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AMPLITUDE-BASED GENERALIZED PLANE WAVES: NEW

QUASI-TREFFTZ FUNCTIONS FOR SCALAR EQUATIONS IN TWO

DIMENSIONS∗

LISE-MARIE IMBERT-GERARD†

Abstract. Generalized plane waves (GPWs) were introduced to take advantage of Trefftz
methods for problems modeled by variable coefficient equations. Despite the fact that GPWs do
not satisfy the Trefftz property, i.e., they are not exact solutions to the governing equation, they
instead satisfy a quasi-Trefftz property: They are only approximate solutions. They lead to high-
order numerical methods, and this quasi-Trefftz property is critical for their numerical analysis. The
present work introduces a new family of GPWs: amplitude-based. The motivation lies in the poor
behavior of the phase-based GPW approximations in the preasymptotic regime, which will be tamed
by avoiding high-degree polynomials within an exponential. The new ansatz introduces higher-order
terms in the amplitude rather than in the phase of a plane wave as was initially proposed. The new
functions’ construction and the study of their approximation properties are guided by the road map
proposed in [L.-M. Imbert-Gérard and G. Sylvand, Numer. Math., to appear]. For the sake of clarity,
the first focus is on the two-dimensional Helmholtz equation with spatially varying wave number.
The extension to a range of operators allowing for anisotropy in the first- and second-order terms
follows. Numerical simulations illustrate the theoretical study of the new quasi-Trefftz functions.
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1. Introduction. Our interest lies in the numerical simulation of time-harmonic
wave propagation in inhomogeneous media for boundary value problems with a scalar-
valued governing equation. While homogeneous media lead to governing PDEs with
constant coefficients, inhomogeneous media lead to variable-coefficient PDEs. In this
article we introduce a new family of basis functions to be used as a basis in a quasi-
Trefftz numerical method, show how to compute them, and study their approximation
properties. Trefftz methods, a particular type of Galerkin method, have the speci-
ficity to rely on function spaces of solutions to the governing PDE as opposed to
standard function spaces of sufficiently smooth functions. They take advantage of
this specificity via the derivation of a weak formulation of the boundary value prob-
lem of interest, leading to a weak formulation with no volume term. This of course
results in a considerable reduction of the discretization’s computational cost. We will
hereafter refer to solutions of the governing PDE as Trefftz functions and to spaces
of Trefftz functions as Trefftz spaces.

The initial idea of using solutions to the governing PDE was introduced by Tr-
efftz in 1926 [37], more recently translated from German [34], to obtain estimates
on the solution of boundary value problems. It was then developed as early as the
1930s under the name of Trefftz method to study, for instance, problems of elasticity
[35, 29] and torsion [18, 11]. Later the method was fruitfully extended to numerical
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1664 LISE-MARIE IMBERT-GERARD

approximation. In [9], the author classifies the method as a boundary method, as
the solution to a boundary value problem is approximated by a linear combination
of Trefftz functions, while this linear combination is constructed to take into account
the boundary condition; see also [17]. Trefftz functions were used as a local basis on a
region and coupled to a finite element region in [44]. In [26], they were used as a local
basis on individual mesh elements instead of polynomial basis functions; an overview
of such early Trefftz-type Galerkin methods can be found in [27].

Several versions of Trefftz methods have been actively developed to the numerical
simulation of time-harmonic wave propagation problems for more than 20 years [16],
such as the Trefftz and discontinuous Galerkin method [15, 14] and the ultraweak
variational formulation [12, 6, 7]. More recent development include the Trefftz virtual
element method [32, 33]. Trefftz spaces as well as Trefftz functions are absolutely
fundamental to all Trefftz methods, throughout the weak formulation derivation as
well as throughout the analysis of the resulting numerical method.

Ideally the discretization of a Trefftz weak formulation is performed via a finite-
dimensional vector subspace of the Trefftz space. Trefftz functions are available for
several problems of time-harmonic wave propagation through homogeneous media,
i.e., when the governing PDE has constant coefficients. Typical examples include the
most obvious plane, circular or spherical waves, but also functions constructed from
Bessel functions [8, 31]. By contrast, for wave propagation through inhomogeneous
media, i.e., when the governing PDE has either smooth or piecewise smooth variable
coefficients, in general Trefftz functions are not available. Nevertheless, the idea of re-
placing Trefftz functions by approximate solutions to the governing PDE to discretize
a Trefftz formulation when the PDE has variable coefficients was introduced in [22],
and various aspects of these functions, called generalized plane waves (GPWs), as well
as the resulting method, were studied in [20, 21, 23, 24].

For reference, ideas related to Taylor-based constructions of exact polynomial
solutions can be found in [28, 43], while equation-based finite-difference approaches
can be found in [3, 38, 39].

In general we will refer to approximate solutions to the PDE as quasi-Trefftz
functions and to associated methods as quasi-Trefftz methods. As the PDE coeffi-
cients are variable, there is no hope to guarantee global approximation properties,
and therefore the construction of quasi-Trefftz functions should emphasize local prop-
erties. For instance, GPWs are constructed locally and satisfy a local approximation
of the PDE in the sense of a Taylor expansion. In general, quasi-Trefftz functions are
defined piecewise, element per element on a mesh of the computational domain, and
the approximation of the PDE is expected to be accurate locally on each element. We
will therefore focus on the neighborhood of a generic point (xc, yc) ∈ R

2 that could,
for instance, be the centroid of each mesh element.

The GPWs introduced in [22] are phase-based, as they rely on the addition of
higher-order terms in the phase of classical plane waves (PWs). Because of the pres-
ence of high-degree polynomials within an exponential, they exhibited a poor behavior
in the preasymptotic regime, i.e., at a distance h ≈ 1 from (xc, yc). This motivates the
introduction of a new family of GPWs, avoiding the presence of high-degree polyno-
mials within an exponential. In this article we introduce a family of amplitude-based
GPWs, with a phase identical to that of a PW but with higher-degree polynomials in
the amplitude. The first challenge is to design of a new ansatz. Thanks to an appro-
priate choice of ansatz, the problem of constructing a GPW will be reformulated into
a problem that has solutions, but, most importantly, a problem for which a particular
solution can be constructed at a limited computational cost. The second challenge is
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to decipher the relation between the new functions and PWs in order to study the
local approximation properties of these new GPWs.

The construction of amplitude-based GPWs and the study of their approximation
properties will be addressed in sections 2 and 3, respectively, for the two-dimensional
Helmholtz equation, namely:

(1.1)
[
−∆− κ2(x, y)

]
u = 0,

following the road map proposed in [24]. The extension of these results to a set of
anisotropic second-order PDEs will be the focus of section 4. Then section 5 presents
numerical experiments illustrating approximation properties and emphasizing the im-
provement obtained with respect to phase-based GPWs in terms of approximation
properties.

To describe various useful sets of indices, we will write N0 = N ∪ {0}.

2. Construction of amplitude-based GPWs. The construction of this new
family of GPWs relies on the choice of a new ansatz, shifting the focus from the
phase to the amplitude of PWs. Here we emphasize the motivation behind the new
ansatz and the reformulation of the problem of defining an amplitude-based GPW
into a well-posed problem. The final goal of this section is to provide an algorithm to
construct such GPWs, guaranteeing that they satisfy an approximation of the PDE
(1.1); see Algorithm 2.1 and Proposition 2.3.

Since GPWs satisfy a local approximation of the PDE in the sense of a Taylor
expansion, assumptions on the smoothness of the variable coefficient are stated in
terms of continuous differentiability at the point (xc, yc) ∈ R

2 and will of course
depend on the desired order of approximation of the Taylor expansion.

2.1. Amplitude-based versus phase-based GPWs. The original idea be-
hind GPW was to start by considering a classical PW, and its relation to the constant
coefficient Helmholtz equation:

{
W (x, y) = exp

(
λ10(x− xc) + λ01(y − yc)

)
, where (λ10, λ01) ∈ C

2,

(−∆− κ2)W = 0⇔ λ2
10 + λ2

01 + κ2 = 0.

