraged to identify key 
hackers sharing keylogging tools [2], malware [3-4], 
communication networks [5, 7], and crypters [8]. These 
studies have revealed several valuable insights for law 
enforcement, such as discovering that key hackers are often 
senior administrators or longer-tenured users.  

Extant literature has two shortcomings as it pertains to 
the objective of this study. First, nodal features are often 
omitted by prior studies when modeling hacker networks. 
However, these features are essential for understanding a 
hacker’s expertise. Second, most studies do not analyze 
how hackers evolve. Analyzing how hackers evolve 
requires representing them based on their relationships and 
features (e.g., post content, source code). Graph embedding 
methods can convert nodes in social networks into fixed-
length vector representations (i.e., embeddings) that can be 
used for downstream tasks, such as identifying evolving 
hackers. Therefore, we review graph embedding methods 
next. 

B. Unsupervised Graph Embedding Methods 
Graph embedding methods aim to convert a network 

and/or its components (e.g., nodes) into a low-dimensional 
vector (i.e., embedding) with a series of mathematical 
computations. Unsupervised graph embedding methods are 
commonly used for cybersecurity tasks where there is little 
prior knowledge about the graph (e.g., labels, relationships) 
[9]. Since there is limited apriori knowledge about each 
hacker in a forum, we restrict our review to unsupervised 
graph embedding methods that produce an embedding for 

each node in a network. Unsupervised graph embedding 
methods can be grouped into three major categories:  
• Matrix factorization methods such as Text-

Associated Deep-Walk (TADW) apply a series of low-
rank matrix factorization techniques on a graph’s 
adjacency, degree, and nodal feature matrices to 
produce an embedding [10].  

• Random walk-based methods such as Node2Vec  use 
random walks, biased random walks, and skip-gram to 
learn a node’s embedding [11].  

• Deep neural network-based methods such as Graph 
Convolutional Autoencoder (GCAE) and Graph 
Attention Autoencoder (GATE) leverage neural 
network-based autoencoders to reconstruct a graph’s 
adjacency matrix using graph convolution and graph 
attention layers, respectively [12, 13].  

The prevailing unsupervised graph embedding methods 
that can account for nodal features are the matrix 
factorization-based TADW and the deep neural network-
based GCAE and GATE. These methods have potential 
utility in comprehensively modeling a hacker based on their 
relationships and features. However, identifying how a 
hacker evolves requires generating embeddings for a 
hacker in multiple time-spells and computing their shifts. 
While embeddings within a time-spell can be compared, 
embeddings across time-spells need to be aligned in order 
to model how a hacker shifts. Therefore, we review 
embedding alignment methods next. 
C. Embedding Alignment Methods 

The prevailing approach to align embedding space first 
constructs a matrix of embeddings, 

                              𝑾(𝑡) ∈  ℝd 𝑥 |𝑉|,                           (1) 

where 𝑾(𝑡) is the embedding matrix and t is the time-
spell [14]. Embedding spaces across time-spells can then 
be aligned by optimizing, 

         R(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑄𝑇𝑄=𝐼 ‖𝑾
(𝑡)𝑸 −  𝑾(𝑡+1)‖F,   (2) 

where ‖⋅‖𝐹 denotes the Frobenius norm representing 
the orthogonal alignment of embedding spaces across time-
spells. Aligning embedding spaces in this fashion enables 
the calculation of how a hacker has shifted (i.e., evolved) 
with cosine distance cosine-dist(𝑒𝑡 ,  𝑒𝑡+Δ), where et is the 
location of an embedding within the embedding space at 
time t, and 𝑒𝑡+Δ is the location of the same embedding in 
the embedding space after time t. Although having 
potential utility for mapping hackers, these computations 
have only been conducted for text graphs without nodal 
features but not for identifying evolving hackers [14].  