In this case the ansatz chosen for W has two degrees of freedom, namely, (λ10, λ01) ∈
C

2. The single constraint λ2
10 + λ2

01 + κ2 = 0 on these two degrees of freedom is suffi-
cient to ensure that the ansatz W solves the governing PDE. Moreover, by choosing
(λ10, λ01) = iκ(cos θ, sin θ) for some real parameter θ, the constraint is satisfied, and
any family of such functions, associated to any distinct values of θ ∈ [0, 2π), is linearly
independent, so it is a basis for a finite-dimensional subspace of the Trefftz space for
the Helmholtz equation. This subspace has been the most widely used to discretize
Trefftz weak formulations.

In the case of a variable coefficient κ(x, y), however, there is no general closed
formula for exact solutions of the PDE. The original idea behind GPW might be
summarized in two points:

• relaxing the Trefftz property, (−∆−κ2)W = 0, into an approximation (−∆−
κ2)G ≈ 0;

• choosing an ansatz with more degrees of freedom by adding for higher-order
terms (HOT) to the phase of the classical PW: G(x, y) = exp(λ10(x− xc) +
λ01(y − yc) +HOT ).
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1666 LISE-MARIE IMBERT-GERARD

The image of G by the differential operator, i.e., the function (−∆ − κ2)G, will not
be zero but instead will locally approximate zero: It is the Taylor polynomial of this
function that will be equal to zero. So the parameter q will refer to the order of
the Taylor expansion approximation. Throughout the construction process, q’s value
remains unconstrained; it only comes into play to guarantee high-order approximation
properties. A GPW was then initially defined in the vicinity of a point (xc, yc) ∈ R

2

as {
G(x, y) := expP (x, y) with P ∈ C[X,Y ] such that
(−∆− κ2(x, y))G(x, y) = O(|(x, y)− (xc, yc)|q).

As a consequence, the construction of a GPW was equivalent to the following problem:
{

Find a polynomial P ∈ C[X,Y ] such that
G(x, y) := expP (x, y) satisfies (−∆− κ2(x, y))G(x, y) = O(|(x, y)− (xc, yc)|q).

Moreover, since

(−∆−κ2(x, y)) expP (x, y) =
(
−∆P (x, y)−∇P (x, y)·∇P (x, y)−κ2(x, y)

)
expP (x, y)

while expP is bounded in the vicinity of (xc, yc), the construction of a GPW was also
equivalent to the following problem:

(2.1)





Find a polynomial P ∈ C[X,Y ] such that
−∆P (x, y)−∇P (x, y) · ∇P (x, y)− κ2(x, y) = O(|(x, y)− (xc, yc)|q)
G(x, y) := expP (x, y).

We are now interested in exploring a new type of quasi-Trefftz functions, this
time choosing an ansatz with more degrees of freedom as higher-order terms (HOT )
added to the amplitude rather than the phase of a classical PW: G(x, y) = (1 +
HOT ) exp(λ10(x − xc) + λ01(y − yc)). An amplitude-based GPW is then defined in
the vicinity of a point (xc, yc) ∈ R

2 as




G(x, y) := Q(x, y) exp
(
λ10(x− xc) + λ01(y − yc)

)

with Q ∈ C[X,Y ], (λ10, λ01) ∈ C
2 such that

(−∆− κ2(x, y))G(x, y) = O(|(x, y)− (xc, yc)|q).
As a consequence, the construction of an amplitude-based GPW is equivalent to the
following problem:





Find (Q, (λ10, λ01)) ∈ C[X,Y ]× C
2 such that

G(x, y) := Q(x, y) exp
(
λ10(x− xc) + λ01(y − yc)

)
satisfies

(−∆− κ2(x, y))G(x, y) = O(|(x, y)− (xc, yc)|q).

Moreover, defining ~d := (λ10, λ01) and κ̃2 := ~d · ~d+ κ2, since

(−∆− κ2(x, y))Q(x, y) exp(λ10(x− xc) + λ01(y − yc))

=
(
−∆Q(x, y)− 2∇Q(x, y) · ~d− κ̃2(x, y)Q(x, y)

)
exp

(
λ10(x− xc) + λ01(y − yc)

)

while exp(λ10(x − xc) + λ01(y − yc)) is bounded in the vicinity of (xc, yc), the con-
struction of an amplitude-based GPW is also equivalent to the following problem:

(2.2)





Find
(
Q, ~d

)
∈ C[X,Y ]× C

2 such that

−∆Q(x, y)− 2∇Q(x, y) · ~d− κ̃2(x, y)Q(x, y) = O(|(x, y)− (xc, yc)|q)
G(x, y) := Q(x, y) exp ~d ·

(
x− xc

y − yc

)
.
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Remark 2.1. Comparing (2.2) to (2.1), we observe that the new problem is not
linear anymore.

However, there is no guarantee that this problem is well-posed; hence, subsec-
tions 2.2 and 2.3 turn to the study of the well-posedness of this problem. Next, given
both the order q and the center (xc, yc) of the Taylor expansion, we will focus on
developing an algorithm to construct such a GPW, which is equivalent to computing
the coefficients of the polynomial Q so that the coefficients of the Taylor expansion
of −∆Q− 2∇Q · ~d− κ̃2Q are zero; see subsection 2.4. Beyond the construction of one
GPW, the goal is evidently to construct a family of linearly independent GPWs with
good approximation properties, and these aspects will be addressed in section 3.

2.2. A linear system. In order to underline the structure of the problem at
stake, we will now consider ~d := (λ10, λ01) ∈ C

2 to be fixed while we identify any
polynomial Q ∈ C[X,Y ] to the set of its coefficients {µix,iy , (ix, iy) ∈ N

2
0, ix + iy ≤

degQ} via Q(x, y) =
∑

0≤ix+iy≤degQ µix,iy (x − xc)
ix(y − yc)

iy . Later ~d will be used

to define a family of GPWs. In this case, (2.2) boils down to a linear system:
• the unknowns are {µix,iy , (ix, iy) ∈ N

2
0, ix + iy ≤ degQ};

• the equations are
{
∂jx
x ∂jy

y

[
−∆Q− 2∇Q · ~d− κ̃2Q

]
(xc, yc) = 0, (jx, jy) ∈ N

2
0, jx + jy ≤ q − 1

}
.

This linear system therefore has Ndof := (degQ+1)(degQ+2)
2 unknowns and Neqn :=

q(q+1)
2 equations, and in order to build a solution to problem (2.2), for clarity we will

consistently use indices (ix, iy) to refer to unknowns, while indices (jx, jy) will refer
to equations.

Obviously, choosing the degree of Q, degQ, will affect the well-posedness of this
system, as depending on degQ+1 being smaller than, larger than, or equal to q, the
system is, respectively, overdetermined, underdetermined, or square. Similarly to the
choice of degP for phase-based GPWs, we will choose degQ = q + 1 to exploit the
structure provided by the Laplacian; see Remark 2.2. According to this choice, as
∂jx
x ∂

jy
y Q(xc, yc) = jx!jy!µjx,jy for jx+jy ≤ q+1 and zero otherwise, the linear system

can then be written as
(2.3)




∀(jx, jy) ∈ N
2
0, jx + jy ≤ q − 1,

(jx + 2)(jx + 1)µjx+2,jy + (jy + 2)(jy + 1)µjx,jy+2

+ 2(jx + 1)λ10µjx+1,jy + 2(jy + 1)λ01µjx,jy+1

+

jx∑

kx=0

jy∑

ky=0

1

(jx − kx)!(jy − ky)!
∂jx−kx
x ∂jy−ky

y κ̃2(xc, yc)µkx,ky
= 0.

The goal in this section is then to leverage the structure of this linear system in
order to build nontrivial solutions and hence build corresponding GPWs Q(x, y) =∑

0≤ix+iy≤q+1 µix,iy (x− xc)
ix(y − yc)

iy .

Remark 2.2. Note that for any value of degQ ≥ q + 1, the corresponding linear
system could be written exactly as (2.3). Therefore, picking degQ > q + 1 would
would increase the number of degrees of freedom without affecting the properties of
the system.
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On the other hand, if we had chosen degQ < q+1, at least the equations (jx, jy)
such that jx + jy = degQ− 1 would read
(2.4)




∀(jx, jy) ∈ N
2
0, jx + jy = degQ− 1,

2(jx + 1)λ10µjx+1,jy + 2(jy + 1)λ01µjx,jy+1

+

jx∑

kx=0

jy∑

ky=0

1

(jx − kx)!(jy − ky)!
∂jx−kx
x ∂jy−ky

y κ̃2(xc, yc)µkx,ky
= 0,

and the upcoming study of the system would not hold.

2.3. Layer structure and well-posedness. Even though there are no nonlin-
ear terms in the system for amplitude-based GPWs, the structure of the system is
analogous to that of the equivalent system for phase-based GPWs. We can gather
unknowns µix,iy according to the total degree of their monomial in Q, that is, ac-
cording to ix + iy. Likewise, for each value of ` from 0 to q − 1, we can gather
equations according to ` = jx + jy into subsystems of ` + 1 equations for the un-
knowns {µix,iy , (ix, iy) ∈ N

2
0, ix + iy = ` + 2}. Therefore, each subsystem can be

rewritten as

(2.5)





∀(jx, jy) ∈ N
2
0, jx + jy = `,

(jx + 2)(jx + 1)µjx+2,jy + (jy + 2)(jy + 1)µjx,jy+2

= −2(jx + 1)λ10µjx+1,jy − 2(jy + 1)λ01µjx,jy+1

−
jx∑

kx=0

jy∑

ky=0

1

(jx − kx)!(jy − ky)!
∂jx−kx
x ∂jy−ky

y κ̃2(xc, yc)µkx,ky
.

The right-hand side of each equation in (2.5) only involves unknowns {µix,iy , (ix, iy) ∈
N

2
0, ix+iy < `+2}. The subsystems can then be considered sequentially for increasing

values of `, as the right-hand side would then be known from the previous layers
˜̀< `. Each subsystem consists of ` + 1 equations and has ` + 3 unknowns, namely,
{µix,iy , (ix, iy) ∈ N

2
0, ix+iy = `+2}; furthermore, the three unknowns {µ0,0, µ1,0, µ0,1}

only appear in the right-hand sides of these subsystems.
We can now justify why each subsystem has a solution thanks to a reformulation

of each subsystem in terms of the partial operator ∆ defined on the space of homoge-
neous polynomials. Denote by A = C[X,Y ] the space of complex polynomials in two
variables and by Ad ⊂ A the space of homogeneous polynomials of degree d. Since
Ad = Span{XiY d−i, 0 ≤ i ≤ d}, it is clear that dimAd = d + 1. For a given level
` ∈ N0, consider the Laplacian of a homogeneous polynomial of degree `+ 2:

(2.6) ∆

[
`+2∑

i=0

piX
iY `+2−i

]
=

∑̀

i=0

(
(i+2)(i+1)pi+2+(`+2− i)(`+1− i)pi

)
XiY `−i.

Then the restriction ∆` of the Laplacian operator to a space of homogeneous polyno-
mials A`+2 is defined as

∆` : A`+2 → A`

P 7→ ∆P,

and we are interested in the range of this linear operator. Indeed, the subsystem (2.5)
has a solution if and only if the operator ∆` is surjective.
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Let us focus first on the kernel of ∆`. It is clear from (2.6) that

ker∆` =

{
`+2∑

i=0

piX
iY `+2−i, {pi}0≤i≤`+2 ∈ C

`+3,

(i+ 2)(i+ 1)pi+2 + (`+ 2− i)(`+ 1− i)pi = 0 for 0 ≤ i ≤ `

}
,

which is equivalent to

ker∆` = Span

{ b `+2
2 c∑

i=0

(−1)i (`+ 2)!

(2i)!(`+ 2− 2i)!
X2iY `+2−2i,

b `+3
2 c∑

i=1

(−1)i−1 (`+ 1)!

(2i− 1)!(`+ 3− 2i)!
X2i−1Y `+3−2i

}
.

So dim(ker∆`) = 2. As a consequence, since dimA`+2 = `+ 3 while dimA` = `+ 1,
the rank-nullity theorem shows that the operator ∆` is full-rank.

This then shows that each subsystem (2.5) has a solution.
In turn, thanks to the layer structure of system (2.3), we have then proved that

the system has a solution. With Ndof = (q+2)(q+3)
2 unknowns and Neqn = q(q+1)

2
equations, system (2.3) can be solved using Ndof −Neqn = 2q + 3 appropriate addi-
tional constraints. First, the three unknowns {µ0,0, µ1,0, µ0,1} can be fixed, as we have
already noted that they appear only on right-hand sides of the subsystems. Next, for
increasing values of `, each of the q subsystems is triangular. This can be evidenced
via numbering of the equations with increasing values of jx and numbering of the un-
knowns with increasing values of ix. It is then clear that by adding the two additional
constraints corresponding to fixing µ0,`+2 and µ1,`+1, we obtain a well-posed problem
for each layer `. The three initial constraints plus the two constraints per subsystem
altogether form 2q + 3 additional constraints, and there is a unique solution to (2.3)
augmented by these constraints.

In summary, the problem of constructing a GPW can then be reformulated into
a well-posed problem:

(2.7)





Fix {µ0,0, µ1,0, µ0,1},
∀` ∈ [[0, q − 1]] Fix µ0,`+2, µ1,`+1,

Solve (2.5).

2.4. Construction of solutions. The well-posedness of (2.7)—and therefore
the existence of a solution to (2.2)—is independent of the values chosen to fix the
additional constraints. However, in order for the resulting GPW to have useful ap-
proximation properties, we make the following choices. To obtain a GPW of the form
G(x, y) = (1 + HOT ) exp(λ10(x − xc) + λ01(y − yc)) as announced, we choose to
fix µ0,0 = 1, as any choice of a nonzero value independent of (λ10, λ01) would not
affect any of the results that follow. Next we choose for simplicity to fix µ1,0 = 0
and µ0,1 = 0 and, for increasing values of `, µ0,`+2 = 0 and µ1,`+1 = 0. The unique
solution to the reformulated problem (2.7) can be constructed thanks to the following
algorithm.
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Algorithm 2.1 Construction of an amplitude-based GPW for the Helmholtz equa-
tion.

1: Given ~d = (λ1,0, λ0,1) ∈ C
2 and (xc, yc) ∈ R

2

2: Fix µ0,0 = 1 as well as (µ1,0, µ0,1) = (0, 0)
3: for `← 0, q − 1 do

4: Fix µ0,`+2 = 0 and µ1,`+1 = 0
5: for jx ← 0, ` do

6: RHS := −2(jx + 1)λ10µjx+1,`−jx − 2(`− jx + 1)λ01µjx,`−jx+1

7: −
jx∑

kx=0

`−jx∑

ky=0

1

(jx − kx)!(`− jx − ky)!
∂jx−kx
x ∂`−jx−ky

y κ̃2(xc, yc)µkx,ky

8: µjx+2,`−jx :=
1

(jx + 2)(jx + 1)

(
RHS− (`− jx + 2)(`− jx + 1)µjx,`−jx+2

)

9: Q(x, y)←
∑

0≤ix+iy≤q+1

µix,iy (x− xc)
ix(y − yc)

iy

10: G−→
d
(x, y)← Q(x, y) exp

(
λ10(x− xc) + λ01(y − yc)

)

Thanks to the triangular structure of subsystems (2.5), which hence are solved by
substitution, the computational cost of Algorithm 2.1 is simply linear with respect to
the number of polynomial coefficients of Q. Moreover, even though it does not affect
the linear rate, the choice to fix to zero µ1,0, µ0,1, µ0,`+2, and µ1,`+1 further reduces
the computational cost.

From the derivation of this algorithm, we immediately obtain the following result.

Proposition 2.3. Assume that the parameter q ∈ N is given and that κ2 is a
function of class Cq−1 in a neighborhood of a given point (xc, yc) ∈ R

2. An amplitude-

based GPW G~d constructed from Algorithm 2.1 for any ~d = (λ1,0, λ0,1) ∈ C
2 satisfies

the local approximation property in the vicinity of (xc, yc)

(2.8) (−∆− κ2(x, y))G~d(x, y) = O(|(x, y)− (xc, yc)|q).

This property actually holds not only independently of the choice of ~d = (λ1,0, λ0,1)
∈ C

2 but also independently of the other values fixed in the algorithm since (2.8) holds

simply by construction. The particular choice of ~d that will now be proposed is, how-
ever, the cornerstone of the proofs leading to approximation properties of the new
GPWs.