III. RESEARCH GAPS AND QUESTIONS 
We identified three research gaps from our literature 

review. First, despite their potential to capture a hacker’s 
behavior, nodal features (e.g., a hacker’s post content) are 
often omitted when representing and modeling hackers 
with SNA. Second, although unsupervised graph 
embedding algorithms such as TADW, GCAE, and GATE 
can be leveraged to represent each hacker in a social 
network based on their relationships and nodal features, 
most studies do not conduct such an analysis. Third, 



3 
 

prevailing embedding alignment mechanisms have been 
used to operate on text graphs; how to operate on social 
networks requires additional examination. Based on these 
research gaps, we pose the following questions for study: 
1. How can we extract and include a hacker’s features 

when generating an embedding for each hacker in 
online hacker forums? 

2. How can we develop a framework that incorporates 
embedding alignment mechanisms to operate on 
hacker embeddings and identify how hackers evolve in 
online hacker forums?  

IV. RESEARCH DESIGN 
To answer the posed research questions, we developed 

a research framework (Fig. 2): with three components: (1) 
Research Testbed, (2) Hacker Evolution Identification 
Framework, and (3) Evaluations & Case Study. We discuss 
each component in the following sub-sections.  
A. Research Testbed: Hacker Forum Identification and 

Data Pre-Processing 
We identified three English hacker forums that are well-

known in the online hacker community for containing large 
quantities of malicious source code [15]. A web crawler 
routed through the TOR network collected the content and 

metadata (e.g., hacker name, post dates) for each post from 
each forum. We summarize the testbed in Table I.  

TABLE I.  HACKER FORUM RESEARCH TESTBED 
Name Posts Date Range Authors Threads Source Code 

Cipher 51,612 5/1/2015-
12/31/2020 3,551 5,198 2,207 

go4expert 62,103 12/25/2004-
12/31/2020 15,213 19,158 5,800 

AntiOnline 291,914 4/10/2002-
12/31/2020 13,017 55,086 2,063 

Total: 405,629 4/10/2002-
12/31/2020 31,781 79,442 10,070 

The three hacker forums contained 405,629 posts, 
31,781 unique authors, 79,442 threads, and 10,070 source 
code snippets ranging in post-date from 2002 to 2020. To 
prepare hacker forums for SNA, the forums were queried 
to only include threads that had at least one post containing 
source code. This ensures that the results capture malicious 
hackers who are sharing source code exploits and excludes 
unrelated threads and users [14].  
B. Hacker Evolution Identification Framework  

Given the limitations of previous literature as it pertains 
to identifying evolving hackers, we propose a novel Hacker 
Evolution Identification Framework. The proposed 
framework (Fig. 3) operates in five steps: (1) Graph 

 
Fig. 2. Proposed Research Framework 

 
Fig. 3. Hacker Evolution Identification Framework 
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Representation and Time-Spell Construction, (2) Nodal 
Feature Extraction, (3) Graph Embedding Generation, (4) 
Hacker Embedding Alignment, and (5) Hacker Embedding 
Shift. We present each step in the following sub-sections. 

a) Graph Representation & Time-Spell Construction 
Each hacker forum network is denoted as G = (N, E, F) 

where G is an undirected graph, N is the node set of forum 
users, E is the undirected edge set of users who posted in 
the same source code containing thread, and F is the feature 
matrix for each user. To understand the overall dynamics 
of each collected hacker forum, we present summary 
statistics about each graph in Table II. 

TABLE II.  HACKER FORUM NETWORK STATISTICS 
Hacker Forum Cipher Go4Expert AntiOnline 
Number of Nodes 2,010 3,365 1,046 
Number of Edges 109,176 24,273 4,938 
Max Degree 1,023 419 131 
Average Degree 108.63 14.43 9.44 
Average Betweenness  1,096.39 3,682.38 1,195.77 
Graph Density  0.05 0.004 0.009 

Go4Expert had the highest quantity of nodes with 
3,365. However, Cipher possessed the largest number of 
edges with 109,176. As a result, Cipher has the highest 
average degree. This indicates that forum users in Cipher 
can more readily distribute and access exploit source code 
than the users in Go4Expert and AntiOnline. Cipher also 
has the highest graph density indicating that malicious code 
can spread more quickly through Cipher than the other 
forums. Consistent with past hacker forum literature, our 
datasets were split into three-month timeframes from 2015-
2019 [14]. 

b) Nodal Feature Selection 
Since past studies often omit nodal features from their 

analysis, we propose a rich set of features for each hacker 
in each time-spell based on past hacker forum literature and 
recommendations from FBI analysts who investigate 
darknets. We propose two categories of features: user and 
post content. We present the proposed features in Table III.  
TABLE III.   PROPOSED FEATURE SETS *NOTE: FS = FEATURE SETS 
Category Features* Description 

User 

User 
Statistics 
(FS1) 

Post Frequency # of posts users makes  

Account Age Post date minus user join 
date converted into days 

Node-Level 
Metrics 
(FS2) 

Degree Measure of user’s 
immediate influence  

Betweenness Measures importance of 
user’s social position 

Closeness Measures how quickly a 
user can reach another user 

Eigenvector Measures strength of forum 
user’s connections  

Post 
Content 

Lexical 
Measures 
(FS3) 

Average Sentence 
Length 

Average number of words 
in a hacker’s sentences 

Average Words 
per Post 

Average number of words 
in a post 

Post Style 
(FS4) 

Punctuation Count of punctuation  

Source Code Whether or not user 
included source code  

Exploit Terms  Exploit terms occurrence  

The user features comprise of user statistics (FS1) and 
node-level metrics (FS2). User statistics include features 
provided directly from each forum, including post 
frequency and the age of the user’s account. Node-level 
metrics refer to each hacker’s centrality measures (e.g., 
degree, betweenness, closeness, eigenvector). Past 

literature studying hacker communities has indicated that 
including user statistics and node-level metrics into an 
analytical method captures a hacker’s relationships and 
structural characteristics [7, 16]. 

The post content category of features comprise of 
lexical measures (FS3) and post style (FS4). Lexical 
features include average sentence length and average words 
per post. Post style refers to how hackers compose their 
posts. Post style features included punctuation, source 
code, and exploit terms. Both FS3 and FS4 were included 
since past literature has indicated that advanced hackers 
will typically have longer sentences with more exploit 
terminology compared to novice hackers [8, 15, 16].  

c) Graph Embedding Generation  
Since our objective is to identify how hackers evolve 

based on their relationships and features, we leverage a 
prevailing unsupervised graph embedding algorithm 
TADW to generate an embedding for each node. TADW 
operates on each time-spell’s graph. TADW was selected 
as it is designed for high-dimensional nodal features (e.g., 
nodes with text features) [10]. TADW has also shown 
strong performances in cybersecurity tasks [9].   

d) Hacker Embedding Alignment 
Identifying how a hacker shifts across time-spells 

requires first aligning embedding spaces across time-spells. 
To achieve this task, embeddings generated from TADW 
are aligned with the optimization function, 

 R(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑄𝑇𝑄=𝐼 ‖𝑯
(𝑡)𝑸 −  𝑯(𝑡+1)‖F.          (3) 

where 𝑯(𝑡) is the matrix of hacker embeddings at time-spell 
t and ‖⋅‖𝐹 denotes the Frobenius norm representing the 
orthogonal alignment of embedding spaces across time-
spells. Aligning spaces using the optimization function 
facilitates the computation of a hacker’s profile shift across 
time-spells.  

e) Hacker Embedding Shift 
The final component of our framework aimed to 

identify how much hackers shift (i.e., evolve) across the 
aligned embedding spaces. To execute this, we computed 
the hacker embedding shifts with cosine distance,  

 cosine-dist(ℎ𝑡 ,  ℎ𝑡+Δ),                 (4) 

where ht is the location of the hacker within the embedding 
space at time t, and ℎ𝑡+Δ is the location of the same hacker 
in the embedding space after time t. This computation helps 
to identify hackers who have evolved the most by looking 
at changes such as the formation of new relationships or the 
increase or decrease in post length or frequency.  
C. Evaluations & Case Study 