The choice of the ~d, related to the direction of propagation of PWs, is referred
to as normalization. In order to build a family of amplitude-based GPWs, we simply
mimic classical PW by choosing (λ1,0, λ0,1) =

√
−κ2(xc, yc)(cos θ, sin θ) and construct

the corresponding GPW for any value of θ.

Definition 2.4. Assume that the parameter q ∈ N is given and that κ2 is a
function of class Cq−1 in a neighborhood of a given point (xc, yc) ∈ R

2 with κ2(xc, yc) 6=
0. For any set of p angles A := {θk ∈ [0, 2π); 1 ≤ k ≤ p}, for each angle we define the

associated ~dk :=
√
−κ2(xc, yc)(cos θk, sin θk) and GPW Gk := G~dk

. We will denote
the corresponding set of GPW functions BA,q := {Gk; θk ∈ A, 1 ≤ k ≤ p}.

As a by-product of the proof of approximation properties, we will prove the linear
independence of this set of GPWs under the mere condition that A is a set of distinct
angles.
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Obviously, if κ2(xc, yc) = 0, then all Gk are identical because then all ~dk are the
same. However, in this case, the normalization could be chosen differently, and a
family of linearly independent GPWs would still be constructed. We will not focus
on this aspect here, but a study of approximation properties with a normalization
independent of κ was presented in [24] for phase-based GPWs, and the same approach
is applicable to the amplitude-based GPWs. Approximation properties of these new
functions indeed hold even with a κ-independent normalization, so the new GPWs
could be used (like the phase-based ones) in domains including points at which κ
vanishes. For instance, for applications to plasma physics where a cutoff be defined
as a line along which κ vanishes, it would be possible to change the normalization in
a neighborhood of a cutoff.

3. Best approximation properties. We will now follow the road map pro-
posed in [24] to study approximation properties of GPWs, adapting each step to
this new framework of amplitude-based GPWs. At each step before the last one,
we will emphasize interpretation of the central idea in this new framework and state
the desired properties in lemmas, finally resulting in the approximation properties
summarized in Theorem 3.7. The theorem’s proof relies on constructing a GPW ap-
proximation to any smooth solution of the PDE by matching their Taylor expansions.
A natural element coming into play when matching the Taylor expansion of a linear
combination of p functions {fi, i ∈ N, i ≤ p} is the matrix Mn ∈ C

(n+1)(n+2)/2×p built
columnwise from the Taylor expansion coefficients of each function, and we will use
the notation
(3.1)
∀(jx, jy) ∈ (N0)

2, jx+ jy ≤ n, (Mn) (jx+jy)(jx+jy+1)

2 +jy+1,k
:= ∂jx

x ∂jy
y fk(xc, yc)/(jx!jy!).

Step 1. In this first step, we seek common properties of the unknowns that are
computed inside the nested loop in Algorithm 2.1. In the phase-based context, this
amounts to studying the coefficients of highest-degree terms in the polynomial P with
respect to the only nonzero fixed unknowns in the construction algorithm, namely,
(λ1,0, λ0,1). So it involves exclusively the phase polynomial. By contrast, here it will
couple the amplitude polynomial with the phase term. The coefficients of highest-
degree terms in the polynomial Q cannot possibly be expressed exclusively in terms of
the only nonzero fixed unknown in the construction algorithm, which would be µ0,0.
Instead, as appears clearly from the computation of RHS in the algorithm, they are
intrinsically coupled to the fixed terms from the phase, namely, (λ1,0, λ0,1). Despite
this practical difference, the fundamental idea remains the same independently of the
choice of ansatz for the GPW: Both ansatz are designed starting from a classical
PW, so the new unknowns introduced in each ansatz are studied with respect to the
parameters defining a classical PW, namely, (λ1,0, λ0,1).

The relation between {µix,iy , ix ≥ 2} and (λ0,1, λ1,0) is polynomial, and each of
these µix,iy has a particular degree as a polynomial in C[λ1,0, λ0,1].

Lemma 3.1. Assume that the parameter q ∈ N is given and that κ2 is a function
of class Cq−1 in a neighborhood of a given point (xc, yc) ∈ R

2 with κ2(xc, yc) 6= 0.
Consider the set of unknowns {µix,iy , (ix, iy) ∈ N

2
0, ix + iy ≤ q + 1} constructed in

Algorithm 2.1, under the assumption (inspired by classical PWs) that the quantity
(λ1,0)

2 + (λ0,1)
2 is equal to −κ2(xc, yc). While µ0,0 = 1, each µix,iy for ix + iy ≥ 1

can be expressed as a polynomial in C[λ1,0, λ0,1] of degree at most equal to ix+ iy − 2.

In order for the following proof to hold, it is sufficient for the quantity (λ1,0)
2 +

(λ0,1)
2 to have a fixed value in v ∈ C, as explained in [20]. In other words, instead
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1672 LISE-MARIE IMBERT-GERARD

of considering elements of the polynomial ring C[λ1,0, λ0,1], we consider the quotient
ring C[λ1,0, λ0,1]/((λ1,0)

2 + (λ0,1)
2 − v). This explains the phrasing of the lemma:

µix,iy can be expressed as a polynomial with a certain degree—as opposed to has a
certain degree.

Proof. In view of Algorithm 2.1’s formula 2, the result is clear for (µ1,0, µ0,1). In
view of Algorithm 2.1’s formula 8, we will further proceed by nested induction on `
and jx. Following the layer structure of our problem, we start by the induction with
respect to `.

For ` = 0, µ0,2 and µ1,1 are both fixed to zero, so they clearly are polynomials in
C[λ1,0, λ0,1] of degree at most equal to 0. Then, since µ0,0 = 1, the last µix,iy with
ix + iy = 2 can be written as

(3.2) µ2,0 =
1

2

(
−2λ1,0µ1,0 − 2λ0,1µ0,1 − κ̃2(xc, yc)

)
.

From the definition of κ̃2 and the assumption on (λ1,0, λ0,1), it is clear that κ̃
2(xc, yc) =

0. Since moreover µ1,0 = µ0,1 = 0, we obtain that µ2,0 = 0, and the result is proved
for ` = 0.

Given ` ∈ N0, ` < q − 1, assume that each µix,iy for 1 ≤ ix + iy ≤ ` + 2 is a
polynomial in C[λ1,0, λ0,1] of degree at most equal to ix + iy − 2. Since µ0,`+3 and
µ1,`+2 are both fixed to zero, they clearly are polynomials in C[λ1,0, λ0,1] of degree
at most equal to ` + 1. We then want to prove the result for all µjx+2,`+1−jx with
0 ≤ jx ≤ ` + 1, and we will naturally proceed by induction on jx. For jx = 0,
since µ0,`+3 = 0, Algorithm 2.1’s formula 8 shows that µ2,`+1 as a polynomial in
C[λ1,0, λ0,1] will simply be a multiple of RHS, while, thanks to the definition of κ̃2

with µ0,`+1 = µ1,`+1 = µ0,`+2 = 0, we have

RHS = −
`+1∑

ky=0

1

(`+ 1− ky)!
∂`+1−ky
y κ2(xc, yc)µ0,ky

.

So the induction hypothesis for ` together with µ0,0 = 1 show that the result holds for
µ2,`+1. Given jx ∈ N0, jx < `+1, we now assume that each µix,iy for ix+ iy = `+3 as
well as ix ≤ jx+2 is a polynomial in C[λ1,0, λ0,1] of degree at most equal to ix+iy−2.
The degree of µjx+3,`−jx at most equal to the maximum of

• the degree of µjx+1,`−jx+2, at most equal to `+1 from the induction hypothesis
for jx;

• the degree of λ10µjx+2,`−jx , at most equal to ` + 1 from the induction hy-
pothesis for `;

• the degree of λ01µjx+1,`−jx+1, at most equal to ` + 1 from the induction
hypothesis for `;

• the degree of ((λ1,0)
2 + (λ0,1)

2)µjx+1,`−jx , at most equal to ` − 1 from the
induction hypothesis for `;

• the degree of ∂jx+1
x ∂`−jx

y κ2(xc, yc)µ0,0, at most equal to 0 since µ0,0 = 1;

• the degree of ∂jx+1−kx
x ∂

`−jx−ky
y κ2(xc, yc)µkx,ky

for 0 ≤ kx ≤ jx + 1 and
0 ≤ ky ≤ `− jx, at most equal to `− 1 from the induction hypothesis for `.