Evaluating unsupervised graph embedding methods is 
often conducted by comparing the quality of multiple 
algorithms in a downstream task [9, 14]. We conducted two 
experiments for this research. In Experiment 1, we 
evaluated the performance of the three prevailing 
unsupervised graph embedding methods: TADW, GCAE, 
and GATE when using all of the nodal features versus no 
nodal features [12, 13]. In Experiment 2, we evaluated all 
combinations of feature sets (15 total) for each algorithm.  
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Following best practice in cybersecurity literature, we 
evaluated the quality of the embeddings generated from 
each method in the downstream task of graph 
reconstruction [9]. We used the Mean Average Precision 
(MAP) metric to measure the performance of each 
algorithm. MAP evaluates the quality of an embedding 
based on how well it constructs the original graph by 
calculating the average precision of each node. MAP 
returns a scalar value between zero and one, where scores 
of 0.70 or higher are considered to be high quality [17].  

To demonstrate the practical utility of our framework, 
we executed a case study that applied the proposed Hacker 
Evolution Identification Framework to identify evolving 
hackers. We executed each experiment and the case study 
on the Cipher forum as it has the highest average degree 
and graph density compared to other forums in our testbed. 

V. RESULTS & DISCUSSION 
A. Experiment 1: Nodal Features vs No Nodal Features 

In Experiment 1, we aimed to identify how TADW, 
GCAE, and GATE performed with and without nodal. 
Evaluation results are summarized in Table IV. For space 
considerations, we listed the MAP performances for Cipher 
for each year. The top performances appear in bold-face.  

TABLE IV.  EXPERIMENT 1 RESULTS: NODAL FEATURES VS NO 
NODAL FEATURES (*NOTE: N = NUMBER OF NODES) 

Feature 
Variation Model 2015*  

(n=228) 
2016  
(n=1,136) 

2017 
(n=1,580) 

2018 
(n=1,845) 

2019 
(n=1,989) 

No Nodal 
Features 

TADW 0.487 0.189 0.144 0.140 0.132 
GCAE 0.468 0.157 0.105 0.098 0.116 
GATE 0.637 0.244 0.194 0.170 0.160 

All 
Features 

TADW 0.759 0.489 0.449 0.410 0.380 
GCAE 0.427 0.083 0.075 0.062 0.075 
GATE 0.448 0.109 0.077 0.054 0.000 

Overall, TADW attained the second best MAP score 
(after GATE) every year when no nodal features were 
included. When all nodal features are included, TADW’s 
performance improved by at least 0.25 in each time-spell 
(e.g., from 0.487 to 0.759 in 2015). However including 
nodal features into GCAE and GATE caused their 
performances to decline substantially. For example, 
GATE’s performance dropped from 0.637 to 0.448 (0.311 
lower than TADW) in 2015 when nodal features were 
included. TADW’s performance improvement is likely 
attributable to its use of random walks to represent 

structural features and a low-rank matrix factorization 
approach to producing embeddings from nodal and 
structural features. These approaches help preserve nodal 
features in the generated embedding [10]. In contrast, both 
GCAE and GATE leverage autoencoder architectures that 
aim to produce embeddings through feed-forward, back-
propagation, and error correction computations. These 
methods can often emphasize structural features over nodal 
features when producing embeddings [12, 13]. 
B. Experiment 2 Results: Nodal Feature Variations 

In Experiment 2, we aimed to identify which 
combination of features generates the highest quality 
embedding. For space considerations, we only present the 
results of the feature set variations for TADW (the top-
performing algorithm from Experiment 1). The top-
performing feature variations appear in bold-face.  
TABLE V.  EXPERIMENT 2: NODAL FEATURE VARIATIONS (*NOTE: 

N = NUMBER OF NODES) 
Nodal Feature 
Variation 

2015*  
(n=228) 

2016  
(n=1,136) 

2017 
(n=1,580) 

2018 
(n=1,845) 

2019 
(n=1,989) 