So the degree of µjx+3,`−jx as a polynomial in C[λ1,0, λ0,1] is as expected at most
equal to `+ 1, which concludes the proof.

Step 2. This step focuses on identifying a reference set of functions, simpler to
study than the GPWs. From the choice of ansatz for amplitude-based GPWs, it is
again clear that the reference case of classical PWs will play a fundamental role in
the study of approximation properties, similarly to the phase-based GPW case [20].
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The normalization introduced before Definition 2.4 is used to define the reference
space of classical PWs corresponding to the GPWs as follows.

Definition 3.2. Assume that the point (xc, yc) ∈ R
2 as well as the parameter

p are given. For any set of p angles A := {θk ∈ [0, 2π); 1 ≤ k ≤ p}, for each

angle we define the associated ~dk :=
√
−κ2(xc, yc)(cos θk, sin θk) and classical PW

Hk := exp(~dk · (·− (xc, yc))). We will denote the corresponding set of PW functions

B
ref
A := {Hk; θk ∈ A, 1 ≤ k ≤ p}.

Even though as discussed earlier we will assume that κ2(xc, yc) 6= 0, the following
study will hold independently of the sign of κ2(xc, yc); however, the Hk functions
are oscillating PWs only if κ2(xc, yc) > 0, while they are exponentially decaying (or
increasing) functions if κ2(xc, yc) < 0.

Step 3. Let us turn to the study of approximation properties of this reference
case. Here the reference case is the same for the amplitude-based GPWs as it was for
the phase-based GPWs. The approximation properties of the reference space B

ref
A

were proved in [7], even though they were not stated as a stand-alone result. The
precise result that we will use in the following is only a part of that proof. It is simply
presented here as a reminder.

Lemma 3.3. Assume that the point (xc, yc) ∈ R
2 as well as the parameters n ∈ N

are given. For any set of p = 2n + 1 distinct angles A := {θk ∈ [0, 2π); 1 ≤ k ≤ p},
we consider the matrix (3.1) for the reference set of PW B

ref
A , denoted MC

n as in [20].
Then, as long as κ2(xc, yc) 6= 0, the rank of this matrix is rk(MC

n ) = 2n+ 1.

See [24, section 4.1] for a comment on the need for p to be at least equal to 2n+1
to guarantee a rank equal to 2n+1 in relation to properties of trigonometric functions.

Step 4. In order to relate the new GPW case to the reference case, we introduce
the matrix (3.1) for the new GPW set BA,q, denoted MG

n . To study its relation to the
reference matrix MC

n , we will first express each of its entries: the new basis functions’
derivatives evaluated at (xc, yc) in terms of the reference basis functions’ derivatives
evaluated at (xc, yc).

Lemma 3.4. Assume that the point (xc, yc) ∈ R
2 as well as the parameters (p, q) ∈

N
2 are given and that κ2 is a function of class Cq−1 in a neighborhood of (xc, yc). For

any set of p distinct angles A := {θk ∈ [0, 2π); 1 ≤ k ≤ p}, ranked in a given order, we

consider the reference and GPW bases B
ref
A and BA,q, with their elements ranked in

the same order. For (jx, jy) ∈ N
2
0 such that jx + jy ≤ q + 1, there exists a polynomial

R(jx,jy) ∈ C[λ1,0, λ0,1] with degR(jx,jy) < jx + jy such that for all k ∈ N with k ≤ p,
we have

1

jx!jy!
∂jx
x ∂jy

y Gk(xc, yc) =
1

jx!jy!
∂jx
x ∂jy

y Hk(xc, yc) +R(jx,jy)(λ1,0, λ0,1).

Proof. For the vector ~dk :=
√
−κ2(xc, yc)(cos θk, sin θk) associated to any angle

θk ∈ A, the reference and new basis functions are, respectively, Hk and Gk. We first
notice that Gk = Q ·Hk, where Q is the polynomial constructed via Algorithm 2.1.
Then, since ∂ix

x ∂
iy
y Q(xc, yc) = ix!iy!µix,iy for any (ix, iy) ∈ N

2
0 such that ix+iy ≤ q+1,

the product rule shows that as long as jx + jy ≤ q + 1, we have

1

jx!jy!
∂jx
x ∂jy

y Gk(xc, yc) =

jx∑

ix=0

jy∑

iy=0

1

(jx − ix)!(jy − iy)!
µix,iy (λ1,0)

jx−ix (λ0,1)
jy−iy .
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In view of the normalization chosen in Algorithm 2.1, it gives, for (jx, jy) ∈ N
2
0 such

that jx + jy ≤ q + 1,





1

jy!
∂jy
y Gk(xc, yc) =

1

jy!
(λ0,1)

jy if jx = 0,

1

jy!
∂x∂

jy
y Gk(xc, yc) =

1

jy!
(λ1,0)

1
(λ0,1)

jy if jx = 1,

1

jx!jy!
∂jx
x ∂jy

y Gk(xc, yc)

=
1

jx!jy!
(λ1,0)

jx (λ0,1)
jy +

jx∑

ix=2

jy∑

iy=0

(λ0,1)
jy−iy (λ1,0)

jx−ix

(jx − ix)!(jy − iy)!
µix,iy if jx ≥ 2.

On the other hand, ∂jx
x ∂

jy
y Hk(xc, yc) = (λ0,1)

jy (λ1,0)
jx for any (jx, jy) ∈ N

2
0. So

the result is proved for jx = 0 and jx = 1, while for jx ≥ 2 the result is a direct
consequence of Lemma 3.1.

Lemma 3.5. Assume that the point (xc, yc) ∈ R
2 as well as the parameters n ∈ N

are given and that κ2 is a function of class Cq−1 in a neighborhood of (xc, yc). For
any set of p = 2n + 1 distinct angles A := {θk ∈ [0, 2π); 1 ≤ k ≤ p}, ranked in a
given order, we consider the reference and GPW matrices, MC

n and MG
n , respectively,

defined for the reference and the GPW bases Bref
A and BA,q for any q ≥ max(n−1, 1),

with their elements ranked in the same order. There exists a nonsingular matrix
Ln ∈ C

(n+1)(n+2)/2×(n+1)(n+2)/2 such that

M
G
n = LnM

C
n .

As a consequence, as long as κ2(xc, yc) 6= 0, rk(MG
n ) = 2n+ 1.

Proof. The choice q ≥ max(n − 1, 1) guarantees that n ≤ q + 1; therefore, the
result of Lemma 3.4 holds in particular for all entries of the matrices, and it can be
restated as follows: There exists a complex polynomial in two variables R(jx,jy) with
degR(jx,jy) < jx + jy such that for all k ∈ N with k ≤ p, we have

(3.3)

(
M

G
n

)
(jx+jy)(jx+jy+1)

2 +jy+1,k

=
(
M

C
n

)
(jx+jy)(jx+jy+1)

2 +jy+1,k
+R(jx,jy)

((
M

C
n

)
2,k

,
(
M

C
n

)
3,k

)
.

Moreover, from the definition of the reference basis functions Hk, we have

∂jx
x ∂jy

y Hk(xc, yc) =
(
λ1,0

)jx(
λ0,1

)jy
= ∂xHk(xc, yc)

jx∂yHk(xc, yc)
jy ,

where (λ1,0, λ0,1) =
√
−κ2(xc, yc)(cos θk, sin θk). Hence, from the definition of the

reference matrix MC
n , we can identify

((
M

C
n

)
2,k

)jx ((
M

C
n

)
3,k

)jy
=

(
M

C
n

)
(jx+jy)(jx+jy+1)

2 +jy+1,k
.

It is now clear that (3.3) is precisely stating that MG
n ’s row number

(jx+jy)(jx+jy+1)
2 +

jy + 1 can be written as a linear combination of MC
n ’s rows; more precisely, it can be

written as the sum of
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• once MC
n ’s row number

(jx+jy)(jx+jy+1)
2 + jy + 1;

• a linear combination of MC
n ’s row of index at most equal to

(jx+jy)(jx+jy+1)
2 .

Finally, this is equivalent to the existence of a lower unitriangular matrix Ln such that
MG

n = LnM
C
n .

As a consequence, rk(MG
n ) = rk(MC

n ). Hence, from Lemma 3.3, if κ2(xc, yc) 6= 0,
then rk(MG

n ) = 2n+ 1.

Step 5. Finally, we can pull the pieces together to study the approximation
properties of the space spanned by the new GPWs.

Definition 3.6. Assume that the point (xc, yc) ∈ R
2 as well as the parameters

(p, q) ∈ N
2 are given and that κ2 is a function of class Cq−1 in a neighborhood of

(xc, yc). For any set of p distinct angles A := {θk ∈ [0, 2π); 1 ≤ k ≤ p}, ranked in a
given order, we consider the GPW basis BA,q for any q ≥ max(n−1, 1). The complex

vector space spanned by BA,q will be denoted V
A,q
(xc,yc)

.

In order to obtain the desired approximation properties, it is therefore sufficient
to pick the approximation parameter q to be equal to max(n− 1, 1). Picking a higher
value would guarantee the same properties but would result in an unnecessary increase
of the GPW construction’s computational cost.

Theorem 3.7. Assume that the point (xc, yc) ∈ R
2 as well as the parameters

n ∈ N are given and that κ2 is a function of class Cn in a neighborhood of (xc, yc), with
κ2(xc, yc) 6= 0. For any set of p = 2n+1 distinct angles A := {θk ∈ [0, 2π); 1 ≤ k ≤ p},
we consider the GPW space V

A,max(n−1,1)
(xc,yc)

.

For any solution u of the PDE (1.1) which is of class Cn at (xc, yc), there exists

a GPW function ua ∈ V
A,max(n−1,1)
(xc,yc)

and a constant C such that in a neighborhood of

(xc, yc),

(3.4)

{
|(u− ua)(x, y)| ≤ C|(x, y)− (xc, yc)|n+1,

|(∇u−∇ua)(x, y)| ≤ C|(x, y)− (xc, yc)|n.

Thanks to our preliminary lemmas, the proof is identical to the one from [20] for
phase-based GPWs. We repeat the proof here for the sake of completeness. Even
though the preliminary steps were studied under the assumption that κ2(xc, yc) 6=
0, as it was mentioned in section 2, amplitude-based GPWs with an appropriate
normalization enjoy the same approximation properties even if κ2(xc, yc) = 0.

Proof. It is sufficient for the Taylor expansion of a function ua ∈ V
A,max(n−1,1)
(xc,yc)

to match that of the solution u to prove the theorem.

Any element of V
A,max(n−1,1)
(xc,yc)

can be written as
∑2n+1

k=1 XkGk, and its Taylor

expansion matches that of the solution u if and only if

(3.5) M
G
nX = U,

where the kth entry of X ∈ C
2n+1 is the coefficient Xk, while for all (jx, jy) ∈ (N0)

2,

the
(jx+jy)(jx+jy+1)

2 + jy +1th entry of U ∈ C
(n+1)(n+2)

2 is the Taylor expansion coeffi-

cient ∂jx
x ∂

jy
y u(xc, yc)/(jx!jy!). From Lemma 3.5 the matrix MG

n ∈ C
(n+1)(n+2)

2 ×(2n+1)
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has maximal rank 2n+ 1. Moreover, the range of MG
n can be identified as

K :=

{
(Cjx,jy ) ∈ C

(n+1)(n+2)
2 , ∀(jx, jy) ∈ N

2, jx + jy ≤ n− 2,

(jx + 1)(jx + 2)Cjx+2,jy + (jy + 1)(jy + 2)Cjx,jy+2

= −
jx∑

ix=0

jy∑

iy=0

∂ix
x ∂

iy
y κ2(xc, yc)

ix!iy!
Cjx−ix,jy−iy

}
,

and the right-hand side U of (3.5) clearly belongs to K as the function u solves the
PDE (1.1).

As a result, there exists a solution X to the linear system (3.5), and the cor-

responding GPW function ua :=
∑2n+1

k=1 XkGk ∈ V
A,max(n−1,1)
(xc,yc)

is guaranteed to

have the same Taylor expansion as u up to order n. In other words, we have
(u− ua)(x, y) = O(|(x, y)− (xc, yc)|n+1), and this clearly implies the result (3.4).

4. Extension beyond the Helmholtz equation. It is a natural question to
consider how can this work, developed in the previous sections for the Helmholtz
operator −∆ − κ2(x, y), be extended to other linear partial differential operators.
This was the goal of [24] for phase-based GPWs, which considered operators of order
M ≥ 2, in two dimensions, of the form

(4.1) LM,α :=

M∑

`=0

∑̀

k=0

αk,`−k (x, y) ∂
k
x∂

`−k
y ,

where α = {αk,`−k, (k, `) ∈ N
2, 0 ≤ k ≤ ` ≤ M} represents the set of complex-valued

coefficients. The situation is similar for amplitude-based GPWs. On the one hand,
the construction process of amplitude-based GPWs proposed earlier can be extended
as-is to a large family of linear PDEs of the form (4.1) under a simple assumption
αM,0(xc, yc) 6= 0. This is simply because the key to the construction algorithm does
not lie in any of the normalization choices (as the values chosen for the normalization
obviously do not affect the structure of the algorithm) but rather in the explicit
formula 8 in Algorithm 2.1. On the other hand, the approximation properties strongly
rely on the normalization, as we have seen that the fact for (λ1,0)

2 + (λ0,1)
2 to be

constant was fundamental as early as in Step 1.
In this section, instead of considering general operators (4.1) as in [24], we will

focus on operators of second order allowing for anisotropy in the first- and second-
order terms, written under the form

(4.2) L := ∇ ·A(x, y)∇+ V (x, y) · ∇+ s(x, y),

where A a matrix-valued function, V a vector-valued function, and s a scalar-valued
function, under the assumption that the matrix A(xc, yc) is real symmetric with
nonzero eigenvalues. Our work is motivated by one such equation, the convected
Helmholtz equation, of interest to the aeroacoustics industry [4, 5]. Some recent work
on anisotropic wave propagation includes asymptotic techniques [25], finite-difference
aspects [40], from the scattering point of view both finite element or integral equa-
tion aspects [10, 13, 1, 42] boundary element aspects [2], and combined spectral and
wave aspects [41]. However, there is little work on anisotropic media in the field of
Trefftz methods, but anisotropic Maxwell problems have been investigated in [30] in
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the constant coefficient case, with anisotropy restricted to diagonal permittivity and
permeability matrices, as well as in [19] in the variable coefficient case, with a real
permeability and a complex permittivity not assumed to be diagonal but under some
assumptions of symmetry.

We will point out how the construction process, and the proof of approximation
properties can both be adapted to operators (4.2); see, respectively, subsections 4.1
and 4.2. However, similarly to the work presented in [24], this work extends to certain
operators of higher order like (4.1)—under the same hypothesis.

4.1. The construction process. In the construction process, the crucial point
lies in the identification of linear subsystems thanks to the layer structure. Defining

Ṽ :=

(
∂xA11 + 2λ1,0A11 +A12λ0,1 + ∂yA21 +A21λ0,1 + V1

∂yA22 + 2λ0,1A22 +A21λ1,0 + ∂xA12 +A12λ1,0 + V2

)
,

s̃ := s+ V1λ1,0 + V2λ0,1 + (∂xA11 + ∂yA21)λ1,0 + (∂xA12 + ∂yA22)λ0,1

+A11λ
2
1,0 + (A12 +A21)λ1,0λ0,1 +A22λ

2
0,1,

one can easily verify that the equivalent to problem (2.2) reads

(4.3)





Find (Q, (λ10, λ01)) ∈ C[X,Y ]× C
2 such that

A11∂
2
xQ(x, y) + (A12 +A21)∂x∂yQ(x, y) +A22∂

2
yQ(x, y)

+ Ṽ (x, y) · ∇Q(x, y) + s̃(x, y)Q(x, y) = O(|(x, y)− (xc, yc)|q),
G(x, y) := Q(x, y) exp

(
λ10(x− xc) + λ01(y − yc)

)
,

where it is important to keep in mind that the second-order term coefficients are not
constant here. For a given (λ10, λ01) ∈ C

2, as in subsection 2.2, the linear system’s
unknowns are still the polynomial coefficients of Q, while the linear system’s equations
are still the Taylor expansion coefficients of (4.3). The degree of Q, for the same
reason as earlier, is set to degQ = q + 1. For a more compact notation, we will
write Ac := A(xc, yc). Instead of the Laplacian defined on spaces of homogeneous
polynomials, it is the operator ∇·Ac∇ defined on spaces of homogeneous polynomials
which is here key to the layer structure. As a consequence, the well-posedness relies
on the size of the kernel of this operator, which is again equal to 2 according to the
identity

∇ ·Ac∇
[
`+2∑

i=0

piX
iY `+2−i

]

=
∑̀

i=0

(
(i+ 2)(i+ 1)Ac

11pi+2 + (i+ 1)(`+ 1− i)(Ac
12 +Ac

21)pi+1

+ (`+ 2− i)(`+ 1− i)Ac
22pi

)
XiY `−i.