FS1 0.663 0.314 0.280 0.233 0.214 
FS2 0.680 0.428 0.413 0.421 0.435 
FS3 0.531 0.181 0.125 0.111 0.113 
FS4 0.653 0.316 0.274 0.257 0.242 
FS1 & FS2 0.695 0.375 0.317 0.281 0.263 
FS1 & FS3 0.772 0.402 0.327 0.306 0.303 
FS1 & FS4 0.707 0.396 0.371 0.386 0.364 
FS2 & FS3 0.749 0.476 0.427 0.402 0.409 
FS2 & FS4 0.677 0.363 0.315 0.308 0.281 
FS3 & FS4 0.689 0.428 0.423 0.412 0.336 
FS1, FS2, FS3 0.743 0.451 0.377 0.338 0.321 
FS1, FS2, FS4 0.713 0.423 0.397 0.399 0.352 
FS1, FS3, FS4 0.778 0.505 0.467 0.445 0.433 
FS2, FS3, FS4 0.762 0.439 0.420 0.436 0.454 
All Features 0.759 0.489 0.449 0.410 0.380 

TADW with FS1 (user statistics), FS3 (lexical 
measures), and FS4 (post style) attained the highest MAP 
from 2015-2018, and the second highest MAP for 2019. 
The results also indicate that  MAP scores improve as 
additional feature sets are included. However, TADW 
using all nodal features attained a lower performance than 
the FS1, FS3, and FS4 variation in every year. This 
indicates that including FS2 along with other feature sets 
results in a degradation of performance. A possible 
explanation for these results may be because TADW may 

  
           Fig. 4. Network Visualization of Top Five Forum Users With Large Profile Shifts Over 3-Year Span 
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represent centrality scores when capturing the structural 
features for each node [10]. Including FS2 would therefore 
duplicate this information and may decrease MAP scores. 
C. Network Visualizations of Evolving Hackers and Case 

Study Results 
Based on MAP results, we used TADW with nodal 

features (FS1, FS3, and FS4) to produce an embedding for 
each hacker in each time-spell. We employed the graph 
embedding alignment and shift calculations for each 
hacker’s shifts. The top five users with large profiles shifts 
are: Rikku – 1.035, h1web – 0.909, 0day – 0.822, Lasl0w – 
0.773, and prR – 0.738. The five users are color-coded and 
presented in network visualizations (2015-2017) in Fig. 4.  

The five hackers with the largest average profile shifts 
became more central in their networks over time. The 
hacker Rikku (green node; largest average shift) moved 
from the edge of the network in 2015 to the center in 2017. 
We visualize Rikku’s evolution in terms of post length, 
count, and content over time in Fig. 5.  

 
Fig. 5. Hacker Forum User Rikku’s Evolution Between 2015-2019 

In 2015, Rikku requested help from other hackers with 
phrases such as “What am I doing wrong?” and “Do I have 
to reboot my PC for the change to be effective?” In 2016, 
Rikku started helping others by answering questions (e.g., 
“Try a complete new install and see if your issue still 
exists…”). Finally, Rikku posted piracy specific assets in 
2017, including a tutorial on how to bypass paying for 
Adobe products. Sharing cyber-criminal tools, code, and 
tutorials are an indicator of expertise [16]. These insights 
are not attainable with extant approaches for hacker SNA.  

VI. CONCLUSIONS & FUTURE DIRECTIONS 
Cybercrime has become a significant societal issue. In 

this study, we proposed a novel Hacker Evolution 
Identification Framework to help identify how hackers 
evolve in hacker forums. The proposed framework 
captured a rich set of nodal features when representing each 
hacker with unsupervised graph embedding methods. 
Additionally, the framework incorporated an optimization 
mechanism to align embedding spaces across multiple 
time-spells of data to facilitate an analysis of how hackers 
evolve over time.  

There are two promising future directions for research. 
First, the framework could be extended to predict how 
hackers will shift in their behavior to support proactive 
investigations. Second, future work can examine how 
hacker communities grow, shift, and dissolve over time. 
Each direction could provide valuable capabilities for law 
enforcement to combat cybercrime.  
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