Therefore, the linear system also has a solution, and an algorithm following the
same stages as Algorithm 2.1, with updated formulas for RHS and µjx+2,`−jx , con-

structs an amplitude-based GPW for any ~d = (λ1,0, λ0,1) ∈ C
2 which satisfies the

local approximation property in the vicinity of (xc, yc), namely,
[
∇ ·A(x, y)∇+ V (x, y) · ∇+ s(x, y)

]
G~d(x, y) = O (|(x, y)− (xc, yc)|q) ,

independently of the normalization.
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4.2. Best approximation properties. The impact of the normalization on
the approximation properties appears in section 3 when we express the coefficients
{µix,iy , 0 ≤ ix + iy ≤ q + 1} of Q in terms of the phase coefficients (λ1,0, λ0,1). In
Lemma 3.1’s proof, the assumption that (λ1,0)

2 + (λ0,1)
2 is fixed is crucial to show

that µ2,0 can be expressed as a constant polynomial in C[λ1,0, λ0,1]. In the case of
the generalized operator (4.2), the expression for the unknown µ20 corresponding to
(3.2) reads

µ2,0 = − 1

2A11(xc, yc)

(
Ṽ1(xc, yc)µ1,0 + Ṽ2(xc, yc)µ0,1 + s̃(xc, yc)µ0,0

)
.

Since µ1,0 = µ0,1 = 0 while µ0,0 = 1, we can focus our attention on the last term.
From the definition of s̃, we can consider s̃(xc, yc) as an element C[λ1,0, λ0,1]:

s̃(xc, yc) = s(xc, yc) + V1λ1,0 + V2λ0,1

+ (∂xA11 + ∂yA21)(xc, yc)λ1,0 + (∂xA12 + ∂yA22)(xc, yc)λ0,1

+A11(xc, yc)λ
2
1,0 + (A12 +A21)(xc, yc)λ1,0λ0,1 +A22(xc, yc)λ

2
0,1.

The choice of normalization for (λ1,0, λ0,1) then determines how, in turn, µ2,0 can be
expressed as an element of C[λ1,0, λ0,1]. For the Helmholtz case, since A12 = A21 = 0
and A11 = A22 = 1, the second-degree terms were reduced to (λ1,0)

2 + (λ0,1)
2, and

there were no first-degree terms. The normalization assumption that (λ1,0)
2+(λ0,1)

2

was fixed therefore resulted in the expression of µ2,0 as a constant polynomial in
C[λ1,0, λ0,1]. But here the first-degree terms are nonzero unless the matrix A(xc, yc)
is constant, and there are three second-degree terms. However, since the matrix
A(xc, yc) is assumed to be real symmetric with nonzero eigenvalues, denoted here
γ1, γ2, it can be diagonalized by an orthogonal matrix: There exists an orthogonal
matrix P such that

( γ1 0
0 γ2

)
= PA(xc, yc)P

T , and the second-degree terms can then
be rewritten as

A11(xc, yc)λ
2
1,0 + (A12 +A21)(xc, yc)λ1,0λ0,1 +A22(xc, yc)λ

2
0,1

= γ1 (P11λ1,0 + P12λ0,1)
2
+ γ2 (P21λ1,0 + P22λ0,1)

2
.

The normalization assumption that

(4.4)

(
λ1,0

λ0,1

)
∝ PT

(
1/
√
γ1 0

0 1/
√
γ2

)(
cos θ
sin θ

)

then guarantees that µ2,0 can be written as a polynomial of degree at most equal to
1 in C[λ1,0, λ0,1]. So the normalization is different from that of the Helmholtz case,
although if A is the identity matrix and V is the zero vector, then (4.4) reduces to
the Helmholtz PW normalization.

Starting from this point and following a similar reasoning as that of Lemma 3.1’s
proof, we can prove that each µix,iy for ix + iy ≥ 1 can be expressed as a polynomial
in C[λ1,0, λ0,1] of degree at most equal to ix + iy − 1.

The road map’s second and third steps are independent of the GPW normalization
choice, as the reference case is still the classical PW case, with propagation direction
(cos θ, sin θ) but without any restriction on the wave number, that is, functions Hk :=

exp(~dk · (·− (xc, yc))) with some ~dk ∝ (cos θk, sin θk).
There is an important consequence of the normalization to comment on concerning

the road map’s fourth step. The functions Fk := exp(~ek · (· − (xc, yc))) with ~ek :=

D
o
w

n
lo

ad
ed

 0
6
/3

0
/2

2
 t

o
 1

2
8
.1

9
6
.2

2
7
.2

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AMPLITUDE-BASED GENERALIZED PLANE WAVES 1679

(λ1,0, λ0,1) with the normalization (4.4) for θ = θk are a natural intermediate between
the GPWs and the classical PWs, useful to write the GPWs as Gk = Q · Fk. While
in the Helmholtz case it is clear that Hk = Fk for the appropriate choice of wave
number, this is not the case as soon as the matrix A is distinct from the identity. The
pending result to Lemma 3.4 would then relate the derivatives of Gks to derivatives
of Fk: Any derivative of order jx + jy of the difference Gk − Fk could be expressed
as a polynomial of degree smaller than jx + jy in C[λ1,0, λ0,1]. The only impact of
the normalization on the proof is through Lemma 3.1, and µix,iy being expressed as a
polynomial of degree at most equal to ix+iy−1 is sufficient to conclude. The fact that
Fk 6= Hk then requires an additional step to relate the matrices MG

n and MC
n thanks to

the introduction of the matrix MF
n corresponding to the intermediate set of functions

{Fk, k ∈ N, k ≤ p}. Relating MG
n to MF

n follows from the previous comment, just as in
Lemma 3.5. RelatingMF

n toMC
n is straightforward, as can be seen from [24, Lemma 7].

This provides again all the pieces to prove that the rank of MG
n is 2n+1 as expected.

Finally, one more time, the fifth step is a direct consequence of the preliminary
work. So the proof of Theorem 3.7 does not need to be adapted, and the same
approximation properties hold for the operator (4.2) as for the Helmholtz operator
under the assumptions that

• the matrix A(xc, yc) is real symmetric with nonzero eigenvalues;
• the normalization of (λ1,0, λ0,1) is chosen according to (4.4).

5. Numerical results. This section is dedicated to illustrating the approxima-
tion properties of amplitude-based GPWs for the Helmholtz equation and beyond.
The most natural aspect to discuss is the expected high-order convergence, but we
will also emphasize aspects of conditioning as well as a comparison with phase-based
GPWs in terms of preasymptotic behavior.

The testing procedure follows the structure of the theoretical part of this article.
The parameters are set according to the theorem: p = 2n+ 1, q = max(n− 1, 1), for
increasing values of n. A set of GPWs with appropriate normalization is constructed
following Algorithm 2.1, and the GPW approximation ua’s coefficients in the GPW
basis are computed following the proof of Theorem 3.7. However, rather than consid-
ering a single point (xc, yc), we will consider 50 random points distributed in a given
domain Ω, as we keep in mind that the GPWs are meant to be a local basis for a
problem set on the full domain.

In order to illustrate precisely the first estimate from Theorem 3.7,

|(u− ua)(x, y)| ≤ C|(x, y)− (xc, yc)|n+1,

we investigate the h convergence, i.e., in the regime h := |(x, y)−(xc, yc)| approaching
0, of the difference between the exact solution u to be approximated and the construc-
ted GPW approximation ua. The approximate function ua itself is independent of
h but depends on n. The error reported here is an estimate of the L∞ norm of the
difference u − ua on the circle centered at (xc, yc) of radius h. This is different from
the norm reported in previous work where we reported the L∞ norm of the difference
u − ua on the disk centered at (xc, yc) of radius h. We then report the largest error
among errors obtained at each of the 50 random points (xc, yc). According to the
theorem, for each value of n, we expect to observe convergence of order n + 1. The
constant C depends both on n and on (xc, yc).

All the numerical experiments presented in this article were computed with the

same set of normalization angles, A := {θk = 2(k−1)π
p + π

6 ; 1 ≤ k ≤ p}, in order to
avoid any particular alignment of the basis functions with the coordinate axes.
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5.1. List of test cases. Each test case consists of a variable-coefficient PDE
(1.1) or (4.2), a given domain, and an exact solution u to this PDE. It is straightfor-
ward to verify that these operators satisfy the hypothesis described in section 4.

Ref. Operator Domain Exact solution

Ae ∆− (x− 1) [−2, 2]× [−2, 2] u(x, y) = Ai(x) exp iy

Ac ∆− (x− 1) [−2, 2]× [−2, 2] u(x, y) = Ai(x) cos y
A+ ∆− 2(x+ y) [−2, 2]× [−2, 2] u(x, y) = Ai(x+ y)

cs ∂2
x + .2 cosx sin y∂x∂y − 2∂2

y [−1, 1]× [−1, 1] u(x, y) = cosx sin y

+(.2 sinx cos y − 1)
ey ∆ + 1 [−1, 1]× [0, 2π] u(x, y) = exp(iy)

Jc x2∆− x∂x + cos y∂y [1, 5]× [0, 2π] u(x, y) = J1(x) cos y
−(1− 2x2

− sin y)

JJ x2∂2
x + y2∂2

y + x∂x + y∂y [1, 3]× [0, 3] u(x, y) = J0(x)J1(y)
+(x2 + y2 − 1)

5.2. Higher-order convergence. Figure 1 displays the results obtained for the
ey test case. In this case, the operator is the Helmholtz operator with a constant wave
number. The GPWs constructed by Algorithm 2.1 are then exactly the classical PWs,
as is the case with phase-based GPWs. For each value of n from 1 to 20, the order of
convergence observed is the order obtained in the theorem. The error decreases until
it reaches machine precision, and as h keeps decreasing beyond this point, the error
remains of the same magnitude.

Figures 2 and 3 display the results obtained for four different test cases: Ae, Ac,
A+, and cs. The first three correspond to the Helmholtz equation with a variable
wave number, the variable wave number changes sign within each of the associated
domains, and the exact solutions oscillate for κ2 > 0 and decay exponentially for
κ2 < 0. The last case corresponds to a more general operator (4.2), with anisotropy
in both the second- and the first-order terms. For each value of n from 1 to 20, the
order of convergence observed is the order obtained in the theorem. However, the
matrix MG

n ’s condition number increases with the value of n, so the coefficients Xk

of the linear combination ua

∑2n+1
k=1 XkGk are computed with decreasing accuracy
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Fig. 1. Convergence results for the ey test case for n from 1 to 20. For each value of n, the
expected order of convergence, namely, n + 1, is observed, and the error decreases until it reaches
machine precision.
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Fig. 2. Convergence results for the A+ (top) and cs (bottom) test cases for n from 1 to 8. While
the expected order of convergence is observed in each case, the matrix M

G
n ’s ill-conditioning increases

together with the value of n, which limits the accuracy of the corresponding GPW approximation.

as n increases. This is illustrated by the behavior of the errors in Figures 2 and 3:
the error’s decrease is limited by the accuracy of the coefficient Xk, and as h keeps
decreasing beyond this point, the error remains of the same magnitude.

Preliminary results suggest that the normalization chosen to compute the GPWs
has a strong impact on MG

n ’s condition number, as illustrated in Figure 4. These re-

sults were produc with a different normalization of the GPWs, namely, ~d ∝ (cos θ, sin θ),
instead of the normalization (4.4). Note, for instance, that for n = 8, the threshold
shifts from approximately 10−8 in Figure 2 (bottom) to less than 10−12 in Figure 4.
However, we would like to emphasize that this simpler normalization provides better
results for the cs test case, while it does not impact significantly the other three test
cases presented in Figures 2 and 3. Further investigation in this direction is the topic
of ongoing research.

5.3. Comparison with phase-based GPWs. Figures 5 and 6 evidence the
benefit of amplitude-based GPWs over phase-based GPWs in the preasymptotic
regime. The construction of increasingly high-order GPWs involves polynomials of
increasingly high degree. While phased-based GPWs are designed as

G(x, y) := expP (x, y) with P (x, y) =
∑

0≤ix+iy≤degP

λix,iy (x− xc)
ix(y − yc)

iy ,
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Fig. 3. Convergence results for the Ac (top) and Ae (bottom) test cases for n from 1 to 8. While
the expected order of convergence is observed in each case, the matrix M

G
n ’s ill-conditioning increases

together with the value of n, which limits the accuracy of the corresponding GPW approximation.
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Fig. 4. Convergence results for the cs test case for n from 1 to 20 with the classical PW
normalization. For each value of n, the expected order of convergence, namely, n + 1, is observed,
and when compared to Figure 2 (top right), we observe a decrease of the thresholds by several orders
of magnitude.
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Fig. 5. Convergence results for the JJ test case for n from 1 to 5. Results obtained from
amplitude-based and phase-based GPWs are, respectively, represented with solid and dashed lines for
comparison. While the expected order of convergence is observed in each case, the zoom displayed
at the bottom evidences the advantage of the amplitude-based GPWs in the preasymptotic regime.

amplitude-based GPWs are designed as

G(x, y) := Q(x, y)W (x, y) with Q(x, y) =
∑

0≤ix+iy≤degQ

µix,iy (x− xc)
ix(y − yc)

iy

and W (x, y) := exp

(
λ1,0

λ0,1

)
·
(
x− xc

y − yc

)
.

Therefore, in the first case, evaluating a GPW implies evaluating expλix,iy (x −
xc)

ix(y − yc)
iy with 0 ≤ ix + iy ≤ degP , while in the second case, the exponen-

tial terms are limited to expλ1,0(x−xc) and expλ0,1(y− yc). This explains the large
values of phase-based GPWs evaluated at (x, y) such that |(x, y)− (xc, yc)| ≥ 1.

6. Conclusion. Amplitude-based GPWs constructed thanks to Algorithm 2.1
are quasi-Trefftz functions in the sense that the Taylor expansion of their image by
the differential operator is zero up to a desired order. These new GPWs enjoy the
same asymptotic approximation properties as their phase-based counterparts, and the
numerical results presented in the previous section agree with the theoretical results.
Moreover, we illustrate the fact that the best approximation error of the amplitude-

D
o
w

n
lo

ad
ed

 0
6
/3

0
/2

2
 t

o
 1

2
8
.1

9
6
.2

2
7
.2

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1684 LISE-MARIE IMBERT-GERARD

10010−210−410−6
10−16

10−11

10−6

10−1

h

m
ax

er
ro
r
on

d
is
k
s
of

ra
d
iu
s
h

n = 1 Ab

n = 2 Ab

n = 3 Ab

n = 4 Ab

n = 5 Ab

n = 1 Pb

n = 2 Pb

n = 3 Pb

n = 4 Pb

n = 5 Pb

order 2

order 6

10−2 10−1 100 101
10−4

101

106

1011

h

m
ax

er
ro
r
on

d
is
k
s
of

ra
d
iu
s
h n = 1 Ab

n = 2 Ab

n = 3 Ab

n = 4 Ab

n = 5 Ab

n = 1 Pb

n = 2 Pb

n = 3 Pb

n = 4 Pb

n = 5 Pb

Fig. 6. Convergence results for the Jc test case for n from 1 to 5. Results obtained from
amplitude-based and phase-based GPWs are, respectively, represented with solid and dashed lines for
comparison. While the expected order of convergence is observed in each case, the zoom displayed
at the bottom evidences the advantage of the amplitude-based GPWs in the preasymptotic regime.

based GPW approximation exhibits as expected a better preasymptotic behavior than
the best approximation error of the phase-based GPW approximation.

Future directions of research include studying the impact of the normalization on
the conditioning of the GPW basis, optimizing the choice of propagation directions,
and investigating the behavior of GPWs in the high-frequency regime κ� 1.
